blob: e605d0104f5af183df9abe4354491e7f7275a0a8 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#include "vm/instructions.h"
#include "vm/signal_handler.h"
#include "vm/simulator.h"
#if defined(DART_HOST_OS_ANDROID)
namespace dart {
uintptr_t SignalHandler::GetProgramCounter(const mcontext_t& mcontext) {
uintptr_t pc = 0;
#if defined(HOST_ARCH_IA32)
pc = static_cast<uintptr_t>(mcontext.gregs[REG_EIP]);
#elif defined(HOST_ARCH_X64)
pc = static_cast<uintptr_t>(mcontext.gregs[REG_RIP]);
#elif defined(HOST_ARCH_ARM)
pc = static_cast<uintptr_t>(mcontext.arm_pc);
#elif defined(HOST_ARCH_ARM64)
pc = static_cast<uintptr_t>(mcontext.pc);
#elif defined(HOST_ARCH_RISCV64)
pc = static_cast<uintptr_t>(mcontext.__gregs[REG_PC]);
#else
#error Unsupported architecture.
#endif // HOST_ARCH_...
return pc;
}
uintptr_t SignalHandler::GetFramePointer(const mcontext_t& mcontext) {
uintptr_t fp = 0;
#if defined(HOST_ARCH_IA32)
fp = static_cast<uintptr_t>(mcontext.gregs[REG_EBP]);
#elif defined(HOST_ARCH_X64)
fp = static_cast<uintptr_t>(mcontext.gregs[REG_RBP]);
#elif defined(HOST_ARCH_ARM)
// B1.3.3 Program Status Registers (PSRs)
if ((mcontext.arm_cpsr & (1 << 5)) != 0) {
// Thumb mode.
fp = static_cast<uintptr_t>(mcontext.arm_r7);
} else {
// ARM mode.
fp = static_cast<uintptr_t>(mcontext.arm_fp);
}
#elif defined(HOST_ARCH_ARM64)
fp = static_cast<uintptr_t>(mcontext.regs[29]);
#elif defined(HOST_ARCH_RISCV64)
fp = static_cast<uintptr_t>(mcontext.__gregs[REG_S0]);
#else
#error Unsupported architecture.
#endif // HOST_ARCH_...
return fp;
}
uintptr_t SignalHandler::GetCStackPointer(const mcontext_t& mcontext) {
uintptr_t sp = 0;
#if defined(HOST_ARCH_IA32)
sp = static_cast<uintptr_t>(mcontext.gregs[REG_ESP]);
#elif defined(HOST_ARCH_X64)
sp = static_cast<uintptr_t>(mcontext.gregs[REG_RSP]);
#elif defined(HOST_ARCH_ARM)
sp = static_cast<uintptr_t>(mcontext.arm_sp);
#elif defined(HOST_ARCH_ARM64)
sp = static_cast<uintptr_t>(mcontext.sp);
#elif defined(HOST_ARCH_RISCV64)
sp = static_cast<uintptr_t>(mcontext.__gregs[REG_SP]);
#else
#error Unsupported architecture.
#endif // HOST_ARCH_...
return sp;
}
uintptr_t SignalHandler::GetDartStackPointer(const mcontext_t& mcontext) {
#if defined(TARGET_ARCH_ARM64) && !defined(USING_SIMULATOR)
return static_cast<uintptr_t>(mcontext.regs[SPREG]);
#else
return GetCStackPointer(mcontext);
#endif
}
uintptr_t SignalHandler::GetLinkRegister(const mcontext_t& mcontext) {
uintptr_t lr = 0;
#if defined(HOST_ARCH_IA32)
lr = 0;
#elif defined(HOST_ARCH_X64)
lr = 0;
#elif defined(HOST_ARCH_ARM)
lr = static_cast<uintptr_t>(mcontext.arm_lr);
#elif defined(HOST_ARCH_ARM64)
lr = static_cast<uintptr_t>(mcontext.regs[30]);
#elif defined(HOST_ARCH_RISCV64)
lr = static_cast<uintptr_t>(mcontext.__gregs[REG_RA]);
#else
#error Unsupported architecture.
#endif // HOST_ARCH_...
return lr;
}
void SignalHandler::Install(SignalAction action) {
// Bionic implementation of setjmp temporary mangles SP register
// in place which breaks signal delivery on the thread stack - when
// kernel tries to deliver SIGPROF and we are in the middle of
// setjmp SP value is invalid - might be pointing to random memory
// or outside of writable space at all. In the first case we
// get memory corruption and in the second case kernel would send
// SIGSEGV to the process. See b/152210274 for details.
// To work around this issue we request SIGPROF signals to be delivered
// on the alternative signal stack by setting SA_ONSTACK. The stack itself
// is configured when interrupts are enabled for a particular thread.
// In reality Bionic's |pthread_create| eagerly creates and assigns an
// alternative signal stack for each thread. However older versions of Bionic
// (L and below) make the size of alternative stack too small which causes
// stack overflows and crashes.
struct sigaction act = {};
act.sa_sigaction = action;
sigemptyset(&act.sa_mask);
sigaddset(&act.sa_mask, SIGPROF); // Prevent nested signals.
act.sa_flags = SA_RESTART | SA_SIGINFO | SA_ONSTACK;
int r = sigaction(SIGPROF, &act, nullptr);
ASSERT(r == 0);
}
void SignalHandler::Remove() {
// Ignore future SIGPROF signals because by default SIGPROF will terminate
// the process and we may have some signals in flight.
struct sigaction act = {};
act.sa_handler = SIG_IGN;
sigemptyset(&act.sa_mask);
int r = sigaction(SIGPROF, &act, nullptr);
RELEASE_ASSERT(r == 0);
}
void* SignalHandler::PrepareCurrentThread() {
// These constants are selected to prevent allocating alternative signal
// stack if Bionic has already allocated large enough one for us. They
// match current values used in Bionic[1].
//
// [1]: https://cs.android.com/android/platform/superproject/main/+/main:bionic/libc/bionic/pthread_internal.h;drc=3649db34a154cedb8ef53a5adbaa349970159b58;l=243
const intptr_t kGuardPageSize = 4 * KB;
#if defined(TARGET_ARCH_IS_64_BIT)
const intptr_t kSigAltStackSize = 32 * KB;
#else
const intptr_t kSigAltStackSize = 16 * KB;
#endif
// First check if the alternative signal stack is already installed and
// large enough.
int r;
stack_t ss;
memset(&ss, 0, sizeof(ss));
r = sigaltstack(nullptr, &ss);
ASSERT(r == 0);
if (ss.ss_flags == 0 && ss.ss_size >= (kSigAltStackSize - kGuardPageSize)) {
// Bionic has created a large enough stack already.
return nullptr;
}
// We are running on an older version of Android, where Bionic creates
// stacks which are too small.
ss.ss_sp = malloc(kSigAltStackSize);
ss.ss_size = kSigAltStackSize;
ss.ss_flags = 0;
r = sigaltstack(&ss, nullptr);
ASSERT(r == 0);
return ss.ss_sp;
}
void SignalHandler::CleanupCurrentThreadState(void* stack) {
if (stack != nullptr) {
// Disable alternative stack then free allocated memory.
stack_t ss, old_ss;
memset(&ss, 0, sizeof(ss));
ss.ss_flags = SS_DISABLE;
int r = sigaltstack(&ss, &old_ss);
ASSERT(r == 0);
ASSERT(old_ss.ss_sp == stack);
free(stack);
}
}
} // namespace dart
#endif // defined(DART_HOST_OS_ANDROID)