| // Copyright (c) 2021, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" // Needed here to get TARGET_ARCH_RISCV. |
| #if defined(TARGET_ARCH_RISCV32) || defined(TARGET_ARCH_RISCV64) |
| |
| #define SHOULD_NOT_INCLUDE_RUNTIME |
| |
| #include "vm/class_id.h" |
| #include "vm/compiler/asm_intrinsifier.h" |
| #include "vm/compiler/assembler/assembler.h" |
| |
| namespace dart { |
| namespace compiler { |
| |
| // When entering intrinsics code: |
| // PP: Caller's ObjectPool in JIT / global ObjectPool in AOT |
| // CODE_REG: Callee's Code in JIT / not passed in AOT |
| // S4: Arguments descriptor |
| // RA: Return address |
| // The S4 and CODE_REG registers can be destroyed only if there is no slow-path, |
| // i.e. if the intrinsified method always executes a return. |
| // The FP register should not be modified, because it is used by the profiler. |
| // The PP and THR registers (see constants_riscv.h) must be preserved. |
| |
| #define __ assembler-> |
| |
| // Loads args from stack into A0 and A1 |
| // Tests if they are smis, jumps to label not_smi if not. |
| static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { |
| __ lx(A0, Address(SP, +1 * target::kWordSize)); |
| __ lx(A1, Address(SP, +0 * target::kWordSize)); |
| __ or_(TMP, A0, A1); |
| __ BranchIfNotSmi(TMP, not_smi, Assembler::kNearJump); |
| } |
| |
| void AsmIntrinsifier::Integer_shl(Assembler* assembler, Label* normal_ir_body) { |
| const Register left = A0; |
| const Register right = A1; |
| const Register result = A0; |
| |
| TestBothArgumentsSmis(assembler, normal_ir_body); |
| __ CompareImmediate(right, target::ToRawSmi(target::kSmiBits), |
| compiler::kObjectBytes); |
| __ BranchIf(CS, normal_ir_body, Assembler::kNearJump); |
| |
| __ SmiUntag(right); |
| __ sll(TMP, left, right); |
| __ sra(TMP2, TMP, right); |
| __ bne(TMP2, left, normal_ir_body, Assembler::kNearJump); |
| __ mv(result, TMP); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| static void CompareIntegers(Assembler* assembler, |
| Label* normal_ir_body, |
| Condition true_condition) { |
| Label true_label; |
| TestBothArgumentsSmis(assembler, normal_ir_body); |
| __ CompareObjectRegisters(A0, A1); |
| __ BranchIf(true_condition, &true_label, Assembler::kNearJump); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Integer_lessThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| CompareIntegers(assembler, normal_ir_body, LT); |
| } |
| |
| void AsmIntrinsifier::Integer_greaterThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| CompareIntegers(assembler, normal_ir_body, GT); |
| } |
| |
| void AsmIntrinsifier::Integer_lessEqualThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| CompareIntegers(assembler, normal_ir_body, LE); |
| } |
| |
| void AsmIntrinsifier::Integer_greaterEqualThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| CompareIntegers(assembler, normal_ir_body, GE); |
| } |
| |
| // This is called for Smi and Mint receivers. The right argument |
| // can be Smi, Mint or double. |
| void AsmIntrinsifier::Integer_equalToInteger(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label true_label, check_for_mint; |
| // For integer receiver '===' check first. |
| __ lx(A0, Address(SP, 1 * target::kWordSize)); |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); |
| __ CompareObjectRegisters(A0, A1); |
| __ BranchIf(EQ, &true_label, Assembler::kNearJump); |
| |
| __ or_(TMP, A0, A1); |
| __ BranchIfNotSmi(TMP, &check_for_mint, Assembler::kNearJump); |
| // If R0 or R1 is not a smi do Mint checks. |
| |
| // Both arguments are smi, '===' is good enough. |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| // At least one of the arguments was not Smi. |
| Label receiver_not_smi; |
| __ Bind(&check_for_mint); |
| |
| __ BranchIfNotSmi(A0, &receiver_not_smi, |
| Assembler::kNearJump); // Check receiver. |
| |
| // Left (receiver) is Smi, return false if right is not Double. |
| // Note that an instance of Mint never contains a value that can be |
| // represented by Smi. |
| |
| __ CompareClassId(A1, kDoubleCid, TMP); |
| __ BranchIf(EQ, normal_ir_body, Assembler::kNearJump); |
| __ LoadObject(A0, |
| CastHandle<Object>(FalseObject())); // Smi == Mint -> false. |
| __ ret(); |
| |
| __ Bind(&receiver_not_smi); |
| // A0: receiver. |
| |
| __ CompareClassId(A0, kMintCid, TMP); |
| __ BranchIf(NE, normal_ir_body, Assembler::kNearJump); |
| // Receiver is Mint, return false if right is Smi. |
| __ BranchIfNotSmi(A1, normal_ir_body, Assembler::kNearJump); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| // TODO(srdjan): Implement Mint == Mint comparison. |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Integer_equal(Assembler* assembler, |
| Label* normal_ir_body) { |
| Integer_equalToInteger(assembler, normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Smi_bitLength(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ lx(A0, Address(SP, 0 * target::kWordSize)); |
| __ SmiUntag(A0); |
| |
| // XOR with sign bit to complement bits if value is negative. |
| __ srai(A1, A0, XLEN - 1); |
| __ xor_(A0, A0, A1); |
| |
| __ CountLeadingZeroes(A0, A0); |
| |
| __ li(TMP, XLEN); |
| __ sub(A0, TMP, A0); |
| __ SmiTag(A0); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_lsh(Assembler* assembler, Label* normal_ir_body) { |
| // static void _lsh(Uint32List src_digits, int src_used, |
| // int shift_amount, |
| // Uint32List result_digits) |
| |
| Label loop, done; |
| __ lx(T0, Address(SP, 3 * target::kWordSize)); // src_digits |
| __ lx(T1, Address(SP, 2 * target::kWordSize)); // src_used |
| __ lx(T2, Address(SP, 1 * target::kWordSize)); // shift_amount |
| __ lx(T3, Address(SP, 0 * target::kWordSize)); // result_digits |
| |
| #if XLEN == 32 |
| // 1 word = 1 digit |
| __ SmiUntag(T1); |
| #else |
| // 1 word = 2 digits |
| __ addi(T1, T1, target::ToRawSmi(1)); // Round up to even |
| __ srai(T1, T1, kSmiTagSize + 1); |
| #endif |
| __ SmiUntag(T2); |
| |
| __ srai(T4, T2, target::kBitsPerWordLog2); // T4 = word shift |
| __ andi(T5, T2, target::kBitsPerWord - 1); // T5 = bit shift |
| __ li(T6, target::kBitsPerWord); |
| __ sub(T6, T6, T5); // T6 = carry bit shift |
| |
| __ slli(TMP, T1, target::kWordSizeLog2); |
| __ add(T0, T0, TMP); |
| __ subi(T0, T0, target::kWordSize); // T0 = &src_digits[src_used - 1] |
| |
| __ add(TMP, T1, T4); |
| __ slli(TMP, TMP, target::kWordSizeLog2); |
| __ add(T3, T3, TMP); // T3 = &dst_digits[src_used + word_shift] |
| |
| __ li(T2, 0); // carry |
| |
| __ Bind(&loop); |
| __ beqz(T1, &done, Assembler::kNearJump); |
| __ lx(TMP, FieldAddress(T0, target::TypedData::payload_offset())); |
| __ srl(TMP2, TMP, T6); |
| __ or_(TMP2, TMP2, T2); |
| __ sx(TMP2, FieldAddress(T3, target::TypedData::payload_offset())); |
| __ sll(T2, TMP, T5); |
| __ subi(T0, T0, target::kWordSize); |
| __ subi(T3, T3, target::kWordSize); |
| __ subi(T1, T1, 1); |
| __ j(&loop); |
| |
| __ Bind(&done); |
| __ sx(T2, FieldAddress(T3, target::TypedData::payload_offset())); |
| __ LoadObject(A0, NullObject()); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_rsh(Assembler* assembler, Label* normal_ir_body) { |
| // static void _rsh(Uint32List src_digits, int src_used, |
| // int shift_amount, |
| // Uint32List result_digits) |
| |
| Label loop, done; |
| __ lx(T0, Address(SP, 3 * target::kWordSize)); // src_digits |
| __ lx(T1, Address(SP, 2 * target::kWordSize)); // src_used |
| __ lx(T2, Address(SP, 1 * target::kWordSize)); // shift_amount |
| __ lx(T3, Address(SP, 0 * target::kWordSize)); // result_digits |
| |
| #if XLEN == 32 |
| // 1 word = 1 digit |
| __ SmiUntag(T1); |
| #else |
| // 1 word = 2 digits |
| __ addi(T1, T1, target::ToRawSmi(1)); // Round up to even |
| __ srai(T1, T1, kSmiTagSize + 1); |
| #endif |
| __ SmiUntag(T2); |
| |
| __ srai(T4, T2, target::kBitsPerWordLog2); // T4 = word shift |
| __ andi(T5, T2, target::kBitsPerWord - 1); // T5 = bit shift |
| __ li(T6, target::kBitsPerWord); |
| __ sub(T6, T6, T5); // T6 = carry bit shift |
| __ sub(T1, T1, T4); // T1 = words to process |
| |
| __ slli(TMP, T4, target::kWordSizeLog2); |
| __ add(T0, T0, TMP); // T0 = &src_digits[word_shift] |
| |
| // T2 = carry |
| __ lx(T2, FieldAddress(T0, target::TypedData::payload_offset())); |
| __ srl(T2, T2, T5); |
| __ addi(T0, T0, target::kWordSize); |
| __ subi(T1, T1, 1); |
| |
| __ Bind(&loop); |
| __ beqz(T1, &done, Assembler::kNearJump); |
| __ lx(TMP, FieldAddress(T0, target::TypedData::payload_offset())); |
| __ sll(TMP2, TMP, T6); |
| __ or_(TMP2, TMP2, T2); |
| __ sx(TMP2, FieldAddress(T3, target::TypedData::payload_offset())); |
| __ srl(T2, TMP, T5); |
| __ addi(T0, T0, target::kWordSize); |
| __ addi(T3, T3, target::kWordSize); |
| __ subi(T1, T1, 1); |
| __ j(&loop); |
| |
| __ Bind(&done); |
| __ sx(T2, FieldAddress(T3, target::TypedData::payload_offset())); |
| __ LoadObject(A0, NullObject()); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_absAdd(Assembler* assembler, |
| Label* normal_ir_body) { |
| // static void _absAdd(Uint32List longer_digits, int longer_used, |
| // Uint32List shorter_digits, int shorter_used, |
| // Uint32List result_digits) |
| |
| Label first_loop, second_loop, last_carry, done; |
| __ lx(T0, Address(SP, 4 * target::kWordSize)); // longer_digits |
| __ lx(T1, Address(SP, 3 * target::kWordSize)); // longer_used |
| __ lx(T2, Address(SP, 2 * target::kWordSize)); // shorter_digits |
| __ lx(T3, Address(SP, 1 * target::kWordSize)); // shorter_used |
| __ lx(T4, Address(SP, 0 * target::kWordSize)); // result_digits |
| |
| #if XLEN == 32 |
| // 1 word = 1 digit |
| __ SmiUntag(T1); |
| __ SmiUntag(T3); |
| #else |
| // 1 word = 2 digits |
| __ addi(T1, T1, target::ToRawSmi(1)); // Round up to even |
| __ srai(T1, T1, kSmiTagSize + 1); |
| __ addi(T3, T3, target::ToRawSmi(1)); // Round up to even |
| __ srai(T3, T3, kSmiTagSize + 1); |
| #endif |
| __ li(T5, 0); // Carry |
| |
| __ Bind(&first_loop); |
| __ beqz(T3, &second_loop); |
| __ lx(A0, FieldAddress(T0, target::TypedData::payload_offset())); |
| __ lx(A1, FieldAddress(T2, target::TypedData::payload_offset())); |
| __ add(A0, A0, A1); |
| __ sltu(TMP, A0, A1); // Carry |
| __ add(A0, A0, T5); |
| __ sltu(TMP2, A0, T5); // Carry |
| __ add(T5, TMP, TMP2); |
| __ sx(A0, FieldAddress(T4, target::TypedData::payload_offset())); |
| __ addi(T0, T0, target::kWordSize); |
| __ addi(T2, T2, target::kWordSize); |
| __ addi(T4, T4, target::kWordSize); |
| __ subi(T1, T1, 1); |
| __ subi(T3, T3, 1); |
| __ j(&first_loop); |
| |
| __ Bind(&second_loop); |
| __ beqz(T1, &last_carry); |
| __ lx(A0, FieldAddress(T0, target::TypedData::payload_offset())); |
| __ add(TMP, A0, T5); |
| __ sltu(T5, TMP, A0); // Carry |
| __ sx(TMP, FieldAddress(T4, target::TypedData::payload_offset())); |
| __ addi(T0, T0, target::kWordSize); |
| __ addi(T4, T4, target::kWordSize); |
| __ subi(T1, T1, 1); |
| __ j(&second_loop); |
| |
| __ Bind(&last_carry); |
| __ beqz(T5, &done); |
| __ sx(T5, FieldAddress(T4, target::TypedData::payload_offset())); |
| |
| __ Bind(&done); |
| __ LoadObject(A0, NullObject()); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_absSub(Assembler* assembler, |
| Label* normal_ir_body) { |
| // static void _absSub(Uint32List longer_digits, int longer_used, |
| // Uint32List shorter_digits, int shorter_used, |
| // Uint32List result_digits) |
| Label first_loop, second_loop, last_borrow, done; |
| __ lx(T0, Address(SP, 4 * target::kWordSize)); // longer_digits |
| __ lx(T1, Address(SP, 3 * target::kWordSize)); // longer_used |
| __ lx(T2, Address(SP, 2 * target::kWordSize)); // shorter_digits |
| __ lx(T3, Address(SP, 1 * target::kWordSize)); // shorter_used |
| __ lx(T4, Address(SP, 0 * target::kWordSize)); // result_digits |
| |
| #if XLEN == 32 |
| // 1 word = 1 digit |
| __ SmiUntag(T1); |
| __ SmiUntag(T3); |
| #else |
| // 1 word = 2 digits |
| __ addi(T1, T1, target::ToRawSmi(1)); // Round up to even |
| __ srai(T1, T1, kSmiTagSize + 1); |
| __ addi(T3, T3, target::ToRawSmi(1)); // Round up to even |
| __ srai(T3, T3, kSmiTagSize + 1); |
| #endif |
| __ li(T5, 0); // Borrow |
| |
| __ Bind(&first_loop); |
| __ beqz(T3, &second_loop); |
| __ lx(A0, FieldAddress(T0, target::TypedData::payload_offset())); |
| __ lx(A1, FieldAddress(T2, target::TypedData::payload_offset())); |
| __ sltu(TMP, A0, A1); // Borrow |
| __ sub(A0, A0, A1); |
| __ sltu(TMP2, A0, T5); // Borrow |
| __ sub(A0, A0, T5); |
| __ add(T5, TMP, TMP2); |
| __ sx(A0, FieldAddress(T4, target::TypedData::payload_offset())); |
| __ addi(T0, T0, target::kWordSize); |
| __ addi(T2, T2, target::kWordSize); |
| __ addi(T4, T4, target::kWordSize); |
| __ subi(T1, T1, 1); |
| __ subi(T3, T3, 1); |
| __ j(&first_loop); |
| |
| __ Bind(&second_loop); |
| __ beqz(T1, &last_borrow); |
| __ lx(A0, FieldAddress(T0, target::TypedData::payload_offset())); |
| __ sltu(TMP, A0, T5); // Borrow |
| __ sub(A0, A0, T5); |
| __ mv(T5, TMP); |
| __ sx(A0, FieldAddress(T4, target::TypedData::payload_offset())); |
| __ addi(T0, T0, target::kWordSize); |
| __ addi(T4, T4, target::kWordSize); |
| __ subi(T1, T1, 1); |
| __ j(&second_loop); |
| |
| __ Bind(&last_borrow); |
| __ beqz(T5, &done); |
| __ neg(T5, T5); |
| __ sx(T5, FieldAddress(T4, target::TypedData::payload_offset())); |
| |
| __ Bind(&done); |
| __ LoadObject(A0, NullObject()); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_mulAdd(Assembler* assembler, |
| Label* normal_ir_body) { |
| // Pseudo code: |
| // static int _mulAdd(Uint32List x_digits, int xi, |
| // Uint32List m_digits, int i, |
| // Uint32List a_digits, int j, int n) { |
| // uint64_t x = x_digits[xi >> 1 .. (xi >> 1) + 1]; // xi is Smi and even. |
| // if (x == 0 || n == 0) { |
| // return 2; |
| // } |
| // uint64_t* mip = &m_digits[i >> 1]; // i is Smi and even. |
| // uint64_t* ajp = &a_digits[j >> 1]; // j is Smi and even. |
| // uint64_t c = 0; |
| // SmiUntag(n); // n is Smi and even. |
| // n = (n + 1)/2; // Number of pairs to process. |
| // do { |
| // uint64_t mi = *mip++; |
| // uint64_t aj = *ajp; |
| // uint128_t t = x*mi + aj + c; // 64-bit * 64-bit -> 128-bit. |
| // *ajp++ = low64(t); |
| // c = high64(t); |
| // } while (--n > 0); |
| // while (c != 0) { |
| // uint128_t t = *ajp + c; |
| // *ajp++ = low64(t); |
| // c = high64(t); // c == 0 or 1. |
| // } |
| // return 2; |
| // } |
| |
| Label done; |
| __ lx(T0, Address(SP, 6 * target::kWordSize)); // x_digits |
| __ lx(T1, Address(SP, 5 * target::kWordSize)); // xi |
| __ lx(T2, Address(SP, 4 * target::kWordSize)); // m_digits |
| __ lx(T3, Address(SP, 3 * target::kWordSize)); // i |
| __ lx(T4, Address(SP, 2 * target::kWordSize)); // a_digits |
| __ lx(T5, Address(SP, 1 * target::kWordSize)); // j |
| __ lx(T6, Address(SP, 0 * target::kWordSize)); // n |
| |
| // R3 = x, no_op if x == 0 |
| // T0 = xi as Smi, R1 = x_digits. |
| __ slli(T1, T1, 1); |
| __ add(T0, T0, T1); |
| __ lx(T0, FieldAddress(T0, target::TypedData::payload_offset())); |
| __ beqz(T0, &done); |
| |
| // R6 = (SmiUntag(n) + 1)/2, no_op if n == 0 |
| #if XLEN == 32 |
| // 1 word = 1 digit |
| __ SmiUntag(T6); |
| #else |
| // 1 word = 2 digits |
| __ addi(T6, T6, target::ToRawSmi(1)); |
| __ srai(T6, T6, 2); |
| #endif |
| __ beqz(T6, &done); |
| |
| // R4 = mip = &m_digits[i >> 1] |
| // R0 = i as Smi, R1 = m_digits. |
| __ slli(T3, T3, 1); |
| __ add(T2, T2, T3); |
| |
| // R5 = ajp = &a_digits[j >> 1] |
| // R0 = j as Smi, R1 = a_digits. |
| __ slli(T5, T5, 1); |
| __ add(T4, T4, T5); |
| |
| // T1 = c = 0 |
| __ li(T1, 0); |
| |
| Label muladd_loop; |
| __ Bind(&muladd_loop); |
| // x: T0 |
| // mip: T2 |
| // ajp: T4 |
| // c: T1 |
| // n: T6 |
| // t: A7:A6 (not live at loop entry) |
| |
| // uint64_t mi = *mip++ |
| __ lx(A0, FieldAddress(T2, target::TypedData::payload_offset())); |
| __ addi(T2, T2, target::kWordSize); |
| |
| // uint64_t aj = *ajp |
| __ lx(A1, FieldAddress(T4, target::TypedData::payload_offset())); |
| |
| // uint128_t t = x*mi + aj + c |
| // Macro-op fusion: when both products are required, the recommended sequence |
| // is high first. |
| __ mulhu(A7, A0, T0); // A7 = high64(A0*T0), t = A7:A6 = x*mi. |
| __ mul(A6, A0, T0); // A6 = low64(A0*T0). |
| |
| __ add(A6, A6, A1); |
| __ sltu(TMP, A6, A1); // Carry |
| __ add(A7, A7, TMP); // t += aj |
| |
| __ add(A6, A6, T1); |
| __ sltu(TMP, A6, T1); // Carry |
| __ add(A7, A7, TMP); // t += c |
| |
| __ mv(T1, A7); // c = high64(t) |
| |
| // *ajp++ = low64(t) = R0 |
| __ sx(A6, FieldAddress(T4, target::TypedData::payload_offset())); |
| __ addi(T4, T4, target::kWordSize); |
| |
| // while (--n > 0) |
| __ subi(T6, T6, 1); // --n |
| __ bnez(T6, &muladd_loop); |
| |
| __ beqz(T1, &done); |
| |
| // *ajp++ += c |
| __ lx(A0, FieldAddress(T4, target::TypedData::payload_offset())); |
| __ add(A0, A0, T1); |
| __ sltu(T1, A0, T1); // Carry |
| __ sx(A0, FieldAddress(T4, target::TypedData::payload_offset())); |
| __ addi(T4, T4, target::kWordSize); |
| __ beqz(T1, &done); |
| |
| Label propagate_carry_loop; |
| __ Bind(&propagate_carry_loop); |
| __ lx(A0, FieldAddress(T4, target::TypedData::payload_offset())); |
| __ add(A0, A0, T1); |
| __ sltu(T1, A0, T1); // Carry |
| __ sx(A0, FieldAddress(T4, target::TypedData::payload_offset())); |
| __ addi(T4, T4, target::kWordSize); |
| __ bnez(T1, &propagate_carry_loop); |
| |
| __ Bind(&done); |
| // Result = One or two digits processed. |
| __ li(A0, target::ToRawSmi(target::kWordSize / kBytesPerBigIntDigit)); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_sqrAdd(Assembler* assembler, |
| Label* normal_ir_body) { |
| // Pseudo code: |
| // static int _sqrAdd(Uint32List x_digits, int i, |
| // Uint32List a_digits, int used) { |
| // uint64_t* xip = &x_digits[i >> 1]; // i is Smi and even. |
| // uint64_t x = *xip++; |
| // if (x == 0) return 2; |
| // uint64_t* ajp = &a_digits[i]; // j == 2*i, i is Smi. |
| // uint64_t aj = *ajp; |
| // uint128_t t = x*x + aj; |
| // *ajp++ = low64(t); |
| // uint128_t c = high64(t); |
| // int n = ((used - i + 2) >> 2) - 1; // used and i are Smi. n: num pairs. |
| // while (--n >= 0) { |
| // uint64_t xi = *xip++; |
| // uint64_t aj = *ajp; |
| // uint192_t t = 2*x*xi + aj + c; // 2-bit * 64-bit * 64-bit -> 129-bit. |
| // *ajp++ = low64(t); |
| // c = high128(t); // 65-bit. |
| // } |
| // uint64_t aj = *ajp; |
| // uint128_t t = aj + c; // 64-bit + 65-bit -> 66-bit. |
| // *ajp++ = low64(t); |
| // *ajp = high64(t); |
| // return 2; |
| // } |
| |
| // T2 = xip = &x_digits[i >> 1] |
| // T0 = i as Smi, T1 = x_digits |
| __ lx(T0, Address(SP, 2 * target::kWordSize)); |
| __ lx(T1, Address(SP, 3 * target::kWordSize)); |
| __ slli(TMP, T0, 1); |
| __ add(T1, T1, TMP); |
| __ addi(T2, T1, target::TypedData::payload_offset() - kHeapObjectTag); |
| |
| // T1 = x = *xip++, return if x == 0 |
| Label x_zero; |
| __ lx(T1, Address(T2, 0)); |
| __ addi(T2, T2, target::kWordSize); |
| __ beqz(T1, &x_zero); |
| |
| // T3 = ajp = &a_digits[i] |
| __ lx(A1, Address(SP, 1 * target::kWordSize)); // a_digits |
| __ slli(TMP, T0, 2); |
| __ add(A1, A1, TMP); // j == 2*i, i is Smi. |
| __ addi(T3, A1, target::TypedData::payload_offset() - kHeapObjectTag); |
| |
| // T4:A1 = t = x*x + *ajp |
| __ lx(A0, Address(T3, 0)); |
| __ mul(A1, T1, T1); // A1 = low64(T1*T1). |
| __ mulhu(T4, T1, T1); // T4 = high64(T1*T1). |
| __ add(A1, A1, A0); // T4:A1 += *ajp. |
| __ sltu(TMP, A1, A0); |
| __ add(T4, T4, TMP); // T4 = low64(c) = high64(t). |
| __ li(T5, 0); // T5 = high64(c) = 0. |
| |
| // *ajp++ = low64(t) = A1 |
| __ sx(A1, Address(T3, 0)); |
| __ addi(T3, T3, target::kWordSize); |
| |
| __ lx(A0, Address(SP, 0 * target::kWordSize)); // used is Smi |
| #if XLEN == 32 |
| // int n = used - i - 2; |
| __ sub(T6, A0, T0); |
| __ SmiUntag(T6); |
| __ subi(T6, T6, 2); |
| #else |
| // int n = (used - i + 1)/2 - 1 |
| __ sub(T6, A0, T0); |
| __ addi(T6, T6, 2); |
| __ srai(T6, T6, 2); |
| __ subi(T6, T6, 2); |
| #endif |
| |
| Label loop, done; |
| __ bltz(T6, &done); // while (--n >= 0) |
| |
| __ Bind(&loop); |
| // x: T1 |
| // xip: T2 |
| // ajp: T3 |
| // c: T5:T4 |
| // t: T0:A1:A0 (not live at loop entry) |
| // n: T6 |
| |
| // uint64_t xi = *xip++ |
| __ lx(T0, Address(T2, 0)); |
| __ addi(T2, T2, target::kWordSize); |
| |
| // uint192_t t = T0:A1:A0 = 2*x*xi + aj + c |
| __ mul(A0, T0, T1); // A0 = low64(T0*T1) = low64(x*xi). |
| __ mulhu(A1, T0, T1); // A1 = high64(T0*T1) = high64(x*xi). |
| |
| __ mv(TMP, A0); |
| __ add(A0, A0, A0); |
| __ sltu(TMP, A0, TMP); |
| __ mv(TMP2, A1); |
| __ add(A1, A1, A1); |
| __ sltu(TMP2, A1, TMP2); |
| __ add(A1, A1, TMP); |
| __ sltu(TMP, A1, TMP); |
| __ add(T0, TMP, TMP2); // T0:A1:A0 = A1:A0 + A1:A0 = 2*x*xi. |
| |
| __ add(A0, A0, T4); |
| __ sltu(TMP, A0, T4); |
| __ add(A1, A1, T5); |
| __ sltu(TMP2, A1, T5); |
| __ add(A1, A1, TMP); |
| __ sltu(TMP, A1, TMP); |
| __ add(T0, T0, TMP); |
| __ add(T0, T0, TMP2); // T0:A1:A0 += c. |
| |
| __ lx(T5, Address(T3, 0)); // T5 = aj = *ajp. |
| __ add(A0, A0, T5); |
| __ sltu(TMP, A0, T5); |
| __ add(T4, A1, TMP); |
| __ sltu(TMP, T4, A1); |
| __ add(T5, T0, TMP); // T5:T4:A0 = 2*x*xi + aj + c. |
| |
| // *ajp++ = low64(t) = A0 |
| __ sx(A0, Address(T3, 0)); |
| __ addi(T3, T3, target::kWordSize); |
| |
| // while (--n >= 0) |
| __ subi(T6, T6, 1); // --n |
| __ bgez(T6, &loop); |
| |
| __ Bind(&done); |
| // uint64_t aj = *ajp |
| __ lx(A0, Address(T3, 0)); |
| |
| // uint128_t t = aj + c |
| __ add(T4, T4, A0); |
| __ sltu(TMP, T4, A0); |
| __ add(T5, T5, TMP); |
| |
| // *ajp = low64(t) = T4 |
| // *(ajp + 1) = high64(t) = T5 |
| __ sx(T4, Address(T3, 0)); |
| __ sx(T5, Address(T3, target::kWordSize)); |
| |
| __ Bind(&x_zero); |
| // Result = One or two digits processed. |
| __ li(A0, target::ToRawSmi(target::kWordSize / kBytesPerBigIntDigit)); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_estimateQuotientDigit(Assembler* assembler, |
| Label* normal_ir_body) { |
| // There is no 128-bit by 64-bit division instruction on arm64, so we use two |
| // 64-bit by 32-bit divisions and two 64-bit by 64-bit multiplications to |
| // adjust the two 32-bit digits of the estimated quotient. |
| // |
| // Pseudo code: |
| // static int _estQuotientDigit(Uint32List args, Uint32List digits, int i) { |
| // uint64_t yt = args[_YT_LO .. _YT]; // _YT_LO == 0, _YT == 1. |
| // uint64_t* dp = &digits[(i >> 1) - 1]; // i is Smi. |
| // uint64_t dh = dp[0]; // dh == digits[(i >> 1) - 1 .. i >> 1]. |
| // uint64_t qd; |
| // if (dh == yt) { |
| // qd = (DIGIT_MASK << 32) | DIGIT_MASK; |
| // } else { |
| // dl = dp[-1]; // dl == digits[(i >> 1) - 3 .. (i >> 1) - 2]. |
| // // We cannot calculate qd = dh:dl / yt, so ... |
| // uint64_t yth = yt >> 32; |
| // uint64_t qh = dh / yth; |
| // uint128_t ph:pl = yt*qh; |
| // uint64_t tl = (dh << 32)|(dl >> 32); |
| // uint64_t th = dh >> 32; |
| // while ((ph > th) || ((ph == th) && (pl > tl))) { |
| // if (pl < yt) --ph; |
| // pl -= yt; |
| // --qh; |
| // } |
| // qd = qh << 32; |
| // tl = (pl << 32); |
| // th = (ph << 32)|(pl >> 32); |
| // if (tl > dl) ++th; |
| // dl -= tl; |
| // dh -= th; |
| // uint64_t ql = ((dh << 32)|(dl >> 32)) / yth; |
| // ph:pl = yt*ql; |
| // while ((ph > dh) || ((ph == dh) && (pl > dl))) { |
| // if (pl < yt) --ph; |
| // pl -= yt; |
| // --ql; |
| // } |
| // qd |= ql; |
| // } |
| // args[_QD .. _QD_HI] = qd; // _QD == 2, _QD_HI == 3. |
| // return 2; |
| // } |
| |
| __ lx(T4, Address(SP, 2 * target::kWordSize)); // args |
| |
| #if XLEN == 32 |
| // ECX = yt = args[1] |
| __ lx(T3, FieldAddress(T4, target::TypedData::payload_offset() + |
| kBytesPerBigIntDigit)); |
| #else |
| // T3 = yt = args[0..1] |
| __ lx(T3, FieldAddress(T4, target::TypedData::payload_offset())); |
| #endif |
| |
| __ lx(A0, Address(SP, 0 * target::kWordSize)); // A0 = i as Smi |
| __ lx(T1, Address(SP, 1 * target::kWordSize)); // T1 = digits |
| __ slli(TMP, A0, 1); |
| __ add(T1, T1, TMP); |
| #if XLEN == 32 |
| // EBX = dp = &digits[i >> 1] |
| __ lx(T2, FieldAddress(T1, target::TypedData::payload_offset())); |
| #else |
| // T2 = dh = digits[(i >> 1) - 1 .. i >> 1] |
| __ lx(T2, FieldAddress(T1, target::TypedData::payload_offset() - |
| kBytesPerBigIntDigit)); |
| #endif |
| |
| // A0 = qd = (DIGIT_MASK << 32) | DIGIT_MASK = -1 |
| __ li(A0, -1); |
| |
| // Return qd if dh == yt |
| Label return_qd; |
| __ beq(T2, T3, &return_qd); |
| |
| #if XLEN == 32 |
| // EAX = dl = dp[-1] |
| __ lx(T1, FieldAddress(T1, target::TypedData::payload_offset() - |
| kBytesPerBigIntDigit)); |
| #else |
| // T1 = dl = digits[(i >> 1) - 3 .. (i >> 1) - 2] |
| __ lx(T1, FieldAddress(T1, target::TypedData::payload_offset() - |
| 3 * kBytesPerBigIntDigit)); |
| #endif |
| |
| // T5 = yth = yt >> 32 |
| __ srli(T5, T3, target::kWordSize * 4); |
| |
| // T6 = qh = dh / yth |
| __ divu(T6, T2, T5); |
| |
| // A6:A1 = ph:pl = yt*qh |
| __ mulhu(A6, T3, T6); |
| __ mul(A1, T3, T6); |
| |
| // A7 = tl = (dh << 32)|(dl >> 32) |
| __ slli(A7, T2, target::kWordSize * 4); |
| __ srli(TMP, T1, target::kWordSize * 4); |
| __ or_(A7, A7, TMP); |
| |
| // S3 = th = dh >> 32 |
| __ srli(S3, T2, target::kWordSize * 4); |
| |
| // while ((ph > th) || ((ph == th) && (pl > tl))) |
| Label qh_adj_loop, qh_adj, qh_ok; |
| __ Bind(&qh_adj_loop); |
| __ bgtu(A6, S3, &qh_adj); |
| __ bne(A6, S3, &qh_ok); |
| __ bleu(A1, A7, &qh_ok); |
| |
| __ Bind(&qh_adj); |
| // if (pl < yt) --ph |
| __ sltu(TMP, A1, T3); |
| __ sub(A6, A6, TMP); |
| |
| // pl -= yt |
| __ sub(A1, A1, T3); |
| |
| // --qh |
| __ subi(T6, T6, 1); |
| |
| // Continue while loop. |
| __ j(&qh_adj_loop); |
| |
| __ Bind(&qh_ok); |
| // A0 = qd = qh << 32 |
| __ slli(A0, T6, target::kWordSize * 4); |
| |
| // tl = (pl << 32) |
| __ slli(A7, A1, target::kWordSize * 4); |
| |
| // th = (ph << 32)|(pl >> 32); |
| __ slli(S3, A6, target::kWordSize * 4); |
| __ srli(TMP, A1, target::kWordSize * 4); |
| __ or_(S3, S3, TMP); |
| |
| // if (tl > dl) ++th |
| __ sltu(TMP, T1, A7); |
| __ add(S3, S3, TMP); |
| |
| // dl -= tl |
| __ sub(T1, T1, A7); |
| |
| // dh -= th |
| __ sub(T2, T2, S3); |
| |
| // T6 = ql = ((dh << 32)|(dl >> 32)) / yth |
| __ slli(T6, T2, target::kWordSize * 4); |
| __ srli(TMP, T1, target::kWordSize * 4); |
| __ or_(T6, T6, TMP); |
| __ divu(T6, T6, T5); |
| |
| // A6:A1 = ph:pl = yt*ql |
| __ mulhu(A6, T3, T6); |
| __ mul(A1, T3, T6); |
| |
| // while ((ph > dh) || ((ph == dh) && (pl > dl))) { |
| Label ql_adj_loop, ql_adj, ql_ok; |
| __ Bind(&ql_adj_loop); |
| __ bgtu(A6, T2, &ql_adj); |
| __ bne(A6, T2, &ql_ok); |
| __ bleu(A1, T1, &ql_ok); |
| |
| __ Bind(&ql_adj); |
| // if (pl < yt) --ph |
| __ sltu(TMP, A1, T3); |
| __ sub(A6, A6, TMP); |
| |
| // pl -= yt |
| __ sub(A1, A1, T3); |
| |
| // --ql |
| __ subi(T6, T6, 1); |
| |
| // Continue while loop. |
| __ j(&ql_adj_loop); |
| |
| __ Bind(&ql_ok); |
| // qd |= ql; |
| __ or_(A0, A0, T6); |
| |
| __ Bind(&return_qd); |
| // args[2..3] = qd |
| __ sx(A0, FieldAddress(T4, target::TypedData::payload_offset() + |
| 2 * kBytesPerBigIntDigit)); |
| |
| // Result = One or two digits processed. |
| __ li(A0, target::ToRawSmi(target::kWordSize / kBytesPerBigIntDigit)); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Montgomery_mulMod(Assembler* assembler, |
| Label* normal_ir_body) { |
| // Pseudo code: |
| // static int _mulMod(Uint32List args, Uint32List digits, int i) { |
| // uint64_t rho = args[_RHO .. _RHO_HI]; // _RHO == 2, _RHO_HI == 3. |
| // uint64_t d = digits[i >> 1 .. (i >> 1) + 1]; // i is Smi and even. |
| // uint128_t t = rho*d; |
| // args[_MU .. _MU_HI] = t mod DIGIT_BASE^2; // _MU == 4, _MU_HI == 5. |
| // return 2; |
| // } |
| |
| __ lx(T0, Address(SP, 2 * target::kWordSize)); // args |
| __ lx(T1, Address(SP, 1 * target::kWordSize)); // digits |
| __ lx(T2, Address(SP, 0 * target::kWordSize)); // i as Smi |
| |
| // T3 = rho = args[2..3] |
| __ lx(T3, FieldAddress(T0, target::TypedData::payload_offset() + |
| 2 * kBytesPerBigIntDigit)); |
| |
| // T4 = digits[i >> 1 .. (i >> 1) + 1] |
| __ slli(T2, T2, 1); |
| __ add(T1, T1, T2); |
| __ lx(T4, FieldAddress(T1, target::TypedData::payload_offset())); |
| |
| // T5 = rho*d mod DIGIT_BASE |
| __ mul(T5, T4, T3); // T5 = low64(T4*T3). |
| |
| // args[4 .. 5] = T5 |
| __ sx(T5, FieldAddress(T0, target::TypedData::payload_offset() + |
| 4 * kBytesPerBigIntDigit)); |
| |
| // Result = One or two digits processed. |
| __ li(A0, target::ToRawSmi(target::kWordSize / kBytesPerBigIntDigit)); |
| __ ret(); |
| } |
| |
| // FA0: left |
| // FA1: right |
| static void PrepareDoubleOp(Assembler* assembler, Label* normal_ir_body) { |
| Label double_op; |
| __ lx(A0, Address(SP, 1 * target::kWordSize)); // Left |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); // Right |
| |
| __ fld(FA0, FieldAddress(A0, target::Double::value_offset())); |
| |
| __ SmiUntag(TMP, A1); |
| #if XLEN == 32 |
| __ fcvtdw(FA1, TMP); |
| #else |
| __ fcvtdl(FA1, TMP); |
| #endif |
| __ BranchIfSmi(A1, &double_op, Assembler::kNearJump); |
| __ CompareClassId(A1, kDoubleCid, TMP); |
| __ BranchIf(NE, normal_ir_body, Assembler::kNearJump); |
| __ fld(FA1, FieldAddress(A1, target::Double::value_offset())); |
| |
| __ Bind(&double_op); |
| } |
| |
| void AsmIntrinsifier::Double_greaterThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label true_label; |
| PrepareDoubleOp(assembler, normal_ir_body); |
| __ fltd(TMP, FA1, FA0); |
| __ bnez(TMP, &true_label, Assembler::kNearJump); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Double_greaterEqualThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label true_label; |
| PrepareDoubleOp(assembler, normal_ir_body); |
| __ fled(TMP, FA1, FA0); |
| __ bnez(TMP, &true_label, Assembler::kNearJump); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Double_lessThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label true_label; |
| PrepareDoubleOp(assembler, normal_ir_body); |
| __ fltd(TMP, FA0, FA1); |
| __ bnez(TMP, &true_label, Assembler::kNearJump); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Double_equal(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label true_label; |
| PrepareDoubleOp(assembler, normal_ir_body); |
| __ feqd(TMP, FA0, FA1); |
| __ bnez(TMP, &true_label, Assembler::kNearJump); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Double_lessEqualThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label true_label; |
| PrepareDoubleOp(assembler, normal_ir_body); |
| __ fled(TMP, FA0, FA1); |
| __ bnez(TMP, &true_label, Assembler::kNearJump); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| // Expects left argument to be double (receiver). Right argument is unknown. |
| // Both arguments are on stack. |
| static void DoubleArithmeticOperations(Assembler* assembler, |
| Label* normal_ir_body, |
| Token::Kind kind) { |
| PrepareDoubleOp(assembler, normal_ir_body); |
| switch (kind) { |
| case Token::kADD: |
| __ faddd(FA0, FA0, FA1); |
| break; |
| case Token::kSUB: |
| __ fsubd(FA0, FA0, FA1); |
| break; |
| case Token::kMUL: |
| __ fmuld(FA0, FA0, FA1); |
| break; |
| case Token::kDIV: |
| __ fdivd(FA0, FA0, FA1); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| const Class& double_class = DoubleClass(); |
| __ TryAllocate(double_class, normal_ir_body, Assembler::kFarJump, A0, TMP); |
| __ StoreDFieldToOffset(FA0, A0, target::Double::value_offset()); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Double_add(Assembler* assembler, Label* normal_ir_body) { |
| DoubleArithmeticOperations(assembler, normal_ir_body, Token::kADD); |
| } |
| |
| void AsmIntrinsifier::Double_mul(Assembler* assembler, Label* normal_ir_body) { |
| DoubleArithmeticOperations(assembler, normal_ir_body, Token::kMUL); |
| } |
| |
| void AsmIntrinsifier::Double_sub(Assembler* assembler, Label* normal_ir_body) { |
| DoubleArithmeticOperations(assembler, normal_ir_body, Token::kSUB); |
| } |
| |
| void AsmIntrinsifier::Double_div(Assembler* assembler, Label* normal_ir_body) { |
| DoubleArithmeticOperations(assembler, normal_ir_body, Token::kDIV); |
| } |
| |
| // Left is double, right is integer (Mint or Smi) |
| void AsmIntrinsifier::Double_mulFromInteger(Assembler* assembler, |
| Label* normal_ir_body) { |
| // Only smis allowed. |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); |
| __ BranchIfNotSmi(A1, normal_ir_body, Assembler::kNearJump); |
| // Is Smi. |
| __ SmiUntag(A1); |
| #if XLEN == 32 |
| __ fcvtdw(FA1, A1); |
| #else |
| __ fcvtdl(FA1, A1); |
| #endif |
| __ lx(A0, Address(SP, 1 * target::kWordSize)); |
| __ LoadDFieldFromOffset(FA0, A0, target::Double::value_offset()); |
| __ fmuld(FA0, FA0, FA1); |
| const Class& double_class = DoubleClass(); |
| __ TryAllocate(double_class, normal_ir_body, Assembler::kNearJump, A0, A1); |
| __ StoreDFieldToOffset(FA0, A0, target::Double::value_offset()); |
| __ ret(); |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::DoubleFromInteger(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ lx(A0, Address(SP, 0 * target::kWordSize)); |
| __ BranchIfNotSmi(A0, normal_ir_body, Assembler::kNearJump); |
| // Is Smi. |
| __ SmiUntag(A0); |
| #if XLEN == 32 |
| __ fcvtdw(FA0, A0); |
| #else |
| __ fcvtdl(FA0, A0); |
| #endif |
| const Class& double_class = DoubleClass(); |
| __ TryAllocate(double_class, normal_ir_body, Assembler::kNearJump, A0, TMP); |
| __ StoreDFieldToOffset(FA0, A0, target::Double::value_offset()); |
| __ ret(); |
| __ Bind(normal_ir_body); |
| } |
| |
| static void DoubleIsClass(Assembler* assembler, intx_t fclass) { |
| Label true_label; |
| __ lx(A0, Address(SP, 0 * target::kWordSize)); |
| __ LoadDFieldFromOffset(FA0, A0, target::Double::value_offset()); |
| __ fclassd(TMP, FA0); |
| __ andi(TMP, TMP, fclass); |
| __ bnez(TMP, &true_label, Assembler::kNearJump); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Double_getIsNaN(Assembler* assembler, |
| Label* normal_ir_body) { |
| DoubleIsClass(assembler, kFClassSignallingNan | kFClassQuietNan); |
| } |
| |
| void AsmIntrinsifier::Double_getIsInfinite(Assembler* assembler, |
| Label* normal_ir_body) { |
| DoubleIsClass(assembler, kFClassNegInfinity | kFClassPosInfinity); |
| } |
| |
| void AsmIntrinsifier::Double_getIsNegative(Assembler* assembler, |
| Label* normal_ir_body) { |
| DoubleIsClass(assembler, kFClassNegInfinity | kFClassNegNormal | |
| kFClassNegSubnormal | kFClassNegZero); |
| } |
| |
| void AsmIntrinsifier::ObjectEquals(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label true_label; |
| __ lx(A0, Address(SP, 1 * target::kWordSize)); |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); |
| __ beq(A0, A1, &true_label, Assembler::kNearJump); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| } |
| |
| static void JumpIfInteger(Assembler* assembler, |
| Register cid, |
| Register tmp, |
| Label* target) { |
| assembler->RangeCheck(cid, tmp, kSmiCid, kMintCid, Assembler::kIfInRange, |
| target); |
| } |
| |
| static void JumpIfNotInteger(Assembler* assembler, |
| Register cid, |
| Register tmp, |
| Label* target) { |
| assembler->RangeCheck(cid, tmp, kSmiCid, kMintCid, Assembler::kIfNotInRange, |
| target); |
| } |
| |
| static void JumpIfString(Assembler* assembler, |
| Register cid, |
| Register tmp, |
| Label* target) { |
| assembler->RangeCheck(cid, tmp, kOneByteStringCid, kTwoByteStringCid, |
| Assembler::kIfInRange, target); |
| } |
| |
| static void JumpIfNotString(Assembler* assembler, |
| Register cid, |
| Register tmp, |
| Label* target) { |
| assembler->RangeCheck(cid, tmp, kOneByteStringCid, kTwoByteStringCid, |
| Assembler::kIfNotInRange, target); |
| } |
| |
| static void JumpIfNotList(Assembler* assembler, |
| Register cid, |
| Register tmp, |
| Label* target) { |
| assembler->RangeCheck(cid, tmp, kArrayCid, kGrowableObjectArrayCid, |
| Assembler::kIfNotInRange, target); |
| } |
| |
| static void JumpIfType(Assembler* assembler, |
| Register cid, |
| Register tmp, |
| Label* target) { |
| COMPILE_ASSERT((kFunctionTypeCid == kTypeCid + 1) && |
| (kRecordTypeCid == kTypeCid + 2)); |
| assembler->RangeCheck(cid, tmp, kTypeCid, kRecordTypeCid, |
| Assembler::kIfInRange, target); |
| } |
| |
| static void JumpIfNotType(Assembler* assembler, |
| Register cid, |
| Register tmp, |
| Label* target) { |
| COMPILE_ASSERT((kFunctionTypeCid == kTypeCid + 1) && |
| (kRecordTypeCid == kTypeCid + 2)); |
| assembler->RangeCheck(cid, tmp, kTypeCid, kRecordTypeCid, |
| Assembler::kIfNotInRange, target); |
| } |
| |
| // Return type quickly for simple types (not parameterized and not signature). |
| void AsmIntrinsifier::ObjectRuntimeType(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label use_declaration_type, not_double, not_integer, not_string; |
| __ lx(A0, Address(SP, 0 * target::kWordSize)); |
| __ LoadClassIdMayBeSmi(A1, A0); |
| |
| __ CompareImmediate(A1, kClosureCid); |
| __ BranchIf(EQ, normal_ir_body, |
| Assembler::kNearJump); // Instance is a closure. |
| |
| __ CompareImmediate(A1, kRecordCid); |
| __ BranchIf(EQ, normal_ir_body, |
| Assembler::kNearJump); // Instance is a record. |
| |
| __ CompareImmediate(A1, kNumPredefinedCids); |
| __ BranchIf(HI, &use_declaration_type, Assembler::kNearJump); |
| |
| __ LoadIsolateGroup(A0); |
| __ LoadFromOffset(A0, A0, target::IsolateGroup::object_store_offset()); |
| |
| __ CompareImmediate(A1, kDoubleCid); |
| __ BranchIf(NE, ¬_double, Assembler::kNearJump); |
| __ LoadFromOffset(A0, A0, target::ObjectStore::double_type_offset()); |
| __ ret(); |
| |
| __ Bind(¬_double); |
| JumpIfNotInteger(assembler, A1, TMP, ¬_integer); |
| __ LoadFromOffset(A0, A0, target::ObjectStore::int_type_offset()); |
| __ ret(); |
| |
| __ Bind(¬_integer); |
| JumpIfNotString(assembler, A1, TMP, ¬_string); |
| __ LoadFromOffset(A0, A0, target::ObjectStore::string_type_offset()); |
| __ ret(); |
| |
| __ Bind(¬_string); |
| JumpIfNotType(assembler, A1, TMP, &use_declaration_type); |
| __ LoadFromOffset(A0, A0, target::ObjectStore::type_type_offset()); |
| __ ret(); |
| |
| __ Bind(&use_declaration_type); |
| __ LoadClassById(T2, A1); |
| __ lh(T3, FieldAddress(T2, target::Class::num_type_arguments_offset())); |
| __ bnez(T3, normal_ir_body, Assembler::kNearJump); |
| |
| __ LoadCompressed(A0, |
| FieldAddress(T2, target::Class::declaration_type_offset())); |
| __ beq(A0, NULL_REG, normal_ir_body, Assembler::kNearJump); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| // Compares cid1 and cid2 to see if they're syntactically equivalent. If this |
| // can be determined by this fast path, it jumps to either equal_* or not_equal. |
| // If classes are equivalent but may be generic, then jumps to |
| // equal_may_be_generic. Clobbers scratch. |
| static void EquivalentClassIds(Assembler* assembler, |
| Label* normal_ir_body, |
| Label* equal_may_be_generic, |
| Label* equal_not_generic, |
| Label* not_equal, |
| Register cid1, |
| Register cid2, |
| Register scratch, |
| bool testing_instance_cids) { |
| Label not_integer, not_integer_or_string, not_integer_or_string_or_list; |
| |
| // Check if left hand side is a closure. Closures are handled in the runtime. |
| __ CompareImmediate(cid1, kClosureCid); |
| __ BranchIf(EQ, normal_ir_body, Assembler::kNearJump); |
| |
| // Check if left hand side is a record. Records are handled in the runtime. |
| __ CompareImmediate(cid1, kRecordCid); |
| __ BranchIf(EQ, normal_ir_body, Assembler::kNearJump); |
| |
| // Check whether class ids match. If class ids don't match types may still be |
| // considered equivalent (e.g. multiple string implementation classes map to a |
| // single String type). |
| __ beq(cid1, cid2, equal_may_be_generic); |
| |
| // Class ids are different. Check if we are comparing two string types (with |
| // different representations), two integer types, two list types or two type |
| // types. |
| __ CompareImmediate(cid1, kNumPredefinedCids); |
| __ BranchIf(HI, not_equal); |
| |
| // Check if both are integer types. |
| JumpIfNotInteger(assembler, cid1, scratch, ¬_integer); |
| |
| // First type is an integer. Check if the second is an integer too. |
| JumpIfInteger(assembler, cid2, scratch, equal_not_generic); |
| // Integer types are only equivalent to other integer types. |
| __ j(not_equal, Assembler::kNearJump); |
| |
| __ Bind(¬_integer); |
| // Check if both are String types. |
| JumpIfNotString(assembler, cid1, scratch, |
| testing_instance_cids ? ¬_integer_or_string : not_equal); |
| |
| // First type is String. Check if the second is a string too. |
| JumpIfString(assembler, cid2, scratch, equal_not_generic); |
| // String types are only equivalent to other String types. |
| __ j(not_equal, Assembler::kNearJump); |
| |
| if (testing_instance_cids) { |
| __ Bind(¬_integer_or_string); |
| // Check if both are List types. |
| JumpIfNotList(assembler, cid1, scratch, ¬_integer_or_string_or_list); |
| |
| // First type is a List. Check if the second is a List too. |
| JumpIfNotList(assembler, cid2, scratch, not_equal); |
| ASSERT(compiler::target::Array::type_arguments_offset() == |
| compiler::target::GrowableObjectArray::type_arguments_offset()); |
| __ j(equal_may_be_generic, Assembler::kNearJump); |
| |
| __ Bind(¬_integer_or_string_or_list); |
| // Check if the first type is a Type. If it is not then types are not |
| // equivalent because they have different class ids and they are not String |
| // or integer or List or Type. |
| JumpIfNotType(assembler, cid1, scratch, not_equal); |
| |
| // First type is a Type. Check if the second is a Type too. |
| JumpIfType(assembler, cid2, scratch, equal_not_generic); |
| // Type types are only equivalent to other Type types. |
| __ j(not_equal, Assembler::kNearJump); |
| } |
| } |
| |
| void AsmIntrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ lx(A0, Address(SP, 1 * target::kWordSize)); |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); |
| __ LoadClassIdMayBeSmi(T2, A1); |
| __ LoadClassIdMayBeSmi(A1, A0); |
| |
| Label equal_may_be_generic, equal, not_equal; |
| EquivalentClassIds(assembler, normal_ir_body, &equal_may_be_generic, &equal, |
| ¬_equal, A1, T2, TMP, |
| /* testing_instance_cids = */ true); |
| |
| __ Bind(&equal_may_be_generic); |
| // Classes are equivalent and neither is a closure class. |
| // Check if there are no type arguments. In this case we can return true. |
| // Otherwise fall through into the runtime to handle comparison. |
| __ LoadClassById(A0, A1); |
| __ lw(T0, |
| FieldAddress( |
| A0, |
| target::Class::host_type_arguments_field_offset_in_words_offset())); |
| __ CompareImmediate(T0, target::Class::kNoTypeArguments); |
| __ BranchIf(EQ, &equal, Assembler::kNearJump); |
| |
| // Compare type arguments, host_type_arguments_field_offset_in_words in A0. |
| __ lx(A0, Address(SP, 1 * target::kWordSize)); |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); |
| __ slli(T0, T0, target::kCompressedWordSizeLog2); |
| __ add(A0, A0, T0); |
| __ add(A1, A1, T0); |
| __ lx(A0, FieldAddress(A0, 0)); |
| __ lx(A1, FieldAddress(A1, 0)); |
| __ bne(A0, A1, normal_ir_body, Assembler::kNearJump); |
| // Fall through to equal case if type arguments are equal. |
| |
| __ Bind(&equal); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ Ret(); |
| |
| __ Bind(¬_equal); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::String_getHashCode(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ lx(A0, Address(SP, 0 * target::kWordSize)); |
| |
| #if defined(HASH_IN_OBJECT_HEADER) |
| // uint32_t field in header. |
| __ lwu(A0, FieldAddress(A0, target::String::hash_offset())); |
| __ SmiTag(A0); |
| #else |
| // Smi field. |
| __ lx(A0, FieldAddress(A0, target::String::hash_offset())); |
| #endif |
| __ beqz(A0, normal_ir_body, Assembler::kNearJump); |
| __ ret(); |
| |
| // Hash not yet computed. |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Type_equality(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label equal, not_equal, equiv_cids_may_be_generic, equiv_cids; |
| |
| __ lx(A0, Address(SP, 1 * target::kWordSize)); |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); |
| __ beq(A1, A0, &equal); |
| |
| // A1 might not be a Type object, so check that first (A0 should be though, |
| // since this is a method on the Type class). |
| __ LoadClassIdMayBeSmi(T3, A1); |
| __ CompareImmediate(T3, kTypeCid); |
| __ BranchIf(NE, normal_ir_body, Assembler::kNearJump); |
| |
| // Check if types are syntactically equal. |
| __ LoadTypeClassId(T3, A1); |
| __ LoadTypeClassId(T4, A0); |
| // We are not testing instance cids, but type class cids of Type instances. |
| EquivalentClassIds(assembler, normal_ir_body, &equiv_cids_may_be_generic, |
| &equiv_cids, ¬_equal, T3, T4, TMP, |
| /* testing_instance_cids = */ false); |
| |
| __ Bind(&equiv_cids_may_be_generic); |
| // Compare type arguments in Type instances. |
| __ LoadCompressed(T3, FieldAddress(A1, target::Type::arguments_offset())); |
| __ LoadCompressed(T4, FieldAddress(A0, target::Type::arguments_offset())); |
| __ CompareObjectRegisters(T3, T4); |
| __ BranchIf(NE, normal_ir_body, Assembler::kNearJump); |
| // Fall through to check nullability if type arguments are equal. |
| |
| // Check nullability. |
| __ Bind(&equiv_cids); |
| __ LoadAbstractTypeNullability(A0, A0); |
| __ LoadAbstractTypeNullability(A1, A1); |
| __ bne(A0, A1, ¬_equal); |
| // Fall through to equal case if nullability is equal. |
| |
| __ Bind(&equal); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| __ Bind(¬_equal); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::AbstractType_getHashCode(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ lx(A0, Address(SP, 0 * target::kWordSize)); |
| __ LoadCompressed(A0, FieldAddress(A0, target::AbstractType::hash_offset())); |
| __ beqz(A0, normal_ir_body, Assembler::kNearJump); |
| __ ret(); |
| // Hash not yet computed. |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::AbstractType_equality(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ lx(A0, Address(SP, 1 * target::kWordSize)); |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); |
| __ bne(A0, A1, normal_ir_body, Assembler::kNearJump); |
| |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| // Keep in sync with Instance::IdentityHashCode. |
| // Note int and double never reach here because they override _identityHashCode. |
| // Special cases are also not needed for null or bool because they were pre-set |
| // during VM isolate finalization. |
| void AsmIntrinsifier::Object_getHash(Assembler* assembler, |
| Label* normal_ir_body) { |
| #if XLEN == 32 |
| UNREACHABLE(); |
| #else |
| Label not_yet_computed; |
| __ lx(A0, Address(SP, 0 * target::kWordSize)); // Object. |
| __ lwu(A0, FieldAddress( |
| A0, target::Object::tags_offset() + |
| target::UntaggedObject::kHashTagPos / kBitsPerByte)); |
| __ beqz(A0, ¬_yet_computed); |
| __ SmiTag(A0); |
| __ ret(); |
| |
| __ Bind(¬_yet_computed); |
| __ LoadFromOffset(A1, THR, target::Thread::random_offset()); |
| __ AndImmediate(T2, A1, 0xffffffff); // state_lo |
| __ srli(T3, A1, 32); // state_hi |
| __ LoadImmediate(A1, 0xffffda61); // A |
| __ mul(A1, A1, T2); |
| __ add(A1, A1, T3); // new_state = (A * state_lo) + state_hi |
| __ StoreToOffset(A1, THR, target::Thread::random_offset()); |
| __ AndImmediate(A1, A1, 0x3fffffff); |
| __ beqz(A1, ¬_yet_computed); |
| |
| __ lx(A0, Address(SP, 0 * target::kWordSize)); // Object |
| __ subi(A0, A0, kHeapObjectTag); |
| __ slli(T3, A1, target::UntaggedObject::kHashTagPos); |
| |
| Label retry, already_set_in_r4; |
| __ Bind(&retry); |
| __ lr(T2, Address(A0, 0)); |
| __ srli(T4, T2, target::UntaggedObject::kHashTagPos); |
| __ bnez(T4, &already_set_in_r4); |
| __ or_(T2, T2, T3); |
| __ sc(T4, T2, Address(A0, 0)); |
| __ bnez(T4, &retry); |
| // Fall-through with A1 containing new hash value (untagged). |
| __ SmiTag(A0, A1); |
| __ ret(); |
| __ Bind(&already_set_in_r4); |
| __ SmiTag(A0, T4); |
| __ ret(); |
| #endif |
| } |
| |
| void GenerateSubstringMatchesSpecialization(Assembler* assembler, |
| intptr_t receiver_cid, |
| intptr_t other_cid, |
| Label* return_true, |
| Label* return_false) { |
| __ SmiUntag(T0); |
| __ LoadCompressedSmi( |
| T1, FieldAddress(A0, target::String::length_offset())); // this.length |
| __ SmiUntag(T1); |
| __ LoadCompressedSmi( |
| T2, FieldAddress(A1, target::String::length_offset())); // other.length |
| __ SmiUntag(T2); |
| |
| // if (other.length == 0) return true; |
| __ beqz(T2, return_true); |
| |
| // if (start < 0) return false; |
| __ bltz(T0, return_false); |
| |
| // if (start + other.length > this.length) return false; |
| __ add(T3, T0, T2); |
| __ bgt(T3, T1, return_false); |
| |
| if (receiver_cid == kOneByteStringCid) { |
| __ add(A0, A0, T0); |
| } else { |
| ASSERT(receiver_cid == kTwoByteStringCid); |
| __ add(A0, A0, T0); |
| __ add(A0, A0, T0); |
| } |
| |
| // i = 0 |
| __ li(T3, 0); |
| |
| // do |
| Label loop; |
| __ Bind(&loop); |
| |
| // this.codeUnitAt(i + start) |
| if (receiver_cid == kOneByteStringCid) { |
| __ lbu(TMP, FieldAddress(A0, target::OneByteString::data_offset())); |
| } else { |
| __ lhu(TMP, FieldAddress(A0, target::TwoByteString::data_offset())); |
| } |
| // other.codeUnitAt(i) |
| if (other_cid == kOneByteStringCid) { |
| __ lbu(TMP2, FieldAddress(A1, target::OneByteString::data_offset())); |
| } else { |
| __ lhu(TMP2, FieldAddress(A1, target::TwoByteString::data_offset())); |
| } |
| __ bne(TMP, TMP2, return_false); |
| |
| // i++, while (i < len) |
| __ addi(T3, T3, 1); |
| __ addi(A0, A0, receiver_cid == kOneByteStringCid ? 1 : 2); |
| __ addi(A1, A1, other_cid == kOneByteStringCid ? 1 : 2); |
| __ blt(T3, T2, &loop); |
| |
| __ j(return_true); |
| } |
| |
| // bool _substringMatches(int start, String other) |
| // This intrinsic handles a OneByteString or TwoByteString receiver with a |
| // OneByteString other. |
| void AsmIntrinsifier::StringBaseSubstringMatches(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label return_true, return_false, try_two_byte; |
| __ lx(A0, Address(SP, 2 * target::kWordSize)); // this |
| __ lx(T0, Address(SP, 1 * target::kWordSize)); // start |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); // other |
| |
| __ BranchIfNotSmi(T0, normal_ir_body); |
| |
| __ CompareClassId(A1, kOneByteStringCid, TMP); |
| __ BranchIf(NE, normal_ir_body, Assembler::kNearJump); |
| |
| __ CompareClassId(A0, kOneByteStringCid, TMP); |
| __ BranchIf(NE, normal_ir_body, Assembler::kNearJump); |
| |
| GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid, |
| kOneByteStringCid, &return_true, |
| &return_false); |
| |
| __ Bind(&try_two_byte); |
| __ CompareClassId(A0, kTwoByteStringCid, TMP); |
| __ BranchIf(NE, normal_ir_body, Assembler::kNearJump); |
| |
| GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid, |
| kOneByteStringCid, &return_true, |
| &return_false); |
| |
| __ Bind(&return_true); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| __ Bind(&return_false); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::StringBaseCharAt(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label try_two_byte_string; |
| |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); // Index. |
| __ lx(A0, Address(SP, 1 * target::kWordSize)); // String. |
| __ BranchIfNotSmi(A1, normal_ir_body, |
| Assembler::kNearJump); // Index is not a Smi. |
| // Range check. |
| __ lx(TMP, FieldAddress(A0, target::String::length_offset())); |
| __ bgeu(A1, TMP, normal_ir_body); // Runtime throws exception. |
| |
| __ CompareClassId(A0, kOneByteStringCid, TMP); |
| __ BranchIf(NE, &try_two_byte_string); |
| __ SmiUntag(A1); |
| __ add(A0, A0, A1); |
| __ lbu(A1, FieldAddress(A0, target::OneByteString::data_offset())); |
| __ CompareImmediate(A1, target::Symbols::kNumberOfOneCharCodeSymbols); |
| __ BranchIf(GE, normal_ir_body, Assembler::kNearJump); |
| __ lx(A0, Address(THR, target::Thread::predefined_symbols_address_offset())); |
| __ slli(A1, A1, target::kWordSizeLog2); |
| __ add(A0, A0, A1); |
| __ lx(A0, Address(A0, target::Symbols::kNullCharCodeSymbolOffset * |
| target::kWordSize)); |
| __ ret(); |
| |
| __ Bind(&try_two_byte_string); |
| __ CompareClassId(A0, kTwoByteStringCid, TMP); |
| __ BranchIf(NE, normal_ir_body, Assembler::kNearJump); |
| ASSERT(kSmiTagShift == 1); |
| __ add(A0, A0, A1); |
| __ lhu(A1, FieldAddress(A0, target::TwoByteString::data_offset())); |
| __ CompareImmediate(A1, target::Symbols::kNumberOfOneCharCodeSymbols); |
| __ BranchIf(GE, normal_ir_body, Assembler::kNearJump); |
| __ lx(A0, Address(THR, target::Thread::predefined_symbols_address_offset())); |
| __ slli(A1, A1, target::kWordSizeLog2); |
| __ add(A0, A0, A1); |
| __ lx(A0, Address(A0, target::Symbols::kNullCharCodeSymbolOffset * |
| target::kWordSize)); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::StringBaseIsEmpty(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label is_true; |
| __ lx(A0, Address(SP, 0 * target::kWordSize)); |
| __ lx(A0, FieldAddress(A0, target::String::length_offset())); |
| __ beqz(A0, &is_true, Assembler::kNearJump); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::OneByteString_getHashCode(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label compute_hash; |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); // OneByteString object. |
| #if defined(HASH_IN_OBJECT_HEADER) |
| // uint32_t field in header. |
| __ lwu(A0, FieldAddress(A1, target::String::hash_offset())); |
| __ SmiTag(A0); |
| #else |
| // Smi field. |
| __ lx(A0, FieldAddress(A1, target::String::hash_offset())); |
| #endif |
| __ beqz(A0, &compute_hash); |
| __ ret(); // Return if already computed. |
| |
| __ Bind(&compute_hash); |
| __ lx(T0, FieldAddress(A1, target::String::length_offset())); |
| __ SmiUntag(T0); |
| |
| __ mv(T1, ZR); |
| __ addi(T2, A1, target::OneByteString::data_offset() - kHeapObjectTag); |
| |
| // A1: Instance of OneByteString. |
| // T0: String length, untagged integer. |
| // T1: Loop counter, untagged integer. |
| // T2: String data. |
| // A0: Hash code, untagged integer. |
| |
| Label loop, done; |
| __ Bind(&loop); |
| __ beq(T1, T0, &done); |
| // Add to hash code: (hash_ is uint32) |
| // Get one characters (ch). |
| __ lbu(T3, Address(T2, 0)); |
| __ addi(T2, T2, 1); |
| // T3: ch. |
| __ addi(T1, T1, 1); |
| __ CombineHashes(A0, T3); |
| __ j(&loop); |
| |
| __ Bind(&done); |
| // Finalize. Allow a zero result to combine checks from empty string branch. |
| __ FinalizeHashForSize(target::String::kHashBits, A0); |
| #if defined(HASH_IN_OBJECT_HEADER) |
| // A1: Untagged address of header word (lr/sc do not support offsets). |
| __ subi(A1, A1, kHeapObjectTag); |
| __ slli(A0, A0, target::UntaggedObject::kHashTagPos); |
| Label retry; |
| __ Bind(&retry); |
| __ lr(T0, Address(A1, 0)); |
| __ or_(T0, T0, A0); |
| __ sc(TMP, T0, Address(A1, 0)); |
| __ bnez(TMP, &retry); |
| |
| __ srli(A0, A0, target::UntaggedObject::kHashTagPos); |
| __ SmiTag(A0); |
| #else |
| __ SmiTag(A0); |
| __ sx(A0, FieldAddress(A1, target::String::hash_offset())); |
| #endif |
| __ ret(); |
| } |
| |
| // Allocates a _OneByteString or _TwoByteString. The content is not initialized. |
| // 'length-reg' (A1) contains the desired length as a _Smi or _Mint. |
| // Returns new string as tagged pointer in A0. |
| static void TryAllocateString(Assembler* assembler, |
| classid_t cid, |
| intptr_t max_elements, |
| Label* ok, |
| Label* failure) { |
| ASSERT(cid == kOneByteStringCid || cid == kTwoByteStringCid); |
| const Register length_reg = A1; |
| // _Mint length: call to runtime to produce error. |
| __ BranchIfNotSmi(length_reg, failure); |
| // negative length: call to runtime to produce error. |
| // Too big: call to runtime to allocate old. |
| __ CompareImmediate(length_reg, target::ToRawSmi(max_elements)); |
| __ BranchIf(UNSIGNED_GREATER, failure); |
| |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, failure, TMP)); |
| __ mv(T0, length_reg); // Save the length register. |
| if (cid == kOneByteStringCid) { |
| // Untag length. |
| __ SmiUntag(length_reg); |
| } else { |
| // Untag length and multiply by element size -> no-op. |
| ASSERT(kSmiTagSize == 1); |
| } |
| const intptr_t fixed_size_plus_alignment_padding = |
| target::String::InstanceSize() + |
| target::ObjectAlignment::kObjectAlignment - 1; |
| __ addi(length_reg, length_reg, fixed_size_plus_alignment_padding); |
| __ andi(length_reg, length_reg, |
| ~(target::ObjectAlignment::kObjectAlignment - 1)); |
| |
| __ lx(A0, Address(THR, target::Thread::top_offset())); |
| |
| // length_reg: allocation size. |
| __ add(T1, A0, length_reg); |
| __ bltu(T1, A0, failure); // Fail on unsigned overflow. |
| |
| // Check if the allocation fits into the remaining space. |
| // A0: potential new object start. |
| // T1: potential next object start. |
| // A1: allocation size. |
| __ lx(TMP, Address(THR, target::Thread::end_offset())); |
| __ bgtu(T1, TMP, failure); |
| __ CheckAllocationCanary(A0); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ sx(T1, Address(THR, target::Thread::top_offset())); |
| __ AddImmediate(A0, kHeapObjectTag); |
| // Clear last double word to ensure string comparison doesn't need to |
| // specially handle remainder of strings with lengths not factors of double |
| // offsets. |
| __ sx(ZR, Address(T1, -1 * target::kWordSize)); |
| __ sx(ZR, Address(T1, -2 * target::kWordSize)); |
| |
| // Initialize the tags. |
| // A0: new object start as a tagged pointer. |
| // T1: new object end address. |
| // A1: allocation size. |
| { |
| const intptr_t shift = target::UntaggedObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2; |
| |
| __ CompareImmediate(A1, target::UntaggedObject::kSizeTagMaxSizeTag); |
| Label dont_zero_tag; |
| __ BranchIf(UNSIGNED_LESS_EQUAL, &dont_zero_tag); |
| __ li(A1, 0); |
| __ Bind(&dont_zero_tag); |
| __ slli(A1, A1, shift); |
| |
| // Get the class index and insert it into the tags. |
| // A1: size and bit tags. |
| // This also clears the hash, which is in the high word of the tags. |
| const uword tags = |
| target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); |
| __ OrImmediate(A1, A1, tags); |
| __ sx(A1, FieldAddress(A0, target::Object::tags_offset())); // Store tags. |
| } |
| |
| // Set the length field using the saved length (T0). |
| __ StoreIntoObjectNoBarrier( |
| A0, FieldAddress(A0, target::String::length_offset()), T0); |
| #if !defined(HASH_IN_OBJECT_HEADER) |
| // Clear hash. |
| __ StoreIntoObjectNoBarrier( |
| A0, FieldAddress(A0, target::String::hash_offset()), ZR); |
| #endif |
| __ j(ok); |
| } |
| |
| // Arg0: OneByteString (receiver). |
| // Arg1: Start index as Smi. |
| // Arg2: End index as Smi. |
| // The indexes must be valid. |
| void AsmIntrinsifier::OneByteString_substringUnchecked(Assembler* assembler, |
| Label* normal_ir_body) { |
| const intptr_t kStringOffset = 2 * target::kWordSize; |
| const intptr_t kStartIndexOffset = 1 * target::kWordSize; |
| const intptr_t kEndIndexOffset = 0 * target::kWordSize; |
| Label ok; |
| |
| __ lx(T0, Address(SP, kEndIndexOffset)); |
| __ lx(TMP, Address(SP, kStartIndexOffset)); |
| __ or_(T1, T0, TMP); |
| __ BranchIfNotSmi(T1, normal_ir_body); // 'start', 'end' not Smi. |
| |
| __ sub(A1, T0, TMP); |
| TryAllocateString(assembler, kOneByteStringCid, |
| target::OneByteString::kMaxNewSpaceElements, &ok, |
| normal_ir_body); |
| __ Bind(&ok); |
| // A0: new string as tagged pointer. |
| // Copy string. |
| __ lx(T1, Address(SP, kStringOffset)); |
| __ lx(T2, Address(SP, kStartIndexOffset)); |
| __ SmiUntag(T2); |
| // Calculate start address. |
| __ add(T1, T1, T2); |
| |
| // T1: Start address to copy from. |
| // T2: Untagged start index. |
| __ lx(T0, Address(SP, kEndIndexOffset)); |
| __ SmiUntag(T0); |
| __ sub(T0, T0, T2); |
| |
| // T1: Start address to copy from (untagged). |
| // T0: Untagged number of bytes to copy. |
| // A0: Tagged result string. |
| // T3: Pointer into T1. |
| // T4: Pointer into A0. |
| // T2: Scratch register. |
| Label loop, done; |
| __ blez(T0, &done, Assembler::kNearJump); |
| __ mv(T3, T1); |
| __ mv(T4, A0); |
| __ Bind(&loop); |
| __ subi(T0, T0, 1); |
| __ lbu(T2, FieldAddress(T3, target::OneByteString::data_offset())); |
| __ addi(T3, T3, 1); |
| __ sb(T2, FieldAddress(T4, target::OneByteString::data_offset())); |
| __ addi(T4, T4, 1); |
| __ bgtz(T0, &loop); |
| |
| __ Bind(&done); |
| __ ret(); |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::WriteIntoOneByteString(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ lx(A0, Address(SP, 2 * target::kWordSize)); // OneByteString. |
| __ lx(A1, Address(SP, 1 * target::kWordSize)); // Index. |
| __ lx(A2, Address(SP, 0 * target::kWordSize)); // Value. |
| __ SmiUntag(A1); |
| __ SmiUntag(A2); |
| __ add(A1, A1, A0); |
| __ sb(A2, FieldAddress(A1, target::OneByteString::data_offset())); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::WriteIntoTwoByteString(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ lx(A0, Address(SP, 2 * target::kWordSize)); // TwoByteString. |
| __ lx(A1, Address(SP, 1 * target::kWordSize)); // Index. |
| __ lx(A2, Address(SP, 0 * target::kWordSize)); // Value. |
| // Untag index and multiply by element size -> no-op. |
| __ SmiUntag(A2); |
| __ add(A1, A1, A0); |
| __ sh(A2, FieldAddress(A1, target::OneByteString::data_offset())); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::AllocateOneByteString(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label ok; |
| |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); // Length. |
| TryAllocateString(assembler, kOneByteStringCid, |
| target::OneByteString::kMaxNewSpaceElements, &ok, |
| normal_ir_body); |
| |
| __ Bind(&ok); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::AllocateTwoByteString(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label ok; |
| |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); // Length. |
| TryAllocateString(assembler, kTwoByteStringCid, |
| target::TwoByteString::kMaxNewSpaceElements, &ok, |
| normal_ir_body); |
| |
| __ Bind(&ok); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::OneByteString_equality(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ lx(A0, Address(SP, 1 * target::kWordSize)); // This. |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); // Other. |
| |
| StringEquality(assembler, A0, A1, T2, TMP2, A0, normal_ir_body, |
| kOneByteStringCid); |
| } |
| |
| void AsmIntrinsifier::TwoByteString_equality(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ lx(A0, Address(SP, 1 * target::kWordSize)); // This. |
| __ lx(A1, Address(SP, 0 * target::kWordSize)); // Other. |
| |
| StringEquality(assembler, A0, A1, T2, TMP2, A0, normal_ir_body, |
| kTwoByteStringCid); |
| } |
| |
| void AsmIntrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler, |
| Label* normal_ir_body, |
| bool sticky) { |
| if (FLAG_interpret_irregexp) return; |
| |
| const intptr_t kRegExpParamOffset = 2 * target::kWordSize; |
| const intptr_t kStringParamOffset = 1 * target::kWordSize; |
| // start_index smi is located at offset 0. |
| |
| // Incoming registers: |
| // T0: Function. (Will be reloaded with the specialized matcher function.) |
| // S4: Arguments descriptor. (Will be preserved.) |
| // S5: Unknown. (Must be GC safe on tail call.) |
| |
| // Load the specialized function pointer into T0. Leverage the fact the |
| // string CIDs as well as stored function pointers are in sequence. |
| __ lx(T2, Address(SP, kRegExpParamOffset)); |
| __ lx(T1, Address(SP, kStringParamOffset)); |
| __ LoadClassId(T1, T1); |
| __ AddImmediate(T1, -kOneByteStringCid); |
| __ slli(T1, T1, target::kWordSizeLog2); |
| __ add(T1, T1, T2); |
| __ lx(FUNCTION_REG, FieldAddress(T1, target::RegExp::function_offset( |
| kOneByteStringCid, sticky))); |
| |
| // Registers are now set up for the lazy compile stub. It expects the function |
| // in T0, the argument descriptor in S4, and IC-Data in S5. |
| __ li(S5, 0); |
| |
| // Tail-call the function. |
| __ lx(CODE_REG, FieldAddress(FUNCTION_REG, target::Function::code_offset())); |
| __ lx(T1, FieldAddress(FUNCTION_REG, target::Function::entry_point_offset())); |
| __ jr(T1); |
| } |
| |
| void AsmIntrinsifier::UserTag_defaultTag(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ LoadIsolate(A0); |
| __ lx(A0, Address(A0, target::Isolate::default_tag_offset())); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Profiler_getCurrentTag(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ LoadIsolate(A0); |
| __ lx(A0, Address(A0, target::Isolate::current_tag_offset())); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler, |
| Label* normal_ir_body) { |
| #if !defined(SUPPORT_TIMELINE) |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| #else |
| Label true_label; |
| // Load TimelineStream*. |
| __ lx(A0, Address(THR, target::Thread::dart_stream_offset())); |
| // Load uintptr_t from TimelineStream*. |
| __ lx(A0, Address(A0, target::TimelineStream::enabled_offset())); |
| __ bnez(A0, &true_label, Assembler::kNearJump); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| #endif |
| } |
| |
| void AsmIntrinsifier::Timeline_getNextTaskId(Assembler* assembler, |
| Label* normal_ir_body) { |
| #if !defined(SUPPORT_TIMELINE) |
| __ LoadImmediate(A0, target::ToRawSmi(0)); |
| __ ret(); |
| #elif XLEN == 64 |
| __ ld(A0, Address(THR, target::Thread::next_task_id_offset())); |
| __ addi(A1, A0, 1); |
| __ sd(A1, Address(THR, target::Thread::next_task_id_offset())); |
| __ SmiTag(A0); // Ignore loss of precision. |
| __ ret(); |
| #else |
| __ lw(T0, Address(THR, target::Thread::next_task_id_offset())); |
| __ lw(T1, Address(THR, target::Thread::next_task_id_offset() + 4)); |
| __ SmiTag(A0, T0); // Ignore loss of precision. |
| __ addi(T2, T0, 1); |
| __ sltu(T3, T2, T0); // Carry. |
| __ add(T1, T1, T3); |
| __ sw(T2, Address(THR, target::Thread::next_task_id_offset())); |
| __ sw(T1, Address(THR, target::Thread::next_task_id_offset() + 4)); |
| __ ret(); |
| #endif |
| } |
| |
| #undef __ |
| |
| } // namespace compiler |
| } // namespace dart |
| |
| #endif // defined(TARGET_ARCH_RISCV) |