| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| /** |
| * Mathematical constants and functions, plus a random number generator. |
| * |
| * To use this library in your code: |
| * |
| * import 'dart:math'; |
| */ |
| library dart.math; |
| import "dart:typed_data"; |
| |
| part "jenkins_smi_hash.dart"; |
| part "point.dart"; |
| part "random.dart"; |
| part "rectangle.dart"; |
| |
| /** |
| * Base of the natural logarithms. |
| * |
| * Typically written as "e". |
| */ |
| const double E = 2.718281828459045; |
| |
| /** |
| * Natural logarithm of 10. |
| */ |
| const double LN10 = 2.302585092994046; |
| |
| /** |
| * Natural logarithm of 2. |
| */ |
| const double LN2 = 0.6931471805599453; |
| |
| /** |
| * Base-2 logarithm of [E]. |
| */ |
| const double LOG2E = 1.4426950408889634; |
| |
| /** |
| * Base-10 logarithm of [E]. |
| */ |
| const double LOG10E = 0.4342944819032518; |
| |
| /** |
| * The PI constant. |
| */ |
| const double PI = 3.1415926535897932; |
| |
| /** |
| * Square root of 1/2. |
| */ |
| const double SQRT1_2 = 0.7071067811865476; |
| |
| /** |
| * Square root of 2. |
| */ |
| const double SQRT2 = 1.4142135623730951; |
| |
| /** |
| * Returns the lesser of two numbers. |
| * |
| * Returns NaN if either argument is NaN. |
| * The lesser of `-0.0` and `0.0` is `-0.0`. |
| * If the arguments are otherwise equal (including int and doubles with the |
| * same mathematical value) then it is unspecified which of the two arguments |
| * is returned. |
| */ |
| T min<T extends num>(T a, T b) { |
| // These partially redundant type checks improve code quality for dart2js. |
| // Most of the improvement is at call sites from the inferred non-null num |
| // return type. |
| if (a is! num) throw new ArgumentError(a); |
| if (b is! num) throw new ArgumentError(b); |
| |
| if (a > b) return b; |
| if (a < b) return a; |
| if (b is double) { |
| // Special case for NaN and -0.0. If one argument is NaN return NaN. |
| // [min] must also distinguish between -0.0 and 0.0. |
| if (a is double) { |
| if (a == 0.0) { |
| // a is either 0.0 or -0.0. b is either 0.0, -0.0 or NaN. |
| // The following returns -0.0 if either a or b is -0.0, and it |
| // returns NaN if b is NaN. |
| return (a + b) * a * b; |
| } |
| } |
| // Check for NaN and b == -0.0. |
| if (a == 0 && b.isNegative || b.isNaN) return b; |
| return a; |
| } |
| return a; |
| } |
| |
| /** |
| * Returns the larger of two numbers. |
| * |
| * Returns NaN if either argument is NaN. |
| * The larger of `-0.0` and `0.0` is `0.0`. If the arguments are |
| * otherwise equal (including int and doubles with the same mathematical value) |
| * then it is unspecified which of the two arguments is returned. |
| */ |
| T max<T extends num>(T a, T b) { |
| // These partially redundant type checks improve code quality for dart2js. |
| // Most of the improvement is at call sites from the inferred non-null num |
| // return type. |
| if (a is! num) throw new ArgumentError(a); |
| if (b is! num) throw new ArgumentError(b); |
| |
| if (a > b) return a; |
| if (a < b) return b; |
| if (b is double) { |
| // Special case for NaN and -0.0. If one argument is NaN return NaN. |
| // [max] must also distinguish between -0.0 and 0.0. |
| if (a is double) { |
| if (a == 0.0) { |
| // a is either 0.0 or -0.0. b is either 0.0, -0.0, or NaN. |
| // The following returns 0.0 if either a or b is 0.0, and it |
| // returns NaN if b is NaN. |
| return a + b; |
| } |
| } |
| // Check for NaN. |
| if (b.isNaN) return b; |
| return a; |
| } |
| // max(-0.0, 0) must return 0. |
| if (b == 0 && a.isNegative) return b; |
| return a; |
| } |
| |
| /** |
| * A variant of [atan]. |
| * |
| * Converts both arguments to doubles. |
| * |
| * Returns the angle between the positive x-axis and the vector ([b],[a]). |
| * The result, in radians, is in the range -PI..PI. |
| * |
| * If [b] is positive, this is the same as `atan(b/a)`. |
| * |
| * The result is negative when [a] is negative (including when [a] is the |
| * double -0.0). |
| * |
| * If [a] is equal to zero, the vector ([b],[a]) is considered parallel to |
| * the x-axis, even if [b] is also equal to zero. The sign of [b] determines |
| * the direction of the vector along the x-axis. |
| * |
| * Returns NaN if either argument is NaN. |
| */ |
| double atan2(num a, num b) => _atan2(a.toDouble(), b.toDouble()); |
| |
| /** |
| * Returns [x] to the power of [exponent]. |
| * |
| * If [x] is an [int] and [exponent] is a non-negative [int], the result is |
| * an [int], otherwise both arguments are converted to doubles first, and the |
| * result is a [double]. |
| * |
| * For integers, the power is always equal to the mathematical result of `x` to |
| * the power `exponent`, only limited by the available memory. |
| * |
| * For doubles, `pow(x, y)` handles edge cases as follows: |
| * |
| * - if `y` is zero (0.0 or -0.0), the result is always 1.0. |
| * - if `x` is 1.0, the result is always 1.0. |
| * - otherwise, if either `x` or `y` is NaN then the result is NaN. |
| * - if `x` is negative (but not -0.0) and `y` is a finite non-integer, the |
| * result is NaN. |
| * - if `x` is Infinity and `y` is negative, the result is 0.0. |
| * - if `x` is Infinity and `y` is positive, the result is Infinity. |
| * - if `x` is 0.0 and `y` is negative, the result is Infinity. |
| * - if `x` is 0.0 and `y` is positive, the result is 0.0. |
| * - if `x` is -Infinity or -0.0 and `y` is an odd integer, then the result is |
| * `-pow(-x ,y)`. |
| * - if `x` is -Infinity or -0.0 and `y` is not an odd integer, then the result |
| * is the same as `pow(-x , y)`. |
| * - if `y` is Infinity and the absolute value of `x` is less than 1, the |
| * result is 0.0. |
| * - if `y` is Infinity and `x` is -1, the result is 1.0. |
| * - if `y` is Infinity and the absolute value of `x` is greater than 1, |
| * the result is Infinity. |
| * - if `y` is -Infinity, the result is `1/pow(x, Infinity)`. |
| * |
| * This corresponds to the `pow` function defined in the IEEE Standard 754-2008. |
| * |
| * Notice that an [int] result cannot overflow, but a [double] result might |
| * be [double.INFINITY]. |
| */ |
| num pow(num x, num exponent) { |
| if ((x is int) && (exponent is int) && (exponent >= 0)) { |
| return _intPow(x, exponent); |
| } |
| return _doublePow(x.toDouble(), exponent.toDouble()); |
| } |
| |
| /** |
| * Converts [x] to a double and returns the sine of the value. |
| * |
| * If [x] is not a finite number, the result is NaN. |
| */ |
| double sin(num x) => _sin(x.toDouble()); |
| |
| /** |
| * Converts [x] to a double and returns the cosine of the value. |
| * |
| * If [x] is not a finite number, the result is NaN. |
| */ |
| double cos(num x) => _cos(x.toDouble()); |
| |
| /** |
| * Converts [x] to a double and returns the tangent of the value. |
| * |
| * The tangent function is equivalent to `sin(x)/cos(x)` and may be |
| * infinite (positive or negative) when `cos(x)` is equal to zero. |
| * If [x] is not a finite number, the result is NaN. |
| */ |
| double tan(num x) => _tan(x.toDouble()); |
| |
| /** |
| * Converts [x] to a double and returns the arc cosine of the value. |
| * |
| * Returns a value in the range 0..PI, or NaN if [x] is outside |
| * the range -1..1. |
| */ |
| double acos(num x) => _acos(x.toDouble()); |
| |
| /** |
| * Converts [x] to a double and returns the arc sine of the value. |
| * |
| * Returns a value in the range -PI/2..PI/2, or NaN if [x] is outside |
| * the range -1..1. |
| */ |
| double asin(num x) => _asin(x.toDouble()); |
| |
| /** |
| * Converts [x] to a double and returns the arc tangent of the value. |
| * |
| * Returns a value in the range -PI/2..PI/2, or NaN if [x] is NaN. |
| */ |
| double atan(num x) => _atan(x.toDouble()); |
| |
| /** |
| * Converts [x] to a double and returns the positive square root of the value. |
| * |
| * Returns -0.0 if [x] is -0.0, and NaN if [x] is otherwise negative or NaN. |
| */ |
| double sqrt(num x) => _sqrt(x.toDouble()); |
| |
| /** |
| * Converts [x] to a double and returns the natural exponent, [E], |
| * to the power [x]. |
| * |
| * Returns NaN if [x] is NaN. |
| */ |
| double exp(num x) => _exp(x.toDouble()); |
| |
| /** |
| * Converts [x] to a double and returns the natural logarithm of the value. |
| * |
| * Returns negative infinity if [x] is equal to zero. |
| * Returns NaN if [x] is NaN or less than zero. |
| */ |
| double log(num x) => _log(x.toDouble()); |
| |
| double _doublePow(double base, double exponent) { |
| if (exponent == 0.0) { |
| return 1.0; // ECMA-262 15.8.2.13 |
| } |
| // Speed up simple cases. |
| if (exponent == 1.0) return base; |
| if (exponent == 2.0) return base * base; |
| if (exponent == 3.0) return base * base * base; |
| |
| if (base == 1.0) return 1.0; |
| |
| if (base.isNaN || exponent.isNaN) { |
| return double.NAN; |
| } |
| if ((base != -double.INFINITY) && (exponent == 0.5)) { |
| if (base == 0.0) { |
| return 0.0; |
| } |
| return sqrt(base); |
| } |
| return _pow(base.toDouble(), exponent.toDouble()); |
| } |
| double _pow(double base, double exponent) native "Math_doublePow"; |
| int _intPow(int base, int exponent) { |
| // Exponentiation by squaring. |
| int result = 1; |
| while (exponent != 0) { |
| if ((exponent & 1) == 1) { |
| result *= base; |
| } |
| exponent >>= 1; |
| // Skip unnecessary operation (can overflow to Mint or Bigint). |
| if (exponent != 0) { |
| base *= base; |
| } |
| } |
| return result; |
| } |
| double _atan2(double a, double b) native "Math_atan2"; |
| double _sin(double x) native "Math_sin"; |
| double _cos(double x) native "Math_cos"; |
| double _tan(double x) native "Math_tan"; |
| double _acos(double x) native "Math_acos"; |
| double _asin(double x) native "Math_asin"; |
| double _atan(double x) native "Math_atan"; |
| double _sqrt(double x) native "Math_sqrt"; |
| double _exp(double x) native "Math_exp"; |
| double _log(double x) native "Math_log"; |
| class _Random implements Random { |
| // Internal state of the random number generator. |
| final Uint32List _state; |
| static const _kSTATE_LO = 0; |
| static const _kSTATE_HI = 1; // Unused in Dart code. |
| |
| _Random._withState(this._state); |
| |
| // The algorithm used here is Multiply with Carry (MWC) with a Base b = 2^32. |
| // http://en.wikipedia.org/wiki/Multiply-with-carry |
| // The constant A is selected from "Numerical Recipes 3rd Edition" p.348 B1. |
| |
| // Implements: |
| // var state = |
| // ((_A * (_state[_kSTATE_LO])) + _state[_kSTATE_HI]) & ((1 << 64) - 1); |
| // _state[_kSTATE_LO] = state & ((1 << 32) - 1); |
| // _state[_kSTATE_HI] = state >> 32; |
| // This is a native to prevent 64-bit operations in Dart, which |
| // fail with --throw_on_javascript_int_overflow. |
| // TODO(regis): Implement in Dart and remove Random_nextState in math.cc. |
| void _nextState() native "Random_nextState"; |
| |
| int nextInt(int max) { |
| const limit = 0x3FFFFFFF; |
| if ((max <= 0) || ((max > limit) && (max > _POW2_32))) { |
| throw new RangeError.range( |
| max, 1, _POW2_32, "max", "Must be positive and <= 2^32"); |
| } |
| if ((max & -max) == max) { |
| // Fast case for powers of two. |
| _nextState(); |
| return _state[_kSTATE_LO] & (max - 1); |
| } |
| |
| int rnd32; |
| int result; |
| do { |
| _nextState(); |
| rnd32 = _state[_kSTATE_LO]; |
| result = rnd32 % max; |
| } while ((rnd32 - result + max) > _POW2_32); |
| return result; |
| } |
| |
| double nextDouble() { |
| return ((nextInt(1 << 26) * _POW2_27_D) + nextInt(1 << 27)) / _POW2_53_D; |
| } |
| |
| bool nextBool() { |
| return nextInt(2) == 0; |
| } |
| |
| // Constants used by the algorithm. |
| static const _POW2_32 = 1 << 32; |
| static const _POW2_53_D = 1.0 * (1 << 53); |
| static const _POW2_27_D = 1.0 * (1 << 27); |
| |
| static const _A = 0xffffda61; |
| |
| // Use a singleton Random object to get a new seed if no seed was passed. |
| static var _prng = new _Random._withState(_initialSeed()); |
| |
| // This is a native to prevent 64-bit operations in Dart, which |
| // fail with --throw_on_javascript_int_overflow. |
| // TODO(regis): Implement here in Dart and remove native in math.cc. |
| static Uint32List _setupSeed(int seed) native "Random_setupSeed"; |
| // Get a seed from the VM's random number provider. |
| static Uint32List _initialSeed() native "Random_initialSeed"; |
| |
| static int _nextSeed() { |
| // Trigger the PRNG once to change the internal state. |
| _prng._nextState(); |
| return _prng._state[_kSTATE_LO]; |
| } |
| } |
| class _SecureRandom implements Random { |
| _SecureRandom() { |
| // Throw early in constructor if entropy source is not hooked up. |
| _getBytes(1); |
| } |
| |
| // Return count bytes of entropy as a positive integer; count <= 8. |
| static int _getBytes(int count) native "SecureRandom_getBytes"; |
| |
| int nextInt(int max) { |
| RangeError.checkValueInInterval( |
| max, 1, _POW2_32, "max", "Must be positive and <= 2^32"); |
| final byteCount = ((max - 1).bitLength + 7) >> 3; |
| if (byteCount == 0) { |
| return 0; // Not random if max == 1. |
| } |
| var rnd; |
| var result; |
| do { |
| rnd = _getBytes(byteCount); |
| result = rnd % max; |
| } while ((rnd - result + max) > (1 << (byteCount << 3))); |
| return result; |
| } |
| |
| double nextDouble() { |
| return (_getBytes(7) >> 3) / _POW2_53_D; |
| } |
| |
| bool nextBool() { |
| return _getBytes(1).isEven; |
| } |
| |
| // Constants used by the algorithm. |
| static const _POW2_32 = 1 << 32; |
| static const _POW2_53_D = 1.0 * (1 << 53); |
| } |