| // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include <setjmp.h> |
| |
| #include "vm/compiler/runtime_api.h" |
| #include "vm/globals.h" |
| |
| // For `AllocateObjectInstr::WillAllocateNewOrRemembered` |
| // For `GenericCheckBoundInstr::UseUnboxedRepresentation` |
| #include "vm/compiler/backend/il.h" |
| |
| #define SHOULD_NOT_INCLUDE_RUNTIME |
| |
| #include "vm/compiler/backend/locations.h" |
| #include "vm/compiler/stub_code_compiler.h" |
| |
| #if defined(TARGET_ARCH_X64) |
| |
| #include "vm/class_id.h" |
| #include "vm/code_entry_kind.h" |
| #include "vm/compiler/api/type_check_mode.h" |
| #include "vm/compiler/assembler/assembler.h" |
| #include "vm/constants.h" |
| #include "vm/ffi_callback_metadata.h" |
| #include "vm/instructions.h" |
| #include "vm/static_type_exactness_state.h" |
| #include "vm/tags.h" |
| |
| #define __ assembler-> |
| |
| namespace dart { |
| namespace compiler { |
| |
| // Ensures that [RAX] is a new object, if not it will be added to the remembered |
| // set via a leaf runtime call. |
| // |
| // WARNING: This might clobber all registers except for [RAX], [THR] and [FP]. |
| // The caller should simply call LeaveStubFrame() and return. |
| void StubCodeCompiler::EnsureIsNewOrRemembered() { |
| // If the object is not in an active TLAB, we call a leaf-runtime to add it to |
| // the remembered set and/or deferred marking worklist. This test assumes a |
| // Page's TLAB use is always ascending. |
| Label done; |
| __ AndImmediate(TMP, RAX, target::kPageMask); |
| __ LoadFromOffset(TMP, TMP, target::Page::original_top_offset()); |
| __ CompareRegisters(RAX, TMP); |
| __ BranchIf(UNSIGNED_GREATER_EQUAL, &done); |
| |
| { |
| LeafRuntimeScope rt(assembler, /*frame_size=*/0, |
| /*preserve_registers=*/false); |
| __ movq(CallingConventions::kArg1Reg, RAX); |
| __ movq(CallingConventions::kArg2Reg, THR); |
| rt.Call(kEnsureRememberedAndMarkingDeferredRuntimeEntry, 2); |
| } |
| |
| __ Bind(&done); |
| } |
| |
| // In TSAN mode the runtime will throw an exception using an intermediary |
| // longjmp() call to unwind the C frames in a way that TSAN can understand. |
| // |
| // This wrapper will setup a [jmp_buf] on the stack and initialize it to be a |
| // target for a possible longjmp(). In the exceptional case we'll forward |
| // control of execution to the usual JumpToFrame stub. |
| // |
| // In non-TSAN mode this will do nothing and the runtime will call the |
| // JumpToFrame stub directly. |
| // |
| // The callback [fun] may be invoked with a modified [RSP] due to allocating |
| // a [jmp_buf] allocating structure on the stack (as well as the saved old |
| // [Thread::tsan_utils_->setjmp_buffer_]). |
| static void WithExceptionCatchingTrampoline(Assembler* assembler, |
| std::function<void()> fun) { |
| #if !defined(USING_SIMULATOR) |
| const Register kTsanUtilsReg = RAX; |
| |
| // Reserve space for arguments and align frame before entering C++ world. |
| const intptr_t kJumpBufferSize = sizeof(jmp_buf); |
| // Save & Restore the volatile CPU registers across the setjmp() call. |
| const RegisterSet volatile_registers( |
| CallingConventions::kVolatileCpuRegisters & ~(1 << RAX), |
| /*fpu_registers=*/0); |
| |
| const Register kSavedRspReg = R12; |
| COMPILE_ASSERT(IsCalleeSavedRegister(kSavedRspReg)); |
| // We rely on THR being preserved across the setjmp() call. |
| COMPILE_ASSERT(IsCalleeSavedRegister(THR)); |
| |
| if (FLAG_target_thread_sanitizer) { |
| Label do_native_call; |
| |
| // Save old jmp_buf. |
| __ movq(kTsanUtilsReg, Address(THR, target::Thread::tsan_utils_offset())); |
| __ pushq(Address(kTsanUtilsReg, target::TsanUtils::setjmp_buffer_offset())); |
| |
| // Allocate jmp_buf struct on stack & remember pointer to it on the |
| // [Thread::tsan_utils_->setjmp_buffer] (which exceptions.cc will longjmp() |
| // to) |
| __ AddImmediate(RSP, Immediate(-kJumpBufferSize)); |
| __ movq(Address(kTsanUtilsReg, target::TsanUtils::setjmp_buffer_offset()), |
| RSP); |
| |
| // Call setjmp() with a pointer to the allocated jmp_buf struct. |
| __ MoveRegister(CallingConventions::kArg1Reg, RSP); |
| __ PushRegisters(volatile_registers); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ MoveRegister(kSavedRspReg, RSP); |
| __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| __ movq(kTsanUtilsReg, Address(THR, target::Thread::tsan_utils_offset())); |
| __ CallCFunction( |
| Address(kTsanUtilsReg, target::TsanUtils::setjmp_function_offset()), |
| /*restore_rsp=*/true); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ MoveRegister(RSP, kSavedRspReg); |
| } |
| __ PopRegisters(volatile_registers); |
| |
| // We are the target of a longjmp() iff setjmp() returns non-0. |
| __ CompareImmediate(RAX, 0); |
| __ BranchIf(EQUAL, &do_native_call); |
| |
| // We are the target of a longjmp: Cleanup the stack and tail-call the |
| // JumpToFrame stub which will take care of unwinding the stack and hand |
| // execution to the catch entry. |
| __ AddImmediate(RSP, Immediate(kJumpBufferSize)); |
| __ movq(kTsanUtilsReg, Address(THR, target::Thread::tsan_utils_offset())); |
| __ popq(Address(kTsanUtilsReg, target::TsanUtils::setjmp_buffer_offset())); |
| |
| __ movq(CallingConventions::kArg1Reg, |
| Address(kTsanUtilsReg, target::TsanUtils::exception_pc_offset())); |
| __ movq(CallingConventions::kArg2Reg, |
| Address(kTsanUtilsReg, target::TsanUtils::exception_sp_offset())); |
| __ movq(CallingConventions::kArg3Reg, |
| Address(kTsanUtilsReg, target::TsanUtils::exception_fp_offset())); |
| __ MoveRegister(CallingConventions::kArg4Reg, THR); |
| __ jmp(Address(THR, target::Thread::jump_to_frame_entry_point_offset())); |
| |
| // We leave the created [jump_buf] structure on the stack as well as the |
| // pushed old [Thread::tsan_utils_->setjmp_buffer_]. |
| __ Bind(&do_native_call); |
| __ MoveRegister(kSavedRspReg, RSP); |
| } |
| #endif // !defined(USING_SIMULATOR) |
| |
| fun(); |
| |
| #if !defined(USING_SIMULATOR) |
| if (FLAG_target_thread_sanitizer) { |
| __ MoveRegister(RSP, kSavedRspReg); |
| __ AddImmediate(RSP, Immediate(kJumpBufferSize)); |
| const Register kTsanUtilsReg2 = kSavedRspReg; |
| __ movq(kTsanUtilsReg2, Address(THR, target::Thread::tsan_utils_offset())); |
| __ popq(Address(kTsanUtilsReg2, target::TsanUtils::setjmp_buffer_offset())); |
| } |
| #endif // !defined(USING_SIMULATOR) |
| } |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of last argument in argument array. |
| // RSP + 8*R10 : address of first argument in argument array. |
| // RSP + 8*R10 + 8 : address of return value. |
| // RBX : address of the runtime function to call. |
| // R10 : number of arguments to the call. |
| // Must preserve callee saved registers R12 and R13. |
| void StubCodeCompiler::GenerateCallToRuntimeStub() { |
| const intptr_t thread_offset = target::NativeArguments::thread_offset(); |
| const intptr_t argc_tag_offset = target::NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = target::NativeArguments::argv_offset(); |
| const intptr_t retval_offset = target::NativeArguments::retval_offset(); |
| |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::call_to_runtime_stub_offset())); |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to Dart VM C++ code. |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), RBP); |
| |
| // Mark that the thread exited generated code through a runtime call. |
| __ movq(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(target::Thread::exit_through_runtime_call())); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ movq(RAX, Immediate(VMTag::kDartTagId)); |
| __ cmpq(RAX, Assembler::VMTagAddress()); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing VM code. |
| __ movq(Assembler::VMTagAddress(), RBX); |
| |
| WithExceptionCatchingTrampoline(assembler, [&]() { |
| // Reserve space for arguments and align frame before entering C++ world. |
| __ subq(RSP, Immediate(target::NativeArguments::StructSize())); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass target::NativeArguments structure by value and call runtime. |
| __ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs. |
| __ movq(Address(RSP, argc_tag_offset), |
| R10); // Set argc in target::NativeArguments. |
| // Compute argv. |
| __ leaq(RAX, Address(RBP, R10, TIMES_8, |
| target::frame_layout.param_end_from_fp * |
| target::kWordSize)); |
| __ movq(Address(RSP, argv_offset), |
| RAX); // Set argv in target::NativeArguments. |
| __ addq( |
| RAX, |
| Immediate(1 * target::kWordSize)); // Retval is next to 1st argument. |
| __ movq(Address(RSP, retval_offset), |
| RAX); // Set retval in target::NativeArguments. |
| #if defined(DART_TARGET_OS_WINDOWS) |
| ASSERT(target::NativeArguments::StructSize() > |
| CallingConventions::kRegisterTransferLimit); |
| __ movq(CallingConventions::kArg1Reg, RSP); |
| #endif |
| __ CallCFunction(RBX); |
| |
| // Mark that the thread is executing Dart code. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Mark that the thread has not exited generated Dart code. |
| __ movq(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(0)); |
| |
| // Reset exit frame information in Isolate's mutator thread structure. |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| // Restore the global object pool after returning from runtime (old space is |
| // moving, so the GOP could have been relocated). |
| if (FLAG_precompiled_mode) { |
| __ movq(PP, Address(THR, target::Thread::global_object_pool_offset())); |
| } |
| }); |
| |
| __ LeaveStubFrame(); |
| |
| // The following return can jump to a lazy-deopt stub, which assumes RAX |
| // contains a return value and will save it in a GC-visible way. We therefore |
| // have to ensure RAX does not contain any garbage value left from the C |
| // function we called (which has return type "void"). |
| // (See GenerateDeoptimizationSequence::saved_result_slot_from_fp.) |
| __ xorq(RAX, RAX); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateSharedStubGeneric( |
| bool save_fpu_registers, |
| intptr_t self_code_stub_offset_from_thread, |
| bool allow_return, |
| std::function<void()> perform_runtime_call) { |
| // We want the saved registers to appear like part of the caller's frame, so |
| // we push them before calling EnterStubFrame. |
| const RegisterSet saved_registers( |
| kDartAvailableCpuRegs, save_fpu_registers ? kAllFpuRegistersList : 0); |
| __ PushRegisters(saved_registers); |
| |
| const intptr_t kSavedCpuRegisterSlots = |
| Utils::CountOneBitsWord(kDartAvailableCpuRegs); |
| const intptr_t kSavedFpuRegisterSlots = |
| save_fpu_registers |
| ? kNumberOfFpuRegisters * kFpuRegisterSize / target::kWordSize |
| : 0; |
| const intptr_t kAllSavedRegistersSlots = |
| kSavedCpuRegisterSlots + kSavedFpuRegisterSlots; |
| |
| // Copy down the return address so the stack layout is correct. |
| __ pushq(Address(RSP, kAllSavedRegistersSlots * target::kWordSize)); |
| __ movq(CODE_REG, Address(THR, self_code_stub_offset_from_thread)); |
| __ EnterStubFrame(); |
| perform_runtime_call(); |
| if (!allow_return) { |
| __ Breakpoint(); |
| return; |
| } |
| __ LeaveStubFrame(); |
| // Copy up the return address (in case it was changed). |
| __ popq(TMP); |
| __ movq(Address(RSP, kAllSavedRegistersSlots * target::kWordSize), TMP); |
| __ PopRegisters(saved_registers); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateSharedStub( |
| bool save_fpu_registers, |
| const RuntimeEntry* target, |
| intptr_t self_code_stub_offset_from_thread, |
| bool allow_return, |
| bool store_runtime_result_in_result_register) { |
| auto perform_runtime_call = [&]() { |
| if (store_runtime_result_in_result_register) { |
| __ PushImmediate(Immediate(0)); |
| } |
| __ CallRuntime(*target, /*argument_count=*/0); |
| if (store_runtime_result_in_result_register) { |
| __ PopRegister(RAX); |
| __ movq(Address(RBP, target::kWordSize * |
| StubCodeCompiler::WordOffsetFromFpToCpuRegister( |
| SharedSlowPathStubABI::kResultReg)), |
| RAX); |
| } |
| }; |
| GenerateSharedStubGeneric(save_fpu_registers, |
| self_code_stub_offset_from_thread, allow_return, |
| perform_runtime_call); |
| } |
| |
| void StubCodeCompiler::GenerateEnterSafepointStub() { |
| RegisterSet all_registers; |
| all_registers.AddAllGeneralRegisters(); |
| __ PushRegisters(all_registers); |
| |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| __ movq(RAX, Address(THR, kEnterSafepointRuntimeEntry.OffsetFromThread())); |
| __ CallCFunction(RAX); |
| __ LeaveFrame(); |
| |
| __ PopRegisters(all_registers); |
| __ ret(); |
| } |
| |
| static void GenerateExitSafepointStubCommon(Assembler* assembler, |
| uword runtime_entry_offset) { |
| RegisterSet all_registers; |
| all_registers.AddAllGeneralRegisters(); |
| __ PushRegisters(all_registers); |
| |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| |
| // Set the execution state to VM while waiting for the safepoint to end. |
| // This isn't strictly necessary but enables tests to check that we're not |
| // in native code anymore. See tests/ffi/function_gc_test.dart for example. |
| __ movq(Address(THR, target::Thread::execution_state_offset()), |
| Immediate(target::Thread::vm_execution_state())); |
| |
| __ movq(RAX, Address(THR, runtime_entry_offset)); |
| __ CallCFunction(RAX); |
| __ LeaveFrame(); |
| |
| __ PopRegisters(all_registers); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateExitSafepointStub() { |
| GenerateExitSafepointStubCommon( |
| assembler, kExitSafepointRuntimeEntry.OffsetFromThread()); |
| } |
| |
| void StubCodeCompiler::GenerateExitSafepointIgnoreUnwindInProgressStub() { |
| GenerateExitSafepointStubCommon( |
| assembler, |
| kExitSafepointIgnoreUnwindInProgressRuntimeEntry.OffsetFromThread()); |
| } |
| |
| // Calls native code within a safepoint. |
| // |
| // On entry: |
| // Stack: arguments set up and aligned for native call, excl. shadow space |
| // RBX = target address to call |
| // |
| // On exit: |
| // Stack pointer lowered by shadow space |
| // RBX, R12 clobbered |
| void StubCodeCompiler::GenerateCallNativeThroughSafepointStub() { |
| __ movq(R12, compiler::Immediate(target::Thread::exit_through_ffi())); |
| __ TransitionGeneratedToNative(RBX, FPREG, R12, |
| /*enter_safepoint=*/true); |
| |
| __ popq(R12); |
| __ CallCFunction(RBX, /*restore_rsp=*/true); |
| |
| __ TransitionNativeToGenerated(/*leave_safepoint=*/true); |
| |
| // Faster than jmp because it doesn't confuse the branch predictor. |
| __ pushq(R12); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateLoadBSSEntry(BSS::Relocation relocation, |
| Register dst, |
| Register tmp) { |
| compiler::Label skip_reloc; |
| __ jmp(&skip_reloc); |
| InsertBSSRelocation(relocation); |
| const intptr_t reloc_end = __ CodeSize(); |
| __ Bind(&skip_reloc); |
| |
| const intptr_t kLeaqLength = 7; |
| __ leaq(dst, compiler::Address::AddressRIPRelative( |
| -kLeaqLength - compiler::target::kWordSize)); |
| ASSERT((__ CodeSize() - reloc_end) == kLeaqLength); |
| |
| // dst holds the address of the relocation. |
| __ movq(tmp, compiler::Address(dst, 0)); |
| |
| // tmp holds the relocation itself: dst - bss_start. |
| // dst = dst + (bss_start - dst) = bss_start |
| __ addq(dst, tmp); |
| |
| // dst holds the start of the BSS section. |
| // Load the routine. |
| __ movq(dst, compiler::Address(dst, 0)); |
| } |
| |
| void StubCodeCompiler::GenerateLoadFfiCallbackMetadataRuntimeFunction( |
| uword function_index, |
| Register dst) { |
| // Keep in sync with FfiCallbackMetadata::EnsureFirstTrampolinePageLocked. |
| // Note: If the stub was aligned, this could be a single PC relative load. |
| |
| // Load a pointer to the beginning of the stub into dst. |
| const intptr_t kLeaqLength = 7; |
| const intptr_t code_size = __ CodeSize(); |
| __ leaq(dst, Address::AddressRIPRelative(-kLeaqLength - code_size)); |
| |
| // Round dst down to the page size. |
| __ andq(dst, Immediate(FfiCallbackMetadata::kPageMask)); |
| |
| // Load the function from the function table. |
| __ LoadFromOffset(dst, dst, |
| FfiCallbackMetadata::RuntimeFunctionOffset(function_index)); |
| } |
| |
| static const RegisterSet kArgumentRegisterSet( |
| CallingConventions::kArgumentRegisters, |
| CallingConventions::kFpuArgumentRegisters); |
| |
| void StubCodeCompiler::GenerateFfiCallbackTrampolineStub() { |
| // RAX is volatile and not used for passing any arguments. |
| COMPILE_ASSERT(!IsCalleeSavedRegister(RAX) && !IsArgumentRegister(RAX)); |
| |
| Label body; |
| for (intptr_t i = 0; i < FfiCallbackMetadata::NumCallbackTrampolinesPerPage(); |
| ++i) { |
| // The FfiCallbackMetadata table is keyed by the trampoline entry point. So |
| // look up the current PC, then jump to the shared section. RIP gives us the |
| // address of the next instruction, so to get the true entry point, we have |
| // to subtract the size of the leaq instruction. |
| const intptr_t kLeaqLength = 7; |
| const intptr_t size_before = __ CodeSize(); |
| __ leaq(RAX, Address::AddressRIPRelative(-kLeaqLength)); |
| const intptr_t size_after = __ CodeSize(); |
| ASSERT_EQUAL(size_after - size_before, kLeaqLength); |
| __ jmp(&body); |
| } |
| |
| ASSERT_EQUAL(__ CodeSize(), |
| FfiCallbackMetadata::kNativeCallbackTrampolineSize * |
| FfiCallbackMetadata::NumCallbackTrampolinesPerPage()); |
| |
| __ Bind(&body); |
| |
| const intptr_t shared_stub_start = __ CodeSize(); |
| |
| // Save THR which is callee-saved. |
| __ pushq(THR); |
| |
| // 2 = THR & return address |
| COMPILE_ASSERT(2 == FfiCallbackMetadata::kNativeCallbackTrampolineStackDelta); |
| |
| // Save all registers which might hold arguments. |
| __ PushRegisters(kArgumentRegisterSet); |
| |
| // Load the thread, verify the callback ID and exit the safepoint. |
| // |
| // We exit the safepoint inside DLRT_GetFfiCallbackMetadata in order to safe |
| // code size on this shared stub. |
| { |
| COMPILE_ASSERT(RAX != CallingConventions::kArg1Reg); |
| __ movq(CallingConventions::kArg1Reg, RAX); |
| |
| // We also need to look up the entry point for the trampoline. This is |
| // returned using a pointer passed to the second arg of the C function |
| // below. We aim that pointer at a reserved stack slot. |
| COMPILE_ASSERT(RAX != CallingConventions::kArg2Reg); |
| __ pushq(Immediate(0)); // Reserve a stack slot for the entry point. |
| __ movq(CallingConventions::kArg2Reg, RSP); |
| |
| // We also need to know if this is a sync or async callback. This is also |
| // returned by pointer. |
| COMPILE_ASSERT(RAX != CallingConventions::kArg3Reg); |
| __ pushq(Immediate(0)); // Reserve a stack slot for the trampoline type. |
| __ movq(CallingConventions::kArg3Reg, RSP); |
| |
| #if defined(DART_TARGET_OS_FUCHSIA) |
| // TODO(https://dartbug.com/52579): Remove. |
| if (FLAG_precompiled_mode) { |
| GenerateLoadBSSEntry(BSS::Relocation::DRT_GetFfiCallbackMetadata, RAX, |
| TMP); |
| } else { |
| __ movq(RAX, Immediate( |
| reinterpret_cast<int64_t>(DLRT_GetFfiCallbackMetadata))); |
| } |
| #else |
| GenerateLoadFfiCallbackMetadataRuntimeFunction( |
| FfiCallbackMetadata::kGetFfiCallbackMetadata, RAX); |
| #endif // defined(DART_TARGET_OS_FUCHSIA) |
| |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| |
| __ CallCFunction(RAX); |
| __ movq(THR, RAX); |
| |
| __ LeaveFrame(); |
| |
| // The trampoline type is at the top of the stack. Pop it into RAX. |
| __ popq(RAX); |
| |
| // Entry point is now at the top of the stack. Pop it into TMP. |
| __ popq(TMP); |
| } |
| |
| // Restore the arguments. |
| __ PopRegisters(kArgumentRegisterSet); |
| |
| // Current state: |
| // |
| // Stack: |
| // <old stack (arguments)> |
| // <return address> |
| // <saved THR> |
| // |
| // Registers: Like entry, except TMP == target, RAX == abi, and THR == thread |
| // All argument registers are untouched. |
| |
| Label async_callback; |
| Label done; |
| |
| // If GetFfiCallbackMetadata returned a null thread, it means that the |
| // callback was invoked after it was deleted. In this case, do nothing. |
| __ cmpq(THR, Immediate(0)); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| |
| // Check the trampoline type to see how the callback should be invoked. |
| __ cmpq(RAX, Immediate(static_cast<uword>( |
| FfiCallbackMetadata::TrampolineType::kAsync))); |
| __ j(EQUAL, &async_callback, Assembler::kNearJump); |
| |
| // Sync callback. The entry point contains the target function, so just call |
| // it. DLRT_GetThreadForNativeCallbackTrampoline exited the safepoint, so |
| // re-enter it afterwards. |
| |
| // On entry to the function, there will be two extra slots on the stack: |
| // the saved THR and the return address. The target will know to skip them. |
| __ call(TMP); |
| |
| // Takes care to not clobber *any* registers (besides TMP). |
| __ EnterFullSafepoint(); |
| |
| __ jmp(&done, Assembler::kNearJump); |
| __ Bind(&async_callback); |
| |
| // Async callback. The entrypoint marshals the arguments into a message and |
| // sends it over the send port. DLRT_GetThreadForNativeCallbackTrampoline |
| // entered a temporary isolate, so exit it afterwards. |
| |
| // On entry to the function, there will be two extra slots on the stack: |
| // the saved THR and the return address. The target will know to skip them. |
| __ call(TMP); |
| |
| // Exit the temporary isolate. |
| { |
| #if defined(DART_TARGET_OS_FUCHSIA) |
| // TODO(https://dartbug.com/52579): Remove. |
| if (FLAG_precompiled_mode) { |
| GenerateLoadBSSEntry(BSS::Relocation::DRT_ExitTemporaryIsolate, RAX, TMP); |
| } else { |
| __ movq(RAX, |
| Immediate(reinterpret_cast<int64_t>(DLRT_ExitTemporaryIsolate))); |
| } |
| #else |
| GenerateLoadFfiCallbackMetadataRuntimeFunction( |
| FfiCallbackMetadata::kExitTemporaryIsolate, RAX); |
| #endif // defined(DART_TARGET_OS_FUCHSIA) |
| |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| |
| __ CallCFunction(RAX); |
| |
| __ LeaveFrame(); |
| } |
| |
| __ Bind(&done); |
| |
| // Restore THR (callee-saved). |
| __ popq(THR); |
| |
| __ ret(); |
| |
| // 'kNativeCallbackSharedStubSize' is an upper bound because the exact |
| // instruction size can vary slightly based on OS calling conventions. |
| ASSERT_LESS_OR_EQUAL(__ CodeSize() - shared_stub_start, |
| FfiCallbackMetadata::kNativeCallbackSharedStubSize); |
| ASSERT_LESS_OR_EQUAL(__ CodeSize(), FfiCallbackMetadata::kPageSize); |
| |
| #if defined(DEBUG) |
| while (__ CodeSize() < FfiCallbackMetadata::kPageSize) { |
| __ Breakpoint(); |
| } |
| #endif |
| } |
| |
| void StubCodeCompiler::GenerateDispatchTableNullErrorStub() { |
| __ EnterStubFrame(); |
| __ SmiTag(DispatchTableNullErrorABI::kClassIdReg); |
| __ PushRegister(DispatchTableNullErrorABI::kClassIdReg); |
| __ CallRuntime(kDispatchTableNullErrorRuntimeEntry, /*argument_count=*/1); |
| // The NullError runtime entry does not return. |
| __ Breakpoint(); |
| } |
| |
| void StubCodeCompiler::GenerateRangeError(bool with_fpu_regs) { |
| auto perform_runtime_call = [&]() { |
| // If the generated code has unboxed index/length we need to box them before |
| // calling the runtime entry. |
| if (GenericCheckBoundInstr::UseUnboxedRepresentation()) { |
| Label length, smi_case; |
| |
| // The user-controlled index might not fit into a Smi. |
| #if !defined(DART_COMPRESSED_POINTERS) |
| __ addq(RangeErrorABI::kIndexReg, RangeErrorABI::kIndexReg); |
| __ BranchIf(NO_OVERFLOW, &length); |
| #else |
| __ movq(TMP, RangeErrorABI::kIndexReg); |
| __ SmiTag(RangeErrorABI::kIndexReg); |
| __ sarq(TMP, Immediate(30)); |
| __ addq(TMP, Immediate(1)); |
| __ cmpq(TMP, Immediate(2)); |
| __ j(BELOW, &length); |
| #endif |
| { |
| // Allocate a mint, reload the two registers and populate the mint. |
| __ PushImmediate(Immediate(0)); |
| __ CallRuntime(kAllocateMintRuntimeEntry, /*argument_count=*/0); |
| __ PopRegister(RangeErrorABI::kIndexReg); |
| __ movq( |
| TMP, |
| Address(RBP, target::kWordSize * |
| StubCodeCompiler::WordOffsetFromFpToCpuRegister( |
| RangeErrorABI::kIndexReg))); |
| __ movq(FieldAddress(RangeErrorABI::kIndexReg, |
| target::Mint::value_offset()), |
| TMP); |
| __ movq( |
| RangeErrorABI::kLengthReg, |
| Address(RBP, target::kWordSize * |
| StubCodeCompiler::WordOffsetFromFpToCpuRegister( |
| RangeErrorABI::kLengthReg))); |
| } |
| |
| // Length is guaranteed to be in positive Smi range (it comes from a load |
| // of a vm recognized array). |
| __ Bind(&length); |
| __ SmiTag(RangeErrorABI::kLengthReg); |
| } |
| __ PushRegistersInOrder( |
| {RangeErrorABI::kLengthReg, RangeErrorABI::kIndexReg}); |
| __ CallRuntime(kRangeErrorRuntimeEntry, /*argument_count=*/2); |
| __ Breakpoint(); |
| }; |
| |
| GenerateSharedStubGeneric( |
| /*save_fpu_registers=*/with_fpu_regs, |
| with_fpu_regs |
| ? target::Thread::range_error_shared_with_fpu_regs_stub_offset() |
| : target::Thread::range_error_shared_without_fpu_regs_stub_offset(), |
| /*allow_return=*/false, perform_runtime_call); |
| } |
| |
| void StubCodeCompiler::GenerateWriteError(bool with_fpu_regs) { |
| auto perform_runtime_call = [&]() { |
| __ CallRuntime(kWriteErrorRuntimeEntry, /*argument_count=*/2); |
| __ Breakpoint(); |
| }; |
| |
| GenerateSharedStubGeneric( |
| /*save_fpu_registers=*/with_fpu_regs, |
| with_fpu_regs |
| ? target::Thread::write_error_shared_with_fpu_regs_stub_offset() |
| : target::Thread::write_error_shared_without_fpu_regs_stub_offset(), |
| /*allow_return=*/false, perform_runtime_call); |
| } |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of return value. |
| // R13 : address of first argument in argument array. |
| // RBX : address of the native function to call. |
| // R10 : argc_tag including number of arguments and function kind. |
| static void GenerateCallNativeWithWrapperStub(Assembler* assembler, |
| Address wrapper_address) { |
| const intptr_t native_args_struct_offset = 0; |
| const intptr_t thread_offset = |
| target::NativeArguments::thread_offset() + native_args_struct_offset; |
| const intptr_t argc_tag_offset = |
| target::NativeArguments::argc_tag_offset() + native_args_struct_offset; |
| const intptr_t argv_offset = |
| target::NativeArguments::argv_offset() + native_args_struct_offset; |
| const intptr_t retval_offset = |
| target::NativeArguments::retval_offset() + native_args_struct_offset; |
| |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to native code. |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), RBP); |
| |
| // Mark that the thread exited generated code through a runtime call. |
| __ movq(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(target::Thread::exit_through_runtime_call())); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ movq(R8, Immediate(VMTag::kDartTagId)); |
| __ cmpq(R8, Assembler::VMTagAddress()); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing native code. |
| __ movq(Assembler::VMTagAddress(), RBX); |
| |
| WithExceptionCatchingTrampoline(assembler, [&]() { |
| // Reserve space for the native arguments structure passed on the stack (the |
| // outgoing pointer parameter to the native arguments structure is passed in |
| // RDI) and align frame before entering the C++ world. |
| __ subq(RSP, Immediate(target::NativeArguments::StructSize())); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass target::NativeArguments structure by value and call native function. |
| // Set thread in NativeArgs. |
| __ movq(Address(RSP, thread_offset), THR); |
| // Set argc in target::NativeArguments. |
| __ movq(Address(RSP, argc_tag_offset), R10); |
| // Set argv in target::NativeArguments. |
| __ movq(Address(RSP, argv_offset), R13); |
| // Compute return value addr. |
| __ leaq(RAX, Address(RBP, (target::frame_layout.param_end_from_fp + 1) * |
| target::kWordSize)); |
| // Set retval in target::NativeArguments. |
| __ movq(Address(RSP, retval_offset), RAX); |
| |
| // Pass the pointer to the target::NativeArguments. |
| __ movq(CallingConventions::kArg1Reg, RSP); |
| // Pass pointer to function entrypoint. |
| __ movq(CallingConventions::kArg2Reg, RBX); |
| |
| __ movq(RAX, wrapper_address); |
| __ CallCFunction(RAX); |
| |
| // Mark that the thread is executing Dart code. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Mark that the thread has not exited generated Dart code. |
| __ movq(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(0)); |
| |
| // Reset exit frame information in Isolate's mutator thread structure. |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| // Restore the global object pool after returning from runtime (old space is |
| // moving, so the GOP could have been relocated). |
| if (FLAG_precompiled_mode) { |
| __ movq(PP, Address(THR, target::Thread::global_object_pool_offset())); |
| } |
| }); |
| |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateCallNoScopeNativeStub() { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::no_scope_native_wrapper_entry_point_offset())); |
| } |
| |
| void StubCodeCompiler::GenerateCallAutoScopeNativeStub() { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::auto_scope_native_wrapper_entry_point_offset())); |
| } |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of return value. |
| // RAX : address of first argument in argument array. |
| // RBX : address of the native function to call. |
| // R10 : argc_tag including number of arguments and function kind. |
| void StubCodeCompiler::GenerateCallBootstrapNativeStub() { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::bootstrap_native_wrapper_entry_point_offset())); |
| } |
| |
| // Input parameters: |
| // ARGS_DESC_REG: arguments descriptor array. |
| void StubCodeCompiler::GenerateCallStaticFunctionStub() { |
| __ EnterStubFrame(); |
| __ pushq(ARGS_DESC_REG); // Preserve arguments descriptor array. |
| // Setup space on stack for return value. |
| __ pushq(Immediate(0)); |
| __ CallRuntime(kPatchStaticCallRuntimeEntry, 0); |
| __ popq(CODE_REG); // Get Code object result. |
| __ popq(ARGS_DESC_REG); // Restore arguments descriptor array. |
| // Remove the stub frame as we are about to jump to the dart function. |
| __ LeaveStubFrame(); |
| |
| __ movq(RBX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ jmp(RBX); |
| } |
| |
| // Called from a static call only when an invalid code has been entered |
| // (invalid because its function was optimized or deoptimized). |
| // ARGS_DESC_REG: arguments descriptor array. |
| void StubCodeCompiler::GenerateFixCallersTargetStub() { |
| Label monomorphic; |
| __ BranchOnMonomorphicCheckedEntryJIT(&monomorphic); |
| |
| // This was a static call. |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::fix_callers_target_code_offset())); |
| __ EnterStubFrame(); |
| __ pushq(ARGS_DESC_REG); // Preserve arguments descriptor array. |
| // Setup space on stack for return value. |
| __ pushq(Immediate(0)); |
| __ CallRuntime(kFixCallersTargetRuntimeEntry, 0); |
| __ popq(CODE_REG); // Get Code object. |
| __ popq(ARGS_DESC_REG); // Restore arguments descriptor array. |
| __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ LeaveStubFrame(); |
| __ jmp(RAX); |
| __ int3(); |
| |
| __ Bind(&monomorphic); |
| // This was a switchable call. |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::fix_callers_target_code_offset())); |
| __ EnterStubFrame(); |
| __ pushq(Immediate(0)); // Result slot. |
| __ pushq(RDX); // Preserve receiver. |
| __ pushq(RBX); // Old cache value (also 2nd return value). |
| __ CallRuntime(kFixCallersTargetMonomorphicRuntimeEntry, 2); |
| __ popq(RBX); // Get target cache object. |
| __ popq(RDX); // Restore receiver. |
| __ popq(CODE_REG); // Get target Code object. |
| __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset( |
| CodeEntryKind::kMonomorphic))); |
| __ LeaveStubFrame(); |
| __ jmp(RAX); |
| __ int3(); |
| } |
| |
| // Called from object allocate instruction when the allocation stub has been |
| // disabled. |
| void StubCodeCompiler::GenerateFixAllocationStubTargetStub() { |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::fix_allocation_stub_code_offset())); |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ pushq(Immediate(0)); |
| __ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0); |
| __ popq(CODE_REG); // Get Code object. |
| __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ LeaveStubFrame(); |
| __ jmp(RAX); |
| __ int3(); |
| } |
| |
| // Called from object allocate instruction when the allocation stub for a |
| // generic class has been disabled. |
| void StubCodeCompiler::GenerateFixParameterizedAllocationStubTargetStub() { |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::fix_allocation_stub_code_offset())); |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ pushq(AllocateObjectABI::kTypeArgumentsReg); |
| __ pushq(Immediate(0)); |
| __ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0); |
| __ popq(CODE_REG); // Get Code object. |
| __ popq(AllocateObjectABI::kTypeArgumentsReg); |
| __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ LeaveStubFrame(); |
| __ jmp(RAX); |
| __ int3(); |
| } |
| |
| // Input parameters: |
| // R10: smi-tagged argument count, may be zero. |
| // RBP[target::frame_layout.param_end_from_fp + 1]: last argument. |
| static void PushArrayOfArguments(Assembler* assembler) { |
| __ LoadObject(R12, NullObject()); |
| // Allocate array to store arguments of caller. |
| __ movq(RBX, R12); // Null element type for raw Array. |
| __ Call(StubCodeAllocateArray()); |
| __ SmiUntag(R10); |
| // RAX: newly allocated array. |
| // R10: length of the array (was preserved by the stub). |
| __ pushq(RAX); // Array is in RAX and on top of stack. |
| __ leaq(R12, |
| Address(RBP, R10, TIMES_8, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| __ leaq(RBX, FieldAddress(RAX, target::Array::data_offset())); |
| // R12: address of first argument on stack. |
| // RBX: address of first argument in array. |
| Label loop, loop_condition; |
| #if defined(DEBUG) |
| static auto const kJumpLength = Assembler::kFarJump; |
| #else |
| static auto const kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ jmp(&loop_condition, kJumpLength); |
| __ Bind(&loop); |
| __ movq(RDI, Address(R12, 0)); |
| // Generational barrier is needed, array is not necessarily in new space. |
| __ StoreCompressedIntoObject(RAX, Address(RBX, 0), RDI); |
| __ addq(RBX, Immediate(target::kCompressedWordSize)); |
| __ subq(R12, Immediate(target::kWordSize)); |
| __ Bind(&loop_condition); |
| __ decq(R10); |
| __ j(POSITIVE, &loop, Assembler::kNearJump); |
| } |
| |
| // Used by eager and lazy deoptimization. Preserve result in RAX if necessary. |
| // This stub translates optimized frame into unoptimized frame. The optimized |
| // frame can contain values in registers and on stack, the unoptimized |
| // frame contains all values on stack. |
| // Deoptimization occurs in following steps: |
| // - Push all registers that can contain values. |
| // - Call C routine to copy the stack and saved registers into temporary buffer. |
| // - Adjust caller's frame to correct unoptimized frame size. |
| // - Fill the unoptimized frame. |
| // - Materialize objects that require allocation (e.g. Double instances). |
| // GC can occur only after frame is fully rewritten. |
| // Stack after EnterDartFrame(0, PP, kNoRegister) below: |
| // +------------------+ |
| // | Saved PP | <- PP |
| // +------------------+ |
| // | PC marker | <- TOS |
| // +------------------+ |
| // | Saved FP | <- FP of stub |
| // +------------------+ |
| // | return-address | (deoptimization point) |
| // +------------------+ |
| // | Saved CODE_REG | |
| // +------------------+ |
| // | ... | <- SP of optimized frame |
| // |
| // Parts of the code cannot GC, part of the code can GC. |
| static void GenerateDeoptimizationSequence(Assembler* assembler, |
| DeoptStubKind kind) { |
| // DeoptimizeCopyFrame expects a Dart frame, i.e. EnterDartFrame(0), but there |
| // is no need to set the correct PC marker or load PP, since they get patched. |
| __ EnterStubFrame(); |
| |
| // The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry |
| // and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls. |
| const intptr_t saved_result_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - RAX); |
| const intptr_t saved_exception_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - RAX); |
| const intptr_t saved_stacktrace_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - RDX); |
| // Result in RAX is preserved as part of pushing all registers below. |
| |
| // Push registers in their enumeration order: lowest register number at |
| // lowest address. |
| for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; i--) { |
| if (i == CODE_REG) { |
| // Save the original value of CODE_REG pushed before invoking this stub |
| // instead of the value used to call this stub. |
| __ pushq(Address(RBP, 2 * target::kWordSize)); |
| } else { |
| __ pushq(static_cast<Register>(i)); |
| } |
| } |
| __ subq(RSP, Immediate(kNumberOfXmmRegisters * kFpuRegisterSize)); |
| intptr_t offset = 0; |
| for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) { |
| XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx); |
| __ movups(Address(RSP, offset), xmm_reg); |
| offset += kFpuRegisterSize; |
| } |
| |
| { |
| // Pass address of saved registers block. |
| __ movq(CallingConventions::kArg1Reg, RSP); |
| LeafRuntimeScope rt(assembler, |
| /*frame_size=*/0, |
| /*preserve_registers=*/false); |
| bool is_lazy = |
| (kind == kLazyDeoptFromReturn) || (kind == kLazyDeoptFromThrow); |
| __ movq(CallingConventions::kArg2Reg, Immediate(is_lazy ? 1 : 0)); |
| rt.Call(kDeoptimizeCopyFrameRuntimeEntry, 2); |
| // Result (RAX) is stack-size (FP - SP) in bytes. |
| } |
| |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into RBX temporarily. |
| __ movq(RBX, Address(RBP, saved_result_slot_from_fp * target::kWordSize)); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore result into RBX temporarily. |
| __ movq(RBX, |
| Address(RBP, saved_exception_slot_from_fp * target::kWordSize)); |
| __ movq(RDX, |
| Address(RBP, saved_stacktrace_slot_from_fp * target::kWordSize)); |
| } |
| |
| // There is a Dart Frame on the stack. We must restore PP and leave frame. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| |
| __ popq(RCX); // Preserve return address. |
| __ movq(RSP, RBP); // Discard optimized frame. |
| __ subq(RSP, RAX); // Reserve space for deoptimized frame. |
| __ pushq(RCX); // Restore return address. |
| |
| // DeoptimizeFillFrame expects a Dart frame, i.e. EnterDartFrame(0), but there |
| // is no need to set the correct PC marker or load PP, since they get patched. |
| __ EnterStubFrame(); |
| |
| if (kind == kLazyDeoptFromReturn) { |
| __ pushq(RBX); // Preserve result as first local. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ pushq(RBX); // Preserve exception as first local. |
| __ pushq(RDX); // Preserve stacktrace as second local. |
| } |
| { |
| __ movq(CallingConventions::kArg1Reg, RBP); // Pass last FP as a parameter. |
| LeafRuntimeScope rt(assembler, |
| /*frame_size=*/0, |
| /*preserve_registers=*/false); |
| rt.Call(kDeoptimizeFillFrameRuntimeEntry, 1); |
| } |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into RBX. |
| __ movq(RBX, Address(RBP, target::frame_layout.first_local_from_fp * |
| target::kWordSize)); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore exception into RBX. |
| __ movq(RBX, Address(RBP, target::frame_layout.first_local_from_fp * |
| target::kWordSize)); |
| // Restore stacktrace into RDX. |
| __ movq(RDX, Address(RBP, (target::frame_layout.first_local_from_fp - 1) * |
| target::kWordSize)); |
| } |
| // Code above cannot cause GC. |
| // There is a Dart Frame on the stack. We must restore PP and leave frame. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| |
| // Frame is fully rewritten at this point and it is safe to perform a GC. |
| // Materialize any objects that were deferred by FillFrame because they |
| // require allocation. |
| // Enter stub frame with loading PP. The caller's PP is not materialized yet. |
| __ EnterStubFrame(); |
| if (kind == kLazyDeoptFromReturn) { |
| __ pushq(RBX); // Preserve result, it will be GC-d here. |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Preserve CODE_REG for one more runtime call. |
| __ pushq(CODE_REG); |
| __ pushq(RBX); // Preserve exception. |
| __ pushq(RDX); // Preserve stacktrace. |
| } |
| __ pushq(Immediate(target::ToRawSmi(0))); // Space for the result. |
| __ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0); |
| // Result tells stub how many bytes to remove from the expression stack |
| // of the bottom-most frame. They were used as materialization arguments. |
| __ popq(RBX); |
| __ SmiUntag(RBX); |
| if (kind == kLazyDeoptFromReturn) { |
| __ popq(RAX); // Restore result. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ popq(RDX); // Restore stacktrace. |
| __ popq(RAX); // Restore exception. |
| __ popq(CODE_REG); |
| } |
| __ LeaveStubFrame(); |
| |
| __ popq(RCX); // Pop return address. |
| __ addq(RSP, RBX); // Remove materialization arguments. |
| __ pushq(RCX); // Push return address. |
| // The caller is responsible for emitting the return instruction. |
| |
| if (kind == kLazyDeoptFromThrow) { |
| // Unoptimized frame is now ready to accept the exception. Rethrow it to |
| // find the right handler. |
| __ EnterStubFrame(); |
| __ pushq(Immediate(target::ToRawSmi(0))); // Space for the result. |
| __ pushq(RAX); // Exception |
| __ pushq(RDX); // Stacktrace |
| __ pushq(Immediate(target::ToRawSmi(1))); // Bypass debugger. |
| __ CallRuntime(kReThrowRuntimeEntry, 3); |
| __ LeaveStubFrame(); |
| } |
| } |
| |
| // RAX: result, must be preserved |
| void StubCodeCompiler::GenerateDeoptimizeLazyFromReturnStub() { |
| // Push zap value instead of CODE_REG for lazy deopt. |
| __ pushq(Immediate(kZapCodeReg)); |
| // Return address for "call" to deopt stub. |
| __ pushq(Immediate(kZapReturnAddress)); |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::lazy_deopt_from_return_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromReturn); |
| __ ret(); |
| } |
| |
| // RAX: exception, must be preserved |
| // RDX: stacktrace, must be preserved |
| void StubCodeCompiler::GenerateDeoptimizeLazyFromThrowStub() { |
| // Push zap value instead of CODE_REG for lazy deopt. |
| __ pushq(Immediate(kZapCodeReg)); |
| // Return address for "call" to deopt stub. |
| __ pushq(Immediate(kZapReturnAddress)); |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::lazy_deopt_from_throw_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromThrow); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateDeoptimizeStub() { |
| __ popq(TMP); |
| __ pushq(CODE_REG); |
| __ pushq(TMP); |
| __ movq(CODE_REG, Address(THR, target::Thread::deoptimize_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
| __ ret(); |
| } |
| |
| // Input: |
| // IC_DATA_REG - icdata/megamorphic_cache |
| // RDI - arguments descriptor size |
| static void GenerateNoSuchMethodDispatcherBody(Assembler* assembler, |
| Register receiver_reg) { |
| __ pushq(Immediate(0)); // Setup space on stack for result. |
| __ pushq(receiver_reg); // Receiver. |
| __ pushq(IC_DATA_REG); // ICData/MegamorphicCache. |
| __ pushq(ARGS_DESC_REG); // Arguments descriptor array. |
| |
| // Adjust arguments count. |
| __ OBJ(cmp)(FieldAddress(ARGS_DESC_REG, |
| target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| __ OBJ(mov)(R10, RDI); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| // Include the type arguments. |
| __ OBJ(add)(R10, Immediate(target::ToRawSmi(1))); |
| __ Bind(&args_count_ok); |
| |
| // R10: Smi-tagged arguments array length. |
| PushArrayOfArguments(assembler); |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kNoSuchMethodFromCallStubRuntimeEntry, kNumArgs); |
| __ Drop(4); |
| __ popq(RAX); // Return value. |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| // Input: |
| // IC_DATA_REG - icdata/megamorphic_cache |
| // ARGS_DESC_REG - argument descriptor |
| static void GenerateDispatcherCode(Assembler* assembler, |
| Label* call_target_function) { |
| __ Comment("NoSuchMethodDispatch"); |
| // When lazily generated invocation dispatchers are disabled, the |
| // miss-handler may return null. |
| __ CompareObject(RAX, NullObject()); |
| __ j(NOT_EQUAL, call_target_function); |
| |
| __ EnterStubFrame(); |
| // Load the receiver. |
| __ OBJ(mov)(RDI, FieldAddress(ARGS_DESC_REG, |
| target::ArgumentsDescriptor::size_offset())); |
| __ movq(RAX, |
| Address(RBP, RDI, TIMES_HALF_WORD_SIZE, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| |
| GenerateNoSuchMethodDispatcherBody(assembler, /*receiver_reg=*/RAX); |
| } |
| |
| // Input: |
| // IC_DATA_REG - icdata/megamorphic_cache |
| // RDX - receiver |
| void StubCodeCompiler::GenerateNoSuchMethodDispatcherStub() { |
| __ EnterStubFrame(); |
| |
| __ movq(ARGS_DESC_REG, |
| FieldAddress(IC_DATA_REG, |
| target::CallSiteData::arguments_descriptor_offset())); |
| __ OBJ(mov)(RDI, FieldAddress(ARGS_DESC_REG, |
| target::ArgumentsDescriptor::size_offset())); |
| |
| GenerateNoSuchMethodDispatcherBody(assembler, /*receiver_reg=*/RDX); |
| } |
| |
| // Called for inline allocation of arrays. |
| // Input registers (preserved): |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| // AllocateArrayABI::kTypeArgumentsReg: type arguments of array. |
| // Output registers: |
| // AllocateArrayABI::kResultReg: newly allocated array. |
| // Clobbered: |
| // RCX, RDI, R12 |
| void StubCodeCompiler::GenerateAllocateArrayStub() { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| // Compute the size to be allocated, it is based on the array length |
| // and is computed as: |
| // RoundedAllocationSize( |
| // (array_length * target::kCompressedWordSize) + |
| // target::Array::header_size()). |
| __ movq(RDI, AllocateArrayABI::kLengthReg); // Array Length. |
| // Check that length is Smi. |
| __ testq(RDI, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &slow_case); |
| |
| // Check length >= 0 && length <= kMaxNewSpaceElements |
| const Immediate& max_len = |
| Immediate(target::ToRawSmi(target::Array::kMaxNewSpaceElements)); |
| __ OBJ(cmp)(RDI, max_len); |
| __ j(ABOVE, &slow_case); |
| |
| // Check for allocation tracing. |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(kArrayCid, &slow_case)); |
| |
| const intptr_t fixed_size_plus_alignment_padding = |
| target::Array::header_size() + |
| target::ObjectAlignment::kObjectAlignment - 1; |
| // RDI is a Smi. |
| __ OBJ(lea)(RDI, Address(RDI, TIMES_COMPRESSED_HALF_WORD_SIZE, |
| fixed_size_plus_alignment_padding)); |
| ASSERT(kSmiTagShift == 1); |
| __ andq(RDI, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| |
| const intptr_t cid = kArrayCid; |
| __ movq(AllocateArrayABI::kResultReg, |
| Address(THR, target::Thread::top_offset())); |
| |
| // RDI: allocation size. |
| __ movq(RCX, AllocateArrayABI::kResultReg); |
| __ addq(RCX, RDI); |
| __ j(CARRY, &slow_case); |
| |
| // Check if the allocation fits into the remaining space. |
| // AllocateArrayABI::kResultReg: potential new object start. |
| // RCX: potential next object start. |
| // RDI: allocation size. |
| __ cmpq(RCX, Address(THR, target::Thread::end_offset())); |
| __ j(ABOVE_EQUAL, &slow_case); |
| __ CheckAllocationCanary(AllocateArrayABI::kResultReg); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ movq(Address(THR, target::Thread::top_offset()), RCX); |
| __ addq(AllocateArrayABI::kResultReg, Immediate(kHeapObjectTag)); |
| |
| // Initialize the tags. |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // RDI: allocation size. |
| { |
| Label size_tag_overflow, done; |
| __ cmpq(RDI, Immediate(target::UntaggedObject::kSizeTagMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shlq(RDI, Immediate(target::UntaggedObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2)); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&size_tag_overflow); |
| __ LoadImmediate(RDI, Immediate(0)); |
| __ Bind(&done); |
| |
| // Get the class index and insert it into the tags. |
| uword tags = target::MakeTagWordForNewSpaceObject(cid, 0); |
| __ orq(RDI, Immediate(tags)); |
| __ movq(FieldAddress(RAX, target::Array::tags_offset()), RDI); // Tags. |
| } |
| |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // Store the type argument field. |
| // No generational barrier needed, since we store into a new object. |
| __ StoreCompressedIntoObjectNoBarrier( |
| AllocateArrayABI::kResultReg, |
| FieldAddress(AllocateArrayABI::kResultReg, |
| target::Array::type_arguments_offset()), |
| AllocateArrayABI::kTypeArgumentsReg); |
| |
| // Set the length field. |
| __ StoreCompressedIntoObjectNoBarrier( |
| AllocateArrayABI::kResultReg, |
| FieldAddress(AllocateArrayABI::kResultReg, |
| target::Array::length_offset()), |
| AllocateArrayABI::kLengthReg); |
| |
| // Initialize all array elements to raw_null. |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // RCX: new object end address. |
| // RDI: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| __ LoadObject(R12, NullObject()); |
| __ leaq(RDI, FieldAddress(AllocateArrayABI::kResultReg, |
| target::Array::header_size())); |
| Label loop; |
| __ Bind(&loop); |
| for (intptr_t offset = 0; offset < target::kObjectAlignment; |
| offset += target::kCompressedWordSize) { |
| // No generational barrier needed, since we are storing null. |
| __ StoreCompressedIntoObjectNoBarrier(AllocateArrayABI::kResultReg, |
| Address(RDI, offset), R12); |
| } |
| // Safe to only check every kObjectAlignment bytes instead of each word. |
| ASSERT(kAllocationRedZoneSize >= target::kObjectAlignment); |
| __ addq(RDI, Immediate(target::kObjectAlignment)); |
| __ cmpq(RDI, RCX); |
| __ j(UNSIGNED_LESS, &loop); |
| __ WriteAllocationCanary(RCX); |
| __ ret(); |
| |
| // Unable to allocate the array using the fast inline code, just call |
| // into the runtime. |
| __ Bind(&slow_case); |
| } |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ pushq(Immediate(0)); // Space for return value. |
| __ pushq(AllocateArrayABI::kLengthReg); // Array length as Smi. |
| __ pushq(AllocateArrayABI::kTypeArgumentsReg); // Element type. |
| __ CallRuntime(kAllocateArrayRuntimeEntry, 2); |
| |
| // Write-barrier elimination might be enabled for this array (depending on the |
| // array length). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| __ movq(AllocateArrayABI::kResultReg, Address(RSP, 2 * target::kWordSize)); |
| EnsureIsNewOrRemembered(); |
| |
| __ popq(AllocateArrayABI::kTypeArgumentsReg); // Pop element type argument. |
| __ popq(AllocateArrayABI::kLengthReg); // Pop array length argument. |
| __ popq(AllocateArrayABI::kResultReg); // Pop allocated object. |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateMintSharedWithFPURegsStub() { |
| // For test purpose call allocation stub without inline allocation attempt. |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| __ TryAllocate(compiler::MintClass(), &slow_case, Assembler::kNearJump, |
| AllocateMintABI::kResultReg, AllocateMintABI::kTempReg); |
| __ Ret(); |
| |
| __ Bind(&slow_case); |
| } |
| COMPILE_ASSERT(AllocateMintABI::kResultReg == |
| SharedSlowPathStubABI::kResultReg); |
| GenerateSharedStub(/*save_fpu_registers=*/true, &kAllocateMintRuntimeEntry, |
| target::Thread::allocate_mint_with_fpu_regs_stub_offset(), |
| /*allow_return=*/true, |
| /*store_runtime_result_in_result_register=*/true); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateMintSharedWithoutFPURegsStub() { |
| // For test purpose call allocation stub without inline allocation attempt. |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| __ TryAllocate(compiler::MintClass(), &slow_case, Assembler::kNearJump, |
| AllocateMintABI::kResultReg, AllocateMintABI::kTempReg); |
| __ Ret(); |
| |
| __ Bind(&slow_case); |
| } |
| COMPILE_ASSERT(AllocateMintABI::kResultReg == |
| SharedSlowPathStubABI::kResultReg); |
| GenerateSharedStub( |
| /*save_fpu_registers=*/false, &kAllocateMintRuntimeEntry, |
| target::Thread::allocate_mint_without_fpu_regs_stub_offset(), |
| /*allow_return=*/true, |
| /*store_runtime_result_in_result_register=*/true); |
| } |
| |
| static const RegisterSet kCalleeSavedRegisterSet( |
| CallingConventions::kCalleeSaveCpuRegisters, |
| CallingConventions::kCalleeSaveXmmRegisters); |
| |
| // Called when invoking Dart code from C++ (VM code). |
| // Input parameters: |
| // RSP : points to return address. |
| // RDI : target code or entry point (in bare instructions mode). |
| // RSI : arguments descriptor array. |
| // RDX : arguments array. |
| // RCX : current thread. |
| void StubCodeCompiler::GenerateInvokeDartCodeStub() { |
| __ EnterFrame(0); |
| |
| const Register kTargetReg = CallingConventions::kArg1Reg; |
| const Register kArgDescReg = CallingConventions::kArg2Reg; |
| const Register kArgsReg = CallingConventions::kArg3Reg; |
| const Register kThreadReg = CallingConventions::kArg4Reg; |
| |
| // Push code object to PC marker slot. |
| __ pushq(Address(kThreadReg, target::Thread::invoke_dart_code_stub_offset())); |
| |
| // At this point, the stack looks like: |
| // | stub code object |
| // | saved RBP | <-- RBP |
| // | saved PC (return to DartEntry::InvokeFunction) | |
| |
| const intptr_t kInitialOffset = 2; |
| // Save arguments descriptor array, later replaced by Smi argument count. |
| const intptr_t kArgumentsDescOffset = -(kInitialOffset)*target::kWordSize; |
| __ pushq(kArgDescReg); |
| |
| // Save C++ ABI callee-saved registers. |
| __ PushRegisters(kCalleeSavedRegisterSet); |
| |
| // If any additional (or fewer) values are pushed, the offsets in |
| // target::frame_layout.exit_link_slot_from_entry_fp will need to be changed. |
| |
| // Set up THR, which caches the current thread in Dart code. |
| if (THR != kThreadReg) { |
| __ movq(THR, kThreadReg); |
| } |
| |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| |
| // Save the current VMTag on the stack. |
| __ movq(RAX, Assembler::VMTagAddress()); |
| __ pushq(RAX); |
| |
| // Save top resource and top exit frame info. Use RAX as a temporary register. |
| // StackFrameIterator reads the top exit frame info saved in this frame. |
| __ movq(RAX, Address(THR, target::Thread::top_resource_offset())); |
| __ pushq(RAX); |
| __ movq(Address(THR, target::Thread::top_resource_offset()), Immediate(0)); |
| |
| __ movq(RAX, Address(THR, target::Thread::exit_through_ffi_offset())); |
| __ pushq(RAX); |
| __ movq(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(0)); |
| |
| __ movq(RAX, Address(THR, target::Thread::top_exit_frame_info_offset())); |
| __ pushq(RAX); |
| |
| // The constant target::frame_layout.exit_link_slot_from_entry_fp must be kept |
| // in sync with the code above. |
| __ EmitEntryFrameVerification(); |
| |
| __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| // Mark that the thread is executing Dart code. Do this after initializing the |
| // exit link for the profiler. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Load arguments descriptor array into R10, which is passed to Dart code. |
| __ movq(R10, kArgDescReg); |
| |
| // Push arguments. At this point we only need to preserve kTargetReg. |
| ASSERT(kTargetReg != RDX); |
| |
| // Load number of arguments into RBX and adjust count for type arguments. |
| __ OBJ(mov)(RBX, |
| FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
| __ OBJ(cmp)( |
| FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ addq(RBX, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
| __ Bind(&args_count_ok); |
| // Save number of arguments as Smi on stack, replacing saved ArgumentsDesc. |
| __ movq(Address(RBP, kArgumentsDescOffset), RBX); |
| __ SmiUntag(RBX); |
| |
| // Compute address of 'arguments array' data area into RDX. |
| __ leaq(RDX, FieldAddress(kArgsReg, target::Array::data_offset())); |
| |
| // Set up arguments for the Dart call. |
| Label push_arguments; |
| Label done_push_arguments; |
| __ j(ZERO, &done_push_arguments, Assembler::kNearJump); |
| __ LoadImmediate(RAX, Immediate(0)); |
| __ Bind(&push_arguments); |
| #if defined(DART_COMPRESSED_POINTERS) |
| __ LoadCompressed(TMP, Address(RDX, RAX, TIMES_COMPRESSED_WORD_SIZE, 0)); |
| __ pushq(TMP); |
| #else |
| __ pushq(Address(RDX, RAX, TIMES_8, 0)); |
| #endif |
| __ incq(RAX); |
| __ cmpq(RAX, RBX); |
| __ j(LESS, &push_arguments, Assembler::kNearJump); |
| __ Bind(&done_push_arguments); |
| |
| // Call the Dart code entrypoint. |
| if (FLAG_precompiled_mode) { |
| __ movq(PP, Address(THR, target::Thread::global_object_pool_offset())); |
| __ xorq(CODE_REG, CODE_REG); // GC-safe value into CODE_REG. |
| } else { |
| __ xorq(PP, PP); // GC-safe value into PP. |
| __ movq(CODE_REG, kTargetReg); |
| __ movq(kTargetReg, |
| FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| } |
| __ call(kTargetReg); // R10 is the arguments descriptor array. |
| |
| // Read the saved number of passed arguments as Smi. |
| __ movq(RDX, Address(RBP, kArgumentsDescOffset)); |
| |
| // Get rid of arguments pushed on the stack. |
| __ leaq(RSP, Address(RSP, RDX, TIMES_4, 0)); // RDX is a Smi. |
| |
| // Restore the saved top exit frame info and top resource back into the |
| // Isolate structure. |
| __ popq(Address(THR, target::Thread::top_exit_frame_info_offset())); |
| __ popq(Address(THR, target::Thread::exit_through_ffi_offset())); |
| __ popq(Address(THR, target::Thread::top_resource_offset())); |
| |
| // Restore the current VMTag from the stack. |
| __ popq(Assembler::VMTagAddress()); |
| |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| |
| // Restore C++ ABI callee-saved registers. |
| __ PopRegisters(kCalleeSavedRegisterSet); |
| __ set_constant_pool_allowed(false); |
| |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| |
| __ ret(); |
| } |
| |
| // Helper to generate space allocation of context stub. |
| // This does not initialize the fields of the context. |
| // Input: |
| // R10: number of context variables. |
| // Output: |
| // RAX: new, uninitialized allocated Context object. |
| // Clobbered: |
| // R13 |
| static void GenerateAllocateContextSpaceStub(Assembler* assembler, |
| Label* slow_case) { |
| // First compute the rounded instance size. |
| // R10: number of context variables. |
| intptr_t fixed_size_plus_alignment_padding = |
| (target::Context::header_size() + |
| target::ObjectAlignment::kObjectAlignment - 1); |
| __ leaq(R13, Address(R10, TIMES_COMPRESSED_WORD_SIZE, |
| fixed_size_plus_alignment_padding)); |
| __ andq(R13, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| |
| // Check for allocation tracing. |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(kContextCid, slow_case)); |
| |
| // Now allocate the object. |
| // R10: number of context variables. |
| __ movq(RAX, Address(THR, target::Thread::top_offset())); |
| __ addq(R13, RAX); |
| // Check if the allocation fits into the remaining space. |
| // RAX: potential new object. |
| // R13: potential next object start. |
| // R10: number of context variables. |
| __ cmpq(R13, Address(THR, target::Thread::end_offset())); |
| __ j(ABOVE_EQUAL, slow_case); |
| __ CheckAllocationCanary(RAX); |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| // RAX: new object. |
| // R13: next object start. |
| // R10: number of context variables. |
| __ movq(Address(THR, target::Thread::top_offset()), R13); |
| // R13: Size of allocation in bytes. |
| __ subq(R13, RAX); |
| __ addq(RAX, Immediate(kHeapObjectTag)); |
| // Generate isolate-independent code to allow sharing between isolates. |
| |
| // Calculate the size tag. |
| // RAX: new object. |
| // R10: number of context variables. |
| { |
| Label size_tag_overflow, done; |
| __ leaq(R13, Address(R10, TIMES_COMPRESSED_WORD_SIZE, |
| fixed_size_plus_alignment_padding)); |
| __ andq(R13, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| __ cmpq(R13, Immediate(target::UntaggedObject::kSizeTagMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shlq(R13, Immediate(target::UntaggedObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2)); |
| __ jmp(&done); |
| |
| __ Bind(&size_tag_overflow); |
| // Set overflow size tag value. |
| __ LoadImmediate(R13, Immediate(0)); |
| |
| __ Bind(&done); |
| // RAX: new object. |
| // R10: number of context variables. |
| // R13: size and bit tags. |
| uword tags = target::MakeTagWordForNewSpaceObject(kContextCid, 0); |
| __ orq(R13, Immediate(tags)); |
| __ movq(FieldAddress(RAX, target::Object::tags_offset()), R13); // Tags. |
| } |
| |
| // Setup up number of context variables field. |
| // RAX: new object. |
| // R10: number of context variables as integer value (not object). |
| __ movl(FieldAddress(RAX, target::Context::num_variables_offset()), R10); |
| } |
| |
| // Called for inline allocation of contexts. |
| // Input: |
| // R10: number of context variables. |
| // Output: |
| // RAX: new allocated Context object. |
| // Clobbered: |
| // R9, R13 |
| void StubCodeCompiler::GenerateAllocateContextStub() { |
| __ LoadObject(R9, NullObject()); |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| |
| GenerateAllocateContextSpaceStub(assembler, &slow_case); |
| |
| // Setup the parent field. |
| // RAX: new object. |
| // R9: Parent object, initialized to null. |
| // No generational barrier needed, since we are storing null. |
| __ StoreCompressedIntoObjectNoBarrier( |
| RAX, FieldAddress(RAX, target::Context::parent_offset()), R9); |
| |
| // Initialize the context variables. |
| // RAX: new object. |
| // R10: number of context variables. |
| { |
| Label loop, entry; |
| __ leaq(R13, FieldAddress(RAX, target::Context::variable_offset(0))); |
| #if defined(DEBUG) |
| static auto const kJumpLength = Assembler::kFarJump; |
| #else |
| static auto const kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ jmp(&entry, kJumpLength); |
| __ Bind(&loop); |
| __ decq(R10); |
| // No generational barrier needed, since we are storing null. |
| __ StoreCompressedIntoObjectNoBarrier( |
| RAX, Address(R13, R10, TIMES_COMPRESSED_WORD_SIZE, 0), R9); |
| __ Bind(&entry); |
| __ cmpq(R10, Immediate(0)); |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| } |
| |
| // Done allocating and initializing the context. |
| // RAX: new object. |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| // Create a stub frame. |
| __ EnterStubFrame(); |
| __ pushq(R9); // Setup space on stack for the return value. |
| __ SmiTag(R10); |
| __ pushq(R10); // Push number of context variables. |
| __ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context. |
| __ popq(RAX); // Pop number of context variables argument. |
| __ popq(RAX); // Pop the new context object. |
| // Write-barrier elimination might be enabled for this context (depending on |
| // the size). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(); |
| |
| // RAX: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(); |
| |
| __ ret(); |
| } |
| |
| // Called for inline clone of contexts. |
| // Input: |
| // R9: context to clone. |
| // Output: |
| // RAX: new allocated Context object. |
| // Clobbered: |
| // R10, R13 |
| void StubCodeCompiler::GenerateCloneContextStub() { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| |
| // Load num. variable (int32_t) in the existing context. |
| __ movsxd(R10, FieldAddress(R9, target::Context::num_variables_offset())); |
| |
| // Allocate new context of same size. |
| GenerateAllocateContextSpaceStub(assembler, &slow_case); |
| |
| // Load parent in the existing context. |
| __ LoadCompressed(R13, FieldAddress(R9, target::Context::parent_offset())); |
| // Setup the parent field. |
| // RAX: new object. |
| // R9: Old parent object. |
| __ StoreCompressedIntoObjectNoBarrier( |
| RAX, FieldAddress(RAX, target::Context::parent_offset()), R13); |
| |
| // Clone the context variables. |
| // RAX: new context clone. |
| // R10: number of context variables. |
| { |
| Label loop, entry; |
| __ jmp(&entry, Assembler::kNearJump); |
| __ Bind(&loop); |
| __ decq(R10); |
| __ LoadCompressed(R13, FieldAddress(R9, R10, TIMES_COMPRESSED_WORD_SIZE, |
| target::Context::variable_offset(0))); |
| __ StoreCompressedIntoObjectNoBarrier( |
| RAX, |
| FieldAddress(RAX, R10, TIMES_COMPRESSED_WORD_SIZE, |
| target::Context::variable_offset(0)), |
| R13); |
| __ Bind(&entry); |
| __ cmpq(R10, Immediate(0)); |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| } |
| |
| // Done allocating and initializing the context. |
| // RAX: new object. |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| |
| // Create a stub frame. |
| __ EnterStubFrame(); |
| |
| __ PushObject(NullObject()); // Make space on stack for the return value. |
| __ pushq(R9); // Push context. |
| __ CallRuntime(kCloneContextRuntimeEntry, 1); // Clone context. |
| __ popq(RAX); // Pop context argument. |
| __ popq(RAX); // Pop the new context object. |
| |
| // Write-barrier elimination might be enabled for this context (depending on |
| // the size). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(); |
| |
| // RAX: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(); |
| |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateWriteBarrierWrappersStub() { |
| for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) { |
| if ((kDartAvailableCpuRegs & (1 << i)) == 0) continue; |
| |
| Register reg = static_cast<Register>(i); |
| intptr_t start = __ CodeSize(); |
| __ pushq(kWriteBarrierObjectReg); |
| __ movq(kWriteBarrierObjectReg, reg); |
| __ call(Address(THR, target::Thread::write_barrier_entry_point_offset())); |
| __ popq(kWriteBarrierObjectReg); |
| __ ret(); |
| intptr_t end = __ CodeSize(); |
| |
| RELEASE_ASSERT(end - start == kStoreBufferWrapperSize); |
| } |
| } |
| |
| // Helper stub to implement Assembler::StoreIntoObject/Array. |
| // Input parameters: |
| // RDX: Object (old) |
| // RAX: Value (old or new) |
| // R13: Slot |
| // If RAX is new, add RDX to the store buffer. Otherwise RAX is old, mark RAX |
| // and add it to the mark list. |
| COMPILE_ASSERT(kWriteBarrierObjectReg == RDX); |
| COMPILE_ASSERT(kWriteBarrierValueReg == RAX); |
| COMPILE_ASSERT(kWriteBarrierSlotReg == R13); |
| static void GenerateWriteBarrierStubHelper(Assembler* assembler, bool cards) { |
| Label skip_marking; |
| __ movq(TMP, FieldAddress(RAX, target::Object::tags_offset())); |
| __ andq(TMP, Address(THR, target::Thread::write_barrier_mask_offset())); |
| __ testq(TMP, Immediate(target::UntaggedObject::kIncrementalBarrierMask)); |
| __ j(ZERO, &skip_marking); |
| |
| { |
| // Atomically clear kNotMarkedBit. |
| Label retry, is_new, done; |
| __ pushq(RAX); // Spill. |
| __ pushq(RCX); // Spill. |
| __ movq(TMP, RAX); // RAX is fixed implicit operand of CAS. |
| __ movq(RAX, FieldAddress(TMP, target::Object::tags_offset())); |
| |
| __ Bind(&retry); |
| __ movq(RCX, RAX); |
| __ testq(RCX, Immediate(1 << target::UntaggedObject::kNotMarkedBit)); |
| __ j(ZERO, &done); // Marked by another thread. |
| |
| __ andq(RCX, Immediate(~(1 << target::UntaggedObject::kNotMarkedBit))); |
| // Cmpxchgq: compare value = implicit operand RAX, new value = RCX. |
| // On failure, RAX is updated with the current value. |
| __ LockCmpxchgq(FieldAddress(TMP, target::Object::tags_offset()), RCX); |
| __ j(NOT_EQUAL, &retry, Assembler::kNearJump); |
| |
| __ testq(TMP, |
| Immediate(1 << target::ObjectAlignment::kNewObjectBitPosition)); |
| __ j(NOT_ZERO, &is_new); |
| |
| auto mark_stack_push = [&](intptr_t offset, const RuntimeEntry& entry) { |
| __ movq(RAX, Address(THR, offset)); |
| __ movl(RCX, Address(RAX, target::MarkingStackBlock::top_offset())); |
| __ movq(Address(RAX, RCX, TIMES_8, |
| target::MarkingStackBlock::pointers_offset()), |
| TMP); |
| __ incq(RCX); |
| __ movl(Address(RAX, target::MarkingStackBlock::top_offset()), RCX); |
| __ cmpl(RCX, Immediate(target::MarkingStackBlock::kSize)); |
| __ j(NOT_EQUAL, &done); |
| |
| { |
| LeafRuntimeScope rt(assembler, |
| /*frame_size=*/0, |
| /*preserve_registers=*/true); |
| __ movq(CallingConventions::kArg1Reg, THR); |
| rt.Call(entry, 1); |
| } |
| }; |
| |
| mark_stack_push(target::Thread::old_marking_stack_block_offset(), |
| kOldMarkingStackBlockProcessRuntimeEntry); |
| __ jmp(&done); |
| |
| __ Bind(&is_new); |
| mark_stack_push(target::Thread::new_marking_stack_block_offset(), |
| kNewMarkingStackBlockProcessRuntimeEntry); |
| |
| __ Bind(&done); |
| __ popq(RCX); // Unspill. |
| __ popq(RAX); // Unspill. |
| } |
| |
| Label add_to_remembered_set, remember_card; |
| __ Bind(&skip_marking); |
| __ movq(TMP, FieldAddress(RDX, target::Object::tags_offset())); |
| __ shrl(TMP, Immediate(target::UntaggedObject::kBarrierOverlapShift)); |
| __ andq(TMP, FieldAddress(RAX, target::Object::tags_offset())); |
| __ testq(TMP, Immediate(target::UntaggedObject::kGenerationalBarrierMask)); |
| __ j(NOT_ZERO, &add_to_remembered_set, Assembler::kNearJump); |
| __ ret(); |
| |
| __ Bind(&add_to_remembered_set); |
| if (cards) { |
| __ movl(TMP, FieldAddress(RDX, target::Object::tags_offset())); |
| __ testl(TMP, Immediate(1 << target::UntaggedObject::kCardRememberedBit)); |
| __ j(NOT_ZERO, &remember_card, Assembler::kFarJump); |
| } else { |
| #if defined(DEBUG) |
| Label ok; |
| __ movl(TMP, FieldAddress(RDX, target::Object::tags_offset())); |
| __ testl(TMP, Immediate(1 << target::UntaggedObject::kCardRememberedBit)); |
| __ j(ZERO, &ok, Assembler::kFarJump); |
| __ Stop("Wrong barrier"); |
| __ Bind(&ok); |
| #endif |
| } |
| { |
| // Atomically clear kOldAndNotRemembered. |
| Label retry, done; |
| __ pushq(RAX); // Spill. |
| __ pushq(RCX); // Spill. |
| __ movq(RAX, FieldAddress(RDX, target::Object::tags_offset())); |
| |
| __ Bind(&retry); |
| __ movq(RCX, RAX); |
| __ testq(RCX, |
| Immediate(1 << target::UntaggedObject::kOldAndNotRememberedBit)); |
| __ j(ZERO, &done); // Remembered by another thread. |
| __ andq(RCX, |
| Immediate(~(1 << target::UntaggedObject::kOldAndNotRememberedBit))); |
| // Cmpxchgq: compare value = implicit operand RAX, new value = RCX. |
| // On failure, RAX is updated with the current value. |
| __ LockCmpxchgq(FieldAddress(RDX, target::Object::tags_offset()), RCX); |
| __ j(NOT_EQUAL, &retry, Assembler::kNearJump); |
| |
| // Load the StoreBuffer block out of the thread. Then load top_ out of the |
| // StoreBufferBlock and add the address to the pointers_. |
| // RDX: Address being stored |
| __ movq(RAX, Address(THR, target::Thread::store_buffer_block_offset())); |
| __ movl(RCX, Address(RAX, target::StoreBufferBlock::top_offset())); |
| __ movq( |
| Address(RAX, RCX, TIMES_8, target::StoreBufferBlock::pointers_offset()), |
| RDX); |
| |
| // Increment top_ and check for overflow. |
| // RCX: top_ |
| // RAX: StoreBufferBlock |
| __ incq(RCX); |
| __ movl(Address(RAX, target::StoreBufferBlock::top_offset()), RCX); |
| __ cmpl(RCX, Immediate(target::StoreBufferBlock::kSize)); |
| __ j(NOT_EQUAL, &done); |
| |
| { |
| LeafRuntimeScope rt(assembler, |
| /*frame_size=*/0, |
| /*preserve_registers=*/true); |
| __ movq(CallingConventions::kArg1Reg, THR); |
| rt.Call(kStoreBufferBlockProcessRuntimeEntry, 1); |
| } |
| |
| __ Bind(&done); |
| __ popq(RCX); // Unspill. |
| __ popq(RAX); // Unspill. |
| __ ret(); |
| } |
| |
| if (cards) { |
| Label remember_card_slow; |
| |
| // Get card table. |
| __ Bind(&remember_card); |
| __ movq(TMP, RDX); // Object. |
| __ andq(TMP, Immediate(target::kPageMask)); // Page. |
| __ cmpq(Address(TMP, target::Page::card_table_offset()), Immediate(0)); |
| __ j(EQUAL, &remember_card_slow, Assembler::kNearJump); |
| |
| // Atomically dirty the card. |
| __ pushq(RAX); |
| __ pushq(RCX); |
| __ subq(R13, TMP); // Offset in page. |
| __ movq(TMP, |
| Address(TMP, target::Page::card_table_offset())); // Card table. |
| __ shrq(R13, Immediate(target::Page::kBytesPerCardLog2)); // Card index. |
| __ movq(RCX, R13); |
| __ shrq(R13, Immediate(target::kBitsPerWordLog2)); // Word offset. |
| __ movq(RAX, Immediate(1)); |
| __ shlq(RAX, RCX); // Bit mask. (Shift amount is mod 63.) |
| __ lock(); |
| __ orq(Address(TMP, R13, TIMES_8, 0), RAX); |
| __ popq(RCX); |
| __ popq(RAX); |
| __ ret(); |
| |
| // Card table not yet allocated. |
| __ Bind(&remember_card_slow); |
| { |
| LeafRuntimeScope rt(assembler, |
| /*frame_size=*/0, |
| /*preserve_registers=*/true); |
| __ movq(CallingConventions::kArg1Reg, RDX); |
| __ movq(CallingConventions::kArg2Reg, R13); |
| rt.Call(kRememberCardRuntimeEntry, 2); |
| } |
| __ ret(); |
| } |
| } |
| |
| void StubCodeCompiler::GenerateWriteBarrierStub() { |
| GenerateWriteBarrierStubHelper(assembler, false); |
| } |
| |
| void StubCodeCompiler::GenerateArrayWriteBarrierStub() { |
| GenerateWriteBarrierStubHelper(assembler, true); |
| } |
| |
| static void GenerateAllocateObjectHelper(Assembler* assembler, |
| bool is_cls_parameterized) { |
| // Note: Keep in sync with calling function. |
| const Register kTagsReg = AllocateObjectABI::kTagsReg; |
| |
| { |
| Label slow_case; |
| const Register kNewTopReg = R9; |
| |
| #if !defined(PRODUCT) |
| { |
| const Register kCidRegister = RSI; |
| __ ExtractClassIdFromTags(kCidRegister, AllocateObjectABI::kTagsReg); |
| __ MaybeTraceAllocation(kCidRegister, &slow_case, TMP); |
| } |
| #endif |
| // Allocate the object and update top to point to |
| // next object start and initialize the allocated object. |
| { |
| const Register kInstanceSizeReg = RSI; |
| |
| __ ExtractInstanceSizeFromTags(kInstanceSizeReg, kTagsReg); |
| |
| __ movq(AllocateObjectABI::kResultReg, |
| Address(THR, target::Thread::top_offset())); |
| __ leaq(kNewTopReg, Address(AllocateObjectABI::kResultReg, |
| kInstanceSizeReg, TIMES_1, 0)); |
| // Check if the allocation fits into the remaining space. |
| __ cmpq(kNewTopReg, Address(THR, target::Thread::end_offset())); |
| __ j(ABOVE_EQUAL, &slow_case); |
| __ CheckAllocationCanary(AllocateObjectABI::kResultReg); |
| |
| __ movq(Address(THR, target::Thread::top_offset()), kNewTopReg); |
| } // kInstanceSizeReg = RSI |
| |
| // Set the tags. |
| // 64 bit store also zeros the identity hash field. |
| __ movq( |
| Address(AllocateObjectABI::kResultReg, target::Object::tags_offset()), |
| kTagsReg); |
| |
| __ addq(AllocateObjectABI::kResultReg, Immediate(kHeapObjectTag)); |
| |
| // Initialize the remaining words of the object. |
| { |
| const Register kNextFieldReg = RDI; |
| __ leaq(kNextFieldReg, |
| FieldAddress(AllocateObjectABI::kResultReg, |
| target::Instance::first_field_offset())); |
| |
| const Register kNullReg = R10; |
| __ LoadObject(kNullReg, NullObject()); |
| |
| // Loop until the whole object is initialized. |
| Label loop; |
| __ Bind(&loop); |
| for (intptr_t offset = 0; offset < target::kObjectAlignment; |
| offset += target::kCompressedWordSize) { |
| __ StoreCompressedIntoObjectNoBarrier(AllocateObjectABI::kResultReg, |
| Address(kNextFieldReg, offset), |
| kNullReg); |
| } |
| // Safe to only check every kObjectAlignment bytes instead of each word. |
| ASSERT(kAllocationRedZoneSize >= target::kObjectAlignment); |
| __ addq(kNextFieldReg, Immediate(target::kObjectAlignment)); |
| __ cmpq(kNextFieldReg, kNewTopReg); |
| __ j(UNSIGNED_LESS, &loop); |
| } // kNextFieldReg = RDI, kNullReg = R10 |
| |
| __ WriteAllocationCanary(kNewTopReg); // Fix overshoot. |
| |
| if (is_cls_parameterized) { |
| Label not_parameterized_case; |
| |
| const Register kClsIdReg = R9; |
| const Register kTypeOffsetReg = RDI; |
| |
| __ ExtractClassIdFromTags(kClsIdReg, kTagsReg); |
| |
| // Load class' type_arguments_field offset in words. |
| __ LoadClassById(kTypeOffsetReg, kClsIdReg); |
| __ movl( |
| kTypeOffsetReg, |
| FieldAddress(kTypeOffsetReg, |
| target::Class:: |
| host_type_arguments_field_offset_in_words_offset())); |
| |
| // Set the type arguments in the new object. |
| __ StoreCompressedIntoObject( |
| AllocateObjectABI::kResultReg, |
| FieldAddress(AllocateObjectABI::kResultReg, kTypeOffsetReg, |
| TIMES_COMPRESSED_WORD_SIZE, 0), |
| AllocateObjectABI::kTypeArgumentsReg); |
| |
| __ Bind(¬_parameterized_case); |
| } // kTypeOffsetReg = RDI; |
| |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } // kNewTopReg = R9; |
| |
| // Fall back on slow case: |
| if (!is_cls_parameterized) { |
| __ LoadObject(AllocateObjectABI::kTypeArgumentsReg, NullObject()); |
| } |
| // Tail call to generic allocation stub. |
| __ jmp( |
| Address(THR, target::Thread::allocate_object_slow_entry_point_offset())); |
| } |
| |
| // Called for inline allocation of objects (any class). |
| void StubCodeCompiler::GenerateAllocateObjectStub() { |
| GenerateAllocateObjectHelper(assembler, /*is_cls_parameterized=*/false); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateObjectParameterizedStub() { |
| GenerateAllocateObjectHelper(assembler, /*is_cls_parameterized=*/true); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateObjectSlowStub() { |
| if (!FLAG_precompiled_mode) { |
| __ movq(CODE_REG, |
| Address(THR, target::Thread::call_to_runtime_stub_offset())); |
| } |
| |
| __ ExtractClassIdFromTags(AllocateObjectABI::kTagsReg, |
| AllocateObjectABI::kTagsReg); |
| |
| // Create a stub frame. |
| // Ensure constant pool is allowed so we can e.g. load class object. |
| __ EnterStubFrame(); |
| |
| // Setup space on stack for return value. |
| __ LoadObject(AllocateObjectABI::kResultReg, NullObject()); |
| __ pushq(AllocateObjectABI::kResultReg); |
| |
| // Push class of object to be allocated. |
| __ LoadClassById(AllocateObjectABI::kResultReg, AllocateObjectABI::kTagsReg); |
| __ pushq(AllocateObjectABI::kResultReg); |
| |
| // Must be Object::null() if non-parameterized class. |
| __ pushq(AllocateObjectABI::kTypeArgumentsReg); |
| |
| __ CallRuntime(kAllocateObjectRuntimeEntry, 2); |
| |
| __ popq(AllocateObjectABI::kResultReg); // Drop type arguments. |
| __ popq(AllocateObjectABI::kResultReg); // Drop class. |
| __ popq(AllocateObjectABI::kResultReg); // Pop newly allocated object. |
| |
| // Write-barrier elimination is enabled for [cls] and we therefore need to |
| // ensure that the object is in new-space or has remembered bit set. |
| EnsureIsNewOrRemembered(); |
| |
| // AllocateObjectABI::kResultReg: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(); |
| |
| __ ret(); |
| } |
| |
| // Called for inline allocation of objects. |
| void StubCodeCompiler::GenerateAllocationStubForClass( |
| UnresolvedPcRelativeCalls* unresolved_calls, |
| const Class& cls, |
| const Code& allocate_object, |
| const Code& allocat_object_parametrized) { |
| classid_t cls_id = target::Class::GetId(cls); |
| ASSERT(cls_id != kIllegalCid); |
| |
| const intptr_t cls_type_arg_field_offset = |
| target::Class::TypeArgumentsFieldOffset(cls); |
| |
| // The generated code is different if the class is parameterized. |
| const bool is_cls_parameterized = target::Class::NumTypeArguments(cls) > 0; |
| ASSERT(!is_cls_parameterized || |
| cls_type_arg_field_offset != target::Class::kNoTypeArguments); |
| |
| const intptr_t instance_size = target::Class::GetInstanceSize(cls); |
| ASSERT(instance_size > 0); |
| const uword tags = |
| target::MakeTagWordForNewSpaceObject(cls_id, instance_size); |
| |
| const Register kTagsReg = AllocateObjectABI::kTagsReg; |
| |
| __ movq(kTagsReg, Immediate(tags)); |
| |
| // Load the appropriate generic alloc. stub. |
| if (!FLAG_use_slow_path && FLAG_inline_alloc && |
| !target::Class::TraceAllocation(cls) && |
| target::SizeFitsInSizeTag(instance_size)) { |
| RELEASE_ASSERT(AllocateObjectInstr::WillAllocateNewOrRemembered(cls)); |
| RELEASE_ASSERT(target::Heap::IsAllocatableInNewSpace(instance_size)); |
| |
| if (is_cls_parameterized) { |
| if (!IsSameObject(NullObject(), |
| CastHandle<Object>(allocat_object_parametrized))) { |
| __ GenerateUnRelocatedPcRelativeTailCall(); |
| unresolved_calls->Add(new UnresolvedPcRelativeCall( |
| __ CodeSize(), allocat_object_parametrized, /*is_tail_call=*/true)); |
| } else { |
| __ jmp(Address(THR, |
| target::Thread:: |
| allocate_object_parameterized_entry_point_offset())); |
| } |
| } else { |
| if (!IsSameObject(NullObject(), CastHandle<Object>(allocate_object))) { |
| __ GenerateUnRelocatedPcRelativeTailCall(); |
| unresolved_calls->Add(new UnresolvedPcRelativeCall( |
| __ CodeSize(), allocate_object, /*is_tail_call=*/true)); |
| } else { |
| __ jmp( |
| Address(THR, target::Thread::allocate_object_entry_point_offset())); |
| } |
| } |
| } else { |
| if (!is_cls_parameterized) { |
| __ LoadObject(AllocateObjectABI::kTypeArgumentsReg, NullObject()); |
| } |
| __ jmp(Address(THR, |
| target::Thread::allocate_object_slow_entry_point_offset())); |
| } |
| } |
| |
| // Called for invoking "dynamic noSuchMethod(Invocation invocation)" function |
| // from the entry code of a dart function after an error in passed argument |
| // name or number is detected. |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of last argument. |
| // R10 : arguments descriptor array. |
| void StubCodeCompiler::GenerateCallClosureNoSuchMethodStub() { |
| __ EnterStubFrame(); |
| |
| // Load the receiver. |
| // Note: In compressed pointer mode LoadCompressedSmi zero extends R13, |
| // rather than sign extending it. This is ok since it's an unsigned value. |
| __ LoadCompressedSmi( |
| R13, FieldAddress(R10, target::ArgumentsDescriptor::size_offset())); |
| __ movq(RAX, |
| Address(RBP, R13, TIMES_4, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| |
| // Load the function. |
| __ LoadCompressed(RBX, FieldAddress(RAX, target::Closure::function_offset())); |
| |
| __ pushq(Immediate(0)); // Result slot. |
| __ pushq(RAX); // Receiver. |
| __ pushq(RBX); // Function. |
| __ pushq(R10); // Arguments descriptor array. |
| |
| // Adjust arguments count. |
| __ OBJ(cmp)( |
| FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| __ movq(R10, R13); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ addq(R10, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
| __ Bind(&args_count_ok); |
| |
| // R10: Smi-tagged arguments array length. |
| PushArrayOfArguments(assembler); |
| |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kNoSuchMethodFromPrologueRuntimeEntry, kNumArgs); |
| // noSuchMethod on closures always throws an error, so it will never return. |
| __ int3(); |
| } |
| |
| // Cannot use function object from ICData as it may be the inlined |
| // function and not the top-scope function. |
| void StubCodeCompiler::GenerateOptimizedUsageCounterIncrement() { |
| if (FLAG_precompiled_mode) { |
| __ Breakpoint(); |
| return; |
| } |
| Register ic_reg = RBX; |
| Register func_reg = RDI; |
| if (FLAG_trace_optimized_ic_calls) { |
| __ EnterStubFrame(); |
| __ pushq(func_reg); // Preserve |
| __ pushq(ic_reg); // Preserve. |
| __ pushq(ic_reg); // Argument. |
| __ pushq(func_reg); // Argument. |
| __ CallRuntime(kTraceICCallRuntimeEntry, 2); |
| __ popq(RAX); // Discard argument; |
| __ popq(RAX); // Discard argument; |
| __ popq(ic_reg); // Restore. |
| __ popq(func_reg); // Restore. |
| __ LeaveStubFrame(); |
| } |
| __ incl(FieldAddress(func_reg, target::Function::usage_counter_offset())); |
| } |
| |
| // Loads function into 'temp_reg', preserves IC_DATA_REG. |
| void StubCodeCompiler::GenerateUsageCounterIncrement(Register temp_reg) { |
| if (FLAG_precompiled_mode) { |
| __ Breakpoint(); |
| return; |
| } |
| if (FLAG_optimization_counter_threshold >= 0) { |
| Register func_reg = temp_reg; |
| ASSERT(func_reg != IC_DATA_REG); |
| __ Comment("Increment function counter"); |
| __ movq(func_reg, |
| FieldAddress(IC_DATA_REG, target::ICData::owner_offset())); |
| __ incl(FieldAddress(func_reg, target::Function::usage_counter_offset())); |
| } |
| } |
| |
| // Note: RBX must be preserved. |
| // Attempt a quick Smi operation for known operations ('kind'). The ICData |
| // must have been primed with a Smi/Smi check that will be used for counting |
| // the invocations. |
| static void EmitFastSmiOp(Assembler* assembler, |
| Token::Kind kind, |
| intptr_t num_args, |
| Label* not_smi_or_overflow) { |
| __ Comment("Fast Smi op"); |
| ASSERT(num_args == 2); |
| __ movq(RAX, Address(RSP, +2 * target::kWordSize)); // Left. |
| __ movq(RCX, Address(RSP, +1 * target::kWordSize)); // Right |
| __ movq(R13, RCX); |
| __ orq(R13, RAX); |
| __ testq(R13, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, not_smi_or_overflow); |
| switch (kind) { |
| case Token::kADD: { |
| __ OBJ(add)(RAX, RCX); |
| __ j(OVERFLOW, not_smi_or_overflow); |
| break; |
| } |
| case Token::kLT: { |
| __ OBJ(cmp)(RAX, RCX); |
| __ setcc(GREATER_EQUAL, ByteRegisterOf(RAX)); |
| __ movzxb(RAX, RAX); // RAX := RAX < RCX ? 0 : 1 |
| __ movq(RAX, |
| Address(THR, RAX, TIMES_8, target::Thread::bool_true_offset())); |
| ASSERT(target::Thread::bool_true_offset() + 8 == |
| target::Thread::bool_false_offset()); |
| break; |
| } |
| case Token::kEQ: { |
| __ OBJ(cmp)(RAX, RCX); |
| __ setcc(NOT_EQUAL, ByteRegisterOf(RAX)); |
| __ movzxb(RAX, RAX); // RAX := RAX == RCX ? 0 : 1 |
| __ movq(RAX, |
| Address(THR, RAX, TIMES_8, target::Thread::bool_true_offset())); |
| ASSERT(target::Thread::bool_true_offset() + 8 == |
| target::Thread::bool_false_offset()); |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| |
| // RBX: IC data object (preserved). |
| __ movq(R13, FieldAddress(RBX, target::ICData::entries_offset())); |
| // R13: ic_data_array with check entries: classes and target functions. |
| __ leaq(R13, FieldAddress(R13, target::Array::data_offset())); |
| // R13: points directly to the first ic data array element. |
| #if defined(DEBUG) |
| // Check that first entry is for Smi/Smi. |
| Label error, ok; |
| const Immediate& imm_smi_cid = Immediate(target::ToRawSmi(kSmiCid)); |
| __ OBJ(cmp)(Address(R13, 0 * target::kCompressedWordSize), imm_smi_cid); |
| __ j(NOT_EQUAL, &error, Assembler::kNearJump); |
| __ OBJ(cmp)(Address(R13, 1 * target::kCompressedWordSize), imm_smi_cid); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Bind(&error); |
| __ Stop("Incorrect IC data"); |
| __ Bind(&ok); |
| #endif |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(num_args) * target::kCompressedWordSize; |
| // Update counter, ignore overflow. |
| __ OBJ(add)(Address(R13, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| |
| __ ret(); |
| } |
| |
| // Saves the offset of the target entry-point (from the Function) into R8. |
| // |
| // Must be the first code generated, since any code before will be skipped in |
| // the unchecked entry-point. |
| static void GenerateRecordEntryPoint(Assembler* assembler) { |
| Label done; |
| __ movq(R8, |
| Immediate(target::Function::entry_point_offset() - kHeapObjectTag)); |
| __ jmp(&done); |
| __ BindUncheckedEntryPoint(); |
| __ movq(R8, Immediate(target::Function::entry_point_offset( |
| CodeEntryKind::kUnchecked) - |
| kHeapObjectTag)); |
| __ Bind(&done); |
| } |
| |
| // Generate inline cache check for 'num_args'. |
| // RDX: receiver (if instance call) |
| // RBX: ICData |
| // RSP[0]: return address |
| // Control flow: |
| // - If receiver is null -> jump to IC miss. |
| // - If receiver is Smi -> load Smi class. |
| // - If receiver is not-Smi -> load receiver's class. |
| // - Check if 'num_args' (including receiver) match any IC data group. |
| // - Match found -> jump to target. |
| // - Match not found -> jump to IC miss. |
| void StubCodeCompiler::GenerateNArgsCheckInlineCacheStub( |
| intptr_t num_args, |
| const RuntimeEntry& handle_ic_miss, |
| Token::Kind kind, |
| Optimized optimized, |
| CallType type, |
| Exactness exactness) { |
| if (FLAG_precompiled_mode) { |
| __ Breakpoint(); |
| return; |
| } |
| |
| const bool save_entry_point = kind == Token::kILLEGAL; |
| if (save_entry_point) { |
| GenerateRecordEntryPoint(assembler); |
| } |
| |
| if (optimized == kOptimized) { |
| GenerateOptimizedUsageCounterIncrement(); |
| } else { |
| GenerateUsageCounterIncrement(/* scratch */ RCX); |
| } |
| |
| ASSERT(num_args == 1 || num_args == 2); |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == num_args. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ movl(RCX, FieldAddress(RBX, target::ICData::state_bits_offset())); |
| ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andq(RCX, Immediate(target::ICData::NumArgsTestedMask())); |
| __ cmpq(RCX, Immediate(num_args)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect stub for IC data"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| #if !defined(PRODUCT) |
| Label stepping, done_stepping; |
| if (optimized == kUnoptimized) { |
| __ Comment("Check single stepping"); |
| __ LoadIsolate(RAX); |
| __ cmpb(Address(RAX, target::Isolate::single_step_offset()), Immediate(0)); |
| __ j(NOT_EQUAL, &stepping); |
| __ Bind(&done_stepping); |
| } |
| #endif |
| |
| Label not_smi_or_overflow; |
| if (kind != Token::kILLEGAL) { |
| EmitFastSmiOp(assembler, kind, num_args, ¬_smi_or_overflow); |
| } |
| __ Bind(¬_smi_or_overflow); |
| |
| __ Comment("Extract ICData initial values and receiver cid"); |
| // RBX: IC data object (preserved). |
| __ movq(R13, FieldAddress(RBX, target::ICData::entries_offset())); |
| // R13: ic_data_array with check entries: classes and target functions. |
| __ leaq(R13, FieldAddress(R13, target::Array::data_offset())); |
| // R13: points directly to the first ic data array element. |
| |
| if (type == kInstanceCall) { |
| __ LoadTaggedClassIdMayBeSmi(RAX, RDX); |
| __ movq( |
| ARGS_DESC_REG, |
| FieldAddress(RBX, target::CallSiteData::arguments_descriptor_offset())); |
| if (num_args == 2) { |
| __ OBJ(mov)(RCX, |
| FieldAddress(ARGS_DESC_REG, |
| target::ArgumentsDescriptor::count_offset())); |
| __ movq(R9, Address(RSP, RCX, TIMES_4, -target::kWordSize)); |
| __ LoadTaggedClassIdMayBeSmi(RCX, R9); |
| } |
| } else { |
| __ movq( |
| ARGS_DESC_REG, |
| FieldAddress(RBX, target::CallSiteData::arguments_descriptor_offset())); |
| __ OBJ(mov)(RCX, FieldAddress(ARGS_DESC_REG, |
| target::ArgumentsDescriptor::count_offset())); |
| __ movq(RDX, Address(RSP, RCX, TIMES_4, 0)); |
| __ LoadTaggedClassIdMayBeSmi(RAX, RDX); |
| if (num_args == 2) { |
| __ movq(R9, Address(RSP, RCX, TIMES_4, -target::kWordSize)); |
| __ LoadTaggedClassIdMayBeSmi(RCX, R9); |
| } |
| } |
| // RAX: first argument class ID as Smi. |
| // RCX: second argument class ID as Smi. |
| // R10: args descriptor |
| |
| // Loop that checks if there is an IC data match. |
| Label loop, found, miss; |
| __ Comment("ICData loop"); |
| |
| // We unroll the generic one that is generated once more than the others. |
| const bool optimize = kind == Token::kILLEGAL; |
| const intptr_t target_offset = |
| target::ICData::TargetIndexFor(num_args) * target::kCompressedWordSize; |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(num_args) * target::kCompressedWordSize; |
| const intptr_t exactness_offset = |
| target::ICData::ExactnessIndexFor(num_args) * target::kCompressedWordSize; |
| |
| __ Bind(&loop); |
| for (int unroll = optimize ? 4 : 2; unroll >= 0; unroll--) { |
| Label update; |
| __ OBJ(mov)(R9, Address(R13, 0)); |
| __ cmpq(RAX, R9); // Class id match? |
| if (num_args == 2) { |
| __ j(NOT_EQUAL, &update); // Continue. |
| __ OBJ(mov)(R9, Address(R13, target::kCompressedWordSize)); |
| // R9: next class ID to check (smi). |
| __ cmpq(RCX, R9); // Class id match? |
| } |
| __ j(EQUAL, &found); // Break. |
| |
| __ Bind(&update); |
| |
| const intptr_t entry_size = target::ICData::TestEntryLengthFor( |
| num_args, exactness == kCheckExactness) * |
| target::kCompressedWordSize; |
| __ addq(R13, Immediate(entry_size)); // Next entry. |
| |
| __ cmpq(R9, Immediate(target::ToRawSmi(kIllegalCid))); // Done? |
| if (unroll == 0) { |
| __ j(NOT_EQUAL, &loop); |
| } else { |
| __ j(EQUAL, &miss); |
| } |
| } |
| |
| __ Bind(&miss); |
| __ Comment("IC miss"); |
| // Compute address of arguments (first read number of arguments from |
| // arguments descriptor array and then compute address on the stack). |
| __ OBJ(mov)(RAX, FieldAddress(ARGS_DESC_REG, |
| target::ArgumentsDescriptor::count_offset())); |
| __ leaq(RAX, Address(RSP, RAX, TIMES_4, 0)); // RAX is Smi. |
| __ EnterStubFrame(); |
| if (save_entry_point) { |
| __ SmiTag(R8); // Entry-point offset is not Smi. |
| __ pushq(R8); // Preserve entry point. |
| } |
| __ pushq(ARGS_DESC_REG); // Preserve arguments descriptor array. |
| __ pushq(RBX); // Preserve IC data object. |
| __ pushq(Immediate(0)); // Result slot. |
| // Push call arguments. |
| for (intptr_t i = 0; i < num_args; i++) { |
| __ movq(RCX, Address(RAX, -target::kWordSize * i)); |
| __ pushq(RCX); |
| } |
| __ pushq(RBX); // Pass IC data object. |
| __ CallRuntime(handle_ic_miss, num_args + 1); |
| // Remove the call arguments pushed earlier, including the IC data object. |
| for (intptr_t i = 0; i < num_args + 1; i++) { |
| __ popq(RAX); |
| } |
| __ popq(FUNCTION_REG); // Pop returned function object into RAX. |
| __ popq(RBX); // Restore IC data array. |
| __ popq(ARGS_DESC_REG); // Restore arguments descriptor array. |
| if (save_entry_point) { |
| __ popq(R8); // Restore entry point. |
| __ SmiUntag(R8); // Entry-point offset is not Smi. |
| } |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| Label call_target_function; |
| if (FLAG_precompiled_mode) { |
| GenerateDispatcherCode(assembler, &call_target_function); |
| } else { |
| __ jmp(&call_target_function); |
| } |
| |
| __ Bind(&found); |
| // R13: Pointer to an IC data check group. |
| Label call_target_function_through_unchecked_entry; |
| if (exactness == kCheckExactness) { |
| Label exactness_ok; |
| ASSERT(num_args == 1); |
| __ OBJ(mov)(RAX, Address(R13, exactness_offset)); |
| __ OBJ(cmp)(RAX, |
| Immediate(target::ToRawSmi( |
| StaticTypeExactnessState::HasExactSuperType().Encode()))); |
| __ j(LESS, &exactness_ok); |
| __ j(EQUAL, &call_target_function_through_unchecked_entry); |
| |
| // Check trivial exactness. |
| // Note: UntaggedICData::receivers_static_type_ is guaranteed to be not null |
| // because we only emit calls to this stub when it is not null. |
| __ movq(RCX, |
| FieldAddress(RBX, target::ICData::receivers_static_type_offset())); |
| __ LoadCompressed(RCX, FieldAddress(RCX, target::Type::arguments_offset())); |
| // RAX contains an offset to type arguments in words as a smi, |
| // hence TIMES_4. RDX is guaranteed to be non-smi because it is expected |
| // to have type arguments. |
| #if defined(DART_COMPRESSED_POINTERS) |
| __ movsxd(RAX, RAX); |
| #endif |
| __ OBJ(cmp)(RCX, |
| FieldAddress(RDX, RAX, TIMES_COMPRESSED_HALF_WORD_SIZE, 0)); |
| __ j(EQUAL, &call_target_function_through_unchecked_entry); |
| |
| // Update exactness state (not-exact anymore). |
| __ OBJ(mov)(Address(R13, exactness_offset), |
| Immediate(target::ToRawSmi( |
| StaticTypeExactnessState::NotExact().Encode()))); |
| __ Bind(&exactness_ok); |
| } |
| __ LoadCompressed(FUNCTION_REG, Address(R13, target_offset)); |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| __ Comment("Update ICData counter"); |
| // Ignore overflow. |
| __ OBJ(add)(Address(R13, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| |
| __ Comment("Call target (via specified entry point)"); |
| __ Bind(&call_target_function); |
| // RAX: Target function. |
| __ LoadCompressed( |
| CODE_REG, FieldAddress(FUNCTION_REG, target::Function::code_offset())); |
| if (save_entry_point) { |
| __ addq(R8, RAX); |
| __ jmp(Address(R8, 0)); |
| } else { |
| __ jmp(FieldAddress(FUNCTION_REG, target::Function::entry_point_offset())); |
| } |
| |
| if (exactness == kCheckExactness) { |
| __ Bind(&call_target_function_through_unchecked_entry); |
| if (FLAG_optimization_counter_threshold >= 0) { |
| __ Comment("Update ICData counter"); |
| // Ignore overflow. |
| __ addq(Address(R13, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| __ Comment("Call target (via unchecked entry point)"); |
| __ LoadCompressed(FUNCTION_REG, Address(R13, target_offset)); |
| __ LoadCompressed( |
| CODE_REG, FieldAddress(FUNCTION_REG, target::Function::code_offset())); |
| __ jmp(FieldAddress(FUNCTION_REG, target::Function::entry_point_offset( |
| CodeEntryKind::kUnchecked))); |
| } |
| |
| #if !defined(PRODUCT) |
| if (optimized == kUnoptimized) { |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| if (type == kInstanceCall) { |
| __ pushq(RDX); // Preserve receiver. |
| } |
| __ pushq(RBX); // Preserve ICData. |
| if (save_entry_point) { |
| __ SmiTag(R8); // Entry-point offset is not Smi. |
| __ pushq(R8); // Preserve entry point. |
| } |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| if (save_entry_point) { |
| __ popq(R8); // Restore entry point. |
| __ SmiUntag(R8); |
| } |
| __ popq(RBX); // Restore ICData. |
| if (type == kInstanceCall) { |
| __ popq(RDX); // Restore receiver. |
| } |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ jmp(&done_stepping); |
| } |
| #endif |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateOneArgCheckInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateOneArgCheckInlineCacheWithExactnessCheckStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kCheckExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateTwoArgsCheckInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateSmiAddInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kADD, kUnoptimized, |
| kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateSmiLessInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kLT, kUnoptimized, |
| kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateSmiEqualInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kEQ, kUnoptimized, |
| kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RDI: Function |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateOneArgOptimizedCheckInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, kOptimized, |
| kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RDI: Function |
| // RSP[0]: return address |
| void StubCodeCompiler:: |
| GenerateOneArgOptimizedCheckInlineCacheWithExactnessCheckStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, kOptimized, |
| kInstanceCall, kCheckExactness); |
| } |
| |
| // RDX: receiver |
| // RBX: ICData |
| // RDI: Function |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateTwoArgsOptimizedCheckInlineCacheStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kOptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateZeroArgsUnoptimizedStaticCallStub() { |
| GenerateRecordEntryPoint(assembler); |
| GenerateUsageCounterIncrement(/* scratch */ RCX); |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == 0. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ movl(RCX, FieldAddress(RBX, target::ICData::state_bits_offset())); |
| ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andq(RCX, Immediate(target::ICData::NumArgsTestedMask())); |
| __ cmpq(RCX, Immediate(0)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect IC data for unoptimized static call"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| #if !defined(PRODUCT) |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(RAX); |
| __ movzxb(RAX, Address(RAX, target::Isolate::single_step_offset())); |
| __ cmpq(RAX, Immediate(0)); |
| #if defined(DEBUG) |
| static auto const kJumpLength = Assembler::kFarJump; |
| #else |
| static auto const kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ j(NOT_EQUAL, &stepping, kJumpLength); |
| __ Bind(&done_stepping); |
| #endif |
| |
| // RBX: IC data object (preserved). |
| __ movq(R12, FieldAddress(RBX, target::ICData::entries_offset())); |
| // R12: ic_data_array with entries: target functions and count. |
| __ leaq(R12, FieldAddress(R12, target::Array::data_offset())); |
| // R12: points directly to the first ic data array element. |
| const intptr_t target_offset = |
| target::ICData::TargetIndexFor(0) * target::kCompressedWordSize; |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(0) * target::kCompressedWordSize; |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| // Increment count for this call, ignore overflow. |
| __ OBJ(add)(Address(R12, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| |
| // Load arguments descriptor into R10. |
| __ movq( |
| ARGS_DESC_REG, |
| FieldAddress(RBX, target::CallSiteData::arguments_descriptor_offset())); |
| |
| // Get function and call it, if possible. |
| __ LoadCompressed(FUNCTION_REG, Address(R12, target_offset)); |
| __ LoadCompressed( |
| CODE_REG, FieldAddress(FUNCTION_REG, target::Function::code_offset())); |
| |
| __ addq(R8, FUNCTION_REG); |
| __ jmp(Address(R8, 0)); |
| |
| #if !defined(PRODUCT) |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ pushq(RBX); // Preserve IC data object. |
| __ SmiTag(R8); // Entry-point is not Smi. |
| __ pushq(R8); // Preserve entry-point. |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ popq(R8); // Restore entry-point. |
| __ SmiUntag(R8); |
| __ popq(RBX); |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ jmp(&done_stepping, Assembler::kNearJump); |
| #endif |
| } |
| |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateOneArgUnoptimizedStaticCallStub() { |
| GenerateNArgsCheckInlineCacheStub(1, kStaticCallMissHandlerOneArgRuntimeEntry, |
| Token::kILLEGAL, kUnoptimized, kStaticCall, |
| kIgnoreExactness); |
| } |
| |
| // RBX: ICData |
| // RSP[0]: return address |
| void StubCodeCompiler::GenerateTwoArgsUnoptimizedStaticCallStub() { |
| GenerateNArgsCheckInlineCacheStub( |
| 2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kStaticCall, kIgnoreExactness); |
| } |
| |
| // Stub for compiling a function and jumping to the compiled code. |
| // ARGS_DESC_REG: Arguments descriptor. |
| // FUNCTION_REG: Function. |
| void StubCodeCompiler::GenerateLazyCompileStub() { |
| __ EnterStubFrame(); |
| __ pushq(ARGS_DESC_REG); // Preserve arguments descriptor array. |
| __ pushq(FUNCTION_REG); // Pass function. |
| __ CallRuntime(kCompileFunctionRuntimeEntry, 1); |
| __ popq(FUNCTION_REG); // Restore function. |
| __ popq(ARGS_DESC_REG); // Restore arguments descriptor array. |
| __ LeaveStubFrame(); |
| |
| __ LoadCompressed( |
| CODE_REG, FieldAddress(FUNCTION_REG, target::Function::code_offset())); |
| __ movq(RCX, |
| FieldAddress(FUNCTION_REG, target::Function::entry_point_offset())); |
| __ jmp(RCX); |
| } |
| |
| // RBX: Contains an ICData. |
| // TOS(0): return address (Dart code). |
| void StubCodeCompiler::GenerateICCallBreakpointStub() { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ pushq(RDX); // Preserve receiver. |
| __ pushq(RBX); // Preserve IC data. |
| __ pushq(Immediate(0)); // Result slot. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popq(CODE_REG); // Original stub. |
| __ popq(RBX); // Restore IC data. |
| __ popq(RDX); // Restore receiver. |
| __ LeaveStubFrame(); |
| |
| __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ jmp(RAX); // Jump to original stub. |
| #endif // defined(PRODUCT) |
| } |
| |
| void StubCodeCompiler::GenerateUnoptStaticCallBreakpointStub() { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ pushq(RBX); // Preserve IC data. |
| __ pushq(Immediate(0)); // Result slot. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popq(CODE_REG); // Original stub. |
| __ popq(RBX); // Restore IC data. |
| __ LeaveStubFrame(); |
| |
| __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ jmp(RAX); // Jump to original stub. |
| #endif // defined(PRODUCT) |
| } |
| |
| // TOS(0): return address (Dart code). |
| void StubCodeCompiler::GenerateRuntimeCallBreakpointStub() { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ pushq(Immediate(0)); // Result slot. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popq(CODE_REG); // Original stub. |
| __ LeaveStubFrame(); |
| |
| __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ jmp(RAX); // Jump to original stub. |
| #endif // defined(PRODUCT) |
| } |
| |
| // Called only from unoptimized code. |
| void StubCodeCompiler::GenerateDebugStepCheckStub() { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(RAX); |
| __ movzxb(RAX, Address(RAX, target::Isolate::single_step_offset())); |
| __ cmpq(RAX, Immediate(0)); |
| __ j(NOT_EQUAL, &stepping, Assembler::kNearJump); |
| __ Bind(&done_stepping); |
| __ ret(); |
| |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ LeaveStubFrame(); |
| __ jmp(&done_stepping, Assembler::kNearJump); |
| #endif // defined(PRODUCT) |
| } |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // |
| // Input registers (all preserved, from TypeTestABI struct): |
| // - kSubtypeTestCacheReg: UntaggedSubtypeTestCache |
| // - kInstanceReg: instance to test against (must be preserved). |
| // - kDstTypeReg: destination type (for n>=7). |
| // - kInstantiatorTypeArgumentsReg : instantiator type arguments (for n>=3). |
| // - kFunctionTypeArgumentsReg : function type arguments (for n>=4). |
| // Inputs from stack: |
| // - TOS + 0: return address. |
| // |
| // Outputs (from TypeTestABI struct): |
| // - kSubtypeTestCacheResultReg: the cached result, or null if not found. |
| void StubCodeCompiler::GenerateSubtypeNTestCacheStub(Assembler* assembler, |
| int n) { |
| ASSERT(n >= 1); |
| ASSERT(n <= SubtypeTestCache::kMaxInputs); |
| // If we need the parent function type arguments for a closure, we also need |
| // the delayed type arguments, so this case will never happen. |
| ASSERT(n != 5); |
| RegisterSet saved_registers; |
| |
| // Until we have the result, we use the result register to store the null |
| // value for quick access. This has the side benefit of initializing the |
| // result to null, so it only needs to be changed if found. |
| const Register kNullReg = TypeTestABI::kSubtypeTestCacheResultReg; |
| __ LoadObject(kNullReg, NullObject()); |
| |
| // Free up additional registers needed for checks in the loop. Initially |
| // define them as kNoRegister so any unexpected uses are caught. |
| Register kInstanceParentFunctionTypeArgumentsReg = kNoRegister; |
| if (n >= 5) { |
| kInstanceParentFunctionTypeArgumentsReg = PP; |
| saved_registers.AddRegister(kInstanceParentFunctionTypeArgumentsReg); |
| } |
| Register kInstanceDelayedFunctionTypeArgumentsReg = kNoRegister; |
| if (n >= 6) { |
| kInstanceDelayedFunctionTypeArgumentsReg = CODE_REG; |
| saved_registers.AddRegister(kInstanceDelayedFunctionTypeArgumentsReg); |
| } |
| |
| // We'll replace these with actual registers if possible, but fall back to |
| // the stack if register pressure is too great. The last two values are |
| // used in every loop iteration, and so are more important to put in |
| // registers if possible, whereas the first is used only when we go off |
| // the end of the backing array (usually at most once per check). |
| Register kCacheContentsSizeReg = kNoRegister; |
| if (n < 5) { |
| // Use the register we would have used for the parent function type args. |
| kCacheContentsSizeReg = PP; |
| saved_registers.AddRegister(kCacheContentsSizeReg); |
| } |
| Register kProbeDistanceReg = kNoRegister; |
| if (n < 6) { |
| // Use the register we would have used for the delayed type args. |
| kProbeDistanceReg = CODE_REG; |
| saved_registers.AddRegister(kProbeDistanceReg); |
| } |
| Register kCacheEntryEndReg = kNoRegister; |
|