blob: 60078c674a75e8cd196393c7e099396ef649cd4a [file] [log] [blame] [edit]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/benchmark_test.h"
#include "bin/builtin.h"
#include "bin/file.h"
#include "bin/isolate_data.h"
#include "bin/process.h"
#include "bin/reference_counting.h"
#include "platform/assert.h"
#include "platform/globals.h"
#include "vm/clustered_snapshot.h"
#include "vm/dart_api_impl.h"
#include "vm/stack_frame.h"
#include "vm/timer.h"
using dart::bin::File;
namespace dart {
Benchmark* Benchmark::first_ = NULL;
Benchmark* Benchmark::tail_ = NULL;
const char* Benchmark::executable_ = NULL;
//
// Measure compile of all dart2js(compiler) functions.
//
static char* ComputeDart2JSPath(const char* arg) {
char buffer[2048];
char* dart2js_path = strdup(File::GetCanonicalPath(NULL, arg));
const char* compiler_path = "%s%spkg%scompiler%slib%scompiler.dart";
const char* path_separator = File::PathSeparator();
ASSERT(path_separator != NULL && strlen(path_separator) == 1);
char* ptr = strrchr(dart2js_path, *path_separator);
while (ptr != NULL) {
*ptr = '\0';
Utils::SNPrint(buffer, 2048, compiler_path, dart2js_path, path_separator,
path_separator, path_separator, path_separator,
path_separator);
if (File::Exists(NULL, buffer)) {
break;
}
ptr = strrchr(dart2js_path, *path_separator);
}
if (ptr == NULL) {
free(dart2js_path);
dart2js_path = NULL;
}
return dart2js_path;
}
static void func(Dart_NativeArguments args) {}
static Dart_NativeFunction NativeResolver(Dart_Handle name,
int arg_count,
bool* auto_setup_scope) {
ASSERT(auto_setup_scope != NULL);
*auto_setup_scope = false;
return &func;
}
static void SetupDart2JSPackagePath() {
bool worked = bin::DartUtils::SetOriginalWorkingDirectory();
EXPECT(worked);
Dart_Handle result = bin::DartUtils::PrepareForScriptLoading(false, false);
DART_CHECK_VALID(result);
// Setup package root.
char buffer[2048];
char* executable_path =
strdup(File::GetCanonicalPath(NULL, Benchmark::Executable()));
const char* packages_path = "%s%s..%spackages";
const char* path_separator = File::PathSeparator();
Utils::SNPrint(buffer, 2048, packages_path, executable_path, path_separator,
path_separator);
result = bin::DartUtils::SetupPackageRoot(buffer, NULL);
DART_CHECK_VALID(result);
}
void Benchmark::RunAll(const char* executable) {
SetExecutable(executable);
Benchmark* benchmark = first_;
while (benchmark != NULL) {
benchmark->RunBenchmark();
benchmark = benchmark->next_;
}
}
//
// Measure compile of all functions in dart core lib classes.
//
BENCHMARK(CorelibCompileAll) {
bin::Builtin::SetNativeResolver(bin::Builtin::kBuiltinLibrary);
bin::Builtin::SetNativeResolver(bin::Builtin::kIOLibrary);
bin::Builtin::SetNativeResolver(bin::Builtin::kCLILibrary);
TransitionNativeToVM transition(thread);
StackZone zone(thread);
HANDLESCOPE(thread);
Timer timer(true, "Compile all of Core lib benchmark");
timer.Start();
const Error& error =
Error::Handle(Library::CompileAll(/*ignore_error=*/true));
if (!error.IsNull()) {
OS::PrintErr("Unexpected error in CorelibCompileAll benchmark:\n%s",
error.ToErrorCString());
}
timer.Stop();
int64_t elapsed_time = timer.TotalElapsedTime();
benchmark->set_score(elapsed_time);
}
// This file is created by the target //runtime/bin:gen_kernel_bytecode_dill
// which is depended on by run_vm_tests.
static char* ComputeGenKernelKernelPath(const char* arg) {
char buffer[2048];
char* gen_kernel_path = strdup(File::GetCanonicalPath(NULL, arg));
EXPECT(gen_kernel_path != NULL);
const char* compiler_path = "%s%sgen_kernel_bytecode.dill";
const char* path_separator = File::PathSeparator();
ASSERT(path_separator != NULL && strlen(path_separator) == 1);
char* ptr = strrchr(gen_kernel_path, *path_separator);
while (ptr != NULL) {
*ptr = '\0';
Utils::SNPrint(buffer, ARRAY_SIZE(buffer), compiler_path, gen_kernel_path,
path_separator);
if (File::Exists(NULL, buffer)) {
break;
}
ptr = strrchr(gen_kernel_path, *path_separator);
}
free(gen_kernel_path);
if (ptr == NULL) {
return NULL;
}
return strdup(buffer);
}
static int64_t GenKernelKernelBenchmark(const char* name,
bool benchmark_load,
bool benchmark_read_bytecode) {
EXPECT(benchmark_load || benchmark_read_bytecode);
bin::Builtin::SetNativeResolver(bin::Builtin::kBuiltinLibrary);
bin::Builtin::SetNativeResolver(bin::Builtin::kIOLibrary);
bin::Builtin::SetNativeResolver(bin::Builtin::kCLILibrary);
char* dill_path = ComputeGenKernelKernelPath(Benchmark::Executable());
File* file = File::Open(NULL, dill_path, File::kRead);
EXPECT(file != NULL);
bin::RefCntReleaseScope<File> rs(file);
intptr_t kernel_buffer_size = file->Length();
uint8_t* kernel_buffer =
reinterpret_cast<uint8_t*>(malloc(kernel_buffer_size));
EXPECT(kernel_buffer != NULL);
bool read_fully = file->ReadFully(kernel_buffer, kernel_buffer_size);
EXPECT(read_fully);
bool enable_interpreter_orig = FLAG_enable_interpreter;
FLAG_enable_interpreter = true;
Timer timer(true, name);
if (benchmark_load) {
timer.Start();
}
Dart_Handle result =
Dart_LoadLibraryFromKernel(kernel_buffer, kernel_buffer_size);
EXPECT_VALID(result);
result = Dart_FinalizeLoading(false);
EXPECT_VALID(result);
if (benchmark_read_bytecode && !benchmark_load) {
timer.Start();
}
if (benchmark_read_bytecode) {
result = Dart_ReadAllBytecode();
EXPECT_VALID(result);
}
timer.Stop();
int64_t elapsed_time = timer.TotalElapsedTime();
FLAG_enable_interpreter = enable_interpreter_orig;
free(dill_path);
free(kernel_buffer);
return elapsed_time;
}
BENCHMARK(GenKernelKernelLoadKernel) {
benchmark->set_score(
GenKernelKernelBenchmark("GenKernelKernelLoadKernel benchmark",
/* benchmark_load */ true,
/* benchmark_read_bytecode */ false));
}
BENCHMARK(GenKernelKernelReadAllBytecode) {
benchmark->set_score(
GenKernelKernelBenchmark("GenKernelKernelReadAllBytecode benchmark",
/* benchmark_load */ false,
/* benchmark_read_bytecode */ true));
}
BENCHMARK(GenKernelKernelCombined) {
benchmark->set_score(
GenKernelKernelBenchmark("GenKernelKernelCombined benchmark",
/* benchmark_load */ true,
/* benchmark_read_bytecode */ true));
}
BENCHMARK(GenKernelKernelMaxRSS) {
GenKernelKernelBenchmark("GenKernelKernelMaxRSS benchmark",
/* benchmark_load */ false,
/* benchmark_read_bytecode */ true);
benchmark->set_score(bin::Process::MaxRSS());
}
//
// Measure creation of core isolate from a snapshot.
//
BENCHMARK(CorelibIsolateStartup) {
const int kNumIterations = 1000;
Timer timer(true, "CorelibIsolateStartup");
Isolate* isolate = thread->isolate();
Dart_ExitIsolate();
for (int i = 0; i < kNumIterations; i++) {
timer.Start();
TestCase::CreateTestIsolate();
timer.Stop();
Dart_ShutdownIsolate();
}
benchmark->set_score(timer.TotalElapsedTime() / kNumIterations);
Dart_EnterIsolate(reinterpret_cast<Dart_Isolate>(isolate));
}
//
// Measure invocation of Dart API functions.
//
static void InitNativeFields(Dart_NativeArguments args) {
Dart_EnterScope();
int count = Dart_GetNativeArgumentCount(args);
EXPECT_EQ(1, count);
Dart_Handle recv = Dart_GetNativeArgument(args, 0);
EXPECT_VALID(recv);
Dart_Handle result = Dart_SetNativeInstanceField(recv, 0, 7);
EXPECT_VALID(result);
Dart_ExitScope();
}
// The specific api functions called here are a bit arbitrary. We are
// trying to get a sense of the overhead for using the dart api.
static void UseDartApi(Dart_NativeArguments args) {
int count = Dart_GetNativeArgumentCount(args);
EXPECT_EQ(3, count);
// Get native field from receiver.
intptr_t receiver_value;
Dart_Handle result = Dart_GetNativeReceiver(args, &receiver_value);
EXPECT_VALID(result);
EXPECT_EQ(7, receiver_value);
// Get param1.
Dart_Handle param1 = Dart_GetNativeArgument(args, 1);
EXPECT_VALID(param1);
EXPECT(Dart_IsInteger(param1));
bool fits = false;
result = Dart_IntegerFitsIntoInt64(param1, &fits);
EXPECT_VALID(result);
EXPECT(fits);
int64_t value1;
result = Dart_IntegerToInt64(param1, &value1);
EXPECT_VALID(result);
EXPECT_LE(0, value1);
EXPECT_LE(value1, 1000000);
// Return param + receiver.field.
Dart_SetReturnValue(args, Dart_NewInteger(value1 * receiver_value));
}
static Dart_NativeFunction bm_uda_lookup(Dart_Handle name,
int argument_count,
bool* auto_setup_scope) {
ASSERT(auto_setup_scope != NULL);
*auto_setup_scope = true;
const char* cstr = NULL;
Dart_Handle result = Dart_StringToCString(name, &cstr);
EXPECT_VALID(result);
if (strcmp(cstr, "init") == 0) {
return InitNativeFields;
} else {
return UseDartApi;
}
}
BENCHMARK(UseDartApi) {
const int kNumIterations = 1000000;
const char* kScriptChars =
"class Class extends NativeFieldsWrapper{\n"
" int init() native 'init';\n"
" int method(int param1, int param2) native 'method';\n"
"}\n"
"\n"
"void benchmark(int count) {\n"
" Class c = new Class();\n"
" c.init();\n"
" for (int i = 0; i < count; i++) {\n"
" c.method(i,7);\n"
" }\n"
"}\n";
Dart_Handle lib = TestCase::LoadTestScript(
kScriptChars, reinterpret_cast<Dart_NativeEntryResolver>(bm_uda_lookup),
USER_TEST_URI, false);
// Create a native wrapper class with native fields.
Dart_Handle result =
Dart_CreateNativeWrapperClass(lib, NewString("NativeFieldsWrapper"), 1);
EXPECT_VALID(result);
result = Dart_FinalizeLoading(false);
EXPECT_VALID(result);
Dart_Handle args[1];
args[0] = Dart_NewInteger(kNumIterations);
// Warmup first to avoid compilation jitters.
result = Dart_Invoke(lib, NewString("benchmark"), 1, args);
EXPECT_VALID(result);
Timer timer(true, "UseDartApi benchmark");
timer.Start();
result = Dart_Invoke(lib, NewString("benchmark"), 1, args);
EXPECT_VALID(result);
timer.Stop();
int64_t elapsed_time = timer.TotalElapsedTime();
benchmark->set_score(elapsed_time);
}
static void NoopFinalizer(void* isolate_callback_data,
Dart_WeakPersistentHandle handle,
void* peer) {}
//
// Measure time accessing internal and external strings.
//
BENCHMARK(DartStringAccess) {
const int kNumIterations = 10000000;
Timer timer(true, "DartStringAccess benchmark");
timer.Start();
Dart_EnterScope();
// Create strings.
uint8_t data8[] = {'o', 'n', 'e', 0xFF};
int external_peer_data = 123;
intptr_t char_size;
intptr_t str_len;
Dart_Handle external_string = Dart_NewExternalLatin1String(
data8, ARRAY_SIZE(data8), &external_peer_data, sizeof(data8),
NoopFinalizer);
Dart_Handle internal_string = NewString("two");
// Run benchmark.
for (int64_t i = 0; i < kNumIterations; i++) {
EXPECT(Dart_IsString(internal_string));
EXPECT(!Dart_IsExternalString(internal_string));
EXPECT_VALID(external_string);
EXPECT(Dart_IsExternalString(external_string));
void* external_peer = NULL;
EXPECT_VALID(Dart_StringGetProperties(external_string, &char_size, &str_len,
&external_peer));
EXPECT_EQ(1, char_size);
EXPECT_EQ(4, str_len);
EXPECT_EQ(&external_peer_data, external_peer);
}
Dart_ExitScope();
timer.Stop();
int64_t elapsed_time = timer.TotalElapsedTime();
benchmark->set_score(elapsed_time);
}
BENCHMARK(Dart2JSCompileAll) {
bin::Builtin::SetNativeResolver(bin::Builtin::kBuiltinLibrary);
bin::Builtin::SetNativeResolver(bin::Builtin::kIOLibrary);
bin::Builtin::SetNativeResolver(bin::Builtin::kCLILibrary);
SetupDart2JSPackagePath();
char* dart_root = ComputeDart2JSPath(Benchmark::Executable());
char* script = NULL;
if (dart_root != NULL) {
HANDLESCOPE(thread);
script = OS::SCreate(NULL, "import '%s/pkg/compiler/lib/compiler.dart';",
dart_root);
Dart_Handle lib = TestCase::LoadTestScript(
script, reinterpret_cast<Dart_NativeEntryResolver>(NativeResolver));
EXPECT_VALID(lib);
} else {
Dart_Handle lib = TestCase::LoadTestScript(
"import 'pkg/compiler/lib/compiler.dart';",
reinterpret_cast<Dart_NativeEntryResolver>(NativeResolver));
EXPECT_VALID(lib);
}
Timer timer(true, "Compile all of dart2js benchmark");
timer.Start();
#if !defined(PRODUCT)
const bool old_flag = FLAG_background_compilation;
FLAG_background_compilation = false;
#endif
Dart_Handle result = Dart_CompileAll();
#if !defined(PRODUCT)
FLAG_background_compilation = old_flag;
#endif
EXPECT_VALID(result);
timer.Stop();
int64_t elapsed_time = timer.TotalElapsedTime();
benchmark->set_score(elapsed_time);
free(dart_root);
free(script);
}
//
// Measure frame lookup during stack traversal.
//
static void StackFrame_accessFrame(Dart_NativeArguments args) {
Timer timer(true, "LookupDartCode benchmark");
timer.Start();
{
Thread* thread = Thread::Current();
TransitionNativeToVM transition(thread);
const int kNumIterations = 100;
Code& code = Code::Handle(thread->zone());
Bytecode& bytecode = Bytecode::Handle(thread->zone());
for (int i = 0; i < kNumIterations; i++) {
StackFrameIterator frames(ValidationPolicy::kDontValidateFrames, thread,
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* frame = frames.NextFrame();
while (frame != NULL) {
if (frame->IsStubFrame()) {
code = frame->LookupDartCode();
EXPECT(code.function() == Function::null());
} else if (frame->IsDartFrame()) {
if (frame->is_interpreted()) {
bytecode = frame->LookupDartBytecode();
EXPECT(bytecode.function() != Function::null());
} else {
code = frame->LookupDartCode();
EXPECT(code.function() != Function::null());
}
}
frame = frames.NextFrame();
}
}
}
timer.Stop();
int64_t elapsed_time = timer.TotalElapsedTime();
Dart_SetReturnValue(args, Dart_NewInteger(elapsed_time));
}
static Dart_NativeFunction StackFrameNativeResolver(Dart_Handle name,
int arg_count,
bool* auto_setup_scope) {
ASSERT(auto_setup_scope != NULL);
*auto_setup_scope = false;
return &StackFrame_accessFrame;
}
// Unit test case to verify stack frame iteration.
BENCHMARK(FrameLookup) {
const char* kScriptChars =
"class StackFrame {"
" static int accessFrame() native \"StackFrame_accessFrame\";"
"} "
"class First {"
" First() { }"
" int method1(int param) {"
" if (param == 1) {"
" param = method2(200);"
" } else {"
" param = method2(100);"
" }"
" return param;"
" }"
" int method2(int param) {"
" if (param == 200) {"
" return First.staticmethod(this, param);"
" } else {"
" return First.staticmethod(this, 10);"
" }"
" }"
" static int staticmethod(First obj, int param) {"
" if (param == 10) {"
" return obj.method3(10);"
" } else {"
" return obj.method3(200);"
" }"
" }"
" int method3(int param) {"
" return StackFrame.accessFrame();"
" }"
"}"
"class StackFrameTest {"
" static int testMain() {"
" First obj = new First();"
" return obj.method1(1);"
" }"
"}";
Dart_Handle lib = TestCase::LoadTestScript(
kScriptChars,
reinterpret_cast<Dart_NativeEntryResolver>(StackFrameNativeResolver));
Dart_Handle cls = Dart_GetClass(lib, NewString("StackFrameTest"));
Dart_Handle result = Dart_Invoke(cls, NewString("testMain"), 0, NULL);
EXPECT_VALID(result);
int64_t elapsed_time = 0;
result = Dart_IntegerToInt64(result, &elapsed_time);
EXPECT_VALID(result);
benchmark->set_score(elapsed_time);
}
static uint8_t* malloc_allocator(uint8_t* ptr,
intptr_t old_size,
intptr_t new_size) {
return reinterpret_cast<uint8_t*>(realloc(ptr, new_size));
}
BENCHMARK_SIZE(CoreSnapshotSize) {
const char* kScriptChars =
"import 'dart:async';\n"
"import 'dart:core';\n"
"import 'dart:collection';\n"
"import 'dart:_internal';\n"
"import 'dart:math';\n"
"import 'dart:isolate';\n"
"import 'dart:mirrors';\n"
"import 'dart:typed_data';\n"
"\n";
// Start an Isolate, load a script and create a full snapshot.
uint8_t* vm_snapshot_data_buffer;
uint8_t* isolate_snapshot_data_buffer;
// Need to load the script into the dart: core library due to
// the import of dart:_internal.
TestCase::LoadCoreTestScript(kScriptChars, NULL);
TransitionNativeToVM transition(thread);
StackZone zone(thread);
HANDLESCOPE(thread);
Api::CheckAndFinalizePendingClasses(thread);
// Write snapshot with object content.
FullSnapshotWriter writer(Snapshot::kFull, &vm_snapshot_data_buffer,
&isolate_snapshot_data_buffer, &malloc_allocator,
NULL, NULL /* image_writer */);
writer.WriteFullSnapshot();
const Snapshot* snapshot =
Snapshot::SetupFromBuffer(isolate_snapshot_data_buffer);
ASSERT(snapshot->kind() == Snapshot::kFull);
benchmark->set_score(snapshot->length());
free(vm_snapshot_data_buffer);
free(isolate_snapshot_data_buffer);
}
BENCHMARK_SIZE(StandaloneSnapshotSize) {
const char* kScriptChars =
"import 'dart:async';\n"
"import 'dart:core';\n"
"import 'dart:collection';\n"
"import 'dart:convert';\n"
"import 'dart:math';\n"
"import 'dart:isolate';\n"
"import 'dart:mirrors';\n"
"import 'dart:typed_data';\n"
"import 'dart:io';\n"
"import 'dart:cli';\n"
"\n";
// Start an Isolate, load a script and create a full snapshot.
uint8_t* vm_snapshot_data_buffer;
uint8_t* isolate_snapshot_data_buffer;
// Need to load the script into the dart: core library due to
// the import of dart:_internal.
TestCase::LoadCoreTestScript(kScriptChars, NULL);
TransitionNativeToVM transition(thread);
StackZone zone(thread);
HANDLESCOPE(thread);
Api::CheckAndFinalizePendingClasses(thread);
// Write snapshot with object content.
FullSnapshotWriter writer(Snapshot::kFull, &vm_snapshot_data_buffer,
&isolate_snapshot_data_buffer, &malloc_allocator,
NULL, NULL /* image_writer */);
writer.WriteFullSnapshot();
const Snapshot* snapshot =
Snapshot::SetupFromBuffer(isolate_snapshot_data_buffer);
ASSERT(snapshot->kind() == Snapshot::kFull);
benchmark->set_score(snapshot->length());
free(vm_snapshot_data_buffer);
free(isolate_snapshot_data_buffer);
}
BENCHMARK(CreateMirrorSystem) {
const char* kScriptChars =
"import 'dart:mirrors';\n"
"\n"
"void benchmark() {\n"
" currentMirrorSystem();\n"
"}\n";
Dart_Handle lib = TestCase::LoadTestScript(kScriptChars, NULL);
Timer timer(true, "currentMirrorSystem() benchmark");
timer.Start();
Dart_Handle result = Dart_Invoke(lib, NewString("benchmark"), 0, NULL);
EXPECT_VALID(result);
timer.Stop();
int64_t elapsed_time = timer.TotalElapsedTime();
benchmark->set_score(elapsed_time);
}
BENCHMARK(EnterExitIsolate) {
const char* kScriptChars =
"import 'dart:core';\n"
"\n";
const intptr_t kLoopCount = 1000000;
TestCase::LoadTestScript(kScriptChars, NULL);
{
TransitionNativeToVM transition(thread);
StackZone zone(thread);
HANDLESCOPE(thread);
Api::CheckAndFinalizePendingClasses(thread);
}
Dart_Isolate isolate = Dart_CurrentIsolate();
Timer timer(true, "Enter and Exit isolate");
timer.Start();
for (intptr_t i = 0; i < kLoopCount; i++) {
Dart_ExitIsolate();
Dart_EnterIsolate(isolate);
}
timer.Stop();
int64_t elapsed_time = timer.TotalElapsedTime();
benchmark->set_score(elapsed_time);
}
BENCHMARK(SerializeNull) {
TransitionNativeToVM transition(thread);
StackZone zone(thread);
HANDLESCOPE(thread);
const Object& null_object = Object::Handle();
const intptr_t kLoopCount = 1000000;
Timer timer(true, "Serialize Null");
timer.Start();
for (intptr_t i = 0; i < kLoopCount; i++) {
StackZone zone(thread);
MessageWriter writer(true);
Message* message = writer.WriteMessage(null_object, ILLEGAL_PORT,
Message::kNormalPriority);
// Read object back from the snapshot.
MessageSnapshotReader reader(message, thread);
reader.ReadObject();
delete message;
}
timer.Stop();
int64_t elapsed_time = timer.TotalElapsedTime();
benchmark->set_score(elapsed_time);
}
BENCHMARK(SerializeSmi) {
TransitionNativeToVM transition(thread);
StackZone zone(thread);
HANDLESCOPE(thread);
const Integer& smi_object = Integer::Handle(Smi::New(42));
const intptr_t kLoopCount = 1000000;
Timer timer(true, "Serialize Smi");
timer.Start();
for (intptr_t i = 0; i < kLoopCount; i++) {
StackZone zone(thread);
MessageWriter writer(true);
Message* message =
writer.WriteMessage(smi_object, ILLEGAL_PORT, Message::kNormalPriority);
// Read object back from the snapshot.
MessageSnapshotReader reader(message, thread);
reader.ReadObject();
delete message;
}
timer.Stop();
int64_t elapsed_time = timer.TotalElapsedTime();
benchmark->set_score(elapsed_time);
}
BENCHMARK(SimpleMessage) {
TransitionNativeToVM transition(thread);
StackZone zone(thread);
HANDLESCOPE(thread);
const Array& array_object = Array::Handle(Array::New(2));
array_object.SetAt(0, Integer::Handle(Smi::New(42)));
array_object.SetAt(1, Object::Handle());
const intptr_t kLoopCount = 1000000;
Timer timer(true, "Simple Message");
timer.Start();
for (intptr_t i = 0; i < kLoopCount; i++) {
StackZone zone(thread);
MessageWriter writer(true);
Message* message = writer.WriteMessage(array_object, ILLEGAL_PORT,
Message::kNormalPriority);
// Read object back from the snapshot.
MessageSnapshotReader reader(message, thread);
reader.ReadObject();
delete message;
}
timer.Stop();
int64_t elapsed_time = timer.TotalElapsedTime();
benchmark->set_score(elapsed_time);
}
BENCHMARK(LargeMap) {
const char* kScript =
"makeMap() {\n"
" Map m = {};\n"
" for (int i = 0; i < 100000; ++i) m[i*13+i*(i>>7)] = i;\n"
" return m;\n"
"}";
Dart_Handle h_lib = TestCase::LoadTestScript(kScript, NULL);
EXPECT_VALID(h_lib);
Dart_Handle h_result = Dart_Invoke(h_lib, NewString("makeMap"), 0, NULL);
EXPECT_VALID(h_result);
TransitionNativeToVM transition(thread);
StackZone zone(thread);
HANDLESCOPE(thread);
Instance& map = Instance::Handle();
map ^= Api::UnwrapHandle(h_result);
const intptr_t kLoopCount = 100;
Timer timer(true, "Large Map");
timer.Start();
for (intptr_t i = 0; i < kLoopCount; i++) {
StackZone zone(thread);
MessageWriter writer(true);
Message* message =
writer.WriteMessage(map, ILLEGAL_PORT, Message::kNormalPriority);
// Read object back from the snapshot.
MessageSnapshotReader reader(message, thread);
reader.ReadObject();
delete message;
}
timer.Stop();
int64_t elapsed_time = timer.TotalElapsedTime();
benchmark->set_score(elapsed_time);
}
BENCHMARK_MEMORY(InitialRSS) {
benchmark->set_score(bin::Process::MaxRSS());
}
} // namespace dart