| // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/regexp_parser.h" |
| #include "vm/longjump.h" |
| #include "vm/object_store.h" |
| |
| namespace dart { |
| |
| #define Z zone() |
| |
| // Enables possessive quantifier syntax for testing. |
| static const bool FLAG_regexp_possessive_quantifier = false; |
| |
| RegExpBuilder::RegExpBuilder() |
| : zone_(Thread::Current()->zone()), |
| pending_empty_(false), |
| characters_(NULL), |
| terms_(), |
| text_(), |
| alternatives_() |
| #ifdef DEBUG |
| , |
| last_added_(ADD_NONE) |
| #endif |
| { |
| } |
| |
| void RegExpBuilder::FlushCharacters() { |
| pending_empty_ = false; |
| if (characters_ != NULL) { |
| RegExpTree* atom = new (Z) RegExpAtom(characters_); |
| characters_ = NULL; |
| text_.Add(atom); |
| LAST(ADD_ATOM); |
| } |
| } |
| |
| void RegExpBuilder::FlushText() { |
| FlushCharacters(); |
| intptr_t num_text = text_.length(); |
| if (num_text == 0) { |
| return; |
| } else if (num_text == 1) { |
| terms_.Add(text_.Last()); |
| } else { |
| RegExpText* text = new (Z) RegExpText(); |
| for (intptr_t i = 0; i < num_text; i++) |
| text_[i]->AppendToText(text); |
| terms_.Add(text); |
| } |
| text_.Clear(); |
| } |
| |
| void RegExpBuilder::AddCharacter(uint16_t c) { |
| pending_empty_ = false; |
| if (characters_ == NULL) { |
| characters_ = new (Z) ZoneGrowableArray<uint16_t>(4); |
| } |
| characters_->Add(c); |
| LAST(ADD_CHAR); |
| } |
| |
| void RegExpBuilder::AddEmpty() { |
| pending_empty_ = true; |
| } |
| |
| void RegExpBuilder::AddAtom(RegExpTree* term) { |
| if (term->IsEmpty()) { |
| AddEmpty(); |
| return; |
| } |
| if (term->IsTextElement()) { |
| FlushCharacters(); |
| text_.Add(term); |
| } else { |
| FlushText(); |
| terms_.Add(term); |
| } |
| LAST(ADD_ATOM); |
| } |
| |
| void RegExpBuilder::AddAssertion(RegExpTree* assert) { |
| FlushText(); |
| terms_.Add(assert); |
| LAST(ADD_ASSERT); |
| } |
| |
| void RegExpBuilder::NewAlternative() { |
| FlushTerms(); |
| } |
| |
| void RegExpBuilder::FlushTerms() { |
| FlushText(); |
| intptr_t num_terms = terms_.length(); |
| RegExpTree* alternative; |
| if (num_terms == 0) { |
| alternative = RegExpEmpty::GetInstance(); |
| } else if (num_terms == 1) { |
| alternative = terms_.Last(); |
| } else { |
| ZoneGrowableArray<RegExpTree*>* terms = |
| new (Z) ZoneGrowableArray<RegExpTree*>(); |
| for (intptr_t i = 0; i < terms_.length(); i++) { |
| terms->Add(terms_[i]); |
| } |
| alternative = new (Z) RegExpAlternative(terms); |
| } |
| alternatives_.Add(alternative); |
| terms_.Clear(); |
| LAST(ADD_NONE); |
| } |
| |
| RegExpTree* RegExpBuilder::ToRegExp() { |
| FlushTerms(); |
| intptr_t num_alternatives = alternatives_.length(); |
| if (num_alternatives == 0) { |
| return RegExpEmpty::GetInstance(); |
| } |
| if (num_alternatives == 1) { |
| return alternatives_.Last(); |
| } |
| ZoneGrowableArray<RegExpTree*>* alternatives = |
| new (Z) ZoneGrowableArray<RegExpTree*>(); |
| for (intptr_t i = 0; i < alternatives_.length(); i++) { |
| alternatives->Add(alternatives_[i]); |
| } |
| return new (Z) RegExpDisjunction(alternatives); |
| } |
| |
| void RegExpBuilder::AddQuantifierToAtom( |
| intptr_t min, |
| intptr_t max, |
| RegExpQuantifier::QuantifierType quantifier_type) { |
| if (pending_empty_) { |
| pending_empty_ = false; |
| return; |
| } |
| RegExpTree* atom; |
| if (characters_ != NULL) { |
| DEBUG_ASSERT(last_added_ == ADD_CHAR); |
| // Last atom was character. |
| |
| ZoneGrowableArray<uint16_t>* char_vector = |
| new (Z) ZoneGrowableArray<uint16_t>(); |
| char_vector->AddArray(*characters_); |
| intptr_t num_chars = char_vector->length(); |
| if (num_chars > 1) { |
| ZoneGrowableArray<uint16_t>* prefix = |
| new (Z) ZoneGrowableArray<uint16_t>(); |
| for (intptr_t i = 0; i < num_chars - 1; i++) { |
| prefix->Add(char_vector->At(i)); |
| } |
| text_.Add(new (Z) RegExpAtom(prefix)); |
| ZoneGrowableArray<uint16_t>* tail = new (Z) ZoneGrowableArray<uint16_t>(); |
| tail->Add(char_vector->At(num_chars - 1)); |
| char_vector = tail; |
| } |
| characters_ = NULL; |
| atom = new (Z) RegExpAtom(char_vector); |
| FlushText(); |
| } else if (text_.length() > 0) { |
| DEBUG_ASSERT(last_added_ == ADD_ATOM); |
| atom = text_.RemoveLast(); |
| FlushText(); |
| } else if (terms_.length() > 0) { |
| DEBUG_ASSERT(last_added_ == ADD_ATOM); |
| atom = terms_.RemoveLast(); |
| if (atom->max_match() == 0) { |
| // Guaranteed to only match an empty string. |
| LAST(ADD_TERM); |
| if (min == 0) { |
| return; |
| } |
| terms_.Add(atom); |
| return; |
| } |
| } else { |
| // Only call immediately after adding an atom or character! |
| UNREACHABLE(); |
| return; |
| } |
| terms_.Add(new (Z) RegExpQuantifier(min, max, quantifier_type, atom)); |
| LAST(ADD_TERM); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Implementation of Parser |
| |
| RegExpParser::RegExpParser(const String& in, String* error, bool multiline) |
| : zone_(Thread::Current()->zone()), |
| error_(error), |
| captures_(NULL), |
| in_(in), |
| current_(kEndMarker), |
| next_pos_(0), |
| capture_count_(0), |
| has_more_(true), |
| multiline_(multiline), |
| simple_(false), |
| contains_anchor_(false), |
| is_scanned_for_captures_(false), |
| failed_(false) { |
| Advance(); |
| } |
| |
| uint32_t RegExpParser::Next() { |
| if (has_next()) { |
| return in().CharAt(next_pos_); |
| } else { |
| return kEndMarker; |
| } |
| } |
| |
| void RegExpParser::Advance() { |
| if (next_pos_ < in().Length()) { |
| current_ = in().CharAt(next_pos_); |
| next_pos_++; |
| } else { |
| current_ = kEndMarker; |
| has_more_ = false; |
| } |
| } |
| |
| void RegExpParser::Reset(intptr_t pos) { |
| next_pos_ = pos; |
| has_more_ = (pos < in().Length()); |
| Advance(); |
| } |
| |
| void RegExpParser::Advance(intptr_t dist) { |
| next_pos_ += dist - 1; |
| Advance(); |
| } |
| |
| bool RegExpParser::simple() { |
| return simple_; |
| } |
| |
| void RegExpParser::ReportError(const char* message) { |
| failed_ = true; |
| *error_ = String::New(message); |
| // Zip to the end to make sure the no more input is read. |
| current_ = kEndMarker; |
| next_pos_ = in().Length(); |
| |
| const Error& error = Error::Handle(LanguageError::New(*error_)); |
| Report::LongJump(error); |
| UNREACHABLE(); |
| } |
| |
| // Pattern :: |
| // Disjunction |
| RegExpTree* RegExpParser::ParsePattern() { |
| RegExpTree* result = ParseDisjunction(); |
| ASSERT(!has_more()); |
| // If the result of parsing is a literal string atom, and it has the |
| // same length as the input, then the atom is identical to the input. |
| if (result->IsAtom() && result->AsAtom()->length() == in().Length()) { |
| simple_ = true; |
| } |
| return result; |
| } |
| |
| // Disjunction :: |
| // Alternative |
| // Alternative | Disjunction |
| // Alternative :: |
| // [empty] |
| // Term Alternative |
| // Term :: |
| // Assertion |
| // Atom |
| // Atom Quantifier |
| RegExpTree* RegExpParser::ParseDisjunction() { |
| // Used to store current state while parsing subexpressions. |
| RegExpParserState initial_state(NULL, INITIAL, 0, Z); |
| RegExpParserState* stored_state = &initial_state; |
| // Cache the builder in a local variable for quick access. |
| RegExpBuilder* builder = initial_state.builder(); |
| while (true) { |
| switch (current()) { |
| case kEndMarker: |
| if (stored_state->IsSubexpression()) { |
| // Inside a parenthesized group when hitting end of input. |
| ReportError("Unterminated group"); |
| UNREACHABLE(); |
| } |
| ASSERT(INITIAL == stored_state->group_type()); |
| // Parsing completed successfully. |
| return builder->ToRegExp(); |
| case ')': { |
| if (!stored_state->IsSubexpression()) { |
| ReportError("Unmatched ')'"); |
| UNREACHABLE(); |
| } |
| ASSERT(INITIAL != stored_state->group_type()); |
| |
| Advance(); |
| // End disjunction parsing and convert builder content to new single |
| // regexp atom. |
| RegExpTree* body = builder->ToRegExp(); |
| |
| intptr_t end_capture_index = captures_started(); |
| |
| intptr_t capture_index = stored_state->capture_index(); |
| SubexpressionType group_type = stored_state->group_type(); |
| |
| // Restore previous state. |
| stored_state = stored_state->previous_state(); |
| builder = stored_state->builder(); |
| |
| // Build result of subexpression. |
| if (group_type == CAPTURE) { |
| RegExpCapture* capture = new (Z) RegExpCapture(body, capture_index); |
| (*captures_)[capture_index - 1] = capture; |
| body = capture; |
| } else if (group_type != GROUPING) { |
| ASSERT(group_type == POSITIVE_LOOKAHEAD || |
| group_type == NEGATIVE_LOOKAHEAD); |
| bool is_positive = (group_type == POSITIVE_LOOKAHEAD); |
| body = new (Z) |
| RegExpLookahead(body, is_positive, |
| end_capture_index - capture_index, capture_index); |
| } |
| builder->AddAtom(body); |
| // For compatibility with JSC and ES3, we allow quantifiers after |
| // lookaheads, and break in all cases. |
| break; |
| } |
| case '|': { |
| Advance(); |
| builder->NewAlternative(); |
| continue; |
| } |
| case '*': |
| case '+': |
| case '?': |
| ReportError("Nothing to repeat"); |
| UNREACHABLE(); |
| case '^': { |
| Advance(); |
| if (multiline_) { |
| builder->AddAssertion( |
| new (Z) RegExpAssertion(RegExpAssertion::START_OF_LINE)); |
| } else { |
| builder->AddAssertion( |
| new (Z) RegExpAssertion(RegExpAssertion::START_OF_INPUT)); |
| set_contains_anchor(); |
| } |
| continue; |
| } |
| case '$': { |
| Advance(); |
| RegExpAssertion::AssertionType assertion_type = |
| multiline_ ? RegExpAssertion::END_OF_LINE |
| : RegExpAssertion::END_OF_INPUT; |
| builder->AddAssertion(new RegExpAssertion(assertion_type)); |
| continue; |
| } |
| case '.': { |
| Advance(); |
| // everything except \x0a, \x0d, \u2028 and \u2029 |
| ZoneGrowableArray<CharacterRange>* ranges = |
| new ZoneGrowableArray<CharacterRange>(2); |
| CharacterRange::AddClassEscape('.', ranges); |
| RegExpTree* atom = new RegExpCharacterClass(ranges, false); |
| builder->AddAtom(atom); |
| break; |
| } |
| case '(': { |
| SubexpressionType subexpr_type = CAPTURE; |
| Advance(); |
| if (current() == '?') { |
| switch (Next()) { |
| case ':': |
| subexpr_type = GROUPING; |
| break; |
| case '=': |
| subexpr_type = POSITIVE_LOOKAHEAD; |
| break; |
| case '!': |
| subexpr_type = NEGATIVE_LOOKAHEAD; |
| break; |
| default: |
| ReportError("Invalid group"); |
| UNREACHABLE(); |
| } |
| Advance(2); |
| } else { |
| if (captures_ == NULL) { |
| captures_ = new ZoneGrowableArray<RegExpCapture*>(2); |
| } |
| if (captures_started() >= kMaxCaptures) { |
| ReportError("Too many captures"); |
| UNREACHABLE(); |
| } |
| captures_->Add(NULL); |
| } |
| // Store current state and begin new disjunction parsing. |
| stored_state = new RegExpParserState(stored_state, subexpr_type, |
| captures_started(), Z); |
| builder = stored_state->builder(); |
| continue; |
| } |
| case '[': { |
| RegExpTree* atom = ParseCharacterClass(); |
| builder->AddAtom(atom); |
| break; |
| } |
| // Atom :: |
| // \ AtomEscape |
| case '\\': |
| switch (Next()) { |
| case kEndMarker: |
| ReportError("\\ at end of pattern"); |
| UNREACHABLE(); |
| case 'b': |
| Advance(2); |
| builder->AddAssertion( |
| new RegExpAssertion(RegExpAssertion::BOUNDARY)); |
| continue; |
| case 'B': |
| Advance(2); |
| builder->AddAssertion( |
| new RegExpAssertion(RegExpAssertion::NON_BOUNDARY)); |
| continue; |
| // AtomEscape :: |
| // CharacterClassEscape |
| // |
| // CharacterClassEscape :: one of |
| // d D s S w W |
| case 'd': |
| case 'D': |
| case 's': |
| case 'S': |
| case 'w': |
| case 'W': { |
| uint32_t c = Next(); |
| Advance(2); |
| ZoneGrowableArray<CharacterRange>* ranges = |
| new ZoneGrowableArray<CharacterRange>(2); |
| CharacterRange::AddClassEscape(c, ranges); |
| RegExpTree* atom = new RegExpCharacterClass(ranges, false); |
| builder->AddAtom(atom); |
| break; |
| } |
| case '1': |
| case '2': |
| case '3': |
| case '4': |
| case '5': |
| case '6': |
| case '7': |
| case '8': |
| case '9': { |
| intptr_t index = 0; |
| if (ParseBackReferenceIndex(&index)) { |
| RegExpCapture* capture = NULL; |
| if (captures_ != NULL && index <= captures_->length()) { |
| capture = captures_->At(index - 1); |
| } |
| if (capture == NULL) { |
| builder->AddEmpty(); |
| break; |
| } |
| RegExpTree* atom = new RegExpBackReference(capture); |
| builder->AddAtom(atom); |
| break; |
| } |
| uint32_t first_digit = Next(); |
| if (first_digit == '8' || first_digit == '9') { |
| // Treat as identity escape |
| builder->AddCharacter(first_digit); |
| Advance(2); |
| break; |
| } |
| } |
| // FALLTHROUGH |
| case '0': { |
| Advance(); |
| uint32_t octal = ParseOctalLiteral(); |
| builder->AddCharacter(octal); |
| break; |
| } |
| // ControlEscape :: one of |
| // f n r t v |
| case 'f': |
| Advance(2); |
| builder->AddCharacter('\f'); |
| break; |
| case 'n': |
| Advance(2); |
| builder->AddCharacter('\n'); |
| break; |
| case 'r': |
| Advance(2); |
| builder->AddCharacter('\r'); |
| break; |
| case 't': |
| Advance(2); |
| builder->AddCharacter('\t'); |
| break; |
| case 'v': |
| Advance(2); |
| builder->AddCharacter('\v'); |
| break; |
| case 'c': { |
| Advance(); |
| uint32_t controlLetter = Next(); |
| // Special case if it is an ASCII letter. |
| // Convert lower case letters to uppercase. |
| uint32_t letter = controlLetter & ~('a' ^ 'A'); |
| if (letter < 'A' || 'Z' < letter) { |
| // controlLetter is not in range 'A'-'Z' or 'a'-'z'. |
| // This is outside the specification. We match JSC in |
| // reading the backslash as a literal character instead |
| // of as starting an escape. |
| builder->AddCharacter('\\'); |
| } else { |
| Advance(2); |
| builder->AddCharacter(controlLetter & 0x1f); |
| } |
| break; |
| } |
| case 'x': { |
| Advance(2); |
| uint32_t value; |
| if (ParseHexEscape(2, &value)) { |
| builder->AddCharacter(value); |
| } else { |
| builder->AddCharacter('x'); |
| } |
| break; |
| } |
| case 'u': { |
| Advance(2); |
| uint32_t value; |
| if (ParseHexEscape(4, &value)) { |
| builder->AddCharacter(value); |
| } else { |
| builder->AddCharacter('u'); |
| } |
| break; |
| } |
| default: |
| // Identity escape. |
| builder->AddCharacter(Next()); |
| Advance(2); |
| break; |
| } |
| break; |
| case '{': { |
| intptr_t dummy; |
| if (ParseIntervalQuantifier(&dummy, &dummy)) { |
| ReportError("Nothing to repeat"); |
| UNREACHABLE(); |
| } |
| } |
| /* Falls through */ |
| default: |
| builder->AddCharacter(current()); |
| Advance(); |
| break; |
| } // end switch(current()) |
| |
| intptr_t min; |
| intptr_t max; |
| switch (current()) { |
| // QuantifierPrefix :: |
| // * |
| // + |
| // ? |
| // { |
| case '*': |
| min = 0; |
| max = RegExpTree::kInfinity; |
| Advance(); |
| break; |
| case '+': |
| min = 1; |
| max = RegExpTree::kInfinity; |
| Advance(); |
| break; |
| case '?': |
| min = 0; |
| max = 1; |
| Advance(); |
| break; |
| case '{': |
| if (ParseIntervalQuantifier(&min, &max)) { |
| if (max < min) { |
| ReportError("numbers out of order in {} quantifier."); |
| UNREACHABLE(); |
| } |
| break; |
| } else { |
| continue; |
| } |
| default: |
| continue; |
| } |
| RegExpQuantifier::QuantifierType quantifier_type = RegExpQuantifier::GREEDY; |
| if (current() == '?') { |
| quantifier_type = RegExpQuantifier::NON_GREEDY; |
| Advance(); |
| } else if (FLAG_regexp_possessive_quantifier && current() == '+') { |
| // FLAG_regexp_possessive_quantifier is a debug-only flag. |
| quantifier_type = RegExpQuantifier::POSSESSIVE; |
| Advance(); |
| } |
| builder->AddQuantifierToAtom(min, max, quantifier_type); |
| } |
| } |
| |
| #ifdef DEBUG |
| // Currently only used in an ASSERT. |
| static bool IsSpecialClassEscape(uint32_t c) { |
| switch (c) { |
| case 'd': |
| case 'D': |
| case 's': |
| case 'S': |
| case 'w': |
| case 'W': |
| return true; |
| default: |
| return false; |
| } |
| } |
| #endif |
| |
| // In order to know whether an escape is a backreference or not we have to scan |
| // the entire regexp and find the number of capturing parentheses. However we |
| // don't want to scan the regexp twice unless it is necessary. This mini-parser |
| // is called when needed. It can see the difference between capturing and |
| // noncapturing parentheses and can skip character classes and backslash-escaped |
| // characters. |
| void RegExpParser::ScanForCaptures() { |
| // Start with captures started previous to current position |
| intptr_t capture_count = captures_started(); |
| // Add count of captures after this position. |
| uintptr_t n; |
| while ((n = current()) != kEndMarker) { |
| Advance(); |
| switch (n) { |
| case '\\': |
| Advance(); |
| break; |
| case '[': { |
| uintptr_t c; |
| while ((c = current()) != kEndMarker) { |
| Advance(); |
| if (c == '\\') { |
| Advance(); |
| } else { |
| if (c == ']') break; |
| } |
| } |
| break; |
| } |
| case '(': |
| if (current() != '?') capture_count++; |
| break; |
| } |
| } |
| capture_count_ = capture_count; |
| is_scanned_for_captures_ = true; |
| } |
| |
| static inline bool IsDecimalDigit(int32_t c) { |
| return '0' <= c && c <= '9'; |
| } |
| |
| bool RegExpParser::ParseBackReferenceIndex(intptr_t* index_out) { |
| ASSERT('\\' == current()); |
| ASSERT('1' <= Next() && Next() <= '9'); |
| // Try to parse a decimal literal that is no greater than the total number |
| // of left capturing parentheses in the input. |
| intptr_t start = position(); |
| intptr_t value = Next() - '0'; |
| Advance(2); |
| while (true) { |
| uint32_t c = current(); |
| if (IsDecimalDigit(c)) { |
| value = 10 * value + (c - '0'); |
| if (value > kMaxCaptures) { |
| Reset(start); |
| return false; |
| } |
| Advance(); |
| } else { |
| break; |
| } |
| } |
| if (value > captures_started()) { |
| if (!is_scanned_for_captures_) { |
| intptr_t saved_position = position(); |
| ScanForCaptures(); |
| Reset(saved_position); |
| } |
| if (value > capture_count_) { |
| Reset(start); |
| return false; |
| } |
| } |
| *index_out = value; |
| return true; |
| } |
| |
| // QuantifierPrefix :: |
| // { DecimalDigits } |
| // { DecimalDigits , } |
| // { DecimalDigits , DecimalDigits } |
| // |
| // Returns true if parsing succeeds, and set the min_out and max_out |
| // values. Values are truncated to RegExpTree::kInfinity if they overflow. |
| bool RegExpParser::ParseIntervalQuantifier(intptr_t* min_out, |
| intptr_t* max_out) { |
| ASSERT(current() == '{'); |
| intptr_t start = position(); |
| Advance(); |
| intptr_t min = 0; |
| if (!IsDecimalDigit(current())) { |
| Reset(start); |
| return false; |
| } |
| while (IsDecimalDigit(current())) { |
| intptr_t next = current() - '0'; |
| if (min > (RegExpTree::kInfinity - next) / 10) { |
| // Overflow. Skip past remaining decimal digits and return -1. |
| do { |
| Advance(); |
| } while (IsDecimalDigit(current())); |
| min = RegExpTree::kInfinity; |
| break; |
| } |
| min = 10 * min + next; |
| Advance(); |
| } |
| intptr_t max = 0; |
| if (current() == '}') { |
| max = min; |
| Advance(); |
| } else if (current() == ',') { |
| Advance(); |
| if (current() == '}') { |
| max = RegExpTree::kInfinity; |
| Advance(); |
| } else { |
| while (IsDecimalDigit(current())) { |
| intptr_t next = current() - '0'; |
| if (max > (RegExpTree::kInfinity - next) / 10) { |
| do { |
| Advance(); |
| } while (IsDecimalDigit(current())); |
| max = RegExpTree::kInfinity; |
| break; |
| } |
| max = 10 * max + next; |
| Advance(); |
| } |
| if (current() != '}') { |
| Reset(start); |
| return false; |
| } |
| Advance(); |
| } |
| } else { |
| Reset(start); |
| return false; |
| } |
| *min_out = min; |
| *max_out = max; |
| return true; |
| } |
| |
| uint32_t RegExpParser::ParseOctalLiteral() { |
| ASSERT(('0' <= current() && current() <= '7') || current() == kEndMarker); |
| // For compatibility with some other browsers (not all), we parse |
| // up to three octal digits with a value below 256. |
| uint32_t value = current() - '0'; |
| Advance(); |
| if ('0' <= current() && current() <= '7') { |
| value = value * 8 + current() - '0'; |
| Advance(); |
| if (value < 32 && '0' <= current() && current() <= '7') { |
| value = value * 8 + current() - '0'; |
| Advance(); |
| } |
| } |
| return value; |
| } |
| |
| // Returns the value (0 .. 15) of a hexadecimal character c. |
| // If c is not a legal hexadecimal character, returns a value < 0. |
| static inline intptr_t HexValue(uint32_t c) { |
| c -= '0'; |
| if (static_cast<unsigned>(c) <= 9) return c; |
| c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36. |
| if (static_cast<unsigned>(c) <= 5) return c + 10; |
| return -1; |
| } |
| |
| bool RegExpParser::ParseHexEscape(intptr_t length, uint32_t* value) { |
| intptr_t start = position(); |
| uint32_t val = 0; |
| bool done = false; |
| for (intptr_t i = 0; !done; i++) { |
| uint32_t c = current(); |
| intptr_t d = HexValue(c); |
| if (d < 0) { |
| Reset(start); |
| return false; |
| } |
| val = val * 16 + d; |
| Advance(); |
| if (i == length - 1) { |
| done = true; |
| } |
| } |
| *value = val; |
| return true; |
| } |
| |
| uint32_t RegExpParser::ParseClassCharacterEscape() { |
| ASSERT(current() == '\\'); |
| DEBUG_ASSERT(has_next() && !IsSpecialClassEscape(Next())); |
| Advance(); |
| switch (current()) { |
| case 'b': |
| Advance(); |
| return '\b'; |
| // ControlEscape :: one of |
| // f n r t v |
| case 'f': |
| Advance(); |
| return '\f'; |
| case 'n': |
| Advance(); |
| return '\n'; |
| case 'r': |
| Advance(); |
| return '\r'; |
| case 't': |
| Advance(); |
| return '\t'; |
| case 'v': |
| Advance(); |
| return '\v'; |
| case 'c': { |
| uint32_t controlLetter = Next(); |
| uint32_t letter = controlLetter & ~('A' ^ 'a'); |
| // For compatibility with JSC, inside a character class |
| // we also accept digits and underscore as control characters. |
| if ((controlLetter >= '0' && controlLetter <= '9') || |
| controlLetter == '_' || (letter >= 'A' && letter <= 'Z')) { |
| Advance(2); |
| // Control letters mapped to ASCII control characters in the range |
| // 0x00-0x1f. |
| return controlLetter & 0x1f; |
| } |
| // We match JSC in reading the backslash as a literal |
| // character instead of as starting an escape. |
| return '\\'; |
| } |
| case '0': |
| case '1': |
| case '2': |
| case '3': |
| case '4': |
| case '5': |
| case '6': |
| case '7': |
| // For compatibility, we interpret a decimal escape that isn't |
| // a back reference (and therefore either \0 or not valid according |
| // to the specification) as a 1..3 digit octal character code. |
| return ParseOctalLiteral(); |
| case 'x': { |
| Advance(); |
| uint32_t value; |
| if (ParseHexEscape(2, &value)) { |
| return value; |
| } |
| // If \x is not followed by a two-digit hexadecimal, treat it |
| // as an identity escape. |
| return 'x'; |
| } |
| case 'u': { |
| Advance(); |
| uint32_t value; |
| if (ParseHexEscape(4, &value)) { |
| return value; |
| } |
| // If \u is not followed by a four-digit hexadecimal, treat it |
| // as an identity escape. |
| return 'u'; |
| } |
| default: { |
| // Extended identity escape. We accept any character that hasn't |
| // been matched by a more specific case, not just the subset required |
| // by the ECMAScript specification. |
| uint32_t result = current(); |
| Advance(); |
| return result; |
| } |
| } |
| return 0; |
| } |
| |
| CharacterRange RegExpParser::ParseClassAtom(uint16_t* char_class) { |
| ASSERT(0 == *char_class); |
| uint32_t first = current(); |
| if (first == '\\') { |
| switch (Next()) { |
| case 'w': |
| case 'W': |
| case 'd': |
| case 'D': |
| case 's': |
| case 'S': { |
| *char_class = Next(); |
| Advance(2); |
| return CharacterRange::Singleton(0); // Return dummy value. |
| } |
| case kEndMarker: |
| ReportError("\\ at end of pattern"); |
| UNREACHABLE(); |
| default: |
| uint32_t c = ParseClassCharacterEscape(); |
| return CharacterRange::Singleton(c); |
| } |
| } else { |
| Advance(); |
| return CharacterRange::Singleton(first); |
| } |
| } |
| |
| static const uint16_t kNoCharClass = 0; |
| |
| // Adds range or pre-defined character class to character ranges. |
| // If char_class is not kInvalidClass, it's interpreted as a class |
| // escape (i.e., 's' means whitespace, from '\s'). |
| static inline void AddRangeOrEscape(ZoneGrowableArray<CharacterRange>* ranges, |
| uint16_t char_class, |
| CharacterRange range) { |
| if (char_class != kNoCharClass) { |
| CharacterRange::AddClassEscape(char_class, ranges); |
| } else { |
| ranges->Add(range); |
| } |
| } |
| |
| RegExpTree* RegExpParser::ParseCharacterClass() { |
| static const char* kUnterminated = "Unterminated character class"; |
| static const char* kRangeOutOfOrder = "Range out of order in character class"; |
| |
| ASSERT(current() == '['); |
| Advance(); |
| bool is_negated = false; |
| if (current() == '^') { |
| is_negated = true; |
| Advance(); |
| } |
| ZoneGrowableArray<CharacterRange>* ranges = |
| new (Z) ZoneGrowableArray<CharacterRange>(2); |
| while (has_more() && current() != ']') { |
| uint16_t char_class = kNoCharClass; |
| CharacterRange first = ParseClassAtom(&char_class); |
| if (current() == '-') { |
| Advance(); |
| if (current() == kEndMarker) { |
| // If we reach the end we break out of the loop and let the |
| // following code report an error. |
| break; |
| } else if (current() == ']') { |
| AddRangeOrEscape(ranges, char_class, first); |
| ranges->Add(CharacterRange::Singleton('-')); |
| break; |
| } |
| uint16_t char_class_2 = kNoCharClass; |
| CharacterRange next = ParseClassAtom(&char_class_2); |
| if (char_class != kNoCharClass || char_class_2 != kNoCharClass) { |
| // Either end is an escaped character class. Treat the '-' verbatim. |
| AddRangeOrEscape(ranges, char_class, first); |
| ranges->Add(CharacterRange::Singleton('-')); |
| AddRangeOrEscape(ranges, char_class_2, next); |
| continue; |
| } |
| if (first.from() > next.to()) { |
| ReportError(kRangeOutOfOrder); |
| UNREACHABLE(); |
| } |
| ranges->Add(CharacterRange::Range(first.from(), next.to())); |
| } else { |
| AddRangeOrEscape(ranges, char_class, first); |
| } |
| } |
| if (!has_more()) { |
| ReportError(kUnterminated); |
| UNREACHABLE(); |
| } |
| Advance(); |
| if (ranges->length() == 0) { |
| ranges->Add(CharacterRange::Everything()); |
| is_negated = !is_negated; |
| } |
| return new (Z) RegExpCharacterClass(ranges, is_negated); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // The Parser interface. |
| |
| bool RegExpParser::ParseRegExp(const String& input, |
| bool multiline, |
| RegExpCompileData* result) { |
| ASSERT(result != NULL); |
| LongJumpScope jump; |
| RegExpParser parser(input, &result->error, multiline); |
| if (setjmp(*jump.Set()) == 0) { |
| RegExpTree* tree = parser.ParsePattern(); |
| ASSERT(tree != NULL); |
| ASSERT(result->error.IsNull()); |
| result->tree = tree; |
| intptr_t capture_count = parser.captures_started(); |
| result->simple = tree->IsAtom() && parser.simple() && capture_count == 0; |
| result->contains_anchor = parser.contains_anchor(); |
| result->capture_count = capture_count; |
| } else { |
| ASSERT(!result->error.IsNull()); |
| Thread::Current()->clear_sticky_error(); |
| |
| // Throw a FormatException on parsing failures. |
| const String& message = |
| String::Handle(String::Concat(result->error, input)); |
| const Array& args = Array::Handle(Array::New(1)); |
| args.SetAt(0, message); |
| |
| Exceptions::ThrowByType(Exceptions::kFormat, args); |
| } |
| return !parser.failed(); |
| } |
| |
| } // namespace dart |