blob: 40937c7ec51758dc763949188f73e0776f0ab83f [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "platform/globals.h" // NOLINT
#if defined(DART_HOST_OS_MACOS) && !defined(DART_USE_ABSL)
#include "vm/os_thread.h"
#include <mach/mach_host.h> // NOLINT
#include <mach/mach_init.h> // NOLINT
#include <mach/mach_port.h> // NOLINT
#include <mach/mach_traps.h> // NOLINT
#include <mach/task_info.h> // NOLINT
#include <mach/thread_act.h> // NOLINT
#include <mach/thread_info.h> // NOLINT
#include <signal.h> // NOLINT
#include <sys/errno.h> // NOLINT
#include <sys/sysctl.h> // NOLINT
#include <sys/types.h> // NOLINT
#include "platform/address_sanitizer.h"
#include "platform/assert.h"
#include "platform/safe_stack.h"
#include "platform/signal_blocker.h"
#include "platform/utils.h"
#include "vm/flags.h"
namespace dart {
DEFINE_FLAG(int,
worker_thread_priority,
kMinInt,
"The thread priority the VM should use for new worker threads.");
#define VALIDATE_PTHREAD_RESULT(result) \
if (result != 0) { \
const int kBufferSize = 1024; \
char error_message[kBufferSize]; \
Utils::StrError(result, error_message, kBufferSize); \
FATAL("pthread error: %d (%s)", result, error_message); \
}
#if defined(PRODUCT)
#define VALIDATE_PTHREAD_RESULT_NAMED(result) VALIDATE_PTHREAD_RESULT(result)
#else
#define VALIDATE_PTHREAD_RESULT_NAMED(result) \
if (result != 0) { \
const int kBufferSize = 1024; \
char error_message[kBufferSize]; \
Utils::StrError(result, error_message, kBufferSize); \
FATAL("[%s] pthread error: %d (%s)", name_, result, error_message); \
}
#endif
#if defined(DEBUG)
#define ASSERT_PTHREAD_SUCCESS(result) VALIDATE_PTHREAD_RESULT(result)
#else
// NOTE: This (currently) expands to a no-op.
#define ASSERT_PTHREAD_SUCCESS(result) ASSERT(result == 0)
#endif
#ifdef DEBUG
#define RETURN_ON_PTHREAD_FAILURE(result) \
if (result != 0) { \
const int kBufferSize = 1024; \
char error_message[kBufferSize]; \
Utils::StrError(result, error_message, kBufferSize); \
fprintf(stderr, "%s:%d: pthread error: %d (%s)\n", __FILE__, __LINE__, \
result, error_message); \
return result; \
}
#else
#define RETURN_ON_PTHREAD_FAILURE(result) \
if (result != 0) return result;
#endif
class ThreadStartData {
public:
ThreadStartData(const char* name,
OSThread::ThreadStartFunction function,
uword parameter)
: name_(name), function_(function), parameter_(parameter) {}
const char* name() const { return name_; }
OSThread::ThreadStartFunction function() const { return function_; }
uword parameter() const { return parameter_; }
private:
const char* name_;
OSThread::ThreadStartFunction function_;
uword parameter_;
DISALLOW_COPY_AND_ASSIGN(ThreadStartData);
};
// Dispatch to the thread start function provided by the caller. This trampoline
// is used to ensure that the thread is properly destroyed if the thread just
// exits.
static void* ThreadStart(void* data_ptr) {
if (FLAG_worker_thread_priority != kMinInt) {
const pthread_t thread = pthread_self();
int policy = SCHED_FIFO;
struct sched_param schedule;
if (pthread_getschedparam(thread, &policy, &schedule) != 0) {
FATAL("Obtaining sched param failed: errno = %d\n", errno);
}
schedule.sched_priority = FLAG_worker_thread_priority;
if (pthread_setschedparam(thread, policy, &schedule) != 0) {
FATAL("Setting thread priority to %d failed: errno = %d\n",
FLAG_worker_thread_priority, errno);
}
}
ThreadStartData* data = reinterpret_cast<ThreadStartData*>(data_ptr);
const char* name = data->name();
OSThread::ThreadStartFunction function = data->function();
uword parameter = data->parameter();
delete data;
// Set the thread name. We need to impose a limit on the name length so that
// we can know how large of a buffer to use when retrieving the name. We
// truncate the name at 16 bytes to be consistent with Android and Linux.
char truncated_name[16];
snprintf(truncated_name, ARRAY_SIZE(truncated_name), "%s", name);
pthread_setname_np(name);
// Create new OSThread object and set as TLS for new thread.
OSThread* thread = OSThread::CreateOSThread();
if (thread != nullptr) {
OSThread::SetCurrent(thread);
thread->SetName(name);
// Call the supplied thread start function handing it its parameters.
function(parameter);
}
return nullptr;
}
int OSThread::Start(const char* name,
ThreadStartFunction function,
uword parameter) {
pthread_attr_t attr;
int result = pthread_attr_init(&attr);
RETURN_ON_PTHREAD_FAILURE(result);
result = pthread_attr_setstacksize(&attr, OSThread::GetMaxStackSize());
RETURN_ON_PTHREAD_FAILURE(result);
ThreadStartData* data = new ThreadStartData(name, function, parameter);
pthread_t tid;
result = pthread_create(&tid, &attr, ThreadStart, data);
RETURN_ON_PTHREAD_FAILURE(result);
result = pthread_attr_destroy(&attr);
RETURN_ON_PTHREAD_FAILURE(result);
return 0;
}
const ThreadId OSThread::kInvalidThreadId = static_cast<ThreadId>(nullptr);
const ThreadJoinId OSThread::kInvalidThreadJoinId =
static_cast<ThreadJoinId>(nullptr);
ThreadLocalKey OSThread::CreateThreadLocal(ThreadDestructor destructor) {
pthread_key_t key = kUnsetThreadLocalKey;
int result = pthread_key_create(&key, destructor);
VALIDATE_PTHREAD_RESULT(result);
ASSERT(key != kUnsetThreadLocalKey);
return key;
}
void OSThread::DeleteThreadLocal(ThreadLocalKey key) {
ASSERT(key != kUnsetThreadLocalKey);
int result = pthread_key_delete(key);
VALIDATE_PTHREAD_RESULT(result);
}
void OSThread::SetThreadLocal(ThreadLocalKey key, uword value) {
ASSERT(key != kUnsetThreadLocalKey);
int result = pthread_setspecific(key, reinterpret_cast<void*>(value));
VALIDATE_PTHREAD_RESULT(result);
}
intptr_t OSThread::GetMaxStackSize() {
const int kStackSize = (128 * kWordSize * KB);
return kStackSize;
}
ThreadId OSThread::GetCurrentThreadId() {
return pthread_self();
}
#ifdef SUPPORT_TIMELINE
ThreadId OSThread::GetCurrentThreadTraceId() {
return ThreadIdFromIntPtr(pthread_mach_thread_np(pthread_self()));
}
#endif // SUPPORT_TIMELINE
char* OSThread::GetCurrentThreadName() {
const intptr_t kNameBufferSize = 16;
char* name = static_cast<char*>(malloc(kNameBufferSize));
pthread_getname_np(pthread_self(), name, kNameBufferSize);
return name;
}
ThreadJoinId OSThread::GetCurrentThreadJoinId(OSThread* thread) {
ASSERT(thread != nullptr);
// Make sure we're filling in the join id for the current thread.
ASSERT(thread->id() == GetCurrentThreadId());
// Make sure the join_id_ hasn't been set, yet.
DEBUG_ASSERT(thread->join_id_ == kInvalidThreadJoinId);
pthread_t id = pthread_self();
#if defined(DEBUG)
thread->join_id_ = id;
#endif
return id;
}
void OSThread::Join(ThreadJoinId id) {
int result = pthread_join(id, nullptr);
ASSERT(result == 0);
}
intptr_t OSThread::ThreadIdToIntPtr(ThreadId id) {
COMPILE_ASSERT(sizeof(id) <= sizeof(intptr_t));
return reinterpret_cast<intptr_t>(id);
}
ThreadId OSThread::ThreadIdFromIntPtr(intptr_t id) {
return reinterpret_cast<ThreadId>(id);
}
bool OSThread::Compare(ThreadId a, ThreadId b) {
return pthread_equal(a, b) != 0;
}
bool OSThread::GetCurrentStackBounds(uword* lower, uword* upper) {
*upper = reinterpret_cast<uword>(pthread_get_stackaddr_np(pthread_self()));
*lower = *upper - pthread_get_stacksize_np(pthread_self());
return true;
}
#if defined(USING_SAFE_STACK)
NO_SANITIZE_ADDRESS
NO_SANITIZE_SAFE_STACK
uword OSThread::GetCurrentSafestackPointer() {
#error "SAFE_STACK is unsupported on this platform"
return 0;
}
NO_SANITIZE_ADDRESS
NO_SANITIZE_SAFE_STACK
void OSThread::SetCurrentSafestackPointer(uword ssp) {
#error "SAFE_STACK is unsupported on this platform"
}
#endif
Mutex::Mutex(NOT_IN_PRODUCT(const char* name))
#if !defined(PRODUCT)
: name_(name)
#endif
{
pthread_mutexattr_t attr;
int result = pthread_mutexattr_init(&attr);
VALIDATE_PTHREAD_RESULT_NAMED(result);
#if defined(DEBUG)
result = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
VALIDATE_PTHREAD_RESULT_NAMED(result);
#endif // defined(DEBUG)
result = pthread_mutex_init(data_.mutex(), &attr);
// Verify that creating a pthread_mutex succeeded.
VALIDATE_PTHREAD_RESULT_NAMED(result);
result = pthread_mutexattr_destroy(&attr);
VALIDATE_PTHREAD_RESULT_NAMED(result);
#if defined(DEBUG)
// When running with assertions enabled we do track the owner.
owner_ = OSThread::kInvalidThreadId;
#endif // defined(DEBUG)
}
Mutex::~Mutex() {
int result = pthread_mutex_destroy(data_.mutex());
// Verify that the pthread_mutex was destroyed.
VALIDATE_PTHREAD_RESULT_NAMED(result);
#if defined(DEBUG)
// When running with assertions enabled we do track the owner.
ASSERT(owner_ == OSThread::kInvalidThreadId);
#endif // defined(DEBUG)
}
void Mutex::Lock() {
DEBUG_ASSERT(!ThreadInterruptScope::in_thread_interrupt_scope());
int result = pthread_mutex_lock(data_.mutex());
// Specifically check for dead lock to help debugging.
ASSERT(result != EDEADLK);
ASSERT_PTHREAD_SUCCESS(result); // Verify no other errors.
#if defined(DEBUG)
// When running with assertions enabled we do track the owner.
owner_ = OSThread::GetCurrentThreadId();
#endif // defined(DEBUG)
}
bool Mutex::TryLock() {
DEBUG_ASSERT(!ThreadInterruptScope::in_thread_interrupt_scope());
int result = pthread_mutex_trylock(data_.mutex());
// Return false if the lock is busy and locking failed.
if ((result == EBUSY) || (result == EDEADLK)) {
return false;
}
ASSERT_PTHREAD_SUCCESS(result); // Verify no other errors.
#if defined(DEBUG)
// When running with assertions enabled we do track the owner.
owner_ = OSThread::GetCurrentThreadId();
#endif // defined(DEBUG)
return true;
}
void Mutex::Unlock() {
#if defined(DEBUG)
// When running with assertions enabled we do track the owner.
ASSERT(IsOwnedByCurrentThread());
owner_ = OSThread::kInvalidThreadId;
#endif // defined(DEBUG)
int result = pthread_mutex_unlock(data_.mutex());
// Specifically check for wrong thread unlocking to aid debugging.
ASSERT(result != EPERM);
ASSERT_PTHREAD_SUCCESS(result); // Verify no other errors.
}
ConditionVariable::ConditionVariable() {
int result = pthread_cond_init(data_.cond(), nullptr);
VALIDATE_PTHREAD_RESULT(result);
}
ConditionVariable::~ConditionVariable() {
int result = pthread_cond_destroy(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
void ConditionVariable::Wait(Mutex* mutex) {
#if defined(DEBUG)
ThreadId saved_owner = mutex->InvalidateOwner();
#endif
int result = pthread_cond_wait(data_.cond(), mutex->data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
#if defined(DEBUG)
mutex->SetCurrentThreadAsOwner();
ASSERT(OSThread::GetCurrentThreadId() == saved_owner);
#endif
}
void ConditionVariable::Notify() {
int result = pthread_cond_signal(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
Monitor::Monitor() {
pthread_mutexattr_t attr;
int result = pthread_mutexattr_init(&attr);
VALIDATE_PTHREAD_RESULT(result);
#if defined(DEBUG)
result = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
VALIDATE_PTHREAD_RESULT(result);
#endif // defined(DEBUG)
result = pthread_mutex_init(data_.mutex(), &attr);
VALIDATE_PTHREAD_RESULT(result);
result = pthread_mutexattr_destroy(&attr);
VALIDATE_PTHREAD_RESULT(result);
result = pthread_cond_init(data_.cond(), nullptr);
VALIDATE_PTHREAD_RESULT(result);
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
owner_ = OSThread::kInvalidThreadId;
#endif // defined(DEBUG)
}
Monitor::~Monitor() {
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(owner_ == OSThread::kInvalidThreadId);
#endif // defined(DEBUG)
int result = pthread_mutex_destroy(data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
result = pthread_cond_destroy(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
bool Monitor::TryEnter() {
DEBUG_ASSERT(!ThreadInterruptScope::in_thread_interrupt_scope());
int result = pthread_mutex_trylock(data_.mutex());
// Return false if the lock is busy and locking failed.
if ((result == EBUSY) || (result == EDEADLK)) {
return false;
}
ASSERT_PTHREAD_SUCCESS(result); // Verify no other errors.
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(owner_ == OSThread::kInvalidThreadId);
owner_ = OSThread::GetCurrentThreadId();
#endif // defined(DEBUG)
return true;
}
void Monitor::Enter() {
DEBUG_ASSERT(!ThreadInterruptScope::in_thread_interrupt_scope());
int result = pthread_mutex_lock(data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(owner_ == OSThread::kInvalidThreadId);
owner_ = OSThread::GetCurrentThreadId();
#endif // defined(DEBUG)
}
void Monitor::Exit() {
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(IsOwnedByCurrentThread());
owner_ = OSThread::kInvalidThreadId;
#endif // defined(DEBUG)
int result = pthread_mutex_unlock(data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
}
Monitor::WaitResult Monitor::Wait(int64_t millis) {
return WaitMicros(millis * kMicrosecondsPerMillisecond);
}
Monitor::WaitResult Monitor::WaitMicros(int64_t micros) {
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(IsOwnedByCurrentThread());
ThreadId saved_owner = owner_;
owner_ = OSThread::kInvalidThreadId;
#endif // defined(DEBUG)
Monitor::WaitResult retval = kNotified;
if (micros == kNoTimeout) {
// Wait forever.
int result = pthread_cond_wait(data_.cond(), data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
} else {
struct timespec ts;
int64_t secs = micros / kMicrosecondsPerSecond;
if (secs > kMaxInt32) {
// Avoid truncation of overly large timeout values.
secs = kMaxInt32;
}
int64_t nanos =
(micros - (secs * kMicrosecondsPerSecond)) * kNanosecondsPerMicrosecond;
ts.tv_sec = static_cast<int32_t>(secs);
ts.tv_nsec = static_cast<long>(nanos); // NOLINT (long used in timespec).
int result =
pthread_cond_timedwait_relative_np(data_.cond(), data_.mutex(), &ts);
ASSERT((result == 0) || (result == ETIMEDOUT));
if (result == ETIMEDOUT) {
retval = kTimedOut;
}
}
#if defined(DEBUG)
// When running with assertions enabled we track the owner.
ASSERT(owner_ == OSThread::kInvalidThreadId);
owner_ = OSThread::GetCurrentThreadId();
ASSERT(owner_ == saved_owner);
#endif // defined(DEBUG)
return retval;
}
void Monitor::Notify() {
// When running with assertions enabled we track the owner.
ASSERT(IsOwnedByCurrentThread());
int result = pthread_cond_signal(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
void Monitor::NotifyAll() {
// When running with assertions enabled we track the owner.
ASSERT(IsOwnedByCurrentThread());
int result = pthread_cond_broadcast(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
} // namespace dart
#endif // defined(DART_HOST_OS_MACOS)