blob: a9d3a85c1b869717156687710283fb580b825321 [file] [log] [blame] [edit]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/isolate.h"
#include "include/dart_api.h"
#include "platform/assert.h"
#include "vm/globals.h"
#include "vm/lockers.h"
#include "vm/thread_barrier.h"
#include "vm/thread_pool.h"
#include "vm/unit_test.h"
namespace dart {
VM_UNIT_TEST_CASE(IsolateCurrent) {
Dart_Isolate isolate = TestCase::CreateTestIsolate();
EXPECT_EQ(isolate, Dart_CurrentIsolate());
Dart_ShutdownIsolate();
EXPECT_EQ(reinterpret_cast<Dart_Isolate>(NULL), Dart_CurrentIsolate());
}
// Test to ensure that an exception is thrown if no isolate creation
// callback has been set by the embedder when an isolate is spawned.
TEST_CASE(IsolateSpawn) {
const char* kScriptChars =
"import 'dart:isolate';\n"
// Ignores printed lines.
"var _nullPrintClosure = (String line) {};\n"
"void entry(message) {}\n"
"int testMain() {\n"
" Isolate.spawn(entry, null);\n"
// TODO(floitsch): the following code is only to bump the event loop
// so it executes asynchronous microtasks.
" var rp = new RawReceivePort();\n"
" rp.sendPort.send(null);\n"
" rp.handler = (_) { rp.close(); };\n"
"}\n";
Dart_Handle test_lib = TestCase::LoadTestScript(kScriptChars, NULL);
// Setup the internal library's 'internalPrint' function.
// Necessary because asynchronous errors use "print" to print their
// stack trace.
Dart_Handle url = NewString("dart:_internal");
DART_CHECK_VALID(url);
Dart_Handle internal_lib = Dart_LookupLibrary(url);
DART_CHECK_VALID(internal_lib);
Dart_Handle print = Dart_GetField(test_lib, NewString("_nullPrintClosure"));
Dart_Handle result =
Dart_SetField(internal_lib, NewString("_printClosure"), print);
DART_CHECK_VALID(result);
// Setup the 'scheduleImmediate' closure.
url = NewString("dart:isolate");
DART_CHECK_VALID(url);
Dart_Handle isolate_lib = Dart_LookupLibrary(url);
DART_CHECK_VALID(isolate_lib);
Dart_Handle schedule_immediate_closure = Dart_Invoke(
isolate_lib, NewString("_getIsolateScheduleImmediateClosure"), 0, NULL);
Dart_Handle args[1];
args[0] = schedule_immediate_closure;
url = NewString("dart:async");
DART_CHECK_VALID(url);
Dart_Handle async_lib = Dart_LookupLibrary(url);
DART_CHECK_VALID(async_lib);
DART_CHECK_VALID(Dart_Invoke(
async_lib, NewString("_setScheduleImmediateClosure"), 1, args));
result = Dart_Invoke(test_lib, NewString("testMain"), 0, NULL);
EXPECT_VALID(result);
// Run until all ports to isolate are closed.
result = Dart_RunLoop();
EXPECT_ERROR(result, "Unsupported operation: Isolate.spawn");
EXPECT(Dart_ErrorHasException(result));
Dart_Handle exception_result = Dart_ErrorGetException(result);
EXPECT_VALID(exception_result);
}
class InterruptChecker : public ThreadPool::Task {
public:
static const intptr_t kTaskCount;
static const intptr_t kIterations;
InterruptChecker(Thread* thread, ThreadBarrier* barrier)
: thread_(thread), barrier_(barrier) {}
virtual void Run() {
Thread::EnterIsolateAsHelper(thread_->isolate(), Thread::kUnknownTask);
// Tell main thread that we are ready.
barrier_->Sync();
for (intptr_t i = 0; i < kIterations; ++i) {
// Busy wait for interrupts.
uword limit = 0;
do {
limit = AtomicOperations::LoadRelaxed(
reinterpret_cast<uword*>(thread_->stack_limit_address()));
} while (
(limit == thread_->saved_stack_limit_) ||
(((limit & Thread::kInterruptsMask) & Thread::kVMInterrupt) == 0));
// Tell main thread that we observed the interrupt.
barrier_->Sync();
}
Thread::ExitIsolateAsHelper();
barrier_->Exit();
}
private:
Thread* thread_;
ThreadBarrier* barrier_;
};
const intptr_t InterruptChecker::kTaskCount = 5;
const intptr_t InterruptChecker::kIterations = 10;
// Test and document usage of Isolate::HasInterruptsScheduled.
//
// Go through a number of rounds of scheduling interrupts and waiting until all
// unsynchronized busy-waiting tasks observe it (in the current implementation,
// the exact latency depends on cache coherence). Synchronization is then used
// to ensure that the response to the interrupt, i.e., starting a new round,
// happens *after* the interrupt is observed. Without this synchronization, the
// compiler and/or CPU could reorder operations to make the tasks observe the
// round update *before* the interrupt is set.
TEST_CASE(StackLimitInterrupts) {
Isolate* isolate = thread->isolate();
ThreadBarrier barrier(InterruptChecker::kTaskCount + 1,
isolate->heap()->barrier(),
isolate->heap()->barrier_done());
// Start all tasks. They will busy-wait until interrupted in the first round.
for (intptr_t task = 0; task < InterruptChecker::kTaskCount; task++) {
Dart::thread_pool()->Run(new InterruptChecker(thread, &barrier));
}
// Wait for all tasks to get ready for the first round.
barrier.Sync();
for (intptr_t i = 0; i < InterruptChecker::kIterations; ++i) {
thread->ScheduleInterrupts(Thread::kVMInterrupt);
// Wait for all tasks to observe the interrupt.
barrier.Sync();
// Continue with next round.
uword interrupts = thread->GetAndClearInterrupts();
EXPECT((interrupts & Thread::kVMInterrupt) != 0);
}
barrier.Exit();
}
class IsolateTestHelper {
public:
static uword GetStackLimit(Thread* thread) { return thread->stack_limit_; }
static uword GetSavedStackLimit(Thread* thread) {
return thread->saved_stack_limit_;
}
static uword GetDeferredInterruptsMask(Thread* thread) {
return thread->deferred_interrupts_mask_;
}
static uword GetDeferredInterrupts(Thread* thread) {
return thread->deferred_interrupts_;
}
};
TEST_CASE(NoOOBMessageScope) {
// EXPECT_EQ is picky about type agreement for its arguments.
const uword kZero = 0;
const uword kMessageInterrupt = Thread::kMessageInterrupt;
const uword kVMInterrupt = Thread::kVMInterrupt;
uword stack_limit;
uword interrupt_bits;
// Initially no interrupts are scheduled or deferred.
EXPECT_EQ(IsolateTestHelper::GetStackLimit(thread),
IsolateTestHelper::GetSavedStackLimit(thread));
EXPECT_EQ(kZero, IsolateTestHelper::GetDeferredInterruptsMask(thread));
EXPECT_EQ(kZero, IsolateTestHelper::GetDeferredInterrupts(thread));
{
// Defer message interrupts.
NoOOBMessageScope no_msg_scope(thread);
EXPECT_EQ(IsolateTestHelper::GetStackLimit(thread),
IsolateTestHelper::GetSavedStackLimit(thread));
EXPECT_EQ(kMessageInterrupt,
IsolateTestHelper::GetDeferredInterruptsMask(thread));
EXPECT_EQ(kZero, IsolateTestHelper::GetDeferredInterrupts(thread));
// Schedule a message, it is deferred.
thread->ScheduleInterrupts(Thread::kMessageInterrupt);
EXPECT_EQ(IsolateTestHelper::GetStackLimit(thread),
IsolateTestHelper::GetSavedStackLimit(thread));
EXPECT_EQ(kMessageInterrupt,
IsolateTestHelper::GetDeferredInterruptsMask(thread));
EXPECT_EQ(kMessageInterrupt,
IsolateTestHelper::GetDeferredInterrupts(thread));
// Schedule a vm interrupt, it is not deferred.
thread->ScheduleInterrupts(Thread::kVMInterrupt);
stack_limit = IsolateTestHelper::GetStackLimit(thread);
EXPECT_NE(stack_limit, IsolateTestHelper::GetSavedStackLimit(thread));
EXPECT((stack_limit & Thread::kVMInterrupt) != 0);
EXPECT_EQ(kMessageInterrupt,
IsolateTestHelper::GetDeferredInterruptsMask(thread));
EXPECT_EQ(kMessageInterrupt,
IsolateTestHelper::GetDeferredInterrupts(thread));
// Clear the vm interrupt. Message is still deferred.
interrupt_bits = thread->GetAndClearInterrupts();
EXPECT_EQ(kVMInterrupt, interrupt_bits);
EXPECT_EQ(IsolateTestHelper::GetStackLimit(thread),
IsolateTestHelper::GetSavedStackLimit(thread));
EXPECT_EQ(kMessageInterrupt,
IsolateTestHelper::GetDeferredInterruptsMask(thread));
EXPECT_EQ(kMessageInterrupt,
IsolateTestHelper::GetDeferredInterrupts(thread));
}
// Restore message interrupts. Message is now pending.
stack_limit = IsolateTestHelper::GetStackLimit(thread);
EXPECT_NE(stack_limit, IsolateTestHelper::GetSavedStackLimit(thread));
EXPECT((stack_limit & Thread::kMessageInterrupt) != 0);
EXPECT_EQ(kZero, IsolateTestHelper::GetDeferredInterruptsMask(thread));
EXPECT_EQ(kZero, IsolateTestHelper::GetDeferredInterrupts(thread));
{
// Defer message interrupts, again. The pending interrupt is deferred.
NoOOBMessageScope no_msg_scope(thread);
EXPECT_EQ(IsolateTestHelper::GetStackLimit(thread),
IsolateTestHelper::GetSavedStackLimit(thread));
EXPECT_EQ(kMessageInterrupt,
IsolateTestHelper::GetDeferredInterruptsMask(thread));
EXPECT_EQ(kMessageInterrupt,
IsolateTestHelper::GetDeferredInterrupts(thread));
}
// Restore, then clear interrupts. The world is as it was.
interrupt_bits = thread->GetAndClearInterrupts();
EXPECT_EQ(kMessageInterrupt, interrupt_bits);
EXPECT_EQ(IsolateTestHelper::GetStackLimit(thread),
IsolateTestHelper::GetSavedStackLimit(thread));
EXPECT_EQ(kZero, IsolateTestHelper::GetDeferredInterruptsMask(thread));
EXPECT_EQ(kZero, IsolateTestHelper::GetDeferredInterrupts(thread));
}
} // namespace dart