| // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include <setjmp.h> // NOLINT |
| #include <stdlib.h> |
| |
| #include "vm/globals.h" |
| #if defined(TARGET_ARCH_ARM64) |
| |
| // Only build the simulator if not compiling for real ARM hardware. |
| #if defined(USING_SIMULATOR) |
| |
| #include "vm/simulator.h" |
| |
| #include "vm/compiler/assembler/disassembler.h" |
| #include "vm/constants.h" |
| #include "vm/image_snapshot.h" |
| #include "vm/native_arguments.h" |
| #include "vm/os_thread.h" |
| #include "vm/stack_frame.h" |
| |
| namespace dart { |
| |
| // constants_arm64.h does not define LR constant to prevent accidental direct |
| // use of it during code generation. However using LR directly is okay in this |
| // file because it is a simulator. |
| constexpr Register LR = LR_DO_NOT_USE_DIRECTLY; |
| |
| DEFINE_FLAG(uint64_t, |
| trace_sim_after, |
| ULLONG_MAX, |
| "Trace simulator execution after instruction count reached."); |
| DEFINE_FLAG(uint64_t, |
| stop_sim_at, |
| ULLONG_MAX, |
| "Instruction address or instruction count to stop simulator at."); |
| |
| DEFINE_FLAG(bool, |
| sim_allow_unaligned_accesses, |
| true, |
| "Allow unaligned accesses to Normal memory."); |
| |
| // This macro provides a platform independent use of sscanf. The reason for |
| // SScanF not being implemented in a platform independent way through |
| // OS in the same way as SNPrint is that the Windows C Run-Time |
| // Library does not provide vsscanf. |
| #define SScanF sscanf // NOLINT |
| |
| // SimulatorSetjmpBuffer are linked together, and the last created one |
| // is referenced by the Simulator. When an exception is thrown, the exception |
| // runtime looks at where to jump and finds the corresponding |
| // SimulatorSetjmpBuffer based on the stack pointer of the exception handler. |
| // The runtime then does a Longjmp on that buffer to return to the simulator. |
| class SimulatorSetjmpBuffer { |
| public: |
| void Longjmp() { |
| // "This" is now the last setjmp buffer. |
| simulator_->set_last_setjmp_buffer(this); |
| longjmp(buffer_, 1); |
| } |
| |
| explicit SimulatorSetjmpBuffer(Simulator* sim) { |
| simulator_ = sim; |
| link_ = sim->last_setjmp_buffer(); |
| sim->set_last_setjmp_buffer(this); |
| sp_ = static_cast<uword>(sim->get_register(R31, R31IsSP)); |
| } |
| |
| ~SimulatorSetjmpBuffer() { |
| ASSERT(simulator_->last_setjmp_buffer() == this); |
| simulator_->set_last_setjmp_buffer(link_); |
| } |
| |
| SimulatorSetjmpBuffer* link() { return link_; } |
| |
| uword sp() { return sp_; } |
| |
| private: |
| uword sp_; |
| Simulator* simulator_; |
| SimulatorSetjmpBuffer* link_; |
| jmp_buf buffer_; |
| |
| friend class Simulator; |
| }; |
| |
| // The SimulatorDebugger class is used by the simulator while debugging |
| // simulated ARM64 code. |
| class SimulatorDebugger { |
| public: |
| explicit SimulatorDebugger(Simulator* sim); |
| ~SimulatorDebugger(); |
| |
| void Stop(Instr* instr, const char* message); |
| void Debug(); |
| char* ReadLine(const char* prompt); |
| |
| private: |
| Simulator* sim_; |
| |
| bool GetValue(char* desc, uint64_t* value); |
| bool GetSValue(char* desc, uint32_t* value); |
| bool GetDValue(char* desc, uint64_t* value); |
| bool GetQValue(char* desc, simd_value_t* value); |
| |
| static TokenPosition GetApproximateTokenIndex(const Code& code, uword pc); |
| |
| static void PrintDartFrame(uword vm_instructions, |
| uword isolate_instructions, |
| uword pc, |
| uword fp, |
| uword sp, |
| const Function& function, |
| TokenPosition token_pos, |
| bool is_optimized, |
| bool is_inlined); |
| void PrintBacktrace(); |
| |
| // Set or delete a breakpoint. Returns true if successful. |
| bool SetBreakpoint(Instr* breakpc); |
| bool DeleteBreakpoint(Instr* breakpc); |
| |
| // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| // execution to skip past breakpoints when run from the debugger. |
| void UndoBreakpoints(); |
| void RedoBreakpoints(); |
| }; |
| |
| SimulatorDebugger::SimulatorDebugger(Simulator* sim) { |
| sim_ = sim; |
| } |
| |
| SimulatorDebugger::~SimulatorDebugger() {} |
| |
| void SimulatorDebugger::Stop(Instr* instr, const char* message) { |
| OS::PrintErr("Simulator hit %s\n", message); |
| Debug(); |
| } |
| |
| static Register LookupCpuRegisterByName(const char* name) { |
| static const char* const kNames[] = { |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "r27", "r28", "r29", "r30", |
| |
| "ip0", "ip1", "pp", "fp", "lr", "sp", "zr", |
| }; |
| static const Register kRegisters[] = { |
| R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, |
| R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, |
| R22, R23, R24, R25, R26, R27, R28, R29, R30, |
| |
| IP0, IP1, PP, FP, LR, R31, ZR, |
| }; |
| ASSERT(ARRAY_SIZE(kNames) == ARRAY_SIZE(kRegisters)); |
| for (unsigned i = 0; i < ARRAY_SIZE(kNames); i++) { |
| if (strcmp(kNames[i], name) == 0) { |
| return kRegisters[i]; |
| } |
| } |
| return kNoRegister; |
| } |
| |
| static VRegister LookupVRegisterByName(const char* name) { |
| int reg_nr = -1; |
| bool ok = SScanF(name, "v%d", ®_nr); |
| if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfVRegisters)) { |
| return static_cast<VRegister>(reg_nr); |
| } |
| return kNoVRegister; |
| } |
| |
| bool SimulatorDebugger::GetValue(char* desc, uint64_t* value) { |
| Register reg = LookupCpuRegisterByName(desc); |
| if (reg != kNoRegister) { |
| if (reg == ZR) { |
| *value = 0; |
| return true; |
| } |
| *value = sim_->get_register(reg); |
| return true; |
| } |
| if (desc[0] == '*') { |
| uint64_t addr; |
| if (GetValue(desc + 1, &addr)) { |
| if (Simulator::IsIllegalAddress(addr)) { |
| return false; |
| } |
| *value = *(reinterpret_cast<int64_t*>(addr)); |
| return true; |
| } |
| } |
| if (strcmp("pc", desc) == 0) { |
| *value = sim_->get_pc(); |
| return true; |
| } |
| bool retval = SScanF(desc, "0x%" Px64, value) == 1; |
| if (!retval) { |
| retval = SScanF(desc, "%" Px64, value) == 1; |
| } |
| return retval; |
| } |
| |
| bool SimulatorDebugger::GetSValue(char* desc, uint32_t* value) { |
| VRegister vreg = LookupVRegisterByName(desc); |
| if (vreg != kNoVRegister) { |
| *value = sim_->get_vregisters(vreg, 0); |
| return true; |
| } |
| if (desc[0] == '*') { |
| uint64_t addr; |
| if (GetValue(desc + 1, &addr)) { |
| if (Simulator::IsIllegalAddress(addr)) { |
| return false; |
| } |
| *value = *(reinterpret_cast<uint32_t*>(addr)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool SimulatorDebugger::GetDValue(char* desc, uint64_t* value) { |
| VRegister vreg = LookupVRegisterByName(desc); |
| if (vreg != kNoVRegister) { |
| *value = sim_->get_vregisterd(vreg, 0); |
| return true; |
| } |
| if (desc[0] == '*') { |
| uint64_t addr; |
| if (GetValue(desc + 1, &addr)) { |
| if (Simulator::IsIllegalAddress(addr)) { |
| return false; |
| } |
| *value = *(reinterpret_cast<uint64_t*>(addr)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool SimulatorDebugger::GetQValue(char* desc, simd_value_t* value) { |
| VRegister vreg = LookupVRegisterByName(desc); |
| if (vreg != kNoVRegister) { |
| sim_->get_vregister(vreg, value); |
| return true; |
| } |
| if (desc[0] == '*') { |
| uint64_t addr; |
| if (GetValue(desc + 1, &addr)) { |
| if (Simulator::IsIllegalAddress(addr)) { |
| return false; |
| } |
| *value = *(reinterpret_cast<simd_value_t*>(addr)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| TokenPosition SimulatorDebugger::GetApproximateTokenIndex(const Code& code, |
| uword pc) { |
| TokenPosition token_pos = TokenPosition::kNoSource; |
| uword pc_offset = pc - code.PayloadStart(); |
| const PcDescriptors& descriptors = |
| PcDescriptors::Handle(code.pc_descriptors()); |
| PcDescriptors::Iterator iter(descriptors, UntaggedPcDescriptors::kAnyKind); |
| while (iter.MoveNext()) { |
| if (iter.PcOffset() == pc_offset) { |
| return iter.TokenPos(); |
| } else if (!token_pos.IsReal() && (iter.PcOffset() > pc_offset)) { |
| token_pos = iter.TokenPos(); |
| } |
| } |
| return token_pos; |
| } |
| |
| #if defined(DART_PRECOMPILED_RUNTIME) |
| static const char* ImageName(uword vm_instructions, |
| uword isolate_instructions, |
| uword pc, |
| intptr_t* offset) { |
| const Image vm_image(vm_instructions); |
| const Image isolate_image(isolate_instructions); |
| if (vm_image.contains(pc)) { |
| *offset = pc - vm_instructions; |
| return kVmSnapshotInstructionsAsmSymbol; |
| } else if (isolate_image.contains(pc)) { |
| *offset = pc - isolate_instructions; |
| return kIsolateSnapshotInstructionsAsmSymbol; |
| } else { |
| *offset = 0; |
| return "<unknown>"; |
| } |
| } |
| #endif |
| |
| void SimulatorDebugger::PrintDartFrame(uword vm_instructions, |
| uword isolate_instructions, |
| uword pc, |
| uword fp, |
| uword sp, |
| const Function& function, |
| TokenPosition token_pos, |
| bool is_optimized, |
| bool is_inlined) { |
| const Script& script = Script::Handle(function.script()); |
| const String& func_name = String::Handle(function.QualifiedScrubbedName()); |
| const String& url = String::Handle(script.url()); |
| intptr_t line, column; |
| if (script.GetTokenLocation(token_pos, &line, &column)) { |
| OS::PrintErr( |
| "pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s%s (%s:%" Pd ":%" Pd ")", pc, |
| fp, sp, is_optimized ? (is_inlined ? "inlined " : "optimized ") : "", |
| func_name.ToCString(), url.ToCString(), line, column); |
| } else { |
| OS::PrintErr("pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s%s (%s)", pc, fp, sp, |
| is_optimized ? (is_inlined ? "inlined " : "optimized ") : "", |
| func_name.ToCString(), url.ToCString()); |
| } |
| #if defined(DART_PRECOMPILED_RUNTIME) |
| intptr_t offset; |
| auto const symbol_name = |
| ImageName(vm_instructions, isolate_instructions, pc, &offset); |
| OS::PrintErr(" %s+0x%" Px "", symbol_name, offset); |
| #endif |
| OS::PrintErr("\n"); |
| } |
| |
| void SimulatorDebugger::PrintBacktrace() { |
| auto const T = Thread::Current(); |
| auto const Z = T->zone(); |
| #if defined(DART_PRECOMPILED_RUNTIME) |
| auto const vm_instructions = reinterpret_cast<uword>( |
| Dart::vm_isolate_group()->source()->snapshot_instructions); |
| auto const isolate_instructions = reinterpret_cast<uword>( |
| T->isolate_group()->source()->snapshot_instructions); |
| OS::PrintErr("vm_instructions=0x%" Px ", isolate_instructions=0x%" Px "\n", |
| vm_instructions, isolate_instructions); |
| #else |
| const uword vm_instructions = 0; |
| const uword isolate_instructions = 0; |
| #endif |
| StackFrameIterator frames(sim_->get_register(FP), sim_->get_register(SP), |
| sim_->get_pc(), |
| ValidationPolicy::kDontValidateFrames, T, |
| StackFrameIterator::kNoCrossThreadIteration); |
| StackFrame* frame = frames.NextFrame(); |
| ASSERT(frame != nullptr); |
| Function& function = Function::Handle(Z); |
| Function& inlined_function = Function::Handle(Z); |
| Code& code = Code::Handle(Z); |
| Code& unoptimized_code = Code::Handle(Z); |
| while (frame != nullptr) { |
| if (frame->IsDartFrame()) { |
| code = frame->LookupDartCode(); |
| function = code.function(); |
| if (code.is_optimized()) { |
| // For optimized frames, extract all the inlined functions if any |
| // into the stack trace. |
| InlinedFunctionsIterator it(code, frame->pc()); |
| while (!it.Done()) { |
| // Print each inlined frame with its pc in the corresponding |
| // unoptimized frame. |
| inlined_function = it.function(); |
| unoptimized_code = it.code(); |
| uword unoptimized_pc = it.pc(); |
| it.Advance(); |
| if (!it.Done()) { |
| PrintDartFrame( |
| vm_instructions, isolate_instructions, unoptimized_pc, |
| frame->fp(), frame->sp(), inlined_function, |
| GetApproximateTokenIndex(unoptimized_code, unoptimized_pc), |
| true, true); |
| } |
| } |
| // Print the optimized inlining frame below. |
| } |
| PrintDartFrame(vm_instructions, isolate_instructions, frame->pc(), |
| frame->fp(), frame->sp(), function, |
| GetApproximateTokenIndex(code, frame->pc()), |
| code.is_optimized(), false); |
| } else { |
| OS::PrintErr("pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s frame", |
| frame->pc(), frame->fp(), frame->sp(), |
| frame->IsEntryFrame() ? "entry" |
| : frame->IsExitFrame() ? "exit" |
| : frame->IsStubFrame() ? "stub" |
| : "invalid"); |
| #if defined(DART_PRECOMPILED_RUNTIME) |
| intptr_t offset; |
| auto const symbol_name = ImageName(vm_instructions, isolate_instructions, |
| frame->pc(), &offset); |
| OS::PrintErr(" %s+0x%" Px "", symbol_name, offset); |
| #endif |
| OS::PrintErr("\n"); |
| } |
| frame = frames.NextFrame(); |
| } |
| } |
| |
| bool SimulatorDebugger::SetBreakpoint(Instr* breakpc) { |
| // Check if a breakpoint can be set. If not return without any side-effects. |
| if (sim_->break_pc_ != nullptr) { |
| return false; |
| } |
| |
| // Set the breakpoint. |
| sim_->break_pc_ = breakpc; |
| sim_->break_instr_ = breakpc->InstructionBits(); |
| // Not setting the breakpoint instruction in the code itself. It will be set |
| // when the debugger shell continues. |
| return true; |
| } |
| |
| bool SimulatorDebugger::DeleteBreakpoint(Instr* breakpc) { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| |
| sim_->break_pc_ = nullptr; |
| sim_->break_instr_ = 0; |
| return true; |
| } |
| |
| void SimulatorDebugger::UndoBreakpoints() { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| } |
| |
| void SimulatorDebugger::RedoBreakpoints() { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(Instr::kSimulatorBreakpointInstruction); |
| } |
| } |
| |
| void SimulatorDebugger::Debug() { |
| uintptr_t last_pc = -1; |
| bool done = false; |
| |
| #define COMMAND_SIZE 63 |
| #define ARG_SIZE 255 |
| |
| #define STR(a) #a |
| #define XSTR(a) STR(a) |
| |
| char cmd[COMMAND_SIZE + 1]; |
| char arg1[ARG_SIZE + 1]; |
| char arg2[ARG_SIZE + 1]; |
| |
| // make sure to have a proper terminating character if reaching the limit |
| cmd[COMMAND_SIZE] = 0; |
| arg1[ARG_SIZE] = 0; |
| arg2[ARG_SIZE] = 0; |
| |
| // Undo all set breakpoints while running in the debugger shell. This will |
| // make them invisible to all commands. |
| UndoBreakpoints(); |
| |
| while (!done) { |
| if (last_pc != sim_->get_pc()) { |
| last_pc = sim_->get_pc(); |
| if (Simulator::IsIllegalAddress(last_pc)) { |
| OS::PrintErr("pc is out of bounds: 0x%" Px "\n", last_pc); |
| } else { |
| if (FLAG_support_disassembler) { |
| Disassembler::Disassemble(last_pc, last_pc + Instr::kInstrSize); |
| } else { |
| OS::PrintErr("Disassembler not supported in this mode.\n"); |
| } |
| } |
| } |
| char* line = ReadLine("sim> "); |
| if (line == nullptr) { |
| FATAL("ReadLine failed"); |
| } else { |
| // Use sscanf to parse the individual parts of the command line. At the |
| // moment no command expects more than two parameters. |
| int args = SScanF(line, |
| "%" XSTR(COMMAND_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s", |
| cmd, arg1, arg2); |
| if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| OS::PrintErr( |
| "c/cont -- continue execution\n" |
| "disasm -- disassemble instrs at current pc location\n" |
| " other variants are:\n" |
| " disasm <address>\n" |
| " disasm <address> <number_of_instructions>\n" |
| " by default 10 instrs are disassembled\n" |
| "del -- delete breakpoints\n" |
| "flags -- print flag values\n" |
| "gdb -- transfer control to gdb\n" |
| "h/help -- print this help string\n" |
| "break <address> -- set break point at specified address\n" |
| "p/print <reg or icount or value or *addr> -- print integer\n" |
| "pf/printfloat <vreg or *addr> --print float value\n" |
| "pd/printdouble <vreg or *addr> -- print double value\n" |
| "pq/printquad <vreg or *addr> -- print vector register\n" |
| "po/printobject <*reg or *addr> -- print object\n" |
| "si/stepi -- single step an instruction\n" |
| "trace -- toggle execution tracing mode\n" |
| "bt -- print backtrace\n" |
| "unstop -- if current pc is a stop instr make it a nop\n" |
| "q/quit -- Quit the debugger and exit the program\n"); |
| } else if ((strcmp(cmd, "quit") == 0) || (strcmp(cmd, "q") == 0)) { |
| OS::PrintErr("Quitting\n"); |
| OS::Exit(0); |
| } else if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
| } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| // Execute the one instruction we broke at with breakpoints disabled. |
| sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
| // Leave the debugger shell. |
| done = true; |
| } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| if (args == 2) { |
| uint64_t value; |
| if (strcmp(arg1, "icount") == 0) { |
| value = sim_->get_icount(); |
| OS::PrintErr("icount: %" Pu64 " 0x%" Px64 "\n", value, value); |
| } else if (GetValue(arg1, &value)) { |
| OS::PrintErr("%s: %" Pu64 " 0x%" Px64 "\n", arg1, value, value); |
| } else { |
| OS::PrintErr("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::PrintErr("print <reg or icount or value or *addr>\n"); |
| } |
| } else if ((strcmp(cmd, "pf") == 0) || (strcmp(cmd, "printfloat") == 0)) { |
| if (args == 2) { |
| uint32_t value; |
| if (GetSValue(arg1, &value)) { |
| float svalue = bit_cast<float, uint32_t>(value); |
| OS::PrintErr("%s: %d 0x%x %.8g\n", arg1, value, value, svalue); |
| } else { |
| OS::PrintErr("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::PrintErr("printfloat <vreg or *addr>\n"); |
| } |
| } else if ((strcmp(cmd, "pd") == 0) || |
| (strcmp(cmd, "printdouble") == 0)) { |
| if (args == 2) { |
| uint64_t long_value; |
| if (GetDValue(arg1, &long_value)) { |
| double dvalue = bit_cast<double, uint64_t>(long_value); |
| OS::PrintErr("%s: %" Pu64 " 0x%" Px64 " %.8g\n", arg1, long_value, |
| long_value, dvalue); |
| } else { |
| OS::PrintErr("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::PrintErr("printdouble <vreg or *addr>\n"); |
| } |
| } else if ((strcmp(cmd, "pq") == 0) || (strcmp(cmd, "printquad") == 0)) { |
| if (args == 2) { |
| simd_value_t quad_value; |
| if (GetQValue(arg1, &quad_value)) { |
| const int64_t d0 = quad_value.bits.i64[0]; |
| const int64_t d1 = quad_value.bits.i64[1]; |
| const double dval0 = bit_cast<double, int64_t>(d0); |
| const double dval1 = bit_cast<double, int64_t>(d1); |
| const int32_t s0 = quad_value.bits.i32[0]; |
| const int32_t s1 = quad_value.bits.i32[1]; |
| const int32_t s2 = quad_value.bits.i32[2]; |
| const int32_t s3 = quad_value.bits.i32[3]; |
| const float sval0 = bit_cast<float, int32_t>(s0); |
| const float sval1 = bit_cast<float, int32_t>(s1); |
| const float sval2 = bit_cast<float, int32_t>(s2); |
| const float sval3 = bit_cast<float, int32_t>(s3); |
| OS::PrintErr("%s: %" Pu64 " 0x%" Px64 " %.8g\n", arg1, d0, d0, |
| dval0); |
| OS::PrintErr("%s: %" Pu64 " 0x%" Px64 " %.8g\n", arg1, d1, d1, |
| dval1); |
| OS::PrintErr("%s: %d 0x%x %.8g\n", arg1, s0, s0, sval0); |
| OS::PrintErr("%s: %d 0x%x %.8g\n", arg1, s1, s1, sval1); |
| OS::PrintErr("%s: %d 0x%x %.8g\n", arg1, s2, s2, sval2); |
| OS::PrintErr("%s: %d 0x%x %.8g\n", arg1, s3, s3, sval3); |
| } else { |
| OS::PrintErr("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::PrintErr("printquad <vreg or *addr>\n"); |
| } |
| } else if ((strcmp(cmd, "po") == 0) || |
| (strcmp(cmd, "printobject") == 0)) { |
| if (args == 2) { |
| uint64_t value; |
| // Make the dereferencing '*' optional. |
| if (((arg1[0] == '*') && GetValue(arg1 + 1, &value)) || |
| GetValue(arg1, &value)) { |
| if (IsolateGroup::Current()->heap()->Contains(value)) { |
| OS::PrintErr("%s: \n", arg1); |
| #if defined(DEBUG) |
| const Object& obj = Object::Handle( |
| static_cast<ObjectPtr>(static_cast<uword>(value))); |
| obj.Print(); |
| #endif // defined(DEBUG) |
| } else { |
| OS::PrintErr("0x%" Px64 " is not an object reference\n", value); |
| } |
| } else { |
| OS::PrintErr("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::PrintErr("printobject <*reg or *addr>\n"); |
| } |
| } else if (strcmp(cmd, "disasm") == 0) { |
| uint64_t start = 0; |
| uint64_t end = 0; |
| if (args == 1) { |
| start = sim_->get_pc(); |
| end = start + (10 * Instr::kInstrSize); |
| } else if (args == 2) { |
| if (GetValue(arg1, &start)) { |
| // No length parameter passed, assume 10 instructions. |
| if (Simulator::IsIllegalAddress(start)) { |
| // If start isn't a valid address, warn and use PC instead. |
| OS::PrintErr("First argument yields invalid address: 0x%" Px64 |
| "\n", |
| start); |
| OS::PrintErr("Using PC instead\n"); |
| start = sim_->get_pc(); |
| } |
| end = start + (10 * Instr::kInstrSize); |
| } |
| } else { |
| uint64_t length; |
| if (GetValue(arg1, &start) && GetValue(arg2, &length)) { |
| if (Simulator::IsIllegalAddress(start)) { |
| // If start isn't a valid address, warn and use PC instead. |
| OS::PrintErr("First argument yields invalid address: 0x%" Px64 |
| "\n", |
| start); |
| OS::PrintErr("Using PC instead\n"); |
| start = sim_->get_pc(); |
| } |
| end = start + (length * Instr::kInstrSize); |
| } |
| } |
| if ((start > 0) && (end > start)) { |
| if (FLAG_support_disassembler) { |
| Disassembler::Disassemble(start, end); |
| } else { |
| OS::PrintErr("Disassembler not supported in this mode.\n"); |
| } |
| } else { |
| OS::PrintErr("disasm [<address> [<number_of_instructions>]]\n"); |
| } |
| } else if (strcmp(cmd, "gdb") == 0) { |
| OS::PrintErr("relinquishing control to gdb\n"); |
| OS::DebugBreak(); |
| OS::PrintErr("regaining control from gdb\n"); |
| } else if (strcmp(cmd, "break") == 0) { |
| if (args == 2) { |
| uint64_t addr; |
| if (GetValue(arg1, &addr)) { |
| if (!SetBreakpoint(reinterpret_cast<Instr*>(addr))) { |
| OS::PrintErr("setting breakpoint failed\n"); |
| } |
| } else { |
| OS::PrintErr("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::PrintErr("break <addr>\n"); |
| } |
| } else if (strcmp(cmd, "del") == 0) { |
| if (!DeleteBreakpoint(nullptr)) { |
| OS::PrintErr("deleting breakpoint failed\n"); |
| } |
| } else if (strcmp(cmd, "flags") == 0) { |
| OS::PrintErr("APSR: "); |
| OS::PrintErr("N flag: %d; ", static_cast<int>(sim_->n_flag_)); |
| OS::PrintErr("Z flag: %d; ", static_cast<int>(sim_->z_flag_)); |
| OS::PrintErr("C flag: %d; ", static_cast<int>(sim_->c_flag_)); |
| OS::PrintErr("V flag: %d\n", static_cast<int>(sim_->v_flag_)); |
| } else if (strcmp(cmd, "unstop") == 0) { |
| intptr_t stop_pc = sim_->get_pc() - Instr::kInstrSize; |
| Instr* stop_instr = reinterpret_cast<Instr*>(stop_pc); |
| if (stop_instr->IsExceptionGenOp()) { |
| stop_instr->SetInstructionBits(Instr::kNopInstruction); |
| } else { |
| OS::PrintErr("Not at debugger stop.\n"); |
| } |
| } else if (strcmp(cmd, "trace") == 0) { |
| if (FLAG_trace_sim_after == ULLONG_MAX) { |
| FLAG_trace_sim_after = sim_->get_icount(); |
| OS::PrintErr("execution tracing on\n"); |
| } else { |
| FLAG_trace_sim_after = ULLONG_MAX; |
| OS::PrintErr("execution tracing off\n"); |
| } |
| } else if (strcmp(cmd, "bt") == 0) { |
| Thread* thread = reinterpret_cast<Thread*>(sim_->get_register(THR)); |
| thread->set_execution_state(Thread::kThreadInVM); |
| PrintBacktrace(); |
| thread->set_execution_state(Thread::kThreadInGenerated); |
| } else { |
| OS::PrintErr("Unknown command: %s\n", cmd); |
| } |
| } |
| delete[] line; |
| } |
| |
| // Add all the breakpoints back to stop execution and enter the debugger |
| // shell when hit. |
| RedoBreakpoints(); |
| |
| #undef COMMAND_SIZE |
| #undef ARG_SIZE |
| |
| #undef STR |
| #undef XSTR |
| } |
| |
| char* SimulatorDebugger::ReadLine(const char* prompt) { |
| char* result = nullptr; |
| char line_buf[256]; |
| intptr_t offset = 0; |
| bool keep_going = true; |
| OS::PrintErr("%s", prompt); |
| while (keep_going) { |
| if (fgets(line_buf, sizeof(line_buf), stdin) == nullptr) { |
| // fgets got an error. Just give up. |
| if (result != nullptr) { |
| delete[] result; |
| } |
| return nullptr; |
| } |
| intptr_t len = strlen(line_buf); |
| if (len > 1 && line_buf[len - 2] == '\\' && line_buf[len - 1] == '\n') { |
| // When we read a line that ends with a "\" we remove the escape and |
| // append the remainder. |
| line_buf[len - 2] = '\n'; |
| line_buf[len - 1] = 0; |
| len -= 1; |
| } else if ((len > 0) && (line_buf[len - 1] == '\n')) { |
| // Since we read a new line we are done reading the line. This |
| // will exit the loop after copying this buffer into the result. |
| keep_going = false; |
| } |
| if (result == nullptr) { |
| // Allocate the initial result and make room for the terminating '\0' |
| result = new char[len + 1]; |
| if (result == nullptr) { |
| // OOM, so cannot readline anymore. |
| return nullptr; |
| } |
| } else { |
| // Allocate a new result with enough room for the new addition. |
| intptr_t new_len = offset + len + 1; |
| char* new_result = new char[new_len]; |
| if (new_result == nullptr) { |
| // OOM, free the buffer allocated so far and return nullptr. |
| delete[] result; |
| return nullptr; |
| } else { |
| // Copy the existing input into the new array and set the new |
| // array as the result. |
| memmove(new_result, result, offset); |
| delete[] result; |
| result = new_result; |
| } |
| } |
| // Copy the newly read line into the result. |
| memmove(result + offset, line_buf, len); |
| offset += len; |
| } |
| ASSERT(result != nullptr); |
| result[offset] = '\0'; |
| return result; |
| } |
| |
| void Simulator::Init() {} |
| |
| Simulator::Simulator() : exclusive_access_addr_(0), exclusive_access_value_(0) { |
| // Setup simulator support first. Some of this information is needed to |
| // setup the architecture state. |
| // We allocate the stack here, the size is computed as the sum of |
| // the size specified by the user and the buffer space needed for |
| // handling stack overflow exceptions. To be safe in potential |
| // stack underflows we also add some underflow buffer space. |
| stack_ = |
| new char[(OSThread::GetSpecifiedStackSize() + |
| OSThread::kStackSizeBufferMax + kSimulatorStackUnderflowSize)]; |
| // Low address. |
| stack_limit_ = reinterpret_cast<uword>(stack_); |
| // Limit for StackOverflowError. |
| overflow_stack_limit_ = stack_limit_ + OSThread::kStackSizeBufferMax; |
| // High address. |
| stack_base_ = overflow_stack_limit_ + OSThread::GetSpecifiedStackSize(); |
| |
| pc_modified_ = false; |
| icount_ = 0; |
| break_pc_ = nullptr; |
| break_instr_ = 0; |
| last_setjmp_buffer_ = nullptr; |
| |
| // Setup architecture state. |
| // All registers are initialized to zero to start with. |
| for (int i = 0; i < kNumberOfCpuRegisters; i++) { |
| registers_[i] = 0; |
| } |
| n_flag_ = false; |
| z_flag_ = false; |
| c_flag_ = false; |
| v_flag_ = false; |
| |
| for (int i = 0; i < kNumberOfVRegisters; i++) { |
| vregisters_[i].bits.i64[0] = 0; |
| vregisters_[i].bits.i64[1] = 0; |
| } |
| |
| // The sp is initialized to point to the bottom (high address) of the |
| // allocated stack area. |
| registers_[R31] = stack_base(); |
| // The lr and pc are initialized to a known bad value that will cause an |
| // access violation if the simulator ever tries to execute it. |
| registers_[LR] = kBadLR; |
| pc_ = kBadLR; |
| } |
| |
| Simulator::~Simulator() { |
| delete[] stack_; |
| Isolate* isolate = Isolate::Current(); |
| if (isolate != nullptr) { |
| isolate->set_simulator(nullptr); |
| } |
| } |
| |
| // When the generated code calls an external reference we need to catch that in |
| // the simulator. The external reference will be a function compiled for the |
| // host architecture. We need to call that function instead of trying to |
| // execute it with the simulator. We do that by redirecting the external |
| // reference to a svc (supervisor call) instruction that is handled by |
| // the simulator. We write the original destination of the jump just at a known |
| // offset from the svc instruction so the simulator knows what to call. |
| class Redirection { |
| public: |
| uword address_of_hlt_instruction() { |
| return reinterpret_cast<uword>(&hlt_instruction_); |
| } |
| |
| uword external_function() const { return external_function_; } |
| |
| Simulator::CallKind call_kind() const { return call_kind_; } |
| |
| int argument_count() const { return argument_count_; } |
| |
| static Redirection* Get(uword external_function, |
| Simulator::CallKind call_kind, |
| int argument_count) { |
| MutexLocker ml(mutex_); |
| |
| Redirection* old_head = list_.load(std::memory_order_relaxed); |
| for (Redirection* current = old_head; current != nullptr; |
| current = current->next_) { |
| if (current->external_function_ == external_function) return current; |
| } |
| |
| Redirection* redirection = |
| new Redirection(external_function, call_kind, argument_count); |
| redirection->next_ = old_head; |
| |
| // Use a memory fence to ensure all pending writes are written at the time |
| // of updating the list head, so the profiling thread always has a valid |
| // list to look at. |
| list_.store(redirection, std::memory_order_release); |
| |
| return redirection; |
| } |
| |
| static Redirection* FromHltInstruction(Instr* hlt_instruction) { |
| char* addr_of_hlt = reinterpret_cast<char*>(hlt_instruction); |
| char* addr_of_redirection = |
| addr_of_hlt - OFFSET_OF(Redirection, hlt_instruction_); |
| return reinterpret_cast<Redirection*>(addr_of_redirection); |
| } |
| |
| // Please note that this function is called by the signal handler of the |
| // profiling thread. It can therefore run at any point in time and is not |
| // allowed to hold any locks - which is precisely the reason why the list is |
| // prepend-only and a memory fence is used when writing the list head [list_]! |
| static uword FunctionForRedirect(uword address_of_hlt) { |
| for (Redirection* current = list_.load(std::memory_order_acquire); |
| current != nullptr; current = current->next_) { |
| if (current->address_of_hlt_instruction() == address_of_hlt) { |
| return current->external_function_; |
| } |
| } |
| return 0; |
| } |
| |
| private: |
| Redirection(uword external_function, |
| Simulator::CallKind call_kind, |
| int argument_count) |
| : external_function_(external_function), |
| call_kind_(call_kind), |
| argument_count_(argument_count), |
| hlt_instruction_(Instr::kSimulatorRedirectInstruction), |
| next_(nullptr) {} |
| |
| uword external_function_; |
| Simulator::CallKind call_kind_; |
| int argument_count_; |
| uint32_t hlt_instruction_; |
| Redirection* next_; |
| static std::atomic<Redirection*> list_; |
| static Mutex* mutex_; |
| }; |
| |
| std::atomic<Redirection*> Redirection::list_ = {nullptr}; |
| Mutex* Redirection::mutex_ = new Mutex(); |
| |
| uword Simulator::RedirectExternalReference(uword function, |
| CallKind call_kind, |
| int argument_count) { |
| Redirection* redirection = |
| Redirection::Get(function, call_kind, argument_count); |
| return redirection->address_of_hlt_instruction(); |
| } |
| |
| uword Simulator::FunctionForRedirect(uword redirect) { |
| return Redirection::FunctionForRedirect(redirect); |
| } |
| |
| // Get the active Simulator for the current isolate. |
| Simulator* Simulator::Current() { |
| Isolate* isolate = Isolate::Current(); |
| Simulator* simulator = isolate->simulator(); |
| if (simulator == nullptr) { |
| NoSafepointScope no_safepoint; |
| simulator = new Simulator(); |
| isolate->set_simulator(simulator); |
| } |
| return simulator; |
| } |
| |
| // Sets the register in the architecture state. |
| void Simulator::set_register(Instr* instr, |
| Register reg, |
| int64_t value, |
| R31Type r31t) { |
| // Register is in range. |
| ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); |
| #if !defined(DART_TARGET_OS_FUCHSIA) |
| ASSERT(instr == nullptr || reg != R18); // R18 is globally reserved on iOS. |
| #endif |
| |
| if ((reg != R31) || (r31t != R31IsZR)) { |
| registers_[reg] = value; |
| // If we're setting CSP, make sure it is 16-byte aligned. In truth, CSP |
| // can store addresses that are not 16-byte aligned, but loads and stores |
| // are not allowed through CSP when it is not aligned. Thus, this check is |
| // more conservative that necessary. However, it will likely be more |
| // useful to find the program locations where CSP is set to a bad value, |
| // than to find only the resulting loads/stores that would cause a fault on |
| // hardware. |
| if ((instr != nullptr) && (reg == R31) && !Utils::IsAligned(value, 16)) { |
| UnalignedAccess("CSP set", value, instr); |
| } |
| |
| #if defined(DEBUG) |
| if (reg == SP) { |
| // Memory below CSP can be written to at any instruction boundary by a |
| // signal handler. Simulate this to ensure we're keeping CSP far enough |
| // ahead of SP to prevent Dart frames from being trashed. |
| uword csp = registers_[R31]; |
| WriteX(csp - 1 * kWordSize, icount_, nullptr); |
| WriteX(csp - 2 * kWordSize, icount_, nullptr); |
| WriteX(csp - 3 * kWordSize, icount_, nullptr); |
| WriteX(csp - 4 * kWordSize, icount_, nullptr); |
| } |
| #endif |
| } |
| } |
| |
| // Get the register from the architecture state. |
| int64_t Simulator::get_register(Register reg, R31Type r31t) const { |
| ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); |
| if ((reg == R31) && (r31t == R31IsZR)) { |
| return 0; |
| } else { |
| return registers_[reg]; |
| } |
| } |
| |
| void Simulator::set_wregister(Register reg, int32_t value, R31Type r31t) { |
| ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); |
| // When setting in W mode, clear the high bits. |
| if ((reg != R31) || (r31t != R31IsZR)) { |
| registers_[reg] = Utils::LowHighTo64Bits(static_cast<uint32_t>(value), 0); |
| } |
| } |
| |
| // Get the register from the architecture state. |
| int32_t Simulator::get_wregister(Register reg, R31Type r31t) const { |
| ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); |
| if ((reg == R31) && (r31t == R31IsZR)) { |
| return 0; |
| } else { |
| return static_cast<int32_t>(registers_[reg]); |
| } |
| } |
| |
| int32_t Simulator::get_vregisters(VRegister reg, int idx) const { |
| ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); |
| ASSERT((idx >= 0) && (idx <= 3)); |
| return vregisters_[reg].bits.i32[idx]; |
| } |
| |
| void Simulator::set_vregisters(VRegister reg, int idx, int32_t value) { |
| ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); |
| ASSERT((idx >= 0) && (idx <= 3)); |
| vregisters_[reg].bits.i32[idx] = value; |
| } |
| |
| int64_t Simulator::get_vregisterd(VRegister reg, int idx) const { |
| ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); |
| ASSERT((idx == 0) || (idx == 1)); |
| return vregisters_[reg].bits.i64[idx]; |
| } |
| |
| void Simulator::set_vregisterd(VRegister reg, int idx, int64_t value) { |
| ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); |
| ASSERT((idx == 0) || (idx == 1)); |
| vregisters_[reg].bits.i64[idx] = value; |
| } |
| |
| void Simulator::get_vregister(VRegister reg, simd_value_t* value) const { |
| ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); |
| value->bits.i64[0] = vregisters_[reg].bits.i64[0]; |
| value->bits.i64[1] = vregisters_[reg].bits.i64[1]; |
| } |
| |
| void Simulator::set_vregister(VRegister reg, const simd_value_t& value) { |
| ASSERT((reg >= 0) && (reg < kNumberOfVRegisters)); |
| vregisters_[reg].bits.i64[0] = value.bits.i64[0]; |
| vregisters_[reg].bits.i64[1] = value.bits.i64[1]; |
| } |
| |
| // Raw access to the PC register. |
| void Simulator::set_pc(uint64_t value) { |
| pc_modified_ = true; |
| last_pc_ = pc_; |
| pc_ = value; |
| } |
| |
| // Raw access to the pc. |
| uint64_t Simulator::get_pc() const { |
| return pc_; |
| } |
| |
| uint64_t Simulator::get_last_pc() const { |
| return last_pc_; |
| } |
| |
| void Simulator::HandleIllegalAccess(uword addr, Instr* instr) { |
| uword fault_pc = get_pc(); |
| uword last_pc = get_last_pc(); |
| char buffer[128]; |
| snprintf(buffer, sizeof(buffer), |
| "illegal memory access at 0x%" Px ", pc=0x%" Px ", last_pc=0x%" Px |
| "\n", |
| addr, fault_pc, last_pc); |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, buffer); |
| // The debugger will return control in non-interactive mode. |
| FATAL("Cannot continue execution after illegal memory access."); |
| } |
| |
| // ARMv8 supports unaligned memory accesses to normal memory without trapping |
| // for all instructions except Load-Exclusive/Store-Exclusive and |
| // Load-Acquire/Store-Release. |
| // See B2.4.2 "Alignment of data accesses" for more information. |
| void Simulator::UnalignedAccess(const char* msg, uword addr, Instr* instr) { |
| char buffer[128]; |
| snprintf(buffer, sizeof(buffer), "unaligned %s at 0x%" Px ", pc=%p\n", msg, |
| addr, instr); |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, buffer); |
| // The debugger will not be able to single step past this instruction, but |
| // it will be possible to disassemble the code and inspect registers. |
| FATAL("Cannot continue execution after unaligned access."); |
| } |
| |
| void Simulator::UnimplementedInstruction(Instr* instr) { |
| char buffer[128]; |
| snprintf(buffer, sizeof(buffer), |
| "Unimplemented instruction: at %p, last_pc=0x%" Px64 "\n", instr, |
| get_last_pc()); |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, buffer); |
| FATAL("Cannot continue execution after unimplemented instruction."); |
| } |
| |
| bool Simulator::IsTracingExecution() const { |
| return icount_ > FLAG_trace_sim_after; |
| } |
| |
| intptr_t Simulator::ReadX(uword addr, |
| Instr* instr, |
| bool must_be_aligned /* = false */) { |
| const bool allow_unaligned_access = |
| FLAG_sim_allow_unaligned_accesses && !must_be_aligned; |
| if (allow_unaligned_access || (addr & 7) == 0) { |
| return LoadUnaligned(reinterpret_cast<intptr_t*>(addr)); |
| } |
| UnalignedAccess("read", addr, instr); |
| return 0; |
| } |
| |
| void Simulator::WriteX(uword addr, intptr_t value, Instr* instr) { |
| if (FLAG_sim_allow_unaligned_accesses || (addr & 7) == 0) { |
| StoreUnaligned(reinterpret_cast<intptr_t*>(addr), value); |
| return; |
| } |
| UnalignedAccess("write", addr, instr); |
| } |
| |
| uint32_t Simulator::ReadWU(uword addr, |
| Instr* instr, |
| bool must_be_aligned /* = false */) { |
| const bool allow_unaligned_access = |
| FLAG_sim_allow_unaligned_accesses && !must_be_aligned; |
| if (allow_unaligned_access || (addr & 3) == 0) { |
| return LoadUnaligned(reinterpret_cast<uint32_t*>(addr)); |
| } |
| UnalignedAccess("read unsigned single word", addr, instr); |
| return 0; |
| } |
| |
| int32_t Simulator::ReadW(uword addr, Instr* instr) { |
| if (FLAG_sim_allow_unaligned_accesses || (addr & 3) == 0) { |
| return LoadUnaligned(reinterpret_cast<int32_t*>(addr)); |
| } |
| UnalignedAccess("read single word", addr, instr); |
| return 0; |
| } |
| |
| void Simulator::WriteW(uword addr, uint32_t value, Instr* instr) { |
| if (FLAG_sim_allow_unaligned_accesses || (addr & 3) == 0) { |
| StoreUnaligned(reinterpret_cast<uint32_t*>(addr), value); |
| return; |
| } |
| UnalignedAccess("write single word", addr, instr); |
| } |
| |
| uint16_t Simulator::ReadHU(uword addr, Instr* instr) { |
| if (FLAG_sim_allow_unaligned_accesses || (addr & 1) == 0) { |
| return LoadUnaligned(reinterpret_cast<uint16_t*>(addr)); |
| } |
| UnalignedAccess("unsigned halfword read", addr, instr); |
| return 0; |
| } |
| |
| int16_t Simulator::ReadH(uword addr, Instr* instr) { |
| if (FLAG_sim_allow_unaligned_accesses || (addr & 1) == 0) { |
| return LoadUnaligned(reinterpret_cast<int16_t*>(addr)); |
| } |
| UnalignedAccess("signed halfword read", addr, instr); |
| return 0; |
| } |
| |
| void Simulator::WriteH(uword addr, uint16_t value, Instr* instr) { |
| if (FLAG_sim_allow_unaligned_accesses || (addr & 1) == 0) { |
| StoreUnaligned(reinterpret_cast<uint16_t*>(addr), value); |
| return; |
| } |
| UnalignedAccess("halfword write", addr, instr); |
| } |
| |
| uint8_t Simulator::ReadBU(uword addr) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| return *ptr; |
| } |
| |
| int8_t Simulator::ReadB(uword addr) { |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| return *ptr; |
| } |
| |
| void Simulator::WriteB(uword addr, uint8_t value) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| *ptr = value; |
| } |
| |
| void Simulator::ClearExclusive() { |
| exclusive_access_addr_ = 0; |
| exclusive_access_value_ = 0; |
| } |
| |
| intptr_t Simulator::ReadExclusiveX(uword addr, Instr* instr) { |
| exclusive_access_addr_ = addr; |
| exclusive_access_value_ = ReadX(addr, instr, /*must_be_aligned=*/true); |
| return exclusive_access_value_; |
| } |
| |
| intptr_t Simulator::ReadExclusiveW(uword addr, Instr* instr) { |
| exclusive_access_addr_ = addr; |
| exclusive_access_value_ = ReadWU(addr, instr, /*must_be_aligned=*/true); |
| return exclusive_access_value_; |
| } |
| |
| intptr_t Simulator::WriteExclusiveX(uword addr, intptr_t value, Instr* instr) { |
| // In a well-formed code store-exclusive instruction should always follow |
| // a corresponding load-exclusive instruction with the same address. |
| ASSERT((exclusive_access_addr_ == 0) || (exclusive_access_addr_ == addr)); |
| if (exclusive_access_addr_ != addr) { |
| return 1; // Failure. |
| } |
| |
| int64_t old_value = exclusive_access_value_; |
| ClearExclusive(); |
| |
| if ((random_.NextUInt32() % 16) == 0) { |
| return 1; // Suprious failure. |
| } |
| |
| auto atomic_addr = reinterpret_cast<RelaxedAtomic<int64_t>*>(addr); |
| if (atomic_addr->compare_exchange_weak(old_value, value)) { |
| return 0; // Success. |
| } |
| return 1; // Failure. |
| } |
| |
| intptr_t Simulator::WriteExclusiveW(uword addr, intptr_t value, Instr* instr) { |
| // In a well-formed code store-exclusive instruction should always follow |
| // a corresponding load-exclusive instruction with the same address. |
| ASSERT((exclusive_access_addr_ == 0) || (exclusive_access_addr_ == addr)); |
| if (exclusive_access_addr_ != addr) { |
| return 1; // Failure. |
| } |
| |
| int32_t old_value = static_cast<uint32_t>(exclusive_access_value_); |
| ClearExclusive(); |
| |
| if ((random_.NextUInt32() % 16) == 0) { |
| return 1; // Spurious failure. |
| } |
| |
| auto atomic_addr = reinterpret_cast<RelaxedAtomic<int32_t>*>(addr); |
| if (atomic_addr->compare_exchange_weak(old_value, value)) { |
| return 0; // Success. |
| } |
| return 1; // Failure. |
| } |
| |
| intptr_t Simulator::ReadAcquire(uword addr, Instr* instr) { |
| // TODO(42074): Once we switch to C++20 we should change this to use use |
| // `std::atomic_ref<T>` which supports performing atomic operations on |
| // non-atomic data. |
| COMPILE_ASSERT(sizeof(std::atomic<intptr_t>) == sizeof(intptr_t)); |
| return reinterpret_cast<std::atomic<intptr_t>*>(addr)->load( |
| std::memory_order_acquire); |
| } |
| |
| uint32_t Simulator::ReadAcquireW(uword addr, Instr* instr) { |
| // TODO(42074): Once we switch to C++20 we should change this to use use |
| // `std::atomic_ref<T>` which supports performing atomic operations on |
| // non-atomic data. |
| COMPILE_ASSERT(sizeof(std::atomic<intptr_t>) == sizeof(intptr_t)); |
| return reinterpret_cast<std::atomic<uint32_t>*>(addr)->load( |
| std::memory_order_acquire); |
| } |
| |
| void Simulator::WriteRelease(uword addr, intptr_t value, Instr* instr) { |
| // TODO(42074): Once we switch to C++20 we should change this to use use |
| // `std::atomic_ref<T>` which supports performing atomic operations on |
| // non-atomic data. |
| COMPILE_ASSERT(sizeof(std::atomic<intptr_t>) == sizeof(intptr_t)); |
| reinterpret_cast<std::atomic<intptr_t>*>(addr)->store( |
| value, std::memory_order_release); |
| } |
| |
| void Simulator::WriteReleaseW(uword addr, uint32_t value, Instr* instr) { |
| // TODO(42074): Once we switch to C++20 we should change this to use use |
| // `std::atomic_ref<T>` which supports performing atomic operations on |
| // non-atomic data. |
| COMPILE_ASSERT(sizeof(std::atomic<intptr_t>) == sizeof(intptr_t)); |
| reinterpret_cast<std::atomic<uint32_t>*>(addr)->store( |
| value, std::memory_order_release); |
| } |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Simulator::Format(Instr* instr, const char* format) { |
| OS::PrintErr("Simulator found unsupported instruction:\n 0x%p: %s\n", instr, |
| format); |
| UNIMPLEMENTED(); |
| } |
| |
| // Calculate and set the Negative and Zero flags. |
| void Simulator::SetNZFlagsW(int32_t val) { |
| n_flag_ = (val < 0); |
| z_flag_ = (val == 0); |
| } |
| |
| // Calculate C flag value for additions (and subtractions with adjusted args). |
| bool Simulator::CarryFromW(int32_t left, int32_t right, int32_t carry) { |
| uint64_t uleft = static_cast<uint32_t>(left); |
| uint64_t uright = static_cast<uint32_t>(right); |
| uint64_t ucarry = static_cast<uint32_t>(carry); |
| return ((uleft + uright + ucarry) >> 32) != 0; |
| } |
| |
| // Calculate V flag value for additions (and subtractions with adjusted args). |
| bool Simulator::OverflowFromW(int32_t left, int32_t right, int32_t carry) { |
| int64_t result = static_cast<int64_t>(left) + right + carry; |
| return (result >> 31) != (result >> 32); |
| } |
| |
| // Calculate and set the Negative and Zero flags. |
| void Simulator::SetNZFlagsX(int64_t val) { |
| n_flag_ = (val < 0); |
| z_flag_ = (val == 0); |
| } |
| |
| // Calculate C flag value for additions and subtractions. |
| bool Simulator::CarryFromX(int64_t alu_out, |
| int64_t left, |
| int64_t right, |
| bool addition) { |
| if (addition) { |
| return (((left & right) | ((left | right) & ~alu_out)) >> 63) != 0; |
| } else { |
| return (((~left & right) | ((~left | right) & alu_out)) >> 63) == 0; |
| } |
| } |
| |
| // Calculate V flag value for additions and subtractions. |
| bool Simulator::OverflowFromX(int64_t alu_out, |
| int64_t left, |
| int64_t right, |
| bool addition) { |
| if (addition) { |
| return (((alu_out ^ left) & (alu_out ^ right)) >> 63) != 0; |
| } else { |
| return (((left ^ right) & (alu_out ^ left)) >> 63) != 0; |
| } |
| } |
| |
| // Set the Carry flag. |
| void Simulator::SetCFlag(bool val) { |
| c_flag_ = val; |
| } |
| |
| // Set the oVerflow flag. |
| void Simulator::SetVFlag(bool val) { |
| v_flag_ = val; |
| } |
| |
| void Simulator::DecodeMoveWide(Instr* instr) { |
| const Register rd = instr->RdField(); |
| const int hw = instr->HWField(); |
| const int64_t shift = hw << 4; |
| const int64_t shifted_imm = static_cast<int64_t>(instr->Imm16Field()) |
| << shift; |
| |
| if (instr->SFField() != 0) { |
| if (instr->Bits(29, 2) == 0) { |
| // Format(instr, "movn'sf 'rd, 'imm16 'hw"); |
| set_register(instr, rd, ~shifted_imm, instr->RdMode()); |
| } else if (instr->Bits(29, 2) == 2) { |
| // Format(instr, "movz'sf 'rd, 'imm16 'hw"); |
| set_register(instr, rd, shifted_imm, instr->RdMode()); |
| } else if (instr->Bits(29, 2) == 3) { |
| // Format(instr, "movk'sf 'rd, 'imm16 'hw"); |
| const int64_t rd_val = get_register(rd, instr->RdMode()); |
| const int64_t result = (rd_val & ~(0xffffL << shift)) | shifted_imm; |
| set_register(instr, rd, result, instr->RdMode()); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } else if ((hw & 0x2) == 0) { |
| if (instr->Bits(29, 2) == 0) { |
| // Format(instr, "movn'sf 'rd, 'imm16 'hw"); |
| set_wregister(rd, ~shifted_imm & kWRegMask, instr->RdMode()); |
| } else if (instr->Bits(29, 2) == 2) { |
| // Format(instr, "movz'sf 'rd, 'imm16 'hw"); |
| set_wregister(rd, shifted_imm & kWRegMask, instr->RdMode()); |
| } else if (instr->Bits(29, 2) == 3) { |
| // Format(instr, "movk'sf 'rd, 'imm16 'hw"); |
| const int32_t rd_val = get_wregister(rd, instr->RdMode()); |
| const int32_t result = (rd_val & ~(0xffffL << shift)) | shifted_imm; |
| set_wregister(rd, result, instr->RdMode()); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } else { |
| // Dest is 32 bits, but shift is more than 32. |
| UnimplementedInstruction(instr); |
| } |
| } |
| |
| void Simulator::DecodeAddSubImm(Instr* instr) { |
| const bool addition = (instr->Bit(30) == 0); |
| // Format(instr, "addi'sf's 'rd, 'rn, 'imm12s"); |
| // Format(instr, "subi'sf's 'rd, 'rn, 'imm12s"); |
| const Register rd = instr->RdField(); |
| const Register rn = instr->RnField(); |
| uint32_t imm = (instr->Bit(22) == 1) ? (instr->Imm12Field() << 12) |
| : (instr->Imm12Field()); |
| if (instr->SFField() != 0) { |
| // 64-bit add. |
| const uint64_t rn_val = get_register(rn, instr->RnMode()); |
| const uint64_t alu_out = addition ? (rn_val + imm) : (rn_val - imm); |
| set_register(instr, rd, alu_out, instr->RdMode()); |
| if (instr->HasS()) { |
| SetNZFlagsX(alu_out); |
| SetCFlag(CarryFromX(alu_out, rn_val, imm, addition)); |
| SetVFlag(OverflowFromX(alu_out, rn_val, imm, addition)); |
| } |
| } else { |
| // 32-bit add. |
| const uint32_t rn_val = get_wregister(rn, instr->RnMode()); |
| uint32_t carry_in = 0; |
| if (!addition) { |
| carry_in = 1; |
| imm = ~imm; |
| } |
| const uint32_t alu_out = rn_val + imm + carry_in; |
| set_wregister(rd, alu_out, instr->RdMode()); |
| if (instr->HasS()) { |
| SetNZFlagsW(alu_out); |
| SetCFlag(CarryFromW(rn_val, imm, carry_in)); |
| SetVFlag(OverflowFromW(rn_val, imm, carry_in)); |
| } |
| } |
| } |
| |
| void Simulator::DecodeBitfield(Instr* instr) { |
| int bitwidth = instr->SFField() == 0 ? 32 : 64; |
| unsigned op = instr->Bits(29, 2); |
| ASSERT(op <= 2); |
| bool sign_extend = op == 0; |
| bool zero_extend = op == 2; |
| ASSERT(instr->NField() == instr->SFField()); |
| const Register rn = instr->RnField(); |
| const Register rd = instr->RdField(); |
| int64_t result = get_register(rn, instr->RnMode()); |
| int r_bit = instr->ImmRField(); |
| int s_bit = instr->ImmSField(); |
| result &= Utils::NBitMask(bitwidth); |
| ASSERT(s_bit < bitwidth && r_bit < bitwidth); |
| // See ARM v8 Instruction set overview 5.4.5. |
| // If s >= r then Rd[s-r:0] := Rn[s:r], else Rd[bitwidth+s-r:bitwidth-r] := |
| // Rn[s:0]. |
| uword mask = Utils::NBitMask(s_bit + 1); |
| if (s_bit >= r_bit) { |
| mask >>= r_bit; |
| result >>= r_bit; |
| } else { |
| result = static_cast<uint64_t>(result) << (bitwidth - r_bit); |
| mask <<= bitwidth - r_bit; |
| } |
| result &= mask; |
| if (sign_extend) { |
| int highest_bit = (s_bit - r_bit) & (bitwidth - 1); |
| int shift = 64 - highest_bit - 1; |
| result <<= shift; |
| result = static_cast<word>(result) >> shift; |
| } else if (!zero_extend) { |
| const int64_t rd_val = get_register(rd, instr->RnMode()); |
| result |= rd_val & ~mask; |
| } |
| if (bitwidth == 64) { |
| set_register(instr, rd, result, instr->RdMode()); |
| } else { |
| set_wregister(rd, result, instr->RdMode()); |
| } |
| } |
| |
| void Simulator::DecodeLogicalImm(Instr* instr) { |
| const int op = instr->Bits(29, 2); |
| const bool set_flags = op == 3; |
| const int out_size = ((instr->SFField() == 0) && (instr->NField() == 0)) |
| ? kWRegSizeInBits |
| : kXRegSizeInBits; |
| const Register rn = instr->RnField(); |
| const Register rd = instr->RdField(); |
| const int64_t rn_val = get_register(rn, instr->RnMode()); |
| const uint64_t imm = instr->ImmLogical(); |
| if (imm == 0) { |
| UnimplementedInstruction(instr); |
| } |
| |
| int64_t alu_out = 0; |
| switch (op) { |
| case 0: |
| alu_out = rn_val & imm; |
| break; |
| case 1: |
| alu_out = rn_val | imm; |
| break; |
| case 2: |
| alu_out = rn_val ^ imm; |
| break; |
| case 3: |
| alu_out = rn_val & imm; |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| |
| if (set_flags) { |
| if (out_size == kXRegSizeInBits) { |
| SetNZFlagsX(alu_out); |
| } else { |
| SetNZFlagsW(alu_out); |
| } |
| SetCFlag(false); |
| SetVFlag(false); |
| } |
| |
| if (out_size == kXRegSizeInBits) { |
| set_register(instr, rd, alu_out, instr->RdMode()); |
| } else { |
| set_wregister(rd, alu_out, instr->RdMode()); |
| } |
| } |
| |
| void Simulator::DecodePCRel(Instr* instr) { |
| const int op = instr->Bit(31); |
| if (op == 0) { |
| // Format(instr, "adr 'rd, 'pcrel") |
| const Register rd = instr->RdField(); |
| const uint64_t immhi = instr->SImm19Field(); |
| const uint64_t immlo = instr->Bits(29, 2); |
| const uint64_t off = (immhi << 2) | immlo; |
| const uint64_t dest = get_pc() + off; |
| set_register(instr, rd, dest, instr->RdMode()); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| |
| void Simulator::DecodeDPImmediate(Instr* instr) { |
| if (instr->IsMoveWideOp()) { |
| DecodeMoveWide(instr); |
| } else if (instr->IsAddSubImmOp()) { |
| DecodeAddSubImm(instr); |
| } else if (instr->IsBitfieldOp()) { |
| DecodeBitfield(instr); |
| } else if (instr->IsLogicalImmOp()) { |
| DecodeLogicalImm(instr); |
| } else if (instr->IsPCRelOp()) { |
| DecodePCRel(instr); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| |
| void Simulator::DecodeCompareAndBranch(Instr* instr) { |
| const int op = instr->Bit(24); |
| const Register rt = instr->RtField(); |
| const uint64_t imm19 = instr->SImm19Field(); |
| const uint64_t dest = get_pc() + (imm19 << 2); |
| const uint64_t mask = instr->SFField() == 1 ? kXRegMask : kWRegMask; |
| const uint64_t rt_val = get_register(rt, R31IsZR) & mask; |
| if (op == 0) { |
| // Format(instr, "cbz'sf 'rt, 'dest19"); |
| if (rt_val == 0) { |
| set_pc(dest); |
| } |
| } else { |
| // Format(instr, "cbnz'sf 'rt, 'dest19"); |
| if (rt_val != 0) { |
| set_pc(dest); |
| } |
| } |
| } |
| |
| bool Simulator::ConditionallyExecute(Instr* instr) { |
| Condition cond; |
| if (instr->IsConditionalSelectOp()) { |
| cond = instr->SelectConditionField(); |
| } else { |
| cond = instr->ConditionField(); |
| } |
| switch (cond) { |
| case EQ: |
| return z_flag_; |
| case NE: |
| return !z_flag_; |
| case CS: |
| return c_flag_; |
| case CC: |
| return !c_flag_; |
| case MI: |
| return n_flag_; |
| case PL: |
| return !n_flag_; |
| case VS: |
| return v_flag_; |
| case VC: |
| return !v_flag_; |
| case HI: |
| return c_flag_ && !z_flag_; |
| case LS: |
| return !c_flag_ || z_flag_; |
| case GE: |
| return n_flag_ == v_flag_; |
| case LT: |
| return n_flag_ != v_flag_; |
| case GT: |
| return !z_flag_ && (n_flag_ == v_flag_); |
| case LE: |
| return z_flag_ || (n_flag_ != v_flag_); |
| case AL: |
| return true; |
| default: |
| UNREACHABLE(); |
| } |
| return false; |
| } |
| |
| void Simulator::DecodeConditionalBranch(Instr* instr) { |
| // Format(instr, "b'cond 'dest19"); |
| if ((instr->Bit(24) != 0) || (instr->Bit(4) != 0)) { |
| UnimplementedInstruction(instr); |
| } |
| const uint64_t imm19 = instr->SImm19Field(); |
| const uint64_t dest = get_pc() + (imm19 << 2); |
| if (ConditionallyExecute(instr)) { |
| set_pc(dest); |
| } |
| } |
| |
| // Calls into the Dart runtime are based on this interface. |
| typedef void (*SimulatorRuntimeCall)(NativeArguments arguments); |
| |
| // Calls to leaf Dart runtime functions are based on this interface. |
| typedef int64_t (*SimulatorLeafRuntimeCall)(int64_t r0, |
| int64_t r1, |
| int64_t r2, |
| int64_t r3, |
| int64_t r4, |
| int64_t r5, |
| int64_t r6, |
| int64_t r7); |
| |
| // [target] has several different signatures that differ from |
| // SimulatorLeafRuntimeCall. We can call them all from here only because in |
| // X64's calling conventions a function can be called with extra arguments |
| // and the callee will see the first arguments and won't unbalance the stack. |
| NO_SANITIZE_UNDEFINED("function") |
| static int64_t InvokeLeafRuntime(SimulatorLeafRuntimeCall target, |
| int64_t r0, |
| int64_t r1, |
| int64_t r2, |
| int64_t r3, |
| int64_t r4, |
| int64_t r5, |
| int64_t r6, |
| int64_t r7) { |
| return target(r0, r1, r2, r3, r4, r5, r6, r7); |
| } |
| |
| // Calls to leaf float Dart runtime functions are based on this interface. |
| typedef double (*SimulatorLeafFloatRuntimeCall)(double d0, |
| double d1, |
| double d2, |
| double d3, |
| double d4, |
| double d5, |
| double d6, |
| double d7); |
| |
| // [target] has several different signatures that differ from |
| // SimulatorFloatLeafRuntimeCall. We can call them all from here only because in |
| // X64's calling conventions a function can be called with extra arguments |
| // and the callee will see the first arguments and won't unbalance the stack. |
| NO_SANITIZE_UNDEFINED("function") |
| static double InvokeFloatLeafRuntime(SimulatorLeafFloatRuntimeCall target, |
| double d0, |
| double d1, |
| double d2, |
| double d3, |
| double d4, |
| double d5, |
| double d6, |
| double d7) { |
| return target(d0, d1, d2, d3, d4, d5, d6, d7); |
| } |
| |
| // Calls to native Dart functions are based on this interface. |
| typedef void (*SimulatorNativeCallWrapper)(Dart_NativeArguments arguments, |
| Dart_NativeFunction target); |
| |
| void Simulator::DoRedirectedCall(Instr* instr) { |
| SimulatorSetjmpBuffer buffer(this); |
| if (!setjmp(buffer.buffer_)) { |
| int64_t saved_lr = get_register(LR); |
| Redirection* redirection = Redirection::FromHltInstruction(instr); |
| uword external = redirection->external_function(); |
| if (IsTracingExecution()) { |
| THR_Print("Call to host function at 0x%" Pd "\n", external); |
| } |
| |
| if (redirection->call_kind() == kRuntimeCall) { |
| NativeArguments* arguments = |
| reinterpret_cast<NativeArguments*>(get_register(R0)); |
| SimulatorRuntimeCall target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| target(*arguments); |
| ClobberVolatileRegisters(); |
| } else if (redirection->call_kind() == kLeafRuntimeCall) { |
| ASSERT((0 <= redirection->argument_count()) && |
| (redirection->argument_count() <= 8)); |
| SimulatorLeafRuntimeCall target = |
| reinterpret_cast<SimulatorLeafRuntimeCall>(external); |
| const int64_t r0 = get_register(R0); |
| const int64_t r1 = get_register(R1); |
| const int64_t r2 = get_register(R2); |
| const int64_t r3 = get_register(R3); |
| const int64_t r4 = get_register(R4); |
| const int64_t r5 = get_register(R5); |
| const int64_t r6 = get_register(R6); |
| const int64_t r7 = get_register(R7); |
| const int64_t res = |
| InvokeLeafRuntime(target, r0, r1, r2, r3, r4, r5, r6, r7); |
| ClobberVolatileRegisters(); |
| set_register(instr, R0, res); // Set returned result from function. |
| } else if (redirection->call_kind() == kLeafFloatRuntimeCall) { |
| ASSERT((0 <= redirection->argument_count()) && |
| (redirection->argument_count() <= 8)); |
| SimulatorLeafFloatRuntimeCall target = |
| reinterpret_cast<SimulatorLeafFloatRuntimeCall>(external); |
| const double d0 = bit_cast<double, int64_t>(get_vregisterd(V0, 0)); |
| const double d1 = bit_cast<double, int64_t>(get_vregisterd(V1, 0)); |
| const double d2 = bit_cast<double, int64_t>(get_vregisterd(V2, 0)); |
| const double d3 = bit_cast<double, int64_t>(get_vregisterd(V3, 0)); |
| const double d4 = bit_cast<double, int64_t>(get_vregisterd(V4, 0)); |
| const double d5 = bit_cast<double, int64_t>(get_vregisterd(V5, 0)); |
| const double d6 = bit_cast<double, int64_t>(get_vregisterd(V6, 0)); |
| const double d7 = bit_cast<double, int64_t>(get_vregisterd(V7, 0)); |
| const double res = |
| InvokeFloatLeafRuntime(target, d0, d1, d2, d3, d4, d5, d6, d7); |
| ClobberVolatileRegisters(); |
| set_vregisterd(V0, 0, bit_cast<int64_t, double>(res)); |
| set_vregisterd(V0, 1, 0); |
| } else { |
| ASSERT(redirection->call_kind() == kNativeCallWrapper); |
| SimulatorNativeCallWrapper wrapper = |
| reinterpret_cast<SimulatorNativeCallWrapper>(external); |
| Dart_NativeArguments arguments = |
| reinterpret_cast<Dart_NativeArguments>(get_register(R0)); |
| Dart_NativeFunction target = |
| reinterpret_cast<Dart_NativeFunction>(get_register(R1)); |
| wrapper(arguments, target); |
| ClobberVolatileRegisters(); |
| } |
| |
| // Return. |
| set_pc(saved_lr); |
| } else { |
| // Coming via long jump from a throw. Continue to exception handler. |
| } |
| } |
| |
| void Simulator::ClobberVolatileRegisters() { |
| // Clear atomic reservation. |
| exclusive_access_addr_ = exclusive_access_value_ = 0; |
| |
| for (intptr_t i = 0; i < kNumberOfCpuRegisters; i++) { |
| if ((kAbiVolatileCpuRegs & (1 << i)) != 0) { |
| registers_[i] = random_.NextUInt64(); |
| } |
| } |
| |
| for (intptr_t i = 0; i < kNumberOfFpuRegisters; i++) { |
| if ((kAbiVolatileFpuRegs & (1 << i)) != 0) { |
| vregisters_[i].bits.i64[0] = icount_; |
| vregisters_[i].bits.i64[1] = icount_; |
| } |
| } |
| } |
| |
| void Simulator::DecodeExceptionGen(Instr* instr) { |
| if ((instr->Bits(0, 2) == 1) && (instr->Bits(2, 3) == 0) && |
| (instr->Bits(21, 3) == 0)) { |
| // Format(instr, "svc 'imm16"); |
| UnimplementedInstruction(instr); |
| } else if ((instr->Bits(0, 2) == 0) && (instr->Bits(2, 3) == 0) && |
| (instr->Bits(21, 3) == 1)) { |
| // Format(instr, "brk 'imm16"); |
| SimulatorDebugger dbg(this); |
| int32_t imm = instr->Imm16Field(); |
| char buffer[32]; |
| snprintf(buffer, sizeof(buffer), "brk #0x%x", imm); |
| set_pc(get_pc() + Instr::kInstrSize); |
| dbg.Stop(instr, buffer); |
| } else if ((instr->Bits(0, 2) == 0) && (instr->Bits(2, 3) == 0) && |
| (instr->Bits(21, 3) == 2)) { |
| // Format(instr, "hlt 'imm16"); |
| uint16_t imm = static_cast<uint16_t>(instr->Imm16Field()); |
| if (imm == Instr::kSimulatorBreakCode) { |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, "breakpoint"); |
| } else if (imm == Instr::kSimulatorRedirectCode) { |
| DoRedirectedCall(instr); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| |
| void Simulator::DecodeSystem(Instr* instr) { |
| if (instr->InstructionBits() == CLREX) { |
| // Format(instr, "clrex"); |
| ClearExclusive(); |
| return; |
| } |
| |
| if ((instr->Bits(0, 8) == 0x1f) && (instr->Bits(12, 4) == 2) && |
| (instr->Bits(16, 3) == 3) && (instr->Bits(19, 2) == 0) && |
| (instr->Bit(21) == 0)) { |
| if (instr->Bits(8, 4) == 0) { |
| // Format(instr, "nop"); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| |
| void Simulator::DecodeTestAndBranch(Instr* instr) { |
| const int op = instr->Bit(24); |
| const int bitpos = instr->Bits(19, 5) | (instr->Bit(31) << 5); |
| const uint64_t imm14 = instr->SImm14Field(); |
| const uint64_t dest = get_pc() + (imm14 << 2); |
| const Register rt = instr->RtField(); |
| const uint64_t rt_val = get_register(rt, R31IsZR); |
| if (op == 0) { |
| // Format(instr, "tbz'sf 'rt, 'bitpos, 'dest14"); |
| if ((rt_val & (1ull << bitpos)) == 0) { |
| set_pc(dest); |
| } |
| } else { |
| // Format(instr, "tbnz'sf 'rt, 'bitpos, 'dest14"); |
| if ((rt_val & (1ull << bitpos)) != 0) { |
| set_pc(dest); |
| } |
| } |
| } |
| |
| void Simulator::DecodeUnconditionalBranch(Instr* instr) { |
| const bool link = instr->Bit(31) == 1; |
| const uint64_t imm26 = instr->SImm26Field(); |
| const uint64_t dest = get_pc() + (imm26 << 2); |
| const uint64_t ret = get_pc() + Instr::kInstrSize; |
| set_pc(dest); |
| if (link) { |
| set_register(instr, LR, ret); |
| } |
| } |
| |
| void Simulator::DecodeUnconditionalBranchReg(Instr* instr) { |
| if ((instr->Bits(0, 5) == 0) && (instr->Bits(10, 6) == 0) && |
| (instr->Bits(16, 5) == 0x1f)) { |
| switch (instr->Bits(21, 4)) { |
| case 0: { |
| // Format(instr, "br 'rn"); |
| const Register rn = instr->RnField(); |
| const int64_t dest = get_register(rn, instr->RnMode()); |
| set_pc(dest); |
| break; |
| } |
| case 1: { |
| // Format(instr, "blr 'rn"); |
| const Register rn = instr->RnField(); |
| const int64_t dest = get_register(rn, instr->RnMode()); |
| const int64_t ret = get_pc() + Instr::kInstrSize; |
| set_pc(dest); |
| set_register(instr, LR, ret); |
| break; |
| } |
| case 2: { |
| // Format(instr, "ret 'rn"); |
| const Register rn = instr->RnField(); |
| const int64_t rn_val = get_register(rn, instr->RnMode()); |
| set_pc(rn_val); |
| break; |
| } |
| default: |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| |
| DART_FORCE_INLINE |
| void Simulator::DecodeCompareBranch(Instr* instr) { |
| if (instr->IsCompareAndBranchOp()) { |
| DecodeCompareAndBranch(instr); |
| } else if (instr->IsConditionalBranchOp()) { |
| DecodeConditionalBranch(instr); |
| } else if (instr->IsExceptionGenOp()) { |
| DecodeExceptionGen(instr); |
| } else if (instr->IsSystemOp()) { |
| DecodeSystem(instr); |
| } else if (instr->IsTestAndBranchOp()) { |
| DecodeTestAndBranch(instr); |
| } else if (instr->IsUnconditionalBranchOp()) { |
| DecodeUnconditionalBranch(instr); |
| } else if (instr->IsUnconditionalBranchRegOp()) { |
| DecodeUnconditionalBranchReg(instr); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| |
| void Simulator::DecodeLoadStoreReg(Instr* instr) { |
| // Calculate the address. |
| const Register rn = instr->RnField(); |
| const Register rt = instr->RtField(); |
| const VRegister vt = instr->VtField(); |
| const int64_t rn_val = get_register(rn, R31IsSP); |
| const uint32_t size = (instr->Bit(26) == 1) |
| ? ((instr->Bit(23) << 2) | instr->SzField()) |
| : instr->SzField(); |
| uword address = 0; |
| uword wb_address = 0; |
| bool wb = false; |
| if (instr->Bit(24) == 1) { |
| // addr = rn + scaled unsigned 12-bit immediate offset. |
| const uint32_t imm12 = static_cast<uint32_t>(instr->Imm12Field()); |
| const uint32_t offset = imm12 << size; |
| address = rn_val + offset; |
| } else if (instr->Bits(10, 2) == 0) { |
| // addr = rn + signed 9-bit immediate offset. |
| wb = false; |
| const int64_t offset = static_cast<int64_t>(instr->SImm9Field()); |
| address = rn_val + offset; |
| wb_address = rn_val; |
| } else if (instr->Bit(10) == 1) { |
| // addr = rn + signed 9-bit immediate offset. |
| wb = true; |
| const int64_t offset = static_cast<int64_t>(instr->SImm9Field()); |
| if (instr->Bit(11) == 1) { |
| // Pre-index. |
| address = rn_val + offset; |
| wb_address = address; |
| } else { |
| // Post-index. |
| address = rn_val; |
| wb_address = rn_val + offset; |
| } |
| } else if (instr->Bits(10, 2) == 2) { |
| // addr = rn + (rm EXT optionally scaled by operand instruction size). |
| const Register rm = instr->RmField(); |
| const Extend ext = instr->ExtendTypeField(); |
| const uint8_t scale = (ext == UXTX) && (instr->Bit(12) == 1) ? size : 0; |
| const int64_t rm_val = get_register(rm, R31IsZR); |
| const int64_t offset = ExtendOperand(kXRegSizeInBits, rm_val, ext, scale); |
| address = rn_val + offset; |
| } else { |
| UnimplementedInstruction(instr); |
| return; |
| } |
| |
| // Check the address. |
| if (IsIllegalAddress(address)) { |
| HandleIllegalAccess(address, instr); |
| return; |
| } |
| |
| // Do access. |
| if (instr->Bit(26) == 1) { |
| if (instr->Bit(22) == 0) { |
| // Format(instr, "fstr'fsz 'vt, 'memop"); |
| const int64_t vt_val = get_vregisterd(vt, 0); |
| switch (size) { |
| case 2: |
| WriteW(address, vt_val & kWRegMask, instr); |
| break; |
| case 3: |
| WriteX(address, vt_val, instr); |
| break; |
| case 4: { |
| simd_value_t val; |
| get_vregister(vt, &val); |
| WriteX(address, val.bits.i64[0], instr); |
| WriteX(address + kWordSize, val.bits.i64[1], instr); |
| break; |
| } |
| default: |
| UnimplementedInstruction(instr); |
| return; |
| } |
| } else { |
| // Format(instr, "fldr'fsz 'vt, 'memop"); |
| switch (size) { |
| case 2: |
| set_vregisterd(vt, 0, static_cast<int64_t>(ReadWU(address, instr))); |
| set_vregisterd(vt, 1, 0); |
| break; |
| case 3: |
| set_vregisterd(vt, 0, ReadX(address, instr)); |
| set_vregisterd(vt, 1, 0); |
| break; |
| case 4: { |
| simd_value_t val; |
| val.bits.i64[0] = ReadX(address, instr); |
| val.bits.i64[1] = ReadX(address + kWordSize, instr); |
| set_vregister(vt, val); |
| break; |
| } |
| default: |
| UnimplementedInstruction(instr); |
| return; |
| } |
| } |
| } else { |
| if (instr->Bits(22, 2) == 0) { |
| // Format(instr, "str'sz 'rt, 'memop"); |
| const int32_t rt_val32 = get_wregister(rt, R31IsZR); |
| switch (size) { |
| case 0: { |
| const uint8_t val = static_cast<uint8_t>(rt_val32); |
| WriteB(address, val); |
| break; |
| } |
| case 1: { |
| const uint16_t val = static_cast<uint16_t>(rt_val32); |
| WriteH(address, val, instr); |
| break; |
| } |
| case 2: { |
| const uint32_t val = static_cast<uint32_t>(rt_val32); |
| WriteW(address, val, instr); |
| break; |
| } |
| case 3: { |
| const int64_t val = get_register(rt, R31IsZR); |
| WriteX(address, val, instr); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| // Format(instr, "ldr'sz 'rt, 'memop"); |
| // Undefined case. |
| if ((size == 3) && (instr->Bits(22, 2) == 3)) { |
| UnimplementedInstruction(instr); |
| return; |
| } |
| |
| // Read the value. |
| const bool is_signed = instr->Bit(23) == 1; |
| // Write the W register for signed values when size < 2. |
| // Write the W register for unsigned values when size == 2. |
| const bool use_w = |
| (is_signed && (instr->Bit(22) == 1)) || (!is_signed && (size == 2)); |
| int64_t val = 0; // Sign extend into an int64_t. |
| switch (size) { |
| case 0: { |
| if (is_signed) { |
| val = static_cast<int64_t>(ReadB(address)); |
| } else { |
| val = static_cast<int64_t>(ReadBU(address)); |
| } |
| break; |
| } |
| case 1: { |
| if (is_signed) { |
| val = static_cast<int64_t>(ReadH(address, instr)); |
| } else { |
| val = static_cast<int64_t>(ReadHU(address, instr)); |
| } |
| break; |
| } |
| case 2: { |
| if (is_signed) { |
| val = static_cast<int64_t>(ReadW(address, instr)); |
| } else { |
| val = static_cast<int64_t>(ReadWU(address, instr)); |
| } |
| break; |
| } |
| case 3: |
| val = ReadX(address, instr); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| |
| // Write to register. |
| if (use_w) { |
| set_wregister(rt, static_cast<int32_t>(val), R31IsZR); |
| } else { |
| set_register(instr, rt, val, R31IsZR); |
| } |
| } |
| } |
| |
| // Do writeback. |
| if (wb) { |
| set_register(instr, rn, wb_address, R31IsSP); |
| } |
| } |
| |
| void Simulator::DecodeLoadStoreRegPair(Instr* instr) { |
| const int32_t opc = instr->Bits(23, 3); |
| const Register rn = instr->RnField(); |
| const int64_t rn_val = get_register(rn, R31IsSP); |
| const intptr_t shift = |
| (instr->Bit(26) == 1) ? 2 + instr->SzField() : 2 + instr->SFField(); |
| const intptr_t size = 1 << shift; |
| const int32_t offset = (static_cast<uint32_t>(instr->SImm7Field()) << shift); |
| uword address = 0; |
| uword wb_address = 0; |
| bool wb = false; |
| |
| if ((instr->Bits(30, 2) == 3)) { |
| UnimplementedInstruction(instr); |
| return; |
| } |
| |
| // Calculate address. |
| switch (opc) { |
| case 1: |
| address = rn_val; |
| wb_address = rn_val + offset; |
| wb = true; |
| break; |
| case 2: |
| address = rn_val + offset; |
| break; |
| case 3: |
| address = rn_val + offset; |
| wb_address = address; |
| wb = true; |
| break; |
| default: |
| UnimplementedInstruction(instr); |
| return; |
| } |
| |
| // Check the address. |
| if (IsIllegalAddress(address)) { |
| HandleIllegalAccess(address, instr); |
| return; |
| } |
| |
| // Do access. |
| if (instr->Bit(26) == 1) { |
| // SIMD/FP. |
| const VRegister vt = instr->VtField(); |
| const VRegister vt2 = instr->Vt2Field(); |
| if (instr->Bit(22) != 0) { |
| // Format(instr, "ldp 'vt, 'vt2, 'memop"); |
| switch (size) { |
| case 4: |
| set_vregisterd(vt, 0, static_cast<int64_t>(ReadWU(address, instr))); |
| set_vregisterd(vt, 1, 0); |
| set_vregisterd(vt2, 0, |
| static_cast<int64_t>(ReadWU(address + 4, instr))); |
| set_vregisterd(vt2, 1, 0); |
| break; |
| case 8: |
| set_vregisterd(vt, 0, ReadX(address, instr)); |
| set_vregisterd(vt, 1, 0); |
| set_vregisterd(vt2, 0, ReadX(address + 8, instr)); |
| set_vregisterd(vt2, 1, 0); |
| break; |
| case 16: { |
| simd_value_t val; |
| val.bits.i64[0] = ReadX(address, instr); |
| val.bits.i64[1] = ReadX(address + 8, instr); |
| set_vregister(vt, val); |
| val.bits.i64[0] = ReadX(address + 16, instr); |
| val.bits.i64[1] = ReadX(address + 24, instr); |
| set_vregister(vt2, val); |
| break; |
| } |
| default: |
| UnimplementedInstruction(instr); |
| return; |
| } |
| } else { |
| // Format(instr, "stp 'vt, 'vt2, 'memop"); |
| switch (size) { |
| case 4: |
| WriteW(address, get_vregisterd(vt, 0) & kWRegMask, instr); |
| WriteW(address + 4, get_vregisterd(vt2, 0) & kWRegMask, instr); |
| break; |
| case 8: |
| WriteX(address, get_vregisterd(vt, 0), instr); |
| WriteX(address + 8, get_vregisterd(vt2, 0), instr); |
| break; |
| case 16: { |
| simd_value_t val; |
| get_vregister(vt, &val); |
| WriteX(address, val.bits.i64[0], instr); |
| WriteX(address + 8, val.bits.i64[1], instr); |
| get_vregister(vt2, &val); |
| WriteX(address + 16, val.bits.i64[0], instr); |
| WriteX(address + 24, val.bits.i64[1], instr); |
| break; |
| } |
| default: |
| UnimplementedInstruction(instr); |
| return; |
| } |
| } |
| } else { |
| // Integer. |
| const Register rt = instr->RtField(); |
| const Register rt2 = instr->Rt2Field(); |
| if (instr->Bit(22) != 0) { |
| // Format(instr, "ldp'sf 'rt, 'rt2, 'memop"); |
| const bool is_signed = instr->Bit(30) == 1; |
| int64_t val1 = 0; // Sign extend into an int64_t. |
| int64_t val2 = 0; |
| if (instr->Bit(31) == 1) { |
| // 64-bit read. |
| val1 = ReadX(address, instr); |
| val2 = ReadX(address + size, instr); |
| } else { |
| if (is_signed) { |
| val1 = static_cast<int64_t>(ReadW(address, instr)); |
| val2 = static_cast<int64_t>(ReadW(address + size, instr)); |
| } else { |
| val1 = static_cast<int64_t>(ReadWU(address, instr)); |
| val2 = static_cast<int64_t>(ReadWU(address + size, instr)); |
| } |
| } |
| // Write to register. |
| if (instr->Bit(31) == 1) { |
| set_register(instr, rt, val1, R31IsZR); |
| set_register(instr, rt2, val2, R31IsZR); |
| } else { |
| set_wregister(rt, static_cast<int32_t>(val1), R31IsZR); |
| set_wregister(rt2, static_cast<int32_t>(val2), R31IsZR); |
| } |
| } else { |
| // Format(instr, "stp'sf 'rt, 'rt2, 'memop"); |
| if (instr->Bit(31) == 1) { |
| const int64_t val1 = get_register(rt, R31IsZR); |
| const int64_t val2 = get_register(rt2, R31IsZR); |
| WriteX(address, val1, instr); |
| WriteX(address + size, val2, instr); |
| } else { |
| const int32_t val1 = get_wregister(rt, R31IsZR); |
| const int32_t val2 = get_wregister(rt2, R31IsZR); |
| WriteW(address, val1, instr); |
| WriteW(address + size, val2, instr); |
| } |
| } |
| } |
| |
| // Do writeback. |
| if (wb) { |
| set_register(instr, rn, wb_address, R31IsSP); |
| } |
| } |
| |
| void Simulator::DecodeLoadRegLiteral(Instr* instr) { |
| if ((instr->Bit(31) != 0) || (instr->Bit(29) != 0) || |
| (instr->Bits(24, 3) != 0)) { |
| UnimplementedInstruction(instr); |
| } |
| |
| const Register rt = instr->RtField(); |
| const int64_t off = instr->SImm19Field() << 2; |
| const int64_t pc = reinterpret_cast<int64_t>(instr); |
| const int64_t address = pc + off; |
| const int64_t val = ReadX(address, instr); |
| if (instr->Bit(30) != 0) { |
| // Format(instr, "ldrx 'rt, 'pcldr"); |
| set_register(instr, rt, val, R31IsZR); |
| } else { |
| // Format(instr, "ldrw 'rt, 'pcldr"); |
| set_wregister(rt, static_cast<int32_t>(val), R31IsZR); |
| } |
| } |
| |
| void Simulator::DecodeLoadStoreExclusive(Instr* instr) { |
| if (instr->Bit(21) != 0 || instr->Bit(23) != instr->Bit(15)) { |
| UNIMPLEMENTED(); |
| } |
| const int32_t size = instr->Bits(30, 2); |
| if (size != 3 && size != 2) { |
| UNIMPLEMENTED(); |
| } |
| const Register rs = instr->RsField(); |
| const Register rn = instr->RnField(); |
| const Register rt = instr->RtField(); |
| ASSERT(instr->Rt2Field() == R31); // Should-Be-One |
| const bool is_load = instr->Bit(22) == 1; |
| const bool is_exclusive = instr->Bit(23) == 0; |
| const bool is_ordered = instr->Bit(15) == 1; |
| if (is_load) { |
| const bool is_load_acquire = !is_exclusive && is_ordered; |
| if (is_load_acquire) { |
| ASSERT(rs == R31); // Should-Be-One |
| // Format(instr, "ldar 'rt, 'rn"); |
| const int64_t addr = get_register(rn, R31IsSP); |
| const intptr_t value = |
| (size == 3) ? ReadAcquire(addr, instr) : ReadAcquireW(addr, instr); |
| set_register(instr, rt, value, R31IsZR); |
| } else { |
| ASSERT(rs == R31); // Should-Be-One |
| // Format(instr, "ldxr 'rt, 'rn"); |
| const int64_t addr = get_register(rn, R31IsSP); |
| const intptr_t value = (size == 3) ? ReadExclusiveX(addr, instr) |
| : ReadExclusiveW(addr, instr); |
| set_register(instr, rt, value, R31IsZR); |
| } |
| } else { |
| const bool is_store_release = !is_exclusive && is_ordered; |
| if (is_store_release) { |
| ASSERT(rs == R31); // Should-Be-One |
| // Format(instr, "stlr 'rt, 'rn"); |
| const uword value = get_register(rt, R31IsZR); |
| const uword addr = get_register(rn, R31IsSP); |
| if (size == 3) { |
| WriteRelease(addr, value, instr); |
| } else { |
| WriteReleaseW(addr, static_cast<uint32_t>(value), instr); |
| } |
| } else { |
| // Format(instr, "stxr 'rs, 'rt, 'rn"); |
| const uword value = get_register(rt, R31IsZR); |
| const uword addr = get_register(rn, R31IsSP); |
| const intptr_t status = |
| (size == 3) |
| ? WriteExclusiveX(addr, value, instr) |
| : WriteExclusiveW(addr, static_cast<uint32_t>(value), instr); |
| set_register(instr, rs, status, R31IsSP); |
| } |
| } |
| } |
| |
| void Simulator::DecodeAtomicMemory(Instr* instr) { |
| const int32_t size = instr->Bits(30, 2); |
| std::memory_order order; |
| switch (instr->Bits(22, 2)) { |
| case 3: |
| order = std::memory_order_acq_rel; |
| break; |
| case 2: |
| order = std::memory_order_acquire; |
| break; |
| case 1: |
| order = std::memory_order_release; |
| break; |
| case 0: |
| order = std::memory_order_relaxed; |
| break; |
| } |
| const Register rs = instr->RsField(); |
| const Register rn = instr->RnField(); |
| const Register rt = instr->RtField(); |
| const int32_t opc = instr->Bits(12, 3); |
| |
| if (size == 3) { |
| uint64_t in = get_register(rs, R31IsZR); |
| auto addr = |
| reinterpret_cast<std::atomic<uint64_t>*>(get_register(rn, R31IsSP)); |
| uint64_t out; |
| switch (opc) { |
| case 1: |
| out = addr->fetch_and(~in, order); |
| break; |
| case 3: |
| out = addr->fetch_or(in, order); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| } |
| set_register(instr, rt, out, R31IsZR); |
| } else if (size == 2) { |
| ASSERT(size == 2); |
| uint32_t in = get_wregister(rs, R31IsZR); |
| auto addr = |
| reinterpret_cast<std::atomic<uint32_t>*>(get_register(rn, R31IsSP)); |
| uint32_t out; |
| switch (opc) { |
| case 1: |
| out = addr->fetch_and(~in, order); |
| break; |
| case 3: |
| out = addr->fetch_or(in, order); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| } |
| set_wregister(rt, out, R31IsZR); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| DART_FORCE_INLINE |
| void Simulator::DecodeLoadStore(Instr* instr) { |
| if (instr->IsAtomicMemoryOp()) { |
| DecodeAtomicMemory(instr); |
| } else if (instr->IsLoadStoreRegOp()) { |
| DecodeLoadStoreReg(instr); |
| } else if (instr->IsLoadStoreRegPairOp()) { |
| DecodeLoadStoreRegPair(instr); |
| } else if (instr->IsLoadRegLiteralOp()) { |
| DecodeLoadRegLiteral(instr); |
| } else if (instr->IsLoadStoreExclusiveOp()) { |
| DecodeLoadStoreExclusive(instr); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| |
| int64_t Simulator::ShiftOperand(uint8_t reg_size, |
| int64_t value, |
| Shift shift_type, |
| uint8_t amount) { |
| if (amount == 0) { |
| return value; |
| } |
| int64_t mask = reg_size == kXRegSizeInBits ? kXRegMask : kWRegMask; |
| switch (shift_type) { |
| case LSL: |
| return (static_cast<uint64_t>(value) << amount) & mask; |
| case LSR: |
| return static_cast<uint64_t>(value) >> amount; |
| case ASR: { |
| // Shift used to restore the sign. |
| uint8_t s_shift = kXRegSizeInBits - reg_size; |
| // Value with its sign restored. |
| int64_t s_value = (value << s_shift) >> s_shift; |
| return (s_value >> amount) & mask; |
| } |
| case ROR: { |
| if (reg_size == kWRegSizeInBits) { |
| value &= kWRegMask; |
| } |
| return (static_cast<uint64_t>(value) >> amount) | |
| ((static_cast<uint64_t>(value) & ((1ULL << amount) - 1ULL)) |
| << (reg_size - amount)); |
| } |
| default: |
| UNIMPLEMENTED(); |
| return 0; |
| } |
| } |
| |
| int64_t Simulator::ExtendOperand(uint8_t reg_size, |
| int64_t value, |
| Extend extend_type, |
| uint8_t amount) { |
| switch (extend_type) { |
| case UXTB: |
| value &= 0xff; |
| break; |
| case UXTH: |
| value &= 0xffff; |
| break; |
| case UXTW: |
| value &= 0xffffffff; |
| break; |
| case SXTB: |
| value = static_cast<int64_t>(static_cast<uint64_t>(value) << 56) >> 56; |
| break; |
| case SXTH: |
| value = static_cast<int64_t>(static_cast<uint64_t>(value) << 48) >> 48; |
| break; |
| case SXTW: |
| value = static_cast<int64_t>(static_cast<uint64_t>(value) << 32) >> 32; |
| break; |
| case UXTX: |
| case SXTX: |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| int64_t mask = (reg_size == kXRegSizeInBits) ? kXRegMask : kWRegMask; |
| return (static_cast<uint64_t>(value) << amount) & mask; |
| } |
| |
| int64_t Simulator::DecodeShiftExtendOperand(Instr* instr) { |
| const Register rm = instr->RmField(); |
| const int64_t rm_val = get_register(rm, R31IsZR); |
| const uint8_t size = |
| instr->SFField() != 0 ? kXRegSizeInBits : kWRegSizeInBits; |
| if (instr->IsShift()) { |
| const Shift shift_type = instr->ShiftTypeField(); |
| const uint8_t shift_amount = instr->Imm6Field(); |
| return ShiftOperand(size, rm_val, shift_type, shift_amount); |
| } else { |
| ASSERT(instr->IsExtend()); |
| const Extend extend_type = instr->ExtendTypeField(); |
| const uint8_t shift_amount = instr->Imm3Field(); |
| return ExtendOperand(size, rm_val, extend_type, shift_amount); |
| } |
| UNREACHABLE(); |
| return -1; |
| } |
| |
| void Simulator::DecodeAddSubShiftExt(Instr* instr) { |
| // Format(instr, "add'sf's 'rd, 'rn, 'shift_op"); |
| // also, sub, cmp, etc. |
| const bool addition = (instr->Bit(30) == 0); |
| const Register rd = instr->RdField(); |
| const Register rn = instr->RnField(); |
| const uint64_t rm_val = DecodeShiftExtendOperand(instr); |
| if (instr->SFField() != 0) { |
| // 64-bit add. |
| const uint64_t rn_val = get_register(rn, instr->RnMode()); |
| const uint64_t alu_out = rn_val + (addition ? rm_val : -rm_val); |
| set_register(instr, rd, alu_out, instr->RdMode()); |
| if (instr->HasS()) { |
| SetNZFlagsX(alu_out); |
| SetCFlag(CarryFromX(alu_out, rn_val, rm_val, addition)); |
| SetVFlag(OverflowFromX(alu_out, rn_val, rm_val, addition)); |
| } |
| } else { |
| // 32-bit add. |
| const uint32_t rn_val = get_wregister(rn, instr->RnMode()); |
| uint32_t rm_val32 = static_cast<uint32_t>(rm_val & kWRegMask); |
| uint32_t carry_in = 0; |
| if (!addition) { |
| carry_in = 1; |
| rm_val32 = ~rm_val32; |
| } |
| const uint32_t alu_out = rn_val + rm_val32 + carry_in; |
| set_wregister(rd, alu_out, instr->RdMode()); |
| if (instr->HasS()) { |
| SetNZFlagsW(alu_out); |
| SetCFlag(CarryFromW(rn_val, rm_val32, carry_in)); |
| SetVFlag(OverflowFromW(rn_val, rm_val32, carry_in)); |
| } |
| } |
| } |
| |
| void Simulator::DecodeAddSubWithCarry(Instr* instr) { |
| // Format(instr, "adc'sf's 'rd, 'rn, 'rm"); |
| // Format(instr, "sbc'sf's 'rd, 'rn, 'rm"); |
| const bool addition = (instr->Bit(30) == 0); |
| const Register rd = instr->RdField(); |
| const Register rn = instr->RnField(); |
| const Register rm = instr->RmField(); |
| const uint64_t rn_val64 = get_register(rn, R31IsZR); |
| const uint32_t rn_val32 = get_wregister(rn, R31IsZR); |
| const uint64_t rm_val64 = get_register(rm, R31IsZR); |
| uint32_t rm_val32 = get_wregister(rm, R31IsZR); |
| const uint32_t carry_in = c_flag_ ? 1 : 0; |
| if (instr->SFField() != 0) { |
| // 64-bit add. |
| const uint64_t alu_out = |
| rn_val64 + (addition ? rm_val64 : ~rm_val64) + carry_in; |
| set_register(instr, rd, alu_out, R31IsZR); |
| if (instr->HasS()) { |
| SetNZFlagsX(alu_out); |
| SetCFlag(CarryFromX(alu_out, rn_val64, rm_val64, addition)); |
| SetVFlag(OverflowFromX(alu_out, rn_val64, rm_val64, addition)); |
| } |
| } else { |
| // 32-bit add. |
| if (!addition) { |
| rm_val32 = ~rm_val32; |
| } |
| const uint32_t alu_out = rn_val32 + rm_val32 + carry_in; |
| set_wregister(rd, alu_out, R31IsZR); |
| if (instr->HasS()) { |
| SetNZFlagsW(alu_out); |
| SetCFlag(CarryFromW(rn_val32, rm_val32, carry_in)); |
| SetVFlag(OverflowFromW(rn_val32, rm_val32, carry_in)); |
| } |
| } |
| } |
| |
| void Simulator::DecodeLogicalShift(Instr* instr) { |
| const int op = (instr->Bits(29, 2) << 1) | instr->Bit(21); |
| const Register rd = instr->RdField(); |
| const Register rn = instr->RnField(); |
| const int64_t rn_val = get_register(rn, instr->RnMode()); |
| const int64_t rm_val = DecodeShiftExtendOperand(instr); |
| int64_t alu_out = 0; |
| switch (op) { |
| case 0: |
| // Format(instr, "and'sf 'rd, 'rn, 'shift_op"); |
| alu_out = rn_val & rm_val; |
| break; |
| case 1: |
| // Format(instr, "bic'sf 'rd, 'rn, 'shift_op"); |
| alu_out = rn_val & (~rm_val); |
| break; |
| case |