blob: 6425a84412b95f245b9b0117bcce4a70c14e690e [file] [log] [blame]
# Copyright 2017 The Chromium Authors. All rights reserved.
# coding=utf-8
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
from collections import Counter
import itertools
from operator import itemgetter
def sort_and_groupby(list_to_sort, key=None):
"""Returns a generator of (key, list), sorting and grouping list by key."""
list_to_sort.sort(key=key)
return ((k, list(g)) for k, g in itertools.groupby(list_to_sort, key))
def effective_overload_set(F): # pylint: disable=invalid-name
"""Returns the effective overload set of an overloaded function.
An effective overload set is the set of overloaded functions + signatures
(type list of arguments, with optional and variadic arguments included or
not), and is used in the overload resolution algorithm.
For example, given input [f1(optional long x), f2(DOMString s)], the output
is informally [f1(), f1(long), f2(DOMString)], and formally
[(f1, [], []), (f1, [long], [optional]), (f2, [DOMString], [required])].
Currently the optionality list is a list of |is_optional| booleans (True
means optional, False means required); to support variadics this needs to
be tri-valued as required, optional, or variadic.
Formally:
An effective overload set represents the allowable invocations for a
particular operation, constructor (specified with [Constructor] or
[NamedConstructor]), legacy caller or callback function.
An additional argument N (argument count) is needed when overloading
variadics, but we don't use that currently.
Spec: http://heycam.github.io/webidl/#dfn-effective-overload-set
Formally the input and output lists are sets, but methods are stored
internally as dicts, which can't be stored in a set because they are not
hashable, so we use lists instead.
Arguments:
F: list of overloads for a given callable name.
value_reader: an OverloadSetValueReader instance.
Returns:
S: list of tuples of the form (callable, type list, optionality list).
"""
# Code closely follows the algorithm in the spec, for clarity and
# correctness, and hence is not very Pythonic.
# 1. Initialize S to ∅.
# (We use a list because we can't use a set, as noted above.)
S = [] # pylint: disable=invalid-name
# 2. Let F be a set with elements as follows, according to the kind of
# effective overload set:
# (Passed as argument, nothing to do.)
# 3. & 4. (maxarg, m) are only needed for variadics, not used.
# 5. For each operation, extended attribute or callback function X in F:
for X in F: # X is the "callable". pylint: disable=invalid-name
arguments = X['arguments'] # pylint: disable=invalid-name
# 1. Let n be the number of arguments X is declared to take.
n = len(arguments) # pylint: disable=invalid-name
# 2. Let t0..n−1 be a list of types, where ti is the type of X’s
# argument at index i.
# (“type list”)
t = tuple(argument['idl_type_object'] # pylint: disable=invalid-name
for argument in arguments)
# 3. Let o0..n−1 be a list of optionality values, where oi is “variadic”
# if X’s argument at index i is a final, variadic argument, “optional”
# if the argument is optional, and “required” otherwise.
# (“optionality list”)
# (We’re just using a boolean for optional/variadic vs. required.)
o = tuple(argument['is_optional'] # pylint: disable=invalid-name
or argument['is_variadic']
for argument in arguments)
# 4. Add to S the tuple <X, t0..n−1, o0..n−1>.
S.append((X, t, o))
# 5. If X is declared to be variadic, then:
# (Not used, so not implemented.)
# 6. Initialize i to n−1.
i = n - 1
# 7. While i ≥ 0:
# Spec bug (fencepost error); should be “While i > 0:”
# https://www.w3.org/Bugs/Public/show_bug.cgi?id=25590
while i > 0:
# 1. If argument i of X is not optional, then break this loop.
if not o[i]:
break
# 2. Otherwise, add to S the tuple <X, t0..i−1, o0..i−1>.
S.append((X, t[:i], o[:i]))
# 3. Set i to i−1.
i = i - 1
# 8. If n > 0 and all arguments of X are optional, then add to S the
# tuple <X, (), ()> (where “()” represents the empty list).
if n > 0 and all(oi for oi in o):
S.append((X, (), ()))
# 6. The effective overload set is S.
return S
def effective_overload_set_by_length(overloads):
def type_list_length(entry):
# Entries in the effective overload set are 3-tuples:
# (callable, type list, optionality list)
return len(entry[1])
effective_overloads = effective_overload_set(overloads)
return list(sort_and_groupby(effective_overloads, type_list_length))
def method_overloads_by_name(methods):
"""Returns generator of overloaded methods by name: [name, [method]]"""
# Filter to only methods that are actually overloaded
method_counts = Counter(method['name'] for method in methods)
overloaded_method_names = set(name
for name, count in method_counts.iteritems()
if count > 1)
overloaded_methods = [method for method in methods
if method['name'] in overloaded_method_names]
# Group by name (generally will be defined together, but not necessarily)
return sort_and_groupby(overloaded_methods, itemgetter('name'))