| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/unicode.h" |
| |
| #include "vm/allocation.h" |
| #include "vm/globals.h" |
| #include "vm/object.h" |
| |
| namespace dart { |
| |
| // clang-format off |
| const int8_t Utf8::kTrailBytes[256] = { |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 0, 0 |
| }; |
| // clang-format on |
| |
| const uint32_t Utf8::kMagicBits[7] = {0, // Padding. |
| 0x00000000, 0x00003080, 0x000E2080, |
| 0x03C82080, 0xFA082080, 0x82082080}; |
| |
| // Minimum values of code points used to check shortest form. |
| const uint32_t Utf8::kOverlongMinimum[7] = {0, // Padding. |
| 0x0, 0x80, 0x800, |
| 0x10000, 0xFFFFFFFF, 0xFFFFFFFF}; |
| |
| // Returns the most restricted coding form in which the sequence of utf8 |
| // characters in 'utf8_array' can be represented in, and the number of |
| // code units needed in that form. |
| intptr_t Utf8::CodeUnitCount(const uint8_t* utf8_array, |
| intptr_t array_len, |
| Type* type) { |
| intptr_t len = 0; |
| Type char_type = kLatin1; |
| for (intptr_t i = 0; i < array_len; i++) { |
| uint8_t code_unit = utf8_array[i]; |
| if (!IsTrailByte(code_unit)) { |
| ++len; |
| if (!IsLatin1SequenceStart(code_unit)) { // > U+00FF |
| if (IsSupplementarySequenceStart(code_unit)) { // >= U+10000 |
| char_type = kSupplementary; |
| ++len; |
| } else if (char_type == kLatin1) { |
| char_type = kBMP; |
| } |
| } |
| } |
| } |
| *type = char_type; |
| return len; |
| } |
| |
| // Returns true if str is a valid NUL-terminated UTF-8 string. |
| bool Utf8::IsValid(const uint8_t* utf8_array, intptr_t array_len) { |
| intptr_t i = 0; |
| while (i < array_len) { |
| uint32_t ch = utf8_array[i] & 0xFF; |
| intptr_t j = 1; |
| if (ch >= 0x80) { |
| int8_t num_trail_bytes = kTrailBytes[ch]; |
| bool is_malformed = false; |
| for (; j < num_trail_bytes; ++j) { |
| if ((i + j) < array_len) { |
| uint8_t code_unit = utf8_array[i + j]; |
| is_malformed |= !IsTrailByte(code_unit); |
| ch = (ch << 6) + code_unit; |
| } else { |
| return false; |
| } |
| } |
| ch -= kMagicBits[num_trail_bytes]; |
| if (!((is_malformed == false) && (j == num_trail_bytes) && |
| !Utf::IsOutOfRange(ch) && !IsNonShortestForm(ch, j))) { |
| return false; |
| } |
| } |
| i += j; |
| } |
| return true; |
| } |
| |
| intptr_t Utf8::Length(int32_t ch) { |
| if (ch <= kMaxOneByteChar) { |
| return 1; |
| } else if (ch <= kMaxTwoByteChar) { |
| return 2; |
| } else if (ch <= kMaxThreeByteChar) { |
| return 3; |
| } |
| ASSERT(ch <= kMaxFourByteChar); |
| return 4; |
| } |
| |
| // A constant mask that can be 'and'ed with a word of data to determine if it |
| // is all ASCII (with no Latin1 characters). |
| #if defined(ARCH_IS_64_BIT) |
| static const uintptr_t kAsciiWordMask = DART_UINT64_C(0x8080808080808080); |
| #else |
| static const uintptr_t kAsciiWordMask = 0x80808080u; |
| #endif |
| |
| intptr_t Utf8::Length(const String& str) { |
| if (str.IsOneByteString() || str.IsExternalOneByteString()) { |
| // For 1-byte strings, all code points < 0x80 have single-byte UTF-8 |
| // encodings and all >= 0x80 have two-byte encodings. To get the length, |
| // start with the number of code points and add the number of high bits in |
| // the bytes. |
| uintptr_t char_length = str.Length(); |
| uintptr_t length = char_length; |
| const uintptr_t* data; |
| NoSafepointScope no_safepoint; |
| if (str.IsOneByteString()) { |
| data = reinterpret_cast<const uintptr_t*>(OneByteString::DataStart(str)); |
| } else { |
| data = reinterpret_cast<const uintptr_t*>( |
| ExternalOneByteString::DataStart(str)); |
| } |
| uintptr_t i; |
| for (i = sizeof(uintptr_t); i <= char_length; i += sizeof(uintptr_t)) { |
| uintptr_t chunk = *data++; |
| chunk &= kAsciiWordMask; |
| if (chunk != 0) { |
| // Shuffle the bits until we have a count of bits in the low nibble. |
| #if defined(ARCH_IS_64_BIT) |
| chunk += chunk >> 32; |
| #endif |
| chunk += chunk >> 16; |
| chunk += chunk >> 8; |
| length += (chunk >> 7) & 0xf; |
| } |
| } |
| // Take care of the tail of the string, the last length % wordsize chars. |
| i -= sizeof(uintptr_t); |
| for (; i < char_length; i++) { |
| if (str.CharAt(i) > kMaxOneByteChar) length++; |
| } |
| return length; |
| } |
| |
| // Slow case for 2-byte strings that handles surrogate pairs and longer UTF-8 |
| // encodings. |
| intptr_t length = 0; |
| String::CodePointIterator it(str); |
| while (it.Next()) { |
| int32_t ch = it.Current(); |
| length += Utf8::Length(ch); |
| } |
| return length; |
| } |
| |
| intptr_t Utf8::Encode(int32_t ch, char* dst) { |
| static const int kMask = ~(1 << 6); |
| if (ch <= kMaxOneByteChar) { |
| dst[0] = ch; |
| return 1; |
| } |
| if (ch <= kMaxTwoByteChar) { |
| dst[0] = 0xC0 | (ch >> 6); |
| dst[1] = 0x80 | (ch & kMask); |
| return 2; |
| } |
| if (ch <= kMaxThreeByteChar) { |
| dst[0] = 0xE0 | (ch >> 12); |
| dst[1] = 0x80 | ((ch >> 6) & kMask); |
| dst[2] = 0x80 | (ch & kMask); |
| return 3; |
| } |
| ASSERT(ch <= kMaxFourByteChar); |
| dst[0] = 0xF0 | (ch >> 18); |
| dst[1] = 0x80 | ((ch >> 12) & kMask); |
| dst[2] = 0x80 | ((ch >> 6) & kMask); |
| dst[3] = 0x80 | (ch & kMask); |
| return 4; |
| } |
| |
| intptr_t Utf8::Encode(const String& src, char* dst, intptr_t len) { |
| uintptr_t array_len = len; |
| intptr_t pos = 0; |
| ASSERT(static_cast<intptr_t>(array_len) >= Length(src)); |
| if (src.IsOneByteString() || src.IsExternalOneByteString()) { |
| // For 1-byte strings, all code points < 0x80 have single-byte UTF-8 |
| // encodings and all >= 0x80 have two-byte encodings. |
| const uintptr_t* data; |
| NoSafepointScope scope; |
| if (src.IsOneByteString()) { |
| data = reinterpret_cast<const uintptr_t*>(OneByteString::DataStart(src)); |
| } else { |
| data = reinterpret_cast<const uintptr_t*>( |
| ExternalOneByteString::DataStart(src)); |
| } |
| uintptr_t char_length = src.Length(); |
| uintptr_t pos = 0; |
| ASSERT(kMaxOneByteChar + 1 == 0x80); |
| for (uintptr_t i = 0; i < char_length; i += sizeof(uintptr_t)) { |
| // Read the input one word at a time and just write it verbatim if it is |
| // plain ASCII, as determined by the mask. |
| if (i + sizeof(uintptr_t) <= char_length && |
| (*data & kAsciiWordMask) == 0 && |
| pos + sizeof(uintptr_t) <= array_len) { |
| StoreUnaligned(reinterpret_cast<uintptr_t*>(dst + pos), *data); |
| pos += sizeof(uintptr_t); |
| } else { |
| // Process up to one word of input that contains non-ASCII Latin1 |
| // characters. |
| const uint8_t* p = reinterpret_cast<const uint8_t*>(data); |
| const uint8_t* limit = |
| Utils::Minimum(p + sizeof(uintptr_t), p + (char_length - i)); |
| for (; p < limit; p++) { |
| uint8_t c = *p; |
| // These calls to Length and Encode get inlined and the cases for 3 |
| // and 4 byte sequences are removed. |
| intptr_t bytes = Length(c); |
| if (pos + bytes > array_len) { |
| return pos; |
| } |
| Encode(c, reinterpret_cast<char*>(dst) + pos); |
| pos += bytes; |
| } |
| } |
| data++; |
| } |
| } else { |
| // For two-byte strings, which can contain 3 and 4-byte UTF-8 encodings, |
| // which can result in surrogate pairs, use the more general code. |
| String::CodePointIterator it(src); |
| while (it.Next()) { |
| int32_t ch = it.Current(); |
| intptr_t num_bytes = Utf8::Length(ch); |
| if (pos + num_bytes > len) { |
| break; |
| } |
| Utf8::Encode(ch, &dst[pos]); |
| pos += num_bytes; |
| } |
| } |
| return pos; |
| } |
| |
| intptr_t Utf8::Decode(const uint8_t* utf8_array, |
| intptr_t array_len, |
| int32_t* dst) { |
| uint32_t ch = utf8_array[0] & 0xFF; |
| intptr_t i = 1; |
| if (ch >= 0x80) { |
| intptr_t num_trail_bytes = kTrailBytes[ch]; |
| bool is_malformed = false; |
| for (; i < num_trail_bytes; ++i) { |
| if (i < array_len) { |
| uint8_t code_unit = utf8_array[i]; |
| is_malformed |= !IsTrailByte(code_unit); |
| ch = (ch << 6) + code_unit; |
| } else { |
| *dst = -1; |
| return 0; |
| } |
| } |
| ch -= kMagicBits[num_trail_bytes]; |
| if (!((is_malformed == false) && (i == num_trail_bytes) && |
| !Utf::IsOutOfRange(ch) && !IsNonShortestForm(ch, i))) { |
| *dst = -1; |
| return 0; |
| } |
| } |
| *dst = ch; |
| return i; |
| } |
| |
| bool Utf8::DecodeToLatin1(const uint8_t* utf8_array, |
| intptr_t array_len, |
| uint8_t* dst, |
| intptr_t len) { |
| intptr_t i = 0; |
| intptr_t j = 0; |
| intptr_t num_bytes; |
| for (; (i < array_len) && (j < len); i += num_bytes, ++j) { |
| int32_t ch; |
| ASSERT(IsLatin1SequenceStart(utf8_array[i])); |
| num_bytes = Utf8::Decode(&utf8_array[i], (array_len - i), &ch); |
| if (ch == -1) { |
| return false; // Invalid input. |
| } |
| ASSERT(Utf::IsLatin1(ch)); |
| dst[j] = ch; |
| } |
| if ((i < array_len) && (j == len)) { |
| return false; // Output overflow. |
| } |
| return true; // Success. |
| } |
| |
| bool Utf8::DecodeToUTF16(const uint8_t* utf8_array, |
| intptr_t array_len, |
| uint16_t* dst, |
| intptr_t len) { |
| intptr_t i = 0; |
| intptr_t j = 0; |
| intptr_t num_bytes; |
| for (; (i < array_len) && (j < len); i += num_bytes, ++j) { |
| int32_t ch; |
| bool is_supplementary = IsSupplementarySequenceStart(utf8_array[i]); |
| num_bytes = Utf8::Decode(&utf8_array[i], (array_len - i), &ch); |
| if (ch == -1) { |
| return false; // Invalid input. |
| } |
| if (is_supplementary) { |
| Utf16::Encode(ch, &dst[j]); |
| j = j + 1; |
| } else { |
| dst[j] = ch; |
| } |
| } |
| if ((i < array_len) && (j == len)) { |
| return false; // Output overflow. |
| } |
| return true; // Success. |
| } |
| |
| bool Utf8::DecodeToUTF32(const uint8_t* utf8_array, |
| intptr_t array_len, |
| int32_t* dst, |
| intptr_t len) { |
| intptr_t i = 0; |
| intptr_t j = 0; |
| intptr_t num_bytes; |
| for (; (i < array_len) && (j < len); i += num_bytes, ++j) { |
| int32_t ch; |
| num_bytes = Utf8::Decode(&utf8_array[i], (array_len - i), &ch); |
| if (ch == -1) { |
| return false; // Invalid input. |
| } |
| dst[j] = ch; |
| } |
| if ((i < array_len) && (j == len)) { |
| return false; // Output overflow. |
| } |
| return true; // Success. |
| } |
| |
| bool Utf8::DecodeCStringToUTF32(const char* str, int32_t* dst, intptr_t len) { |
| ASSERT(str != NULL); |
| intptr_t array_len = strlen(str); |
| const uint8_t* utf8_array = reinterpret_cast<const uint8_t*>(str); |
| return Utf8::DecodeToUTF32(utf8_array, array_len, dst, len); |
| } |
| |
| void Utf16::Encode(int32_t codepoint, uint16_t* dst) { |
| ASSERT(codepoint > Utf16::kMaxCodeUnit); |
| ASSERT(dst != NULL); |
| dst[0] = (Utf16::kLeadSurrogateOffset + (codepoint >> 10)); |
| dst[1] = (0xDC00 + (codepoint & 0x3FF)); |
| } |
| |
| } // namespace dart |