| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/object.h" |
| |
| #include "include/dart_api.h" |
| #include "platform/assert.h" |
| #include "vm/bit_vector.h" |
| #include "vm/bootstrap.h" |
| #include "vm/class_finalizer.h" |
| #include "vm/code_observers.h" |
| #include "vm/compiler/aot/precompiler.h" |
| #include "vm/compiler/assembler/assembler.h" |
| #include "vm/compiler/assembler/disassembler.h" |
| #include "vm/compiler/assembler/disassembler_kbc.h" |
| #include "vm/compiler/frontend/bytecode_reader.h" |
| #include "vm/compiler/frontend/kernel_fingerprints.h" |
| #include "vm/compiler/frontend/kernel_translation_helper.h" |
| #include "vm/compiler/intrinsifier.h" |
| #include "vm/compiler/jit/compiler.h" |
| #include "vm/cpu.h" |
| #include "vm/dart.h" |
| #include "vm/dart_api_state.h" |
| #include "vm/dart_entry.h" |
| #include "vm/datastream.h" |
| #include "vm/debugger.h" |
| #include "vm/deopt_instructions.h" |
| #include "vm/double_conversion.h" |
| #include "vm/exceptions.h" |
| #include "vm/growable_array.h" |
| #include "vm/hash.h" |
| #include "vm/hash_table.h" |
| #include "vm/heap/become.h" |
| #include "vm/heap/heap.h" |
| #include "vm/heap/weak_code.h" |
| #include "vm/isolate_reload.h" |
| #include "vm/kernel.h" |
| #include "vm/kernel_isolate.h" |
| #include "vm/kernel_loader.h" |
| #include "vm/native_symbol.h" |
| #include "vm/object_store.h" |
| #include "vm/parser.h" |
| #include "vm/profiler.h" |
| #include "vm/resolver.h" |
| #include "vm/reusable_handles.h" |
| #include "vm/runtime_entry.h" |
| #include "vm/scopes.h" |
| #include "vm/stack_frame.h" |
| #include "vm/stub_code.h" |
| #include "vm/symbols.h" |
| #include "vm/tags.h" |
| #include "vm/thread_registry.h" |
| #include "vm/timeline.h" |
| #include "vm/type_table.h" |
| #include "vm/type_testing_stubs.h" |
| #include "vm/unicode.h" |
| #include "vm/zone_text_buffer.h" |
| |
| namespace dart { |
| |
| DEFINE_FLAG(int, |
| huge_method_cutoff_in_code_size, |
| 200000, |
| "Huge method cutoff in unoptimized code size (in bytes)."); |
| DEFINE_FLAG( |
| bool, |
| show_internal_names, |
| false, |
| "Show names of internal classes (e.g. \"OneByteString\") in error messages " |
| "instead of showing the corresponding interface names (e.g. \"String\")"); |
| DEFINE_FLAG(bool, use_lib_cache, false, "Use library name cache"); |
| DEFINE_FLAG(bool, use_exp_cache, false, "Use library exported name cache"); |
| |
| DEFINE_FLAG(bool, |
| remove_script_timestamps_for_test, |
| false, |
| "Remove script timestamps to allow for deterministic testing."); |
| |
| DECLARE_FLAG(bool, intrinsify); |
| DECLARE_FLAG(bool, show_invisible_frames); |
| DECLARE_FLAG(bool, trace_deoptimization); |
| DECLARE_FLAG(bool, trace_deoptimization_verbose); |
| DECLARE_FLAG(bool, trace_reload); |
| DECLARE_FLAG(bool, write_protect_code); |
| |
| static const char* const kGetterPrefix = "get:"; |
| static const intptr_t kGetterPrefixLength = strlen(kGetterPrefix); |
| static const char* const kSetterPrefix = "set:"; |
| static const intptr_t kSetterPrefixLength = strlen(kSetterPrefix); |
| |
| // A cache of VM heap allocated preinitialized empty ic data entry arrays. |
| RawArray* ICData::cached_icdata_arrays_[kCachedICDataArrayCount]; |
| |
| cpp_vtable Object::handle_vtable_ = 0; |
| cpp_vtable Object::builtin_vtables_[kNumPredefinedCids] = {0}; |
| cpp_vtable Smi::handle_vtable_ = 0; |
| |
| // These are initialized to a value that will force a illegal memory access if |
| // they are being used. |
| #if defined(RAW_NULL) |
| #error RAW_NULL should not be defined. |
| #endif |
| #define RAW_NULL kHeapObjectTag |
| |
| #define DEFINE_SHARED_READONLY_HANDLE(Type, name) \ |
| Type* Object::name##_ = nullptr; |
| SHARED_READONLY_HANDLES_LIST(DEFINE_SHARED_READONLY_HANDLE) |
| #undef DEFINE_SHARED_READONLY_HANDLE |
| |
| RawObject* Object::null_ = reinterpret_cast<RawObject*>(RAW_NULL); |
| RawClass* Object::class_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::dynamic_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::void_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::type_arguments_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::patch_class_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::function_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::closure_data_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::signature_data_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::redirection_data_class_ = |
| reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::field_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::script_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::library_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::namespace_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::kernel_program_info_class_ = |
| reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::code_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::bytecode_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::instructions_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::object_pool_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::pc_descriptors_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::code_source_map_class_ = |
| reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::stackmap_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::var_descriptors_class_ = |
| reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::exception_handlers_class_ = |
| reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::context_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::context_scope_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::singletargetcache_class_ = |
| reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::unlinkedcall_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::icdata_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::megamorphic_cache_class_ = |
| reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::subtypetestcache_class_ = |
| reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::api_error_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::language_error_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::unhandled_exception_class_ = |
| reinterpret_cast<RawClass*>(RAW_NULL); |
| RawClass* Object::unwind_error_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| |
| const double MegamorphicCache::kLoadFactor = 0.50; |
| |
| static void AppendSubString(Zone* zone, |
| GrowableArray<const char*>* segments, |
| const char* name, |
| intptr_t start_pos, |
| intptr_t len) { |
| char* segment = zone->Alloc<char>(len + 1); // '\0'-terminated. |
| memmove(segment, name + start_pos, len); |
| segment[len] = '\0'; |
| segments->Add(segment); |
| } |
| |
| static const char* MergeSubStrings(Zone* zone, |
| const GrowableArray<const char*>& segments, |
| intptr_t alloc_len) { |
| char* result = zone->Alloc<char>(alloc_len + 1); // '\0'-terminated |
| intptr_t pos = 0; |
| for (intptr_t k = 0; k < segments.length(); k++) { |
| const char* piece = segments[k]; |
| const intptr_t piece_len = strlen(segments[k]); |
| memmove(result + pos, piece, piece_len); |
| pos += piece_len; |
| ASSERT(pos <= alloc_len); |
| } |
| result[pos] = '\0'; |
| return result; |
| } |
| |
| // Remove private keys, but retain getter/setter/constructor/mixin manglings. |
| RawString* String::RemovePrivateKey(const String& name) { |
| ASSERT(name.IsOneByteString()); |
| GrowableArray<uint8_t> without_key(name.Length()); |
| intptr_t i = 0; |
| while (i < name.Length()) { |
| while (i < name.Length()) { |
| uint8_t c = name.CharAt(i++); |
| if (c == '@') break; |
| without_key.Add(c); |
| } |
| while (i < name.Length()) { |
| uint8_t c = name.CharAt(i); |
| if ((c < '0') || (c > '9')) break; |
| i++; |
| } |
| } |
| |
| return String::FromLatin1(without_key.data(), without_key.length()); |
| } |
| |
| // Takes a vm internal name and makes it suitable for external user. |
| // |
| // Examples: |
| // |
| // Internal getter and setter prefixes are changed: |
| // |
| // get:foo -> foo |
| // set:foo -> foo= |
| // |
| // Private name mangling is removed, possibly multiple times: |
| // |
| // _ReceivePortImpl@709387912 -> _ReceivePortImpl |
| // _ReceivePortImpl@709387912._internal@709387912 -> |
| // _ReceivePortImpl._internal |
| // _C@6328321&_E@6328321&_F@6328321 -> _C&_E&_F |
| // |
| // The trailing . on the default constructor name is dropped: |
| // |
| // List. -> List |
| // |
| // And so forth: |
| // |
| // get:foo@6328321 -> foo |
| // _MyClass@6328321. -> _MyClass |
| // _MyClass@6328321.named -> _MyClass.named |
| // |
| RawString* String::ScrubName(const String& name) { |
| Thread* thread = Thread::Current(); |
| Zone* zone = thread->zone(); |
| |
| #if !defined(DART_PRECOMPILED_RUNTIME) |
| if (name.Equals(Symbols::TopLevel())) { |
| // Name of invisible top-level class. |
| return Symbols::Empty().raw(); |
| } |
| #endif // !defined(DART_PRECOMPILED_RUNTIME) |
| |
| const char* cname = name.ToCString(); |
| ASSERT(strlen(cname) == static_cast<size_t>(name.Length())); |
| const intptr_t name_len = name.Length(); |
| // First remove all private name mangling. |
| intptr_t start_pos = 0; |
| GrowableArray<const char*> unmangled_segments; |
| intptr_t sum_segment_len = 0; |
| for (intptr_t i = 0; i < name_len; i++) { |
| if ((cname[i] == '@') && ((i + 1) < name_len) && (cname[i + 1] >= '0') && |
| (cname[i + 1] <= '9')) { |
| // Append the current segment to the unmangled name. |
| const intptr_t segment_len = i - start_pos; |
| sum_segment_len += segment_len; |
| AppendSubString(zone, &unmangled_segments, cname, start_pos, segment_len); |
| // Advance until past the name mangling. The private keys are only |
| // numbers so we skip until the first non-number. |
| i++; // Skip the '@'. |
| while ((i < name.Length()) && (name.CharAt(i) >= '0') && |
| (name.CharAt(i) <= '9')) { |
| i++; |
| } |
| start_pos = i; |
| i--; // Account for for-loop increment. |
| } |
| } |
| |
| const char* unmangled_name = NULL; |
| if (start_pos == 0) { |
| // No name unmangling needed, reuse the name that was passed in. |
| unmangled_name = cname; |
| sum_segment_len = name_len; |
| } else if (name.Length() != start_pos) { |
| // Append the last segment. |
| const intptr_t segment_len = name.Length() - start_pos; |
| sum_segment_len += segment_len; |
| AppendSubString(zone, &unmangled_segments, cname, start_pos, segment_len); |
| } |
| if (unmangled_name == NULL) { |
| // Merge unmangled_segments. |
| unmangled_name = MergeSubStrings(zone, unmangled_segments, sum_segment_len); |
| } |
| |
| #if !defined(DART_PRECOMPILED_RUNTIME) |
| intptr_t len = sum_segment_len; |
| intptr_t start = 0; |
| intptr_t dot_pos = -1; // Position of '.' in the name, if any. |
| bool is_setter = false; |
| for (intptr_t i = start; i < len; i++) { |
| if (unmangled_name[i] == ':') { |
| if (start != 0) { |
| // Reset and break. |
| start = 0; |
| dot_pos = -1; |
| break; |
| } |
| ASSERT(start == 0); // Only one : is possible in getters or setters. |
| if (unmangled_name[0] == 's') { |
| is_setter = true; |
| } |
| start = i + 1; |
| } else if (unmangled_name[i] == '.') { |
| if (dot_pos != -1) { |
| // Reset and break. |
| start = 0; |
| dot_pos = -1; |
| break; |
| } |
| ASSERT(dot_pos == -1); // Only one dot is supported. |
| dot_pos = i; |
| } |
| } |
| |
| if ((start == 0) && (dot_pos == -1)) { |
| // This unmangled_name is fine as it is. |
| return Symbols::New(thread, unmangled_name, sum_segment_len); |
| } |
| |
| // Drop the trailing dot if needed. |
| intptr_t end = ((dot_pos + 1) == len) ? dot_pos : len; |
| |
| unmangled_segments.Clear(); |
| intptr_t final_len = end - start; |
| AppendSubString(zone, &unmangled_segments, unmangled_name, start, final_len); |
| if (is_setter) { |
| const char* equals = Symbols::Equals().ToCString(); |
| const intptr_t equals_len = strlen(equals); |
| AppendSubString(zone, &unmangled_segments, equals, 0, equals_len); |
| final_len += equals_len; |
| } |
| |
| unmangled_name = MergeSubStrings(zone, unmangled_segments, final_len); |
| #endif // !defined(DART_PRECOMPILED_RUNTIME) |
| |
| return Symbols::New(thread, unmangled_name); |
| } |
| |
| RawString* String::ScrubNameRetainPrivate(const String& name) { |
| #if !defined(DART_PRECOMPILED_RUNTIME) |
| intptr_t len = name.Length(); |
| intptr_t start = 0; |
| intptr_t at_pos = -1; // Position of '@' in the name, if any. |
| bool is_setter = false; |
| |
| for (intptr_t i = start; i < len; i++) { |
| if (name.CharAt(i) == ':') { |
| ASSERT(start == 0); // Only one : is possible in getters or setters. |
| if (name.CharAt(0) == 's') { |
| is_setter = true; |
| } |
| start = i + 1; |
| } else if (name.CharAt(i) == '@') { |
| // Setters should have only one @ so we know where to put the =. |
| ASSERT(!is_setter || (at_pos == -1)); |
| at_pos = i; |
| } |
| } |
| |
| if (start == 0) { |
| // This unmangled_name is fine as it is. |
| return name.raw(); |
| } |
| |
| String& result = |
| String::Handle(String::SubString(name, start, (len - start))); |
| |
| if (is_setter) { |
| // Setters need to end with '='. |
| if (at_pos == -1) { |
| return String::Concat(result, Symbols::Equals()); |
| } else { |
| const String& pre_at = |
| String::Handle(String::SubString(result, 0, at_pos - 4)); |
| const String& post_at = |
| String::Handle(String::SubString(name, at_pos, len - at_pos)); |
| result = String::Concat(pre_at, Symbols::Equals()); |
| result = String::Concat(result, post_at); |
| } |
| } |
| |
| return result.raw(); |
| #endif // !defined(DART_PRECOMPILED_RUNTIME) |
| return name.raw(); // In AOT, return argument unchanged. |
| } |
| |
| template <typename type> |
| static bool IsSpecialCharacter(type value) { |
| return ((value == '"') || (value == '\n') || (value == '\f') || |
| (value == '\b') || (value == '\t') || (value == '\v') || |
| (value == '\r') || (value == '\\') || (value == '$')); |
| } |
| |
| static inline bool IsAsciiNonprintable(int32_t c) { |
| return ((0 <= c) && (c < 32)) || (c == 127); |
| } |
| |
| static int32_t EscapeOverhead(int32_t c) { |
| if (IsSpecialCharacter(c)) { |
| return 1; // 1 additional byte for the backslash. |
| } else if (IsAsciiNonprintable(c)) { |
| return 3; // 3 additional bytes to encode c as \x00. |
| } |
| return 0; |
| } |
| |
| template <typename type> |
| static type SpecialCharacter(type value) { |
| if (value == '"') { |
| return '"'; |
| } else if (value == '\n') { |
| return 'n'; |
| } else if (value == '\f') { |
| return 'f'; |
| } else if (value == '\b') { |
| return 'b'; |
| } else if (value == '\t') { |
| return 't'; |
| } else if (value == '\v') { |
| return 'v'; |
| } else if (value == '\r') { |
| return 'r'; |
| } else if (value == '\\') { |
| return '\\'; |
| } else if (value == '$') { |
| return '$'; |
| } |
| UNREACHABLE(); |
| return '\0'; |
| } |
| |
| void Object::InitNull(Isolate* isolate) { |
| // Should only be run by the vm isolate. |
| ASSERT(isolate == Dart::vm_isolate()); |
| |
| // TODO(iposva): NoSafepointScope needs to be added here. |
| ASSERT(class_class() == null_); |
| |
| Heap* heap = isolate->heap(); |
| |
| // Allocate and initialize the null instance. |
| // 'null_' must be the first object allocated as it is used in allocation to |
| // clear the object. |
| { |
| uword address = heap->Allocate(Instance::InstanceSize(), Heap::kOld); |
| null_ = reinterpret_cast<RawInstance*>(address + kHeapObjectTag); |
| // The call below is using 'null_' to initialize itself. |
| InitializeObject(address, kNullCid, Instance::InstanceSize(), true); |
| } |
| } |
| |
| void Object::Init(Isolate* isolate) { |
| // Should only be run by the vm isolate. |
| ASSERT(isolate == Dart::vm_isolate()); |
| |
| // Initialize the static vtable values. |
| { |
| Object fake_object; |
| Smi fake_smi; |
| Object::handle_vtable_ = fake_object.vtable(); |
| Smi::handle_vtable_ = fake_smi.vtable(); |
| } |
| |
| Heap* heap = isolate->heap(); |
| |
| // Allocate the read only object handles here. |
| #define INITIALIZE_SHARED_READONLY_HANDLE(Type, name) \ |
| name##_ = Type::ReadOnlyHandle(); |
| SHARED_READONLY_HANDLES_LIST(INITIALIZE_SHARED_READONLY_HANDLE) |
| #undef INITIALIZE_SHARED_READONLY_HANDLE |
| |
| *null_object_ = Object::null(); |
| *null_array_ = Array::null(); |
| *null_string_ = String::null(); |
| *null_instance_ = Instance::null(); |
| *null_function_ = Function::null(); |
| *null_type_arguments_ = TypeArguments::null(); |
| *empty_type_arguments_ = TypeArguments::null(); |
| *null_abstract_type_ = AbstractType::null(); |
| |
| // Initialize the empty and zero array handles to null_ in order to be able to |
| // check if the empty and zero arrays were allocated (RAW_NULL is not |
| // available). |
| *empty_array_ = Array::null(); |
| *zero_array_ = Array::null(); |
| |
| Class& cls = Class::Handle(); |
| |
| // Allocate and initialize the class class. |
| { |
| intptr_t size = Class::InstanceSize(); |
| uword address = heap->Allocate(size, Heap::kOld); |
| class_class_ = reinterpret_cast<RawClass*>(address + kHeapObjectTag); |
| InitializeObject(address, Class::kClassId, size, true); |
| |
| Class fake; |
| // Initialization from Class::New<Class>. |
| // Directly set raw_ to break a circular dependency: SetRaw will attempt |
| // to lookup class class in the class table where it is not registered yet. |
| cls.raw_ = class_class_; |
| cls.set_handle_vtable(fake.vtable()); |
| cls.set_instance_size(Class::InstanceSize()); |
| cls.set_next_field_offset(Class::NextFieldOffset()); |
| cls.set_id(Class::kClassId); |
| cls.set_state_bits(0); |
| cls.set_is_finalized(); |
| cls.set_is_type_finalized(); |
| cls.set_is_cycle_free(); |
| cls.set_type_arguments_field_offset_in_words(Class::kNoTypeArguments); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_has_pragma(false); |
| cls.set_num_native_fields(0); |
| cls.InitEmptyFields(); |
| isolate->RegisterClass(cls); |
| } |
| |
| // Allocate and initialize the null class. |
| cls = Class::New<Instance>(kNullCid); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| isolate->object_store()->set_null_class(cls); |
| |
| // Allocate and initialize the free list element class. |
| cls = Class::New<FreeListElement::FakeInstance>(kFreeListElement); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_finalized(); |
| cls.set_is_type_finalized(); |
| cls.set_is_cycle_free(); |
| |
| // Allocate and initialize the forwarding corpse class. |
| cls = Class::New<ForwardingCorpse::FakeInstance>(kForwardingCorpse); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_finalized(); |
| cls.set_is_type_finalized(); |
| cls.set_is_cycle_free(); |
| |
| // Allocate and initialize the sentinel values of Null class. |
| { |
| *sentinel_ ^= |
| Object::Allocate(kNullCid, Instance::InstanceSize(), Heap::kOld); |
| |
| *transition_sentinel_ ^= |
| Object::Allocate(kNullCid, Instance::InstanceSize(), Heap::kOld); |
| } |
| |
| // Allocate and initialize optimizing compiler constants. |
| { |
| *unknown_constant_ ^= |
| Object::Allocate(kNullCid, Instance::InstanceSize(), Heap::kOld); |
| *non_constant_ ^= |
| Object::Allocate(kNullCid, Instance::InstanceSize(), Heap::kOld); |
| } |
| |
| // Allocate the remaining VM internal classes. |
| cls = Class::New<TypeArguments>(); |
| type_arguments_class_ = cls.raw(); |
| |
| cls = Class::New<PatchClass>(); |
| patch_class_class_ = cls.raw(); |
| |
| cls = Class::New<Function>(); |
| function_class_ = cls.raw(); |
| |
| cls = Class::New<ClosureData>(); |
| closure_data_class_ = cls.raw(); |
| |
| cls = Class::New<SignatureData>(); |
| signature_data_class_ = cls.raw(); |
| |
| cls = Class::New<RedirectionData>(); |
| redirection_data_class_ = cls.raw(); |
| |
| cls = Class::New<Field>(); |
| field_class_ = cls.raw(); |
| |
| cls = Class::New<Script>(); |
| script_class_ = cls.raw(); |
| |
| cls = Class::New<Library>(); |
| library_class_ = cls.raw(); |
| |
| cls = Class::New<Namespace>(); |
| namespace_class_ = cls.raw(); |
| |
| cls = Class::New<KernelProgramInfo>(); |
| kernel_program_info_class_ = cls.raw(); |
| |
| cls = Class::New<Code>(); |
| code_class_ = cls.raw(); |
| |
| cls = Class::New<Bytecode>(); |
| bytecode_class_ = cls.raw(); |
| |
| cls = Class::New<Instructions>(); |
| instructions_class_ = cls.raw(); |
| |
| cls = Class::New<ObjectPool>(); |
| object_pool_class_ = cls.raw(); |
| |
| cls = Class::New<PcDescriptors>(); |
| pc_descriptors_class_ = cls.raw(); |
| |
| cls = Class::New<CodeSourceMap>(); |
| code_source_map_class_ = cls.raw(); |
| |
| cls = Class::New<StackMap>(); |
| stackmap_class_ = cls.raw(); |
| |
| cls = Class::New<LocalVarDescriptors>(); |
| var_descriptors_class_ = cls.raw(); |
| |
| cls = Class::New<ExceptionHandlers>(); |
| exception_handlers_class_ = cls.raw(); |
| |
| cls = Class::New<Context>(); |
| context_class_ = cls.raw(); |
| |
| cls = Class::New<ContextScope>(); |
| context_scope_class_ = cls.raw(); |
| |
| cls = Class::New<SingleTargetCache>(); |
| singletargetcache_class_ = cls.raw(); |
| |
| cls = Class::New<UnlinkedCall>(); |
| unlinkedcall_class_ = cls.raw(); |
| |
| cls = Class::New<ICData>(); |
| icdata_class_ = cls.raw(); |
| |
| cls = Class::New<MegamorphicCache>(); |
| megamorphic_cache_class_ = cls.raw(); |
| |
| cls = Class::New<SubtypeTestCache>(); |
| subtypetestcache_class_ = cls.raw(); |
| |
| cls = Class::New<ApiError>(); |
| api_error_class_ = cls.raw(); |
| |
| cls = Class::New<LanguageError>(); |
| language_error_class_ = cls.raw(); |
| |
| cls = Class::New<UnhandledException>(); |
| unhandled_exception_class_ = cls.raw(); |
| |
| cls = Class::New<UnwindError>(); |
| unwind_error_class_ = cls.raw(); |
| |
| ASSERT(class_class() != null_); |
| |
| // Pre-allocate classes in the vm isolate so that we can for example create a |
| // symbol table and populate it with some frequently used strings as symbols. |
| cls = Class::New<Array>(); |
| isolate->object_store()->set_array_class(cls); |
| cls.set_type_arguments_field_offset(Array::type_arguments_offset()); |
| cls.set_num_type_arguments(1); |
| cls.set_num_own_type_arguments(1); |
| cls = Class::New<Array>(kImmutableArrayCid); |
| isolate->object_store()->set_immutable_array_class(cls); |
| cls.set_type_arguments_field_offset(Array::type_arguments_offset()); |
| cls.set_num_type_arguments(1); |
| cls.set_num_own_type_arguments(1); |
| cls = Class::New<GrowableObjectArray>(); |
| isolate->object_store()->set_growable_object_array_class(cls); |
| cls.set_type_arguments_field_offset( |
| GrowableObjectArray::type_arguments_offset()); |
| cls.set_num_type_arguments(1); |
| cls = Class::NewStringClass(kOneByteStringCid); |
| isolate->object_store()->set_one_byte_string_class(cls); |
| cls = Class::NewStringClass(kTwoByteStringCid); |
| isolate->object_store()->set_two_byte_string_class(cls); |
| cls = Class::New<Mint>(); |
| isolate->object_store()->set_mint_class(cls); |
| cls = Class::New<Double>(); |
| isolate->object_store()->set_double_class(cls); |
| |
| // Ensure that class kExternalTypedDataUint8ArrayCid is registered as we |
| // need it when reading in the token stream of bootstrap classes in the VM |
| // isolate. |
| Class::NewExternalTypedDataClass(kExternalTypedDataUint8ArrayCid); |
| |
| // Needed for object pools of VM isolate stubs. |
| Class::NewTypedDataClass(kTypedDataInt8ArrayCid); |
| |
| // Allocate and initialize the empty_array instance. |
| { |
| uword address = heap->Allocate(Array::InstanceSize(0), Heap::kOld); |
| InitializeObject(address, kImmutableArrayCid, Array::InstanceSize(0), true); |
| Array::initializeHandle( |
| empty_array_, reinterpret_cast<RawArray*>(address + kHeapObjectTag)); |
| empty_array_->StoreSmi(&empty_array_->raw_ptr()->length_, Smi::New(0)); |
| empty_array_->SetCanonical(); |
| } |
| |
| Smi& smi = Smi::Handle(); |
| // Allocate and initialize the zero_array instance. |
| { |
| uword address = heap->Allocate(Array::InstanceSize(1), Heap::kOld); |
| InitializeObject(address, kImmutableArrayCid, Array::InstanceSize(1), true); |
| Array::initializeHandle( |
| zero_array_, reinterpret_cast<RawArray*>(address + kHeapObjectTag)); |
| zero_array_->StoreSmi(&zero_array_->raw_ptr()->length_, Smi::New(1)); |
| smi = Smi::New(0); |
| zero_array_->SetAt(0, smi); |
| zero_array_->SetCanonical(); |
| } |
| |
| // Allocate and initialize the canonical empty context scope object. |
| { |
| uword address = heap->Allocate(ContextScope::InstanceSize(0), Heap::kOld); |
| InitializeObject(address, kContextScopeCid, ContextScope::InstanceSize(0), |
| true); |
| ContextScope::initializeHandle( |
| empty_context_scope_, |
| reinterpret_cast<RawContextScope*>(address + kHeapObjectTag)); |
| empty_context_scope_->StoreNonPointer( |
| &empty_context_scope_->raw_ptr()->num_variables_, 0); |
| empty_context_scope_->StoreNonPointer( |
| &empty_context_scope_->raw_ptr()->is_implicit_, true); |
| empty_context_scope_->SetCanonical(); |
| } |
| |
| // Allocate and initialize the canonical empty object pool object. |
| { |
| uword address = heap->Allocate(ObjectPool::InstanceSize(0), Heap::kOld); |
| InitializeObject(address, kObjectPoolCid, ObjectPool::InstanceSize(0), |
| true); |
| ObjectPool::initializeHandle( |
| empty_object_pool_, |
| reinterpret_cast<RawObjectPool*>(address + kHeapObjectTag)); |
| empty_object_pool_->StoreNonPointer(&empty_object_pool_->raw_ptr()->length_, |
| 0); |
| empty_object_pool_->SetCanonical(); |
| } |
| |
| // Allocate and initialize the empty_descriptors instance. |
| { |
| uword address = heap->Allocate(PcDescriptors::InstanceSize(0), Heap::kOld); |
| InitializeObject(address, kPcDescriptorsCid, PcDescriptors::InstanceSize(0), |
| true); |
| PcDescriptors::initializeHandle( |
| empty_descriptors_, |
| reinterpret_cast<RawPcDescriptors*>(address + kHeapObjectTag)); |
| empty_descriptors_->StoreNonPointer(&empty_descriptors_->raw_ptr()->length_, |
| 0); |
| empty_descriptors_->SetCanonical(); |
| } |
| |
| // Allocate and initialize the canonical empty variable descriptor object. |
| { |
| uword address = |
| heap->Allocate(LocalVarDescriptors::InstanceSize(0), Heap::kOld); |
| InitializeObject(address, kLocalVarDescriptorsCid, |
| LocalVarDescriptors::InstanceSize(0), true); |
| LocalVarDescriptors::initializeHandle( |
| empty_var_descriptors_, |
| reinterpret_cast<RawLocalVarDescriptors*>(address + kHeapObjectTag)); |
| empty_var_descriptors_->StoreNonPointer( |
| &empty_var_descriptors_->raw_ptr()->num_entries_, 0); |
| empty_var_descriptors_->SetCanonical(); |
| } |
| |
| // Allocate and initialize the canonical empty exception handler info object. |
| // The vast majority of all functions do not contain an exception handler |
| // and can share this canonical descriptor. |
| { |
| uword address = |
| heap->Allocate(ExceptionHandlers::InstanceSize(0), Heap::kOld); |
| InitializeObject(address, kExceptionHandlersCid, |
| ExceptionHandlers::InstanceSize(0), true); |
| ExceptionHandlers::initializeHandle( |
| empty_exception_handlers_, |
| reinterpret_cast<RawExceptionHandlers*>(address + kHeapObjectTag)); |
| empty_exception_handlers_->StoreNonPointer( |
| &empty_exception_handlers_->raw_ptr()->num_entries_, 0); |
| empty_exception_handlers_->SetCanonical(); |
| } |
| |
| // Allocate and initialize the canonical empty type arguments object. |
| { |
| uword address = heap->Allocate(TypeArguments::InstanceSize(0), Heap::kOld); |
| InitializeObject(address, kTypeArgumentsCid, TypeArguments::InstanceSize(0), |
| true); |
| TypeArguments::initializeHandle( |
| empty_type_arguments_, |
| reinterpret_cast<RawTypeArguments*>(address + kHeapObjectTag)); |
| empty_type_arguments_->StoreSmi(&empty_type_arguments_->raw_ptr()->length_, |
| Smi::New(0)); |
| empty_type_arguments_->StoreSmi(&empty_type_arguments_->raw_ptr()->hash_, |
| Smi::New(0)); |
| empty_type_arguments_->SetCanonical(); |
| } |
| |
| // The VM isolate snapshot object table is initialized to an empty array |
| // as we do not have any VM isolate snapshot at this time. |
| *vm_isolate_snapshot_object_table_ = Object::empty_array().raw(); |
| |
| cls = Class::New<Instance>(kDynamicCid); |
| cls.set_is_abstract(); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_finalized(); |
| cls.set_is_type_finalized(); |
| cls.set_is_cycle_free(); |
| dynamic_class_ = cls.raw(); |
| |
| cls = Class::New<Instance>(kVoidCid); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_finalized(); |
| cls.set_is_type_finalized(); |
| cls.set_is_cycle_free(); |
| void_class_ = cls.raw(); |
| |
| cls = Class::New<Type>(); |
| cls.set_is_finalized(); |
| cls.set_is_type_finalized(); |
| cls.set_is_cycle_free(); |
| |
| cls = dynamic_class_; |
| *dynamic_type_ = Type::NewNonParameterizedType(cls); |
| |
| cls = void_class_; |
| *void_type_ = Type::NewNonParameterizedType(cls); |
| |
| // Since TypeArguments objects are passed as function arguments, make them |
| // behave as Dart instances, although they are just VM objects. |
| // Note that we cannot set the super type to ObjectType, which does not live |
| // in the vm isolate. See special handling in Class::SuperClass(). |
| cls = type_arguments_class_; |
| cls.set_interfaces(Object::empty_array()); |
| cls.SetFields(Object::empty_array()); |
| cls.SetFunctions(Object::empty_array()); |
| |
| // Allocate and initialize singleton true and false boolean objects. |
| cls = Class::New<Bool>(); |
| isolate->object_store()->set_bool_class(cls); |
| *bool_true_ = Bool::New(true); |
| *bool_false_ = Bool::New(false); |
| |
| *smi_illegal_cid_ = Smi::New(kIllegalCid); |
| |
| String& error_str = String::Handle(); |
| error_str = String::New("SnapshotWriter Error", Heap::kOld); |
| *snapshot_writer_error_ = |
| LanguageError::New(error_str, Report::kError, Heap::kOld); |
| error_str = String::New("Branch offset overflow", Heap::kOld); |
| *branch_offset_error_ = |
| LanguageError::New(error_str, Report::kBailout, Heap::kOld); |
| error_str = String::New("Speculative inlining failed", Heap::kOld); |
| *speculative_inlining_error_ = |
| LanguageError::New(error_str, Report::kBailout, Heap::kOld); |
| error_str = String::New("Background Compilation Failed", Heap::kOld); |
| *background_compilation_error_ = |
| LanguageError::New(error_str, Report::kBailout, Heap::kOld); |
| |
| // Allocate the parameter arrays for method extractor types and names. |
| *extractor_parameter_types_ = Array::New(1, Heap::kOld); |
| extractor_parameter_types_->SetAt(0, Object::dynamic_type()); |
| *extractor_parameter_names_ = Array::New(1, Heap::kOld); |
| // Fill in extractor_parameter_names_ later, after symbols are initialized |
| // (in Object::FinalizeVMIsolate). extractor_parameter_names_ object |
| // needs to be created earlier as VM isolate snapshot reader references it |
| // before Object::FinalizeVMIsolate. |
| |
| // Some thread fields need to be reinitialized as null constants have not been |
| // initialized until now. |
| Thread* thr = Thread::Current(); |
| ASSERT(thr != NULL); |
| thr->clear_sticky_error(); |
| thr->clear_pending_functions(); |
| |
| ASSERT(!null_object_->IsSmi()); |
| ASSERT(!null_array_->IsSmi()); |
| ASSERT(null_array_->IsArray()); |
| ASSERT(!null_string_->IsSmi()); |
| ASSERT(null_string_->IsString()); |
| ASSERT(!null_instance_->IsSmi()); |
| ASSERT(null_instance_->IsInstance()); |
| ASSERT(!null_function_->IsSmi()); |
| ASSERT(null_function_->IsFunction()); |
| ASSERT(!null_type_arguments_->IsSmi()); |
| ASSERT(null_type_arguments_->IsTypeArguments()); |
| ASSERT(!empty_array_->IsSmi()); |
| ASSERT(empty_array_->IsArray()); |
| ASSERT(!zero_array_->IsSmi()); |
| ASSERT(zero_array_->IsArray()); |
| ASSERT(!empty_context_scope_->IsSmi()); |
| ASSERT(empty_context_scope_->IsContextScope()); |
| ASSERT(!empty_descriptors_->IsSmi()); |
| ASSERT(empty_descriptors_->IsPcDescriptors()); |
| ASSERT(!empty_var_descriptors_->IsSmi()); |
| ASSERT(empty_var_descriptors_->IsLocalVarDescriptors()); |
| ASSERT(!empty_exception_handlers_->IsSmi()); |
| ASSERT(empty_exception_handlers_->IsExceptionHandlers()); |
| ASSERT(!sentinel_->IsSmi()); |
| ASSERT(sentinel_->IsInstance()); |
| ASSERT(!transition_sentinel_->IsSmi()); |
| ASSERT(transition_sentinel_->IsInstance()); |
| ASSERT(!unknown_constant_->IsSmi()); |
| ASSERT(unknown_constant_->IsInstance()); |
| ASSERT(!non_constant_->IsSmi()); |
| ASSERT(non_constant_->IsInstance()); |
| ASSERT(!bool_true_->IsSmi()); |
| ASSERT(bool_true_->IsBool()); |
| ASSERT(!bool_false_->IsSmi()); |
| ASSERT(bool_false_->IsBool()); |
| ASSERT(smi_illegal_cid_->IsSmi()); |
| ASSERT(!snapshot_writer_error_->IsSmi()); |
| ASSERT(snapshot_writer_error_->IsLanguageError()); |
| ASSERT(!branch_offset_error_->IsSmi()); |
| ASSERT(branch_offset_error_->IsLanguageError()); |
| ASSERT(!speculative_inlining_error_->IsSmi()); |
| ASSERT(speculative_inlining_error_->IsLanguageError()); |
| ASSERT(!background_compilation_error_->IsSmi()); |
| ASSERT(background_compilation_error_->IsLanguageError()); |
| ASSERT(!vm_isolate_snapshot_object_table_->IsSmi()); |
| ASSERT(vm_isolate_snapshot_object_table_->IsArray()); |
| ASSERT(!extractor_parameter_types_->IsSmi()); |
| ASSERT(extractor_parameter_types_->IsArray()); |
| ASSERT(!extractor_parameter_names_->IsSmi()); |
| ASSERT(extractor_parameter_names_->IsArray()); |
| } |
| |
| void Object::FinishInit(Isolate* isolate) { |
| // The type testing stubs we initialize in AbstractType objects for the |
| // canonical type of kDynamicCid/kVoidCid need to be set in this |
| // method, which is called after StubCode::InitOnce(). |
| Instructions& instr = Instructions::Handle(); |
| |
| instr = TypeTestingStubGenerator::DefaultCodeForType(*dynamic_type_); |
| dynamic_type_->SetTypeTestingStub(instr); |
| |
| instr = TypeTestingStubGenerator::DefaultCodeForType(*void_type_); |
| void_type_->SetTypeTestingStub(instr); |
| } |
| |
| void Object::Cleanup() { |
| null_ = reinterpret_cast<RawObject*>(RAW_NULL); |
| class_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| dynamic_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| void_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| type_arguments_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| patch_class_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| function_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| closure_data_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| signature_data_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| redirection_data_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| field_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| script_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| library_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| namespace_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| kernel_program_info_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| code_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| bytecode_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| instructions_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| object_pool_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| pc_descriptors_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| code_source_map_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| stackmap_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| var_descriptors_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| exception_handlers_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| context_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| context_scope_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| singletargetcache_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| unlinkedcall_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| icdata_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| megamorphic_cache_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| subtypetestcache_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| api_error_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| language_error_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| unhandled_exception_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| unwind_error_class_ = reinterpret_cast<RawClass*>(RAW_NULL); |
| } |
| |
| // An object visitor which will mark all visited objects. This is used to |
| // premark all objects in the vm_isolate_ heap. Also precalculates hash |
| // codes so that we can get the identity hash code of objects in the read- |
| // only VM isolate. |
| class FinalizeVMIsolateVisitor : public ObjectVisitor { |
| public: |
| FinalizeVMIsolateVisitor() |
| #if defined(HASH_IN_OBJECT_HEADER) |
| : counter_(1337) |
| #endif |
| { |
| } |
| |
| void VisitObject(RawObject* obj) { |
| // Free list elements should never be marked. |
| ASSERT(!obj->IsMarked()); |
| // No forwarding corpses in the VM isolate. |
| ASSERT(!obj->IsForwardingCorpse()); |
| if (!obj->IsFreeListElement()) { |
| ASSERT(obj->IsVMHeapObject()); |
| obj->SetMarkBitUnsynchronized(); |
| Object::FinalizeReadOnlyObject(obj); |
| #if defined(HASH_IN_OBJECT_HEADER) |
| // These objects end up in the read-only VM isolate which is shared |
| // between isolates, so we have to prepopulate them with identity hash |
| // codes, since we can't add hash codes later. |
| if (Object::GetCachedHash(obj) == 0) { |
| // Some classes have identity hash codes that depend on their contents, |
| // not per object. |
| ASSERT(!obj->IsStringInstance()); |
| if (!obj->IsMint() && !obj->IsDouble() && !obj->IsRawNull() && |
| !obj->IsBool()) { |
| counter_ += 2011; // The year Dart was announced and a prime. |
| counter_ &= 0x3fffffff; |
| if (counter_ == 0) counter_++; |
| Object::SetCachedHash(obj, counter_); |
| } |
| } |
| #endif |
| } |
| } |
| |
| private: |
| #if defined(HASH_IN_OBJECT_HEADER) |
| int32_t counter_; |
| #endif |
| }; |
| |
| #define SET_CLASS_NAME(class_name, name) \ |
| cls = class_name##_class(); \ |
| cls.set_name(Symbols::name()); |
| |
| void Object::FinalizeVMIsolate(Isolate* isolate) { |
| // Should only be run by the vm isolate. |
| ASSERT(isolate == Dart::vm_isolate()); |
| |
| // Finish initialization of extractor_parameter_names_ which was |
| // Started in Object::InitOnce() |
| extractor_parameter_names_->SetAt(0, Symbols::This()); |
| |
| // Set up names for all VM singleton classes. |
| Class& cls = Class::Handle(); |
| |
| SET_CLASS_NAME(class, Class); |
| SET_CLASS_NAME(dynamic, Dynamic); |
| SET_CLASS_NAME(void, Void); |
| SET_CLASS_NAME(type_arguments, TypeArguments); |
| SET_CLASS_NAME(patch_class, PatchClass); |
| SET_CLASS_NAME(function, Function); |
| SET_CLASS_NAME(closure_data, ClosureData); |
| SET_CLASS_NAME(signature_data, SignatureData); |
| SET_CLASS_NAME(redirection_data, RedirectionData); |
| SET_CLASS_NAME(field, Field); |
| SET_CLASS_NAME(script, Script); |
| SET_CLASS_NAME(library, LibraryClass); |
| SET_CLASS_NAME(namespace, Namespace); |
| SET_CLASS_NAME(kernel_program_info, KernelProgramInfo); |
| SET_CLASS_NAME(code, Code); |
| SET_CLASS_NAME(bytecode, Bytecode); |
| SET_CLASS_NAME(instructions, Instructions); |
| SET_CLASS_NAME(object_pool, ObjectPool); |
| SET_CLASS_NAME(code_source_map, CodeSourceMap); |
| SET_CLASS_NAME(pc_descriptors, PcDescriptors); |
| SET_CLASS_NAME(stackmap, StackMap); |
| SET_CLASS_NAME(var_descriptors, LocalVarDescriptors); |
| SET_CLASS_NAME(exception_handlers, ExceptionHandlers); |
| SET_CLASS_NAME(context, Context); |
| SET_CLASS_NAME(context_scope, ContextScope); |
| SET_CLASS_NAME(singletargetcache, SingleTargetCache); |
| SET_CLASS_NAME(unlinkedcall, UnlinkedCall); |
| SET_CLASS_NAME(icdata, ICData); |
| SET_CLASS_NAME(megamorphic_cache, MegamorphicCache); |
| SET_CLASS_NAME(subtypetestcache, SubtypeTestCache); |
| SET_CLASS_NAME(api_error, ApiError); |
| SET_CLASS_NAME(language_error, LanguageError); |
| SET_CLASS_NAME(unhandled_exception, UnhandledException); |
| SET_CLASS_NAME(unwind_error, UnwindError); |
| |
| // Set up names for object array and one byte string class which are |
| // pre-allocated in the vm isolate also. |
| cls = isolate->object_store()->array_class(); |
| cls.set_name(Symbols::_List()); |
| cls = isolate->object_store()->one_byte_string_class(); |
| cls.set_name(Symbols::OneByteString()); |
| |
| // Set up names for the pseudo-classes for free list elements and forwarding |
| // corpses. Mainly this makes VM debugging easier. |
| cls = isolate->class_table()->At(kFreeListElement); |
| cls.set_name(Symbols::FreeListElement()); |
| cls = isolate->class_table()->At(kForwardingCorpse); |
| cls.set_name(Symbols::ForwardingCorpse()); |
| |
| { |
| ASSERT(isolate == Dart::vm_isolate()); |
| Thread* thread = Thread::Current(); |
| WritableVMIsolateScope scope(thread); |
| HeapIterationScope iteration(thread); |
| FinalizeVMIsolateVisitor premarker; |
| ASSERT(isolate->heap()->UsedInWords(Heap::kNew) == 0); |
| iteration.IterateOldObjectsNoImagePages(&premarker); |
| // Make the VM isolate read-only again after setting all objects as marked. |
| // Note objects in image pages are already pre-marked. |
| } |
| } |
| |
| void Object::FinalizeReadOnlyObject(RawObject* object) { |
| NoSafepointScope no_safepoint; |
| intptr_t cid = object->GetClassId(); |
| if (cid == kOneByteStringCid) { |
| RawOneByteString* str = static_cast<RawOneByteString*>(object); |
| if (String::GetCachedHash(str) == 0) { |
| intptr_t hash = String::Hash(str); |
| String::SetCachedHash(str, hash); |
| } |
| intptr_t size = OneByteString::UnroundedSize(str); |
| ASSERT(size <= str->Size()); |
| memset(reinterpret_cast<void*>(RawObject::ToAddr(str) + size), 0, |
| str->Size() - size); |
| } else if (cid == kTwoByteStringCid) { |
| RawTwoByteString* str = static_cast<RawTwoByteString*>(object); |
| if (String::GetCachedHash(str) == 0) { |
| intptr_t hash = String::Hash(str); |
| String::SetCachedHash(str, hash); |
| } |
| ASSERT(String::GetCachedHash(str) != 0); |
| intptr_t size = TwoByteString::UnroundedSize(str); |
| ASSERT(size <= str->Size()); |
| memset(reinterpret_cast<void*>(RawObject::ToAddr(str) + size), 0, |
| str->Size() - size); |
| } else if (cid == kExternalOneByteStringCid) { |
| RawExternalOneByteString* str = |
| static_cast<RawExternalOneByteString*>(object); |
| if (String::GetCachedHash(str) == 0) { |
| intptr_t hash = String::Hash(str); |
| String::SetCachedHash(str, hash); |
| } |
| } else if (cid == kExternalTwoByteStringCid) { |
| RawExternalTwoByteString* str = |
| static_cast<RawExternalTwoByteString*>(object); |
| if (String::GetCachedHash(str) == 0) { |
| intptr_t hash = String::Hash(str); |
| String::SetCachedHash(str, hash); |
| } |
| } else if (cid == kCodeSourceMapCid) { |
| RawCodeSourceMap* map = CodeSourceMap::RawCast(object); |
| intptr_t size = CodeSourceMap::UnroundedSize(map); |
| ASSERT(size <= map->Size()); |
| memset(reinterpret_cast<void*>(RawObject::ToAddr(map) + size), 0, |
| map->Size() - size); |
| } else if (cid == kStackMapCid) { |
| RawStackMap* map = StackMap::RawCast(object); |
| intptr_t size = StackMap::UnroundedSize(map); |
| ASSERT(size <= map->Size()); |
| memset(reinterpret_cast<void*>(RawObject::ToAddr(map) + size), 0, |
| map->Size() - size); |
| } else if (cid == kPcDescriptorsCid) { |
| RawPcDescriptors* desc = PcDescriptors::RawCast(object); |
| intptr_t size = PcDescriptors::UnroundedSize(desc); |
| ASSERT(size <= desc->Size()); |
| memset(reinterpret_cast<void*>(RawObject::ToAddr(desc) + size), 0, |
| desc->Size() - size); |
| } |
| } |
| |
| void Object::set_vm_isolate_snapshot_object_table(const Array& table) { |
| ASSERT(Isolate::Current() == Dart::vm_isolate()); |
| *vm_isolate_snapshot_object_table_ = table.raw(); |
| } |
| |
| // Make unused space in an object whose type has been transformed safe |
| // for traversing during GC. |
| // The unused part of the transformed object is marked as an TypedDataInt8Array |
| // object. |
| void Object::MakeUnusedSpaceTraversable(const Object& obj, |
| intptr_t original_size, |
| intptr_t used_size) { |
| ASSERT(Thread::Current()->no_safepoint_scope_depth() > 0); |
| ASSERT(!obj.IsNull()); |
| ASSERT(original_size >= used_size); |
| if (original_size > used_size) { |
| intptr_t leftover_size = original_size - used_size; |
| |
| uword addr = RawObject::ToAddr(obj.raw()) + used_size; |
| if (leftover_size >= TypedData::InstanceSize(0)) { |
| // Update the leftover space as a TypedDataInt8Array object. |
| RawTypedData* raw = |
| reinterpret_cast<RawTypedData*>(RawObject::FromAddr(addr)); |
| uword new_tags = RawObject::ClassIdTag::update(kTypedDataInt8ArrayCid, 0); |
| new_tags = RawObject::SizeTag::update(leftover_size, new_tags); |
| new_tags = RawObject::VMHeapObjectTag::update(obj.raw()->IsVMHeapObject(), |
| new_tags); |
| const bool is_old = obj.raw()->IsOldObject(); |
| new_tags = RawObject::OldBit::update(is_old, new_tags); |
| new_tags = RawObject::OldAndNotMarkedBit::update(is_old, new_tags); |
| new_tags = RawObject::OldAndNotRememberedBit::update(is_old, new_tags); |
| new_tags = RawObject::NewBit::update(!is_old, new_tags); |
| // On architectures with a relaxed memory model, the concurrent marker may |
| // observe the write of the filler object's header before observing the |
| // new array length, and so treat it as a pointer. Ensure it is a Smi so |
| // the marker won't dereference it. |
| ASSERT((new_tags & kSmiTagMask) == kSmiTag); |
| uint32_t tags = raw->ptr()->tags_; |
| uint32_t old_tags; |
| // TODO(iposva): Investigate whether CompareAndSwapWord is necessary. |
| do { |
| old_tags = tags; |
| // We can't use obj.CompareAndSwapTags here because we don't have a |
| // handle for the new object. |
| tags = AtomicOperations::CompareAndSwapUint32(&raw->ptr()->tags_, |
| old_tags, new_tags); |
| } while (tags != old_tags); |
| |
| intptr_t leftover_len = (leftover_size - TypedData::InstanceSize(0)); |
| ASSERT(TypedData::InstanceSize(leftover_len) == leftover_size); |
| raw->StoreSmi(&(raw->ptr()->length_), Smi::New(leftover_len)); |
| } else { |
| // Update the leftover space as a basic object. |
| ASSERT(leftover_size == Object::InstanceSize()); |
| RawObject* raw = reinterpret_cast<RawObject*>(RawObject::FromAddr(addr)); |
| uword new_tags = RawObject::ClassIdTag::update(kInstanceCid, 0); |
| new_tags = RawObject::SizeTag::update(leftover_size, new_tags); |
| new_tags = RawObject::VMHeapObjectTag::update(obj.raw()->IsVMHeapObject(), |
| new_tags); |
| const bool is_old = obj.raw()->IsOldObject(); |
| new_tags = RawObject::OldBit::update(is_old, new_tags); |
| new_tags = RawObject::OldAndNotMarkedBit::update(is_old, new_tags); |
| new_tags = RawObject::OldAndNotRememberedBit::update(is_old, new_tags); |
| new_tags = RawObject::NewBit::update(!is_old, new_tags); |
| // On architectures with a relaxed memory model, the concurrent marker may |
| // observe the write of the filler object's header before observing the |
| // new array length, and so treat it as a pointer. Ensure it is a Smi so |
| // the marker won't dereference it. |
| ASSERT((new_tags & kSmiTagMask) == kSmiTag); |
| uint32_t tags = raw->ptr()->tags_; |
| uint32_t old_tags; |
| // TODO(iposva): Investigate whether CompareAndSwapWord is necessary. |
| do { |
| old_tags = tags; |
| // We can't use obj.CompareAndSwapTags here because we don't have a |
| // handle for the new object. |
| tags = AtomicOperations::CompareAndSwapUint32(&raw->ptr()->tags_, |
| old_tags, new_tags); |
| } while (tags != old_tags); |
| } |
| } |
| } |
| |
| void Object::VerifyBuiltinVtables() { |
| #if defined(DEBUG) |
| Thread* thread = Thread::Current(); |
| Isolate* isolate = thread->isolate(); |
| Class& cls = Class::Handle(thread->zone(), Class::null()); |
| for (intptr_t cid = (kIllegalCid + 1); cid < kNumPredefinedCids; cid++) { |
| if (isolate->class_table()->HasValidClassAt(cid)) { |
| cls ^= isolate->class_table()->At(cid); |
| ASSERT(builtin_vtables_[cid] == cls.raw_ptr()->handle_vtable_); |
| } |
| } |
| ASSERT(builtin_vtables_[kFreeListElement] == 0); |
| ASSERT(builtin_vtables_[kForwardingCorpse] == 0); |
| #endif |
| } |
| |
| void Object::RegisterClass(const Class& cls, |
| const String& name, |
| const Library& lib) { |
| ASSERT(name.Length() > 0); |
| ASSERT(name.CharAt(0) != '_'); |
| cls.set_name(name); |
| lib.AddClass(cls); |
| } |
| |
| void Object::RegisterPrivateClass(const Class& cls, |
| const String& public_class_name, |
| const Library& lib) { |
| ASSERT(public_class_name.Length() > 0); |
| ASSERT(public_class_name.CharAt(0) == '_'); |
| String& str = String::Handle(); |
| str = lib.PrivateName(public_class_name); |
| cls.set_name(str); |
| lib.AddClass(cls); |
| } |
| |
| // Initialize a new isolate from source or from a snapshot. |
| // |
| // There are three possibilities: |
| // 1. Running a Kernel binary. This function will bootstrap from the KERNEL |
| // file. |
| // 2. There is no snapshot. This function will bootstrap from source. |
| // 3. There is a snapshot. The caller should initialize from the snapshot. |
| // |
| // A non-NULL kernel argument indicates (1). A NULL kernel indicates (2) or |
| // (3), depending on whether the VM is compiled with DART_NO_SNAPSHOT defined or |
| // not. |
| RawError* Object::Init(Isolate* isolate, |
| const uint8_t* kernel_buffer, |
| intptr_t kernel_buffer_size) { |
| Thread* thread = Thread::Current(); |
| Zone* zone = thread->zone(); |
| ASSERT(isolate == thread->isolate()); |
| #if !defined(DART_PRECOMPILED_RUNTIME) |
| const bool is_kernel = (kernel_buffer != NULL); |
| #endif |
| NOT_IN_PRODUCT(TimelineDurationScope tds(thread, Timeline::GetIsolateStream(), |
| "Object::Init");) |
| |
| #if defined(DART_NO_SNAPSHOT) |
| bool bootstrapping = |
| (Dart::vm_snapshot_kind() == Snapshot::kNone) || is_kernel; |
| #elif defined(DART_PRECOMPILED_RUNTIME) |
| bool bootstrapping = false; |
| #else |
| bool bootstrapping = is_kernel; |
| #endif |
| |
| if (bootstrapping) { |
| #if !defined(DART_PRECOMPILED_RUNTIME) |
| // Object::Init version when we are bootstrapping from source or from a |
| // Kernel binary. |
| ObjectStore* object_store = isolate->object_store(); |
| |
| Class& cls = Class::Handle(zone); |
| Type& type = Type::Handle(zone); |
| Array& array = Array::Handle(zone); |
| Library& lib = Library::Handle(zone); |
| TypeArguments& type_args = TypeArguments::Handle(zone); |
| |
| // All RawArray fields will be initialized to an empty array, therefore |
| // initialize array class first. |
| cls = Class::New<Array>(); |
| object_store->set_array_class(cls); |
| |
| // VM classes that are parameterized (Array, ImmutableArray, |
| // GrowableObjectArray, and LinkedHashMap) are also pre-finalized, so |
| // CalculateFieldOffsets() is not called, so we need to set the offset of |
| // their type_arguments_ field, which is explicitly declared in their |
| // respective Raw* classes. |
| cls.set_type_arguments_field_offset(Array::type_arguments_offset()); |
| cls.set_num_type_arguments(1); |
| |
| // Set up the growable object array class (Has to be done after the array |
| // class is setup as one of its field is an array object). |
| cls = Class::New<GrowableObjectArray>(); |
| object_store->set_growable_object_array_class(cls); |
| cls.set_type_arguments_field_offset( |
| GrowableObjectArray::type_arguments_offset()); |
| cls.set_num_type_arguments(1); |
| |
| // Initialize hash set for canonical_type_. |
| const intptr_t kInitialCanonicalTypeSize = 16; |
| array = HashTables::New<CanonicalTypeSet>(kInitialCanonicalTypeSize, |
| Heap::kOld); |
| object_store->set_canonical_types(array); |
| |
| // Initialize hash set for canonical_type_arguments_. |
| const intptr_t kInitialCanonicalTypeArgumentsSize = 4; |
| array = HashTables::New<CanonicalTypeArgumentsSet>( |
| kInitialCanonicalTypeArgumentsSize, Heap::kOld); |
| object_store->set_canonical_type_arguments(array); |
| |
| // Setup type class early in the process. |
| const Class& type_cls = Class::Handle(zone, Class::New<Type>()); |
| const Class& type_ref_cls = Class::Handle(zone, Class::New<TypeRef>()); |
| const Class& type_parameter_cls = |
| Class::Handle(zone, Class::New<TypeParameter>()); |
| const Class& bounded_type_cls = |
| Class::Handle(zone, Class::New<BoundedType>()); |
| const Class& mixin_app_type_cls = |
| Class::Handle(zone, Class::New<MixinAppType>()); |
| const Class& library_prefix_cls = |
| Class::Handle(zone, Class::New<LibraryPrefix>()); |
| |
| // Pre-allocate the OneByteString class needed by the symbol table. |
| cls = Class::NewStringClass(kOneByteStringCid); |
| object_store->set_one_byte_string_class(cls); |
| |
| // Pre-allocate the TwoByteString class needed by the symbol table. |
| cls = Class::NewStringClass(kTwoByteStringCid); |
| object_store->set_two_byte_string_class(cls); |
| |
| // Setup the symbol table for the symbols created in the isolate. |
| Symbols::SetupSymbolTable(isolate); |
| |
| // Set up the libraries array before initializing the core library. |
| const GrowableObjectArray& libraries = |
| GrowableObjectArray::Handle(zone, GrowableObjectArray::New(Heap::kOld)); |
| object_store->set_libraries(libraries); |
| |
| // Pre-register the core library. |
| Library::InitCoreLibrary(isolate); |
| |
| // Basic infrastructure has been setup, initialize the class dictionary. |
| const Library& core_lib = Library::Handle(zone, Library::CoreLibrary()); |
| ASSERT(!core_lib.IsNull()); |
| |
| const GrowableObjectArray& pending_classes = |
| GrowableObjectArray::Handle(zone, GrowableObjectArray::New()); |
| object_store->set_pending_classes(pending_classes); |
| |
| // Now that the symbol table is initialized and that the core dictionary as |
| // well as the core implementation dictionary have been setup, preallocate |
| // remaining classes and register them by name in the dictionaries. |
| String& name = String::Handle(zone); |
| cls = object_store->array_class(); // Was allocated above. |
| RegisterPrivateClass(cls, Symbols::_List(), core_lib); |
| pending_classes.Add(cls); |
| // We cannot use NewNonParameterizedType(cls), because Array is |
| // parameterized. Warning: class _List has not been patched yet. Its |
| // declared number of type parameters is still 0. It will become 1 after |
| // patching. The array type allocated below represents the raw type _List |
| // and not _List<E> as we could expect. Use with caution. |
| type ^= Type::New(Class::Handle(zone, cls.raw()), |
| TypeArguments::Handle(zone), TokenPosition::kNoSource); |
| type.SetIsFinalized(); |
| type ^= type.Canonicalize(); |
| object_store->set_array_type(type); |
| |
| cls = object_store->growable_object_array_class(); // Was allocated above. |
| RegisterPrivateClass(cls, Symbols::_GrowableList(), core_lib); |
| pending_classes.Add(cls); |
| |
| cls = Class::New<Array>(kImmutableArrayCid); |
| object_store->set_immutable_array_class(cls); |
| cls.set_type_arguments_field_offset(Array::type_arguments_offset()); |
| cls.set_num_type_arguments(1); |
| ASSERT(object_store->immutable_array_class() != |
| object_store->array_class()); |
| cls.set_is_prefinalized(); |
| RegisterPrivateClass(cls, Symbols::_ImmutableList(), core_lib); |
| pending_classes.Add(cls); |
| |
| cls = object_store->one_byte_string_class(); // Was allocated above. |
| RegisterPrivateClass(cls, Symbols::OneByteString(), core_lib); |
| pending_classes.Add(cls); |
| |
| cls = object_store->two_byte_string_class(); // Was allocated above. |
| RegisterPrivateClass(cls, Symbols::TwoByteString(), core_lib); |
| pending_classes.Add(cls); |
| |
| cls = Class::NewStringClass(kExternalOneByteStringCid); |
| object_store->set_external_one_byte_string_class(cls); |
| RegisterPrivateClass(cls, Symbols::ExternalOneByteString(), core_lib); |
| pending_classes.Add(cls); |
| |
| cls = Class::NewStringClass(kExternalTwoByteStringCid); |
| object_store->set_external_two_byte_string_class(cls); |
| RegisterPrivateClass(cls, Symbols::ExternalTwoByteString(), core_lib); |
| pending_classes.Add(cls); |
| |
| // Pre-register the isolate library so the native class implementations can |
| // be hooked up before compiling it. |
| Library& isolate_lib = Library::Handle( |
| zone, Library::LookupLibrary(thread, Symbols::DartIsolate())); |
| if (isolate_lib.IsNull()) { |
| isolate_lib = Library::NewLibraryHelper(Symbols::DartIsolate(), true); |
| isolate_lib.SetLoadRequested(); |
| isolate_lib.Register(thread); |
| } |
| object_store->set_bootstrap_library(ObjectStore::kIsolate, isolate_lib); |
| ASSERT(!isolate_lib.IsNull()); |
| ASSERT(isolate_lib.raw() == Library::IsolateLibrary()); |
| |
| cls = Class::New<Capability>(); |
| RegisterPrivateClass(cls, Symbols::_CapabilityImpl(), isolate_lib); |
| pending_classes.Add(cls); |
| |
| cls = Class::New<ReceivePort>(); |
| RegisterPrivateClass(cls, Symbols::_RawReceivePortImpl(), isolate_lib); |
| pending_classes.Add(cls); |
| |
| cls = Class::New<SendPort>(); |
| RegisterPrivateClass(cls, Symbols::_SendPortImpl(), isolate_lib); |
| pending_classes.Add(cls); |
| |
| const Class& stacktrace_cls = Class::Handle(zone, Class::New<StackTrace>()); |
| RegisterPrivateClass(stacktrace_cls, Symbols::_StackTrace(), core_lib); |
| pending_classes.Add(stacktrace_cls); |
| // Super type set below, after Object is allocated. |
| |
| cls = Class::New<RegExp>(); |
| RegisterPrivateClass(cls, Symbols::_RegExp(), core_lib); |
| pending_classes.Add(cls); |
| |
| // Initialize the base interfaces used by the core VM classes. |
| |
| // Allocate and initialize the pre-allocated classes in the core library. |
| // The script and token index of these pre-allocated classes is set up in |
| // the parser when the corelib script is compiled (see |
| // Parser::ParseClassDefinition). |
| cls = Class::New<Instance>(kInstanceCid); |
| object_store->set_object_class(cls); |
| cls.set_name(Symbols::Object()); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_prefinalized(); |
| core_lib.AddClass(cls); |
| pending_classes.Add(cls); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_object_type(type); |
| |
| cls = Class::New<Bool>(); |
| object_store->set_bool_class(cls); |
| RegisterClass(cls, Symbols::Bool(), core_lib); |
| pending_classes.Add(cls); |
| |
| cls = Class::New<Instance>(kNullCid); |
| object_store->set_null_class(cls); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_prefinalized(); |
| RegisterClass(cls, Symbols::Null(), core_lib); |
| pending_classes.Add(cls); |
| |
| ASSERT(!library_prefix_cls.IsNull()); |
| RegisterPrivateClass(library_prefix_cls, Symbols::_LibraryPrefix(), |
| core_lib); |
| pending_classes.Add(library_prefix_cls); |
| |
| RegisterPrivateClass(type_cls, Symbols::_Type(), core_lib); |
| pending_classes.Add(type_cls); |
| |
| RegisterPrivateClass(type_ref_cls, Symbols::_TypeRef(), core_lib); |
| pending_classes.Add(type_ref_cls); |
| |
| RegisterPrivateClass(type_parameter_cls, Symbols::_TypeParameter(), |
| core_lib); |
| pending_classes.Add(type_parameter_cls); |
| |
| RegisterPrivateClass(bounded_type_cls, Symbols::_BoundedType(), core_lib); |
| pending_classes.Add(bounded_type_cls); |
| |
| RegisterPrivateClass(mixin_app_type_cls, Symbols::_MixinAppType(), |
| core_lib); |
| pending_classes.Add(mixin_app_type_cls); |
| |
| cls = Class::New<Integer>(); |
| object_store->set_integer_implementation_class(cls); |
| RegisterPrivateClass(cls, Symbols::_IntegerImplementation(), core_lib); |
| pending_classes.Add(cls); |
| |
| cls = Class::New<Smi>(); |
| object_store->set_smi_class(cls); |
| RegisterPrivateClass(cls, Symbols::_Smi(), core_lib); |
| pending_classes.Add(cls); |
| |
| cls = Class::New<Mint>(); |
| object_store->set_mint_class(cls); |
| RegisterPrivateClass(cls, Symbols::_Mint(), core_lib); |
| pending_classes.Add(cls); |
| |
| cls = Class::New<Double>(); |
| object_store->set_double_class(cls); |
| RegisterPrivateClass(cls, Symbols::_Double(), core_lib); |
| pending_classes.Add(cls); |
| |
| // Class that represents the Dart class _Closure and C++ class Closure. |
| cls = Class::New<Closure>(); |
| object_store->set_closure_class(cls); |
| cls.ResetFinalization(); // To calculate field offsets from Dart source. |
| RegisterPrivateClass(cls, Symbols::_Closure(), core_lib); |
| pending_classes.Add(cls); |
| |
| cls = Class::New<WeakProperty>(); |
| object_store->set_weak_property_class(cls); |
| RegisterPrivateClass(cls, Symbols::_WeakProperty(), core_lib); |
| |
| // Pre-register the mirrors library so we can place the vm class |
| // MirrorReference there rather than the core library. |
| #if !defined(DART_PRECOMPILED_RUNTIME) |
| lib = Library::LookupLibrary(thread, Symbols::DartMirrors()); |
| if (lib.IsNull()) { |
| lib = Library::NewLibraryHelper(Symbols::DartMirrors(), true); |
| lib.SetLoadRequested(); |
| lib.Register(thread); |
| } |
| object_store->set_bootstrap_library(ObjectStore::kMirrors, lib); |
| ASSERT(!lib.IsNull()); |
| ASSERT(lib.raw() == Library::MirrorsLibrary()); |
| |
| cls = Class::New<MirrorReference>(); |
| RegisterPrivateClass(cls, Symbols::_MirrorReference(), lib); |
| #endif |
| |
| // Pre-register the collection library so we can place the vm class |
| // LinkedHashMap there rather than the core library. |
| lib = Library::LookupLibrary(thread, Symbols::DartCollection()); |
| if (lib.IsNull()) { |
| lib = Library::NewLibraryHelper(Symbols::DartCollection(), true); |
| lib.SetLoadRequested(); |
| lib.Register(thread); |
| } |
| |
| object_store->set_bootstrap_library(ObjectStore::kCollection, lib); |
| ASSERT(!lib.IsNull()); |
| ASSERT(lib.raw() == Library::CollectionLibrary()); |
| cls = Class::New<LinkedHashMap>(); |
| object_store->set_linked_hash_map_class(cls); |
| cls.set_type_arguments_field_offset(LinkedHashMap::type_arguments_offset()); |
| cls.set_num_type_arguments(2); |
| cls.set_num_own_type_arguments(0); |
| RegisterPrivateClass(cls, Symbols::_LinkedHashMap(), lib); |
| pending_classes.Add(cls); |
| |
| // Pre-register the developer library so we can place the vm class |
| // UserTag there rather than the core library. |
| lib = Library::LookupLibrary(thread, Symbols::DartDeveloper()); |
| if (lib.IsNull()) { |
| lib = Library::NewLibraryHelper(Symbols::DartDeveloper(), true); |
| lib.SetLoadRequested(); |
| lib.Register(thread); |
| } |
| object_store->set_bootstrap_library(ObjectStore::kDeveloper, lib); |
| ASSERT(!lib.IsNull()); |
| ASSERT(lib.raw() == Library::DeveloperLibrary()); |
| cls = Class::New<UserTag>(); |
| RegisterPrivateClass(cls, Symbols::_UserTag(), lib); |
| pending_classes.Add(cls); |
| |
| // Setup some default native field classes which can be extended for |
| // specifying native fields in dart classes. |
| Library::InitNativeWrappersLibrary(isolate, is_kernel); |
| ASSERT(object_store->native_wrappers_library() != Library::null()); |
| |
| // Pre-register the typed_data library so the native class implementations |
| // can be hooked up before compiling it. |
| lib = Library::LookupLibrary(thread, Symbols::DartTypedData()); |
| if (lib.IsNull()) { |
| lib = Library::NewLibraryHelper(Symbols::DartTypedData(), true); |
| lib.SetLoadRequested(); |
| lib.Register(thread); |
| } |
| object_store->set_bootstrap_library(ObjectStore::kTypedData, lib); |
| ASSERT(!lib.IsNull()); |
| ASSERT(lib.raw() == Library::TypedDataLibrary()); |
| #define REGISTER_TYPED_DATA_CLASS(clazz) \ |
| cls = Class::NewTypedDataClass(kTypedData##clazz##ArrayCid); \ |
| RegisterPrivateClass(cls, Symbols::_##clazz##List(), lib); |
| |
| DART_CLASS_LIST_TYPED_DATA(REGISTER_TYPED_DATA_CLASS); |
| #undef REGISTER_TYPED_DATA_CLASS |
| #define REGISTER_TYPED_DATA_VIEW_CLASS(clazz) \ |
| cls = Class::NewTypedDataViewClass(kTypedData##clazz##ViewCid); \ |
| RegisterPrivateClass(cls, Symbols::_##clazz##View(), lib); \ |
| pending_classes.Add(cls); |
| |
| CLASS_LIST_TYPED_DATA(REGISTER_TYPED_DATA_VIEW_CLASS); |
| cls = Class::NewTypedDataViewClass(kByteDataViewCid); |
| RegisterPrivateClass(cls, Symbols::_ByteDataView(), lib); |
| pending_classes.Add(cls); |
| #undef REGISTER_TYPED_DATA_VIEW_CLASS |
| #define REGISTER_EXT_TYPED_DATA_CLASS(clazz) \ |
| cls = Class::NewExternalTypedDataClass(kExternalTypedData##clazz##Cid); \ |
| RegisterPrivateClass(cls, Symbols::_External##clazz(), lib); |
| |
| cls = Class::New<Instance>(kByteBufferCid); |
| cls.set_instance_size(0); |
| cls.set_next_field_offset(-kWordSize); |
| RegisterPrivateClass(cls, Symbols::_ByteBuffer(), lib); |
| pending_classes.Add(cls); |
| |
| CLASS_LIST_TYPED_DATA(REGISTER_EXT_TYPED_DATA_CLASS); |
| #undef REGISTER_EXT_TYPED_DATA_CLASS |
| // Register Float32x4, Int32x4, and Float64x2 in the object store. |
| cls = Class::New<Float32x4>(); |
| RegisterPrivateClass(cls, Symbols::_Float32x4(), lib); |
| pending_classes.Add(cls); |
| object_store->set_float32x4_class(cls); |
| |
| cls = Class::New<Instance>(kIllegalCid); |
| RegisterClass(cls, Symbols::Float32x4(), lib); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_prefinalized(); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_float32x4_type(type); |
| |
| cls = Class::New<Int32x4>(); |
| RegisterPrivateClass(cls, Symbols::_Int32x4(), lib); |
| pending_classes.Add(cls); |
| object_store->set_int32x4_class(cls); |
| |
| cls = Class::New<Instance>(kIllegalCid); |
| RegisterClass(cls, Symbols::Int32x4(), lib); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_prefinalized(); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_int32x4_type(type); |
| |
| cls = Class::New<Float64x2>(); |
| RegisterPrivateClass(cls, Symbols::_Float64x2(), lib); |
| pending_classes.Add(cls); |
| object_store->set_float64x2_class(cls); |
| |
| cls = Class::New<Instance>(kIllegalCid); |
| RegisterClass(cls, Symbols::Float64x2(), lib); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_prefinalized(); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_float64x2_type(type); |
| |
| // Set the super type of class StackTrace to Object type so that the |
| // 'toString' method is implemented. |
| type = object_store->object_type(); |
| stacktrace_cls.set_super_type(type); |
| |
| // Abstract class that represents the Dart class Type. |
| // Note that this class is implemented by Dart class _AbstractType. |
| cls = Class::New<Instance>(kIllegalCid); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_prefinalized(); |
| RegisterClass(cls, Symbols::Type(), core_lib); |
| pending_classes.Add(cls); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_type_type(type); |
| |
| // Abstract class that represents the Dart class Function. |
| cls = Class::New<Instance>(kIllegalCid); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_prefinalized(); |
| RegisterClass(cls, Symbols::Function(), core_lib); |
| pending_classes.Add(cls); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_function_type(type); |
| |
| cls = Class::New<Number>(); |
| RegisterClass(cls, Symbols::Number(), core_lib); |
| pending_classes.Add(cls); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_number_type(type); |
| |
| cls = Class::New<Instance>(kIllegalCid); |
| RegisterClass(cls, Symbols::Int(), core_lib); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_prefinalized(); |
| pending_classes.Add(cls); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_int_type(type); |
| |
| cls = Class::New<Instance>(kIllegalCid); |
| RegisterClass(cls, Symbols::Double(), core_lib); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_prefinalized(); |
| pending_classes.Add(cls); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_double_type(type); |
| |
| name = Symbols::_String().raw(); |
| cls = Class::New<Instance>(kIllegalCid); |
| RegisterClass(cls, name, core_lib); |
| cls.set_num_type_arguments(0); |
| cls.set_num_own_type_arguments(0); |
| cls.set_is_prefinalized(); |
| pending_classes.Add(cls); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_string_type(type); |
| |
| cls = object_store->bool_class(); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_bool_type(type); |
| |
| cls = object_store->smi_class(); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_smi_type(type); |
| |
| cls = object_store->mint_class(); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_mint_type(type); |
| |
| // The classes 'void' and 'dynamic' are phony classes to make type checking |
| // more regular; they live in the VM isolate. The class 'void' is not |
| // registered in the class dictionary because its name is a reserved word. |
| // The class 'dynamic' is registered in the class dictionary because its |
| // name is a built-in identifier (this is wrong). The corresponding types |
| // are stored in the object store. |
| cls = object_store->null_class(); |
| type = Type::NewNonParameterizedType(cls); |
| object_store->set_null_type(type); |
| |
| // Consider removing when/if Null becomes an ordinary class. |
| type = object_store->object_type(); |
| cls.set_super_type(type); |
| |
| // Create and cache commonly used type arguments <int>, <double>, |
| // <String>, <String, dynamic> and <String, String>. |
| type_args = TypeArguments::New(1); |
| type = object_store->int_type(); |
| type_args.SetTypeAt(0, type); |
| type_args = type_args.Canonicalize(); |
| object_store->set_type_argument_int(type_args); |
| |
| type_args = TypeArguments::New(1); |
| type = object_store->double_type(); |
| type_args.SetTypeAt(0, type); |
| type_args = type_args.Canonicalize(); |
| object_store->set_type_argument_double(type_args); |
| |
| type_args = TypeArguments::New(1); |
| type = object_store->string_type(); |
| type_args.SetTypeAt(0, type); |
| type_args = type_args.Canonicalize(); |
| object_store->set_type_argument_string(type_args); |
| |
| type_args = TypeArguments::New(2); |
| type = object_store->string_type(); |
| type_args.SetTypeAt(0, type); |
| type_args.SetTypeAt(1, Object::dynamic_type()); |
| type_args = type_args.Canonicalize(); |
| object_store->set_type_argument_string_dynamic(type_args); |
| |
| type_args = TypeArguments::New(2); |
| type = object_store->string_type(); |
| type_args.SetTypeAt(0, type); |
| type_args.SetTypeAt(1, type); |
| type_args = type_args.Canonicalize(); |
| object_store->set_type_argument_string_string(type_args); |
| |
| // Finish the initialization by compiling the bootstrap scripts containing |
| // the base interfaces and the implementation of the internal classes. |
| const Error& error = Error::Handle( |
| zone, Bootstrap::DoBootstrapping(kernel_buffer, kernel_buffer_size)); |
| if (!error.IsNull()) { |
| return error.raw(); |
| } |
| |
| isolate->class_table()->CopySizesFromClassObjects(); |
| |
| ClassFinalizer::VerifyBootstrapClasses(); |
| |
| // Set up the intrinsic state of all functions (core, math and typed data). |
| Intrinsifier::InitializeState(); |
| |
| // Set up recognized state of all functions (core, math and typed data). |
| MethodRecognizer::InitializeState(); |
| |
| // Adds static const fields (class ids) to the class 'ClassID'); |
| lib = Library::LookupLibrary(thread, Symbols::DartInternal()); |
| ASSERT(!lib.IsNull()); |
| cls = lib.LookupClassAllowPrivate(Symbols::ClassID()); |
| ASSERT(!cls.IsNull()); |
| cls.InjectCIDFields(); |
| |
| isolate->object_store()->InitKnownObjects(); |
| #endif // !defined(DART_PRECOMPILED_RUNTIME) |
| } else { |
| // Object::Init version when we are running in a version of dart that has a |
| // full snapshot linked in and an isolate is initialized using the full |
| // snapshot. |
| ObjectStore* object_store = isolate->object_store(); |
| |
| Class& cls = Class::Handle(zone); |
| |
| // Set up empty classes in the object store, these will get initialized |
| // correctly when we read from the snapshot. This is done to allow |
| // bootstrapping of reading classes from the snapshot. Some classes are not |
| // stored in the object store. Yet we still need to create their Class |
| // object so that they get put into the class_table (as a side effect of |
| // Class::New()). |
| cls = Class::New<Instance>(kInstanceCid); |
| object_store->set_object_class(cls); |
| |
| cls = Class::New<LibraryPrefix>(); |
| cls = Class::New<Type>(); |
| cls = Class::New<TypeRef>(); |
| cls = Class::New<TypeParameter>(); |
| cls = Class::New<BoundedType>(); |
| cls = Class::New<MixinAppType>(); |
| |
| cls = Class::New<Array>(); |
| object_store->set_array_class(cls); |
| |
| cls = Class::New<Array>(kImmutableArrayCid); |
| object_store->set_immutable_array_class(cls); |
| |
| cls = Class::New<GrowableObjectArray>(); |
| object_store->set_growable_object_array_class(cls); |
| |
| cls = Class::New<LinkedHashMap>(); |
| object_store->set_linked_hash_map_class(cls); |
| |
| cls = Class::New<Float32x4>(); |
| object_store->set_float32x4_class(cls); |
| |
| cls = Class::New<Int32x4>(); |
| object_store->set_int32x4_class(cls); |
| |
| cls = Class::New<Float64x2>(); |
| object_store->set_float64x2_class(cls); |
| |
| #define REGISTER_TYPED_DATA_CLASS(clazz) \ |
| cls = Class::NewTypedDataClass(kTypedData##clazz##Cid); |
| CLASS_LIST_TYPED_DATA(REGISTER_TYPED_DATA_CLASS); |
| #undef REGISTER_TYPED_DATA_CLASS |
| #define REGISTER_TYPED_DATA_VIEW_CLASS(clazz) \ |
| cls = Class::NewTypedDataViewClass(kTypedData##clazz##ViewCid); |
| CLASS_LIST_TYPED_DATA(REGISTER_TYPED_DATA_VIEW_CLASS); |
| #undef REGISTER_TYPED_DATA_VIEW_CLASS |
| cls = Class::NewTypedDataViewClass(kByteDataViewCid); |
| #define REGISTER_EXT_TYPED_DATA_CLASS(clazz) \ |
| cls = Class::NewExternalTypedDataClass(kExternalTypedData##clazz##Cid); |
| CLASS_LIST_TYPED_DATA(REGISTER_EXT_TYPED_DATA_CLASS); |
| #undef REGISTER_EXT_TYPED_DATA_CLASS |
| |
| cls = Class::New<Instance>(kByteBufferCid); |
| |
| cls = Class::New<Integer>(); |
| object_store->set_integer_implementation_class(cls); |
| |
| cls = Class::New<Smi>(); |
| object_store->set_smi_class(cls); |
| |
| cls = Class::New<Mint>(); |
| object_store->set_mint_class(cls); |
| |
| cls = Class::New<Double>(); |
| object_store->set_double_class(cls); |
| |
| cls = Class::New<Closure>(); |
| object_store->set_closure_class(cls); |
| |
| cls = Class::NewStringClass(kOneByteStringCid); |
| object_store->set_one_byte_string_class(cls); |
| |
| cls = Class::NewStringClass(kTwoByteStringCid); |
| object_store->set_two_byte_string_class(cls); |
| |
| cls = Class::NewStringClass(kExternalOneByteStringCid); |
| object_store->set_external_one_byte_string_class(cls); |
| |
| cls = Class::NewStringClass(kExternalTwoByteStringCid); |
| object_store->set_external_two_byte_string_class(cls); |
| |
| cls = Class::New<Bool>(); |
| object_store->set_bool_class(cls); |
| |
| cls = Class::New<Instance>(kNullCid); |
| object_store->set_null_class(cls); |
| |
| cls = Class::New<Capability>(); |
| cls = Class::New<ReceivePort>(); |
| cls = Class::New<SendPort>(); |
| cls = Class::New<StackTrace>(); |
| cls = Class::New<RegExp>(); |
| cls = Class::New<Number>(); |
| |
| cls = Class::New<WeakProperty>(); |
| object_store->set_weak_property_class(cls); |
| |
| cls = Class::New<MirrorReference>(); |
| cls = Class::New<UserTag>(); |
| } |
| return Error::null(); |
| } |
| |
| #if defined(DEBUG) |
| bool Object::InVMHeap() const { |
| if (FLAG_verify_handles && raw()->IsVMHeapObject()) { |
| Heap* vm_isolate_heap = Dart::vm_isolate()->heap(); |
| ASSERT(vm_isolate_heap->Contains(RawObject::ToAddr(raw()))); |
| } |
| return raw()->IsVMHeapObject(); |
| } |
| #endif // DEBUG |
| |
| void Object::Print() const { |
| THR_Print("%s\n", ToCString()); |
| } |
| |
| RawString* Object::DictionaryName() const { |
| return String::null(); |
| } |
| |
| void Object::InitializeObject(uword address, |
| intptr_t class_id, |
| intptr_t size, |
| bool is_vm_object) { |
| uword initial_value = (class_id == kInstructionsCid) |
| ? Assembler::GetBreakInstructionFiller() |
| : reinterpret_cast<uword>(null_); |
| uword cur = address; |
| uword end = address + size; |
| while (cur < end) { |
| *reinterpret_cast<uword*>(cur) = initial_value; |
| cur += kWordSize; |
| } |
| uint32_t tags = 0; |
| ASSERT(class_id != kIllegalCid); |
| tags = RawObject::ClassIdTag::update(class_id, tags); |
| tags = RawObject::SizeTag::update(size, tags); |
| tags = RawObject::VMHeapObjectTag::update(is_vm_object, tags); |
| const bool is_old = |
| (address & kNewObjectAlignmentOffset) == kOldObjectAlignmentOffset; |
| tags = RawObject::OldBit::update(is_old, tags); |
| tags = RawObject::OldAndNotMarkedBit::update(is_old, tags); |
| tags = RawObject::OldAndNotRememberedBit::update(is_old, tags); |
| tags = RawObject::NewBit::update(!is_old, tags); |
| reinterpret_cast<RawObject*>(address)->tags_ = tags; |
| #if defined(HASH_IN_OBJECT_HEADER) |
| reinterpret_cast<RawObject*>(address)->hash_ = 0; |
| #endif |
| ASSERT(is_vm_object == RawObject::IsVMHeapObject(tags)); |
| } |
| |
| void Object::CheckHandle() const { |
| #if defined(DEBUG) |
| if (raw_ != Object::null()) { |
| if ((reinterpret_cast<uword>(raw_) & kSmiTagMask) == kSmiTag) { |
| ASSERT(vtable() == Smi::handle_vtable_); |
| return; |
| } |
| intptr_t cid = raw_->GetClassId(); |
| if (cid >= kNumPredefinedCids) { |
| cid = kInstanceCid; |
| } |
| ASSERT(vtable() == builtin_vtables_[cid]); |
| if (FLAG_verify_handles) { |
| Isolate* isolate = Isolate::Current(); |
| Heap* isolate_heap = isolate->heap(); |
| Heap* vm_isolate_heap = Dart::vm_isolate()->heap(); |
| ASSERT(isolate_heap->Contains(RawObject::ToAddr(raw_)) || |
| vm_isolate_heap->Contains(RawObject::ToAddr(raw_))); |
| } |
| } |
| #endif |
| } |
| |
| RawObject* Object::Allocate(intptr_t cls_id, intptr_t size, Heap::Space space) { |
| ASSERT(Utils::IsAligned(size, kObjectAlignment)); |
| Thread* thread = Thread::Current(); |
| // New space allocation allowed only in mutator thread (Dart thread); |
| ASSERT(thread->IsMutatorThread() || (space != Heap::kNew)); |
| ASSERT(thread->execution_state() == Thread::kThreadInVM); |
| ASSERT(thread->no_callback_scope_depth() == 0); |
| Isolate* isolate = thread->isolate(); |
| Heap* heap = isolate->heap(); |
| |
| uword address; |
| |
| // In a bump allocation scope, all allocations go into old space. |
| if (thread->bump_allocate() && (space != Heap::kCode)) { |
| DEBUG_ASSERT(heap->old_space()->CurrentThreadOwnsDataLock()); |
| address = heap->old_space()->TryAllocateDataBumpLocked( |
| size, PageSpace::kForceGrowth); |
| } else { |
| address = heap->Allocate(size, space); |
| } |
| if (address == 0) { |
| // Use the preallocated out of memory exception to avoid calling |
| // into dart code or allocating any code. |
| const Instance& exception = |
| Instance::Handle(isolate->object_store()->out_of_memory()); |
| Exceptions::Throw(thread, exception); |
| UNREACHABLE(); |
| } |
| #ifndef PRODUCT |
| ClassTable* class_table = isolate->class_table(); |
| if (space == Heap::kNew) { |
| class_table->UpdateAllocatedNew(cls_id, size); |
| } else { |
| class_table->UpdateAllocatedOld(cls_id, size); |
| } |
| const Class& cls = Class::Handle(class_table->At(cls_id)); |
| if (FLAG_profiler && cls.TraceAllocation(isolate)) { |
| Profiler::SampleAllocation(thread, cls_id); |
| } |
| #endif // !PRODUCT |
| NoSafepointScope no_safepoint; |
| InitializeObject(address, cls_id, size, (isolate == Dart::vm_isolate())); |
| RawObject* raw_obj = reinterpret_cast<RawObject*>(address + kHeapObjectTag); |
| ASSERT(cls_id == RawObject::ClassIdTag::decode(raw_obj->ptr()->tags_)); |
| if (raw_obj->IsOldObject() && thread->is_marking()) { |
| // Black allocation. Prevents a data race between the mutator and concurrent |
| // marker on ARM and ARM64 (the marker may observe a publishing store of |
| // this object before the stores that initialize its slots), and helps the |
| // collection to finish sooner. |
| raw_obj->SetMarkBitUnsynchronized(); |
| heap->old_space()->AllocateBlack(size); |
| } |
| return raw_obj; |
| } |
| |
| class WriteBarrierUpdateVisitor : public ObjectPointerVisitor { |
| public: |
| explicit WriteBarrierUpdateVisitor(Thread* thread, RawObject* obj) |
| : ObjectPointerVisitor(thread->isolate()), |
| thread_(thread), |
| old_obj_(obj) { |
| ASSERT(old_obj_->IsOldObject()); |
| } |
| |
| void VisitPointers(RawObject** from, RawObject** to) { |
| if (old_obj_->IsArray()) { |
| for (RawObject** slot = from; slot <= to; ++slot) { |
| RawObject* value = *slot; |
| if (value->IsHeapObject()) { |
| old_obj_->CheckHeapPointerStore(value, thread_); |
| } |
| } |
| } else { |
| for (RawObject** slot = from; slot <= to; ++slot) { |
| RawObject* value = *slot; |
| if (value->IsHeapObject()) { |
| old_obj_->CheckArrayPointerStore(slot, value, thread_); |
| } |
| } |
| } |
| } |
| |
| private: |
| Thread* thread_; |
| RawObject* old_obj_; |
| |
| DISALLOW_COPY_AND_ASSIGN(WriteBarrierUpdateVisitor); |
| }; |
| |
| bool Object::IsReadOnlyHandle() const { |
| return Dart::IsReadOnlyHandle(reinterpret_cast<uword>(this)); |
| } |
| |
| bool Object::IsNotTemporaryScopedHandle() const { |
| return (IsZoneHandle() || IsReadOnlyHandle()); |
| } |
| |
| RawObject* Object::Clone(const Object& orig, Heap::Space space) { |
| const Class& cls = Class::Handle(orig.clazz()); |
| intptr_t size = orig.raw()->Size(); |
| RawObject* raw_clone = Object::Allocate(cls.id(), size, space); |
| NoSafepointScope no_safepoint; |
| // Copy the body of the original into the clone. |
| uword orig_addr = RawObject::ToAddr(orig.raw()); |
| uword clone_addr = RawObject::ToAddr(raw_clone); |
| static const intptr_t kHeaderSizeInBytes = sizeof(RawObject); |
| memmove(reinterpret_cast<uint8_t*>(clone_addr + kHeaderSizeInBytes), |
| reinterpret_cast<uint8_t*>(orig_addr + kHeaderSizeInBytes), |
| size - kHeaderSizeInBytes); |
| |
| // Add clone to store buffer, if needed. |
| if (!raw_clone->IsOldObject()) { |
| // No need to remember an object in new space. |
| return raw_clone; |
| } |
| WriteBarrierUpdateVisitor visitor(Thread::Current(), raw_clone); |
| raw_clone->VisitPointers(&visitor); |
| return raw_clone; |
| } |
| |
| RawString* Class::Name() const { |
| return raw_ptr()->name_; |
| } |
| |
| RawString* Class::ScrubbedName() const { |
| return String::ScrubName(String::Handle(Name())); |
| } |
| |
| RawString* Class::UserVisibleName() const { |
| #if !defined(PRODUCT) |
| ASSERT(raw_ptr()->user_name_ != String::null()); |
| return raw_ptr()->user_name_; |
| #endif // !defined(PRODUCT) |
| return GenerateUserVisibleName(); // No caching in PRODUCT, regenerate. |
| } |
| |
| bool Class::IsInFullSnapshot() const { |
| NoSafepointScope no_safepoint; |
| return raw_ptr()->library_->ptr()->is_in_fullsnapshot_; |
| } |
| |
| RawAbstractType* Class::RareType() const { |
| const Type& type = Type::Handle(Type::New( |
| *this, Object::null_type_arguments(), TokenPosition::kNoSource)); |
| return ClassFinalizer::FinalizeType(*this, type); |
| } |
| |
| RawAbstractType* Class::DeclarationType() const { |
| const TypeArguments& args = TypeArguments::Handle(type_parameters()); |
| const Type& type = |
| Type::Handle(Type::New(*this, args, TokenPosition::kNoSource)); |
| return ClassFinalizer::FinalizeType(*this, type); |
| } |
| |
| template <class FakeObject> |
| RawClass* Class::New() { |
| ASSERT(Object::class_class() != Class::null()); |
| Class& result = Class::Handle(); |
| { |
| RawObject* raw = |
| Object::Allocate(Class::kClassId, Class::InstanceSize(), Heap::kOld); |
| NoSafepointScope no_safepoint; |
| result ^= raw; |
| } |
| FakeObject fake; |
| result.set_handle_vtable(fake.vtable()); |
| result.set_token_pos(TokenPosition::kNoSource); |
| result.set_instance_size(FakeObject::InstanceSize()); |
| result.set_type_arguments_field_offset_in_words(kNoTypeArguments); |
| result.set_next_field_offset(FakeObject::NextFieldOffset()); |
| COMPILE_ASSERT((FakeObject::kClassId != kInstanceCid)); |
| result.set_id(FakeObject::kClassId); |
| result.set_num_type_arguments(0); |
| result.set_num_own_type_arguments(0); |
| result.set_has_pragma(false); |
| result.set_num_native_fields(0); |
| result.set_state_bits(0); |
| if ((FakeObject::kClassId < kInstanceCid) || |
| (FakeObject::kClassId == kTypeArgumentsCid)) { |
| // VM internal classes are done. There is no finalization needed or |
| // possible in this case. |
| result.set_is_finalized(); |
| } else { |
| // VM backed classes are almost ready: run checks and resolve class |
| // references, but do not recompute size. |
| result.set_is_prefinalized(); |
| } |
| result.set_kernel_offset(-1); |
| result.InitEmptyFields(); |
| Isolate::Current()->RegisterClass(result); |
| return result.raw(); |
| } |
| |
| static void ReportTooManyTypeArguments(const Class& cls) { |
| Report::MessageF(Report::kError, Script::Handle(cls.script()), |
| cls.token_pos(), Report::AtLocation, |
| "too many type parameters declared in class '%s' or in its " |
| "super classes", |
| String::Handle(cls.Name()).ToCString()); |
| UNREACHABLE(); |
| } |
| |
| void Class::set_num_type_arguments(intptr_t value) const { |
| if (!Utils::IsInt(16, value)) { |
| ReportTooManyTypeArguments(*this); |
| } |
| StoreNonPointer(&raw_ptr()->num_type_arguments_, value); |
| } |
| |
| void Class::set_num_own_type_arguments(intptr_t value) const { |
| if (!Utils::IsUint(kNumOwnTypeArgumentsSize, value)) { |
| ReportTooManyTypeArguments(*this); |
| } |
| StoreNonPointer( |
| &raw_ptr()->has_pragma_and_num_own_type_arguments_, |
| NumOwnTypeArguments::update( |
| value, raw_ptr()->has_pragma_and_num_own_type_arguments_)); |
| } |
| |
| void Class::set_has_pragma_and_num_own_type_arguments(uint16_t value) const { |
| StoreNonPointer(&raw_ptr()->has_pragma_and_num_own_type_arguments_, value); |
| } |
| |
| void Class::set_has_pragma(bool value) const { |
| StoreNonPointer( |
| &raw_ptr()->has_pragma_and_num_own_type_arguments_, |
| HasPragmaBit::update(value, |
| raw_ptr()->has_pragma_and_num_own_type_arguments_)); |
| } |
| |
| // Initialize class fields of type Array with empty array. |
| void Class::InitEmptyFields() { |
| if (Object::empty_array().raw() == Array::null()) { |
| // The empty array has not been initialized yet. |
| return; |
| } |
| StorePointer(&raw_ptr()->interfaces_, Object::empty_array().raw()); |
| StorePointer(&raw_ptr()->constants_, Object::empty_array().raw()); |
| StorePointer(&raw_ptr()->functions_, Object::empty_array().raw()); |
| StorePointer(&raw_ptr()->fields_, Object::empty_array().raw()); |
| StorePointer(&raw_ptr()->invocation_dispatcher_cache_, |
| Object::empty_array().raw()); |
| } |
| |
| RawArray* Class::OffsetToFieldMap(bool original_classes) const { |
| Array& array = Array::Handle(raw_ptr()->offset_in_words_to_field_); |
| if (array.IsNull()) { |
| ASSERT(is_finalized()); |
| const intptr_t length = raw_ptr()->instance_size_in_words_; |
| array = Array::New(length, Heap::kOld); |
| Class& cls = Class::Handle(this->raw()); |
| Array& fields = Array::Handle(); |
| Field& f = Field::Handle(); |
| while (!cls.IsNull()) { |
| fields = cls.fields(); |
| for (intptr_t i = 0; i < fields.Length(); ++i) { |
| f ^= fields.At(i); |
| if (f.is_instance()) { |
| array.SetAt(f.Offset() >> kWordSizeLog2, f); |
| } |
| } |
| cls = cls.SuperClass(original_classes); |
| } |
| StorePointer(&raw_ptr()->offset_in_words_to_field_, array.raw()); |
| } |
| return array.raw(); |
| } |
| |
| bool Class::HasInstanceFields() const { |
| const Array& field_array = Array::Handle(fields()); |
| Field& field = Field::Handle(); |
| for (intptr_t i = 0; i < field_array.Length(); ++i) { |
| field ^= field_array.At(i); |
| if (!field.is_static()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| class FunctionName { |
| public: |
| FunctionName(const String& name, String* tmp_string) |
| : name_(name), tmp_string_(tmp_string) {} |
| bool Matches(const Function& function) const { |
| if (name_.IsSymbol()) { |
| return name_.raw() == function.name(); |
| } else { |
| *tmp_string_ = function.name(); |
| return name_.Equals(*tmp_string_); |
| } |
| } |
| intptr_t Hash() const { return name_.Hash(); } |
| |
| private: |
| const String& name_; |
| String* tmp_string_; |
| }; |
| |
| // Traits for looking up Functions by name. |
| class ClassFunctionsTraits { |
| public: |
| static const char* Name() { return "ClassFunctionsTraits"; } |
| static bool ReportStats() { return false; } |
| |
| // Called when growing the table. |
| static bool IsMatch(const Object& a, const Object& b) { |
| ASSERT(a.IsFunction() && b.IsFunction()); |
| // Function objects are always canonical. |
| return a.raw() == b.raw(); |
| } |
| static bool IsMatch(const FunctionName& name, const Object& obj) { |
| return name.Matches(Function::Cast(obj)); |
| } |
| static uword Hash(const Object& key) { |
| return String::HashRawSymbol(Function::Cast(key).name()); |
| } |
| static uword Hash(const FunctionName& name) { return name.Hash(); } |
| }; |
| typedef UnorderedHashSet<ClassFunctionsTraits> ClassFunctionsSet; |
| |
| void Class::SetFunctions(const Array& value) const { |
| ASSERT(Thread::Current()->IsMutatorThread()); |
| ASSERT(!value.IsNull()); |
| StorePointer(&raw_ptr()->functions_, value.raw()); |
| const intptr_t len = value.Length(); |
| if (len >= kFunctionLookupHashTreshold) { |
| ClassFunctionsSet set(HashTables::New<ClassFunctionsSet>(len, Heap::kOld)); |
| Function& func = Function::Handle(); |
| for (intptr_t i = 0; i < len; ++i) { |
| func ^= value.At(i); |
| // Verify that all the functions in the array have this class as owner. |
| ASSERT(func.Owner() == raw()); |
| set.Insert(func); |
| } |
| StorePointer(&raw_ptr()->functions_hash_table_, set.Release().raw()); |
| } else { |
| StorePointer(&raw_ptr()->functions_hash_table_, Array::null()); |
| } |
| } |
| |
| void Class::AddFunction(const Function& function) const { |
| ASSERT(Thread::Current()->IsMutatorThread()); |
| const Array& arr = Array::Handle(functions()); |
| const Array& new_arr = |
| Array::Handle(Array::Grow(arr, arr.Length() + 1, Heap::kOld)); |
| new_arr.SetAt(arr.Length(), function); |
| StorePointer(&raw_ptr()->functions_, new_arr.raw()); |
| // Add to hash table, if any. |
| const intptr_t new_len = new_arr.Length(); |
| if (new_len == kFunctionLookupHashTreshold) { |
| // Transition to using hash table. |
| SetFunctions(new_arr); |
| } else if (new_len > kFunctionLookupHashTreshold) { |
| ClassFunctionsSet set(raw_ptr()->functions_hash_table_); |
| set.Insert(function); |
| StorePointer(&raw_ptr()->functions_hash_table_, set.Release().raw()); |
| } |
| } |
| |
| void Class::RemoveFunction(const Function& function) const { |
| ASSERT(Thread::Current()->IsMutatorThread()); |
| const Array& arr = Array::Handle(functions()); |
| StorePointer(&raw_ptr()->functions_, Object::empty_array().raw()); |
| StorePointer(&raw_ptr()->functions_hash_table_, Array::null()); |
| Function& entry = Function::Handle(); |
| for (intptr_t i = 0; i < arr.Length(); i++) { |
| entry ^= arr.At(i); |
| if (function.raw() != entry.raw()) { |
| AddFunction(entry); |
| } |
| } |
| } |
| |
| RawFunction* Class::FunctionFromIndex(intptr_t idx) const { |
| const Array& funcs = Array::Handle(functions()); |
| if ((idx < 0) || (idx >= funcs.Length())) { |
| return Function::null(); |
| } |
| Function& func = Function::Handle(); |
| func ^= funcs.At(idx); |
| ASSERT(!func.IsNull()); |
| return func.raw(); |
| } |
| |
| RawFunction* Class::ImplicitClosureFunctionFromIndex(intptr_t idx) const { |
| const Array& funcs = Array::Handle(functions()); |
| if ((idx < 0) || (idx >= funcs.Length())) { |
| return Function::null(); |
| } |
| Function& func = Function::Handle(); |
| func ^= funcs.At(idx); |
| ASSERT(!func.IsNull()); |
| if (!func.HasImplicitClosureFunction()) { |
| return Function::null(); |
| } |
| const Function& closure_func = |
| Function::Handle(func.ImplicitClosureFunction()); |
| ASSERT(!closure_func.IsNull()); |
| return closure_func.raw(); |
| } |
| |
| intptr_t Class::FindImplicitClosureFunctionIndex(const Function& needle) const { |
| Thread* thread = Thread::Current(); |
| if (EnsureIsFinalized(thread) != Error::null()) { |
| return -1; |
| } |
| REUSABLE_ARRAY_HANDLESCOPE(thread); |
| REUSABLE_FUNCTION_HANDLESCOPE(thread); |
| Array& funcs = thread->ArrayHandle(); |
| Function& function = thread->FunctionHandle(); |
| funcs ^= functions(); |
| ASSERT(!funcs.IsNull()); |
| Function& implicit_closure = Function::Handle(thread->zone()); |
| const intptr_t len = funcs.Length(); |
| for (intptr_t i = 0; i < len; i++) { |
| function ^= funcs.At(i); |
| implicit_closure ^= function.implicit_closure_function(); |
| if (implicit_closure.IsNull()) { |
| // Skip non-implicit closure functions. |
| continue; |
| } |
| if (needle.raw() == implicit_closure.raw()) { |
| return i; |
| } |
| } |
| // No function found. |
| return -1; |
| } |
| |
| intptr_t Class::FindInvocationDispatcherFunctionIndex( |
| const Function& needle) const { |
| Thread* thread = Thread::Current(); |
| if (EnsureIsFinalized(thread) != Error::null()) { |
| return -1; |
| } |
| REUSABLE_ARRAY_HANDLESCOPE(thread); |
| REUSABLE_OBJECT_HANDLESCOPE(thread); |
| Array& funcs = thread->ArrayHandle(); |
| Object& object = thread->ObjectHandle(); |
| funcs ^= invocation_dispatcher_cache(); |
| ASSERT(!funcs.IsNull()); |
| const intptr_t len = funcs.Length(); |
| for (intptr_t i = 0; i < len; i++) { |
| object = funcs.At(i); |
| // The invocation_dispatcher_cache is a table with some entries that |
| // are functions. |
| if (object.IsFunction()) { |
| if (Function::Cast(object).raw() == needle.raw()) { |
| return i; |
| } |
| } |
| } |
| // No function found. |
| return -1; |
| } |
| |
| RawFunction* Class::InvocationDispatcherFunctionFromIndex(intptr_t idx) const { |
| Thread* thread = Thread::Current(); |
| REUSABLE_ARRAY_HANDLESCOPE(thread); |
| REUSABLE_OBJECT_HANDLESCOPE(thread); |
| Array& dispatcher_cache = thread->ArrayHandle(); |
| Object& object = thread->ObjectHandle(); |
| dispatcher_cache ^= invocation_dispatcher_cache(); |
| object = dispatcher_cache.At(idx); |
| if (!object.IsFunction()) { |
| return Function::null(); |
| } |
| return Function::Cast(object).raw(); |
| } |
| |
| void Class::set_signature_function(const Function& value) const { |
| ASSERT(value.IsClosureFunction() || value.IsSignatureFunction()); |
| StorePointer(&raw_ptr()->signature_function_, value.raw()); |
| } |
| |
| void Class::set_state_bits(intptr_t bits) const { |
| StoreNonPointer(&raw_ptr()->state_bits_, static_cast<uint16_t>(bits)); |
| } |
| |
| void Class::set_library(const Library& value) const { |
| StorePointer(&raw_ptr()->library_, value.raw()); |
| } |
| |
| void Class::set_type_parameters(const TypeArguments& value) const { |
| StorePointer(&raw_ptr()->type_parameters_, value.raw()); |
| } |
| |
| intptr_t Class::NumTypeParameters(Thread* thread) const { |
| if (IsMixinApplication() && !is_mixin_type_applied()) { |
| ClassFinalizer::ApplyMixinType(*this); |
| } |
| if (type_parameters() == TypeArguments::null()) { |
| const intptr_t cid = id(); |
| if ((cid == kArrayCid) || (cid == kImmutableArrayCid) || |
| (cid == kGrowableObjectArrayCid)) { |
| return 1; // List's type parameter may not have been parsed yet. |
| } |
| return 0; |
| } |
| REUSABLE_TYPE_ARGUMENTS_HANDLESCOPE(thread); |
| TypeArguments& type_params = thread->TypeArgumentsHandle(); |
| type_params = type_parameters(); |
| return type_params.Length(); |
| } |
| |
| intptr_t Class::NumOwnTypeArguments() const { |
| // Return cached value if already calculated. |
| if (num_own_type_arguments() != kUnknownNumTypeArguments) { |
| return num_own_type_arguments(); |
| } |
| Thread* thread = Thread::Current(); |
| Isolate* isolate = thread->isolate(); |
| Zone* zone = thread->zone(); |
| const intptr_t num_type_params = NumTypeParameters(); |
| if ((num_type_params == 0) || (super_type() == AbstractType::null()) || |
| (super_type() == isolate->object_store()->object_type())) { |
| set_num_own_type_arguments(num_type_params); |
| return num_type_params; |
| } |
| ASSERT(!IsMixinApplication() || is_mixin_type_applied()); |
| const AbstractType& sup_type = AbstractType::Handle(zone, super_type()); |
| const TypeArguments& sup_type_args = |
| TypeArguments::Handle(zone, sup_type.arguments()); |
| if (sup_type_args.IsNull()) { |
| // The super type is raw or the super class is non generic. |
| // In either case, overlapping is not possible. |
| set_num_own_type_arguments(num_type_params); |
| return num_type_params; |
| } |
| const intptr_t num_sup_type_args = sup_type_args.Length(); |
| // At this point, the super type may or may not be finalized. In either case, |
| // the result of this function must remain the same. |
| // The value of num_sup_type_args may increase when the super type is |
| // finalized, but the last num_sup_type_args type arguments will not be |
| // modified by finalization, only shifted to higher indices in the vector. |
| // They may however get wrapped in a BoundedType, which we skip. |
| // The super type may not even be resolved yet. This is not necessary, since |
| // we only check for matching type parameters, which are resolved by default. |
| const TypeArguments& type_params = |
| TypeArguments::Handle(zone, type_parameters()); |
| // Determine the maximum overlap of a prefix of the vector consisting of the |
| // type parameters of this class with a suffix of the vector consisting of the |
| // type arguments of the super type of this class. |
| // The number of own type arguments of this class is the number of its type |
| // parameters minus the number of type arguments in the overlap. |
| // Attempt to overlap the whole vector of type parameters; reduce the size |
| // of the vector (keeping the first type parameter) until it fits or until |
| // its size is zero. |
| TypeParameter& type_param = TypeParameter::Handle(zone); |
| AbstractType& sup_type_arg = AbstractType::Handle(zone); |
| for (intptr_t num_overlapping_type_args = |
| (num_type_params < num_sup_type_args) ? num_type_params |
| : num_sup_type_args; |
| num_overlapping_type_args > 0; num_overlapping_type_args--) { |
| intptr_t i = 0; |
| for (; i < num_overlapping_type_args; i++) { |
| type_param ^= type_params.TypeAt(i); |
| sup_type_arg = sup_type_args.TypeAt(num_sup_type_args - |
| num_overlapping_type_args + i); |
| // BoundedType can nest in case the finalized super type has bounded type |
| // arguments that overlap multiple times in its own super class chain. |
| while (sup_type_arg.IsBoundedType()) { |
| sup_type_arg = BoundedType::Cast(sup_type_arg).type(); |
| } |
| if (!type_param.Equals(sup_type_arg)) break; |
| } |
| if (i == num_overlapping_type_args) { |
| // Overlap found. |
| set_num_own_type_arguments(num_type_params - num_overlapping_type_args); |
| return num_type_params - num_overlapping_type_args; |
| } |
| } |
| // No overlap found. |
| set_num_own_type_arguments(num_type_params); |
| return num_type_params; |
| } |
| |
| intptr_t Class::NumTypeArguments() const { |
| // Return cached value if already calculated. |
| if (num_type_arguments() != kUnknownNumTypeArguments) { |
| return num_type_arguments(); |
| } |
| // To work properly, this call requires the super class of this class to be |
| // resolved, which is checked by the type_class() call on the super type. |
| // Note that calling type_class() on a MixinAppType fails. |
| Thread* thread = Thread::Current(); |
| Zone* zone = thread->zone(); |
| Isolate* isolate = thread->isolate(); |
| Class& cls = Class::Handle(zone); |
| AbstractType& sup_type = AbstractType::Handle(zone); |
| cls = raw(); |
| intptr_t num_type_args = 0; |
| do { |
| // Calling NumOwnTypeArguments() on a mixin application class will setup the |
| // type parameters if not already done. |
| num_type_args += cls.NumOwnTypeArguments(); |
| // Super type of Object class is null. |
| if ((cls.super_type() == AbstractType::null()) || |
| (cls.super_type() == isolate->object_store()->object_type())) { |
| break; |
| } |
| sup_type = cls.super_type(); |
| // A BoundedType, TypeRef, or function type can appear as type argument of |
| // sup_type, but not as sup_type itself. |
| ASSERT(sup_type.IsType()); |
| ClassFinalizer::ResolveTypeClass(cls, Type::Cast(sup_type)); |
| cls = sup_type.type_class(); |
| ASSERT(!cls.IsTypedefClass()); |
| } while (true); |
| set_num_type_arguments(num_type_args); |
| return num_type_args; |
| } |
| |
| RawClass* Class::SuperClass(bool original_classes) const { |
| Thread* thread = Thread::Current(); |
| Zone* zone = thread->zone(); |
| Isolate* isolate = thread->isolate(); |
| if (super_type() == AbstractType::null()) { |
| if (id() == kTypeArgumentsCid) { |
| // Pretend TypeArguments objects are Dart instances. |
| return isolate->class_table()->At(kInstanceCid); |
| } |
| return Class::null(); |
| } |
| const AbstractType& sup_type = AbstractType::Handle(zone, super_type()); |
| const intptr_t type_class_id = sup_type.type_class_id(); |
| if (original_classes) { |
| return isolate->GetClassForHeapWalkAt(type_class_id); |
| } else { |
| return isolate->class_table()->At(type_class_id); |
| } |
| } |
| |
| void Class::set_super_type(const AbstractType& value) const { |
| ASSERT(value.IsNull() || (value.IsType() && !value.IsDynamicType()) || |
| value.IsMixinAppType()); |
| StorePointer(&raw_ptr()->super_type_, value.raw()); |
| } |
| |
| RawTypeParameter* Class::LookupTypeParameter(const String& type_name) const { |
| ASSERT(!type_name.IsNull()); |
| Thread* thread = Thread::Current(); |
| REUSABLE_TYPE_ARGUMENTS_HANDLESCOPE(thread); |
| REUSABLE_TYPE_PARAMETER_HANDLESCOPE(thread); |
| REUSABLE_STRING_HANDLESCOPE(thread); |
| TypeArguments& type_params = thread->TypeArgumentsHandle(); |
| TypeParameter& type_param = thread->TypeParameterHandle(); |
| String& type_param_name = thread->StringHandle(); |
| |
| type_params ^= type_parameters(); |
| if (!type_params.IsNull()) { |
| const intptr_t num_type_params = type_params.Length(); |
| for (intptr_t i = 0; i < num_type_params; i++) { |
| type_param ^= type_params.TypeAt(i); |
| type_param_name = type_param.name(); |
| if (type_param_name.Equals(type_name)) { |
| return type_param.raw(); |
| } |
| } |
| } |
| return TypeParameter::null(); |
| } |
| |
| void Class::CalculateFieldOffsets() const { |
| Array& flds = Array::Handle(fields()); |
| const Class& super = Class::Handle(SuperClass()); |
| intptr_t offset = 0; |
| intptr_t type_args_field_offset = kNoTypeArguments; |
| if (super.IsNull()) { |
| offset = Instance::NextFieldOffset(); |
| ASSERT(offset > 0); |
| } else { |
| ASSERT(super.is_finalized() || super.is_prefinalized()); |
| type_args_field_offset = super.type_arguments_field_offset(); |
| offset = super.next_field_offset(); |
| ASSERT(offset > 0); |
| // We should never call CalculateFieldOffsets for native wrapper |
| // classes, assert this. |
| ASSERT(num_native_fields() == 0); |
| set_num_native_fields(super.num_native_fields()); |
| } |
| // If the super class is parameterized, use the same type_arguments field, |
| // otherwise, if this class is the first in the super chain to be |
|