blob: 5542b193f05a38071a7ec839b52ddde38fe0e5c2 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_X64.
#if defined(TARGET_ARCH_X64) && !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/compiler/backend/flow_graph_compiler.h"
#include "vm/compiler/backend/il_printer.h"
#include "vm/compiler/backend/locations.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/dart_entry.h"
#include "vm/deopt_instructions.h"
#include "vm/instructions.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
namespace dart {
DEFINE_FLAG(bool, trap_on_deoptimization, false, "Trap on deoptimization.");
DEFINE_FLAG(bool, unbox_mints, true, "Optimize 64-bit integer arithmetic.");
DECLARE_FLAG(bool, enable_simd_inline);
void FlowGraphCompiler::ArchSpecificInitialization() {
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
auto object_store = isolate()->object_store();
const auto& stub =
Code::ZoneHandle(object_store->write_barrier_wrappers_stub());
if (!stub.InVMIsolateHeap()) {
assembler_->generate_invoke_write_barrier_wrapper_ = [&](Register reg) {
const intptr_t offset_into_target =
Thread::WriteBarrierWrappersOffsetForRegister(reg);
AddPcRelativeCallStubTarget(stub);
assembler_->GenerateUnRelocatedPcRelativeCall(offset_into_target);
};
}
const auto& array_stub =
Code::ZoneHandle(object_store->array_write_barrier_stub());
if (!array_stub.InVMIsolateHeap()) {
assembler_->generate_invoke_array_write_barrier_ = [&]() {
AddPcRelativeCallStubTarget(array_stub);
assembler_->GenerateUnRelocatedPcRelativeCall();
};
}
}
}
FlowGraphCompiler::~FlowGraphCompiler() {
// BlockInfos are zone-allocated, so their destructors are not called.
// Verify the labels explicitly here.
for (int i = 0; i < block_info_.length(); ++i) {
ASSERT(!block_info_[i]->jump_label()->IsLinked());
ASSERT(!block_info_[i]->jump_label()->HasNear());
}
}
bool FlowGraphCompiler::SupportsUnboxedDoubles() {
return true;
}
bool FlowGraphCompiler::SupportsUnboxedInt64() {
return FLAG_unbox_mints;
}
bool FlowGraphCompiler::SupportsUnboxedSimd128() {
return FLAG_enable_simd_inline;
}
bool FlowGraphCompiler::SupportsHardwareDivision() {
return true;
}
bool FlowGraphCompiler::CanConvertInt64ToDouble() {
return true;
}
void FlowGraphCompiler::EnterIntrinsicMode() {
ASSERT(!intrinsic_mode());
intrinsic_mode_ = true;
ASSERT(!assembler()->constant_pool_allowed());
}
void FlowGraphCompiler::ExitIntrinsicMode() {
ASSERT(intrinsic_mode());
intrinsic_mode_ = false;
}
RawTypedData* CompilerDeoptInfo::CreateDeoptInfo(FlowGraphCompiler* compiler,
DeoptInfoBuilder* builder,
const Array& deopt_table) {
if (deopt_env_ == NULL) {
++builder->current_info_number_;
return TypedData::null();
}
intptr_t stack_height = compiler->StackSize();
AllocateIncomingParametersRecursive(deopt_env_, &stack_height);
intptr_t slot_ix = 0;
Environment* current = deopt_env_;
// Emit all kMaterializeObject instructions describing objects to be
// materialized on the deoptimization as a prefix to the deoptimization info.
EmitMaterializations(deopt_env_, builder);
// The real frame starts here.
builder->MarkFrameStart();
Zone* zone = compiler->zone();
builder->AddPp(current->function(), slot_ix++);
builder->AddPcMarker(Function::ZoneHandle(zone), slot_ix++);
builder->AddCallerFp(slot_ix++);
builder->AddReturnAddress(current->function(), deopt_id(), slot_ix++);
// Emit all values that are needed for materialization as a part of the
// expression stack for the bottom-most frame. This guarantees that GC
// will be able to find them during materialization.
slot_ix = builder->EmitMaterializationArguments(slot_ix);
// For the innermost environment, set outgoing arguments and the locals.
for (intptr_t i = current->Length() - 1;
i >= current->fixed_parameter_count(); i--) {
builder->AddCopy(current->ValueAt(i), current->LocationAt(i), slot_ix++);
}
Environment* previous = current;
current = current->outer();
while (current != NULL) {
builder->AddPp(current->function(), slot_ix++);
builder->AddPcMarker(previous->function(), slot_ix++);
builder->AddCallerFp(slot_ix++);
// For any outer environment the deopt id is that of the call instruction
// which is recorded in the outer environment.
builder->AddReturnAddress(current->function(),
DeoptId::ToDeoptAfter(current->deopt_id()),
slot_ix++);
// The values of outgoing arguments can be changed from the inlined call so
// we must read them from the previous environment.
for (intptr_t i = previous->fixed_parameter_count() - 1; i >= 0; i--) {
builder->AddCopy(previous->ValueAt(i), previous->LocationAt(i),
slot_ix++);
}
// Set the locals, note that outgoing arguments are not in the environment.
for (intptr_t i = current->Length() - 1;
i >= current->fixed_parameter_count(); i--) {
builder->AddCopy(current->ValueAt(i), current->LocationAt(i), slot_ix++);
}
// Iterate on the outer environment.
previous = current;
current = current->outer();
}
// The previous pointer is now the outermost environment.
ASSERT(previous != NULL);
// Set slots for the outermost environment.
builder->AddCallerPp(slot_ix++);
builder->AddPcMarker(previous->function(), slot_ix++);
builder->AddCallerFp(slot_ix++);
builder->AddCallerPc(slot_ix++);
// For the outermost environment, set the incoming arguments.
for (intptr_t i = previous->fixed_parameter_count() - 1; i >= 0; i--) {
builder->AddCopy(previous->ValueAt(i), previous->LocationAt(i), slot_ix++);
}
return builder->CreateDeoptInfo(deopt_table);
}
void CompilerDeoptInfoWithStub::GenerateCode(FlowGraphCompiler* compiler,
intptr_t stub_ix) {
// Calls do not need stubs, they share a deoptimization trampoline.
ASSERT(reason() != ICData::kDeoptAtCall);
Assembler* assembler = compiler->assembler();
#define __ assembler->
__ Comment("%s", Name());
__ Bind(entry_label());
if (FLAG_trap_on_deoptimization) {
__ int3();
}
ASSERT(deopt_env() != NULL);
__ call(Address(THR, Thread::deoptimize_entry_offset()));
set_pc_offset(assembler->CodeSize());
__ int3();
#undef __
}
#define __ assembler()->
// Fall through if bool_register contains null.
void FlowGraphCompiler::GenerateBoolToJump(Register bool_register,
Label* is_true,
Label* is_false) {
Label fall_through;
__ CompareObject(bool_register, Object::null_object());
__ j(EQUAL, &fall_through, Assembler::kNearJump);
__ CompareObject(bool_register, Bool::True());
__ j(EQUAL, is_true);
__ jmp(is_false);
__ Bind(&fall_through);
}
// Call stub to perform subtype test using a cache (see
// stub_code_x64.cc:GenerateSubtypeNTestCacheStub)
//
// Inputs:
// - RAX : instance to test against.
// - RDX : instantiator type arguments (if necessary).
// - RCX : function type arguments (if necessary).
//
// Preserves RAX/RCX/RDX.
RawSubtypeTestCache* FlowGraphCompiler::GenerateCallSubtypeTestStub(
TypeTestStubKind test_kind,
Register instance_reg,
Register instantiator_type_arguments_reg,
Register function_type_arguments_reg,
Register temp_reg,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
ASSERT(temp_reg == kNoRegister);
const SubtypeTestCache& type_test_cache =
SubtypeTestCache::ZoneHandle(zone(), SubtypeTestCache::New());
__ LoadUniqueObject(R9, type_test_cache);
if (test_kind == kTestTypeOneArg) {
ASSERT(instantiator_type_arguments_reg == kNoRegister);
ASSERT(function_type_arguments_reg == kNoRegister);
__ Call(StubCode::Subtype1TestCache());
} else if (test_kind == kTestTypeTwoArgs) {
ASSERT(instantiator_type_arguments_reg == kNoRegister);
ASSERT(function_type_arguments_reg == kNoRegister);
__ Call(StubCode::Subtype2TestCache());
} else if (test_kind == kTestTypeFourArgs) {
ASSERT(RDX == instantiator_type_arguments_reg);
ASSERT(RCX == function_type_arguments_reg);
__ Call(StubCode::Subtype4TestCache());
} else if (test_kind == kTestTypeSixArgs) {
ASSERT(RDX == instantiator_type_arguments_reg);
ASSERT(RCX == function_type_arguments_reg);
__ Call(StubCode::Subtype6TestCache());
} else {
UNREACHABLE();
}
// Result is in R8: null -> not found, otherwise Bool::True or Bool::False.
GenerateBoolToJump(R8, is_instance_lbl, is_not_instance_lbl);
return type_test_cache.raw();
}
// Jumps to labels 'is_instance' or 'is_not_instance' respectively, if
// type test is conclusive, otherwise fallthrough if a type test could not
// be completed.
// RAX: instance (must survive).
// Clobbers R10.
RawSubtypeTestCache*
FlowGraphCompiler::GenerateInstantiatedTypeWithArgumentsTest(
TokenPosition token_pos,
const AbstractType& type,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("InstantiatedTypeWithArgumentsTest");
ASSERT(type.IsInstantiated());
ASSERT(!type.IsFunctionType());
const Class& type_class = Class::ZoneHandle(zone(), type.type_class());
ASSERT(type_class.NumTypeArguments() > 0);
const Register kInstanceReg = RAX;
const Type& smi_type = Type::Handle(zone(), Type::SmiType());
const bool smi_is_ok = smi_type.IsSubtypeOf(type, Heap::kOld);
__ testq(kInstanceReg, Immediate(kSmiTagMask));
if (smi_is_ok) {
// Fast case for type = FutureOr<int/num/top-type>.
__ j(ZERO, is_instance_lbl);
} else {
__ j(ZERO, is_not_instance_lbl);
}
const intptr_t num_type_args = type_class.NumTypeArguments();
const intptr_t num_type_params = type_class.NumTypeParameters();
const intptr_t from_index = num_type_args - num_type_params;
const TypeArguments& type_arguments =
TypeArguments::ZoneHandle(zone(), type.arguments());
const bool is_raw_type = type_arguments.IsNull() ||
type_arguments.IsRaw(from_index, num_type_params);
if (is_raw_type) {
const Register kClassIdReg = R10;
// dynamic type argument, check only classes.
__ LoadClassId(kClassIdReg, kInstanceReg);
__ cmpl(kClassIdReg, Immediate(type_class.id()));
__ j(EQUAL, is_instance_lbl);
// List is a very common case.
if (IsListClass(type_class)) {
GenerateListTypeCheck(kClassIdReg, is_instance_lbl);
}
return GenerateSubtype1TestCacheLookup(
token_pos, type_class, is_instance_lbl, is_not_instance_lbl);
}
// If one type argument only, check if type argument is Object or dynamic.
if (type_arguments.Length() == 1) {
const AbstractType& tp_argument =
AbstractType::ZoneHandle(zone(), type_arguments.TypeAt(0));
if (tp_argument.IsType()) {
ASSERT(tp_argument.HasTypeClass());
// Check if type argument is dynamic, Object, or void.
const Type& object_type = Type::Handle(zone(), Type::ObjectType());
if (object_type.IsSubtypeOf(tp_argument, Heap::kOld)) {
// Instance class test only necessary.
return GenerateSubtype1TestCacheLookup(
token_pos, type_class, is_instance_lbl, is_not_instance_lbl);
}
}
}
// Regular subtype test cache involving instance's type arguments.
const Register kInstantiatorTypeArgumentsReg = kNoRegister;
const Register kFunctionTypeArgumentsReg = kNoRegister;
const Register kTempReg = kNoRegister;
return GenerateCallSubtypeTestStub(kTestTypeTwoArgs, kInstanceReg,
kInstantiatorTypeArgumentsReg,
kFunctionTypeArgumentsReg, kTempReg,
is_instance_lbl, is_not_instance_lbl);
}
void FlowGraphCompiler::CheckClassIds(Register class_id_reg,
const GrowableArray<intptr_t>& class_ids,
Label* is_equal_lbl,
Label* is_not_equal_lbl) {
for (intptr_t i = 0; i < class_ids.length(); i++) {
__ cmpl(class_id_reg, Immediate(class_ids[i]));
__ j(EQUAL, is_equal_lbl);
}
__ jmp(is_not_equal_lbl);
}
// Testing against an instantiated type with no arguments, without
// SubtypeTestCache
//
// Inputs:
// - RAX : instance to test against
//
// Preserves RAX/RCX/RDX.
//
// Returns true if there is a fallthrough.
bool FlowGraphCompiler::GenerateInstantiatedTypeNoArgumentsTest(
TokenPosition token_pos,
const AbstractType& type,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("InstantiatedTypeNoArgumentsTest");
ASSERT(type.IsInstantiated());
ASSERT(!type.IsFunctionType());
const Class& type_class = Class::Handle(zone(), type.type_class());
ASSERT(type_class.NumTypeArguments() == 0);
const Register kInstanceReg = RAX;
__ testq(kInstanceReg, Immediate(kSmiTagMask));
// If instance is Smi, check directly.
const Class& smi_class = Class::Handle(zone(), Smi::Class());
if (Class::IsSubtypeOf(smi_class, Object::null_type_arguments(), type_class,
Object::null_type_arguments(), Heap::kOld)) {
// Fast case for type = int/num/top-type.
__ j(ZERO, is_instance_lbl);
} else {
__ j(ZERO, is_not_instance_lbl);
}
const Register kClassIdReg = R10;
__ LoadClassId(kClassIdReg, kInstanceReg);
// Bool interface can be implemented only by core class Bool.
if (type.IsBoolType()) {
__ cmpl(kClassIdReg, Immediate(kBoolCid));
__ j(EQUAL, is_instance_lbl);
__ jmp(is_not_instance_lbl);
return false;
}
// Custom checking for numbers (Smi, Mint and Double).
// Note that instance is not Smi (checked above).
if (type.IsNumberType() || type.IsIntType() || type.IsDoubleType()) {
GenerateNumberTypeCheck(kClassIdReg, type, is_instance_lbl,
is_not_instance_lbl);
return false;
}
if (type.IsStringType()) {
GenerateStringTypeCheck(kClassIdReg, is_instance_lbl, is_not_instance_lbl);
return false;
}
if (type.IsDartFunctionType()) {
// Check if instance is a closure.
__ cmpq(kClassIdReg, Immediate(kClosureCid));
__ j(EQUAL, is_instance_lbl);
return true;
}
// Fast case for cid-range based checks.
// Warning: This code destroys the contents of [kClassIdReg].
if (GenerateSubtypeRangeCheck(kClassIdReg, type_class, is_instance_lbl)) {
return false;
}
// Otherwise fallthrough, result non-conclusive.
return true;
}
// Uses SubtypeTestCache to store instance class and result.
// Immediate class test already done.
//
// Inputs:
// RAX : instance to test against.
//
// Preserves RAX/RCX/RDX.
//
// TODO(srdjan): Implement a quicker subtype check, as type test
// arrays can grow too high, but they may be useful when optimizing
// code (type-feedback).
RawSubtypeTestCache* FlowGraphCompiler::GenerateSubtype1TestCacheLookup(
TokenPosition token_pos,
const Class& type_class,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("Subtype1TestCacheLookup");
const Register kInstanceReg = RAX;
#if defined(DEBUG)
Label ok;
__ BranchIfNotSmi(kInstanceReg, &ok);
__ Breakpoint();
__ Bind(&ok);
#endif
__ LoadClassId(TMP, kInstanceReg);
__ LoadClassById(R10, TMP);
// R10: instance class.
// Check immediate superclass equality.
__ movq(R13, FieldAddress(R10, Class::super_type_offset()));
__ movq(R13, FieldAddress(R13, Type::type_class_id_offset()));
__ CompareImmediate(R13, Immediate(Smi::RawValue(type_class.id())));
__ j(EQUAL, is_instance_lbl);
const Register kInstantiatorTypeArgumentsReg = kNoRegister;
const Register kFunctionTypeArgumentsReg = kNoRegister;
const Register kTempReg = kNoRegister;
return GenerateCallSubtypeTestStub(kTestTypeOneArg, kInstanceReg,
kInstantiatorTypeArgumentsReg,
kFunctionTypeArgumentsReg, kTempReg,
is_instance_lbl, is_not_instance_lbl);
}
// Generates inlined check if 'type' is a type parameter or type itself
//
// Inputs:
// - RAX : instance to test against.
// - RDX : instantiator type arguments (if necessary).
// - RCX : function type arguments (if necessary).
//
// Preserves RAX/RCX/RDX.
RawSubtypeTestCache* FlowGraphCompiler::GenerateUninstantiatedTypeTest(
TokenPosition token_pos,
const AbstractType& type,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
const Register kInstanceReg = RAX;
const Register kInstantiatorTypeArgumentsReg = RDX;
const Register kFunctionTypeArgumentsReg = RCX;
const Register kTempReg = kNoRegister;
__ Comment("UninstantiatedTypeTest");
ASSERT(!type.IsInstantiated());
ASSERT(!type.IsFunctionType());
// Skip check if destination is a dynamic type.
if (type.IsTypeParameter()) {
const TypeParameter& type_param = TypeParameter::Cast(type);
const AbstractType& bound = AbstractType::Handle(type_param.bound());
// RDX: instantiator type arguments.
// RCX: function type arguments.
const Register kTypeArgumentsReg =
type_param.IsClassTypeParameter() ? RDX : RCX;
// Check if type arguments are null, i.e. equivalent to vector of dynamic.
__ CompareObject(kTypeArgumentsReg, Object::null_object());
__ j(EQUAL, is_instance_lbl);
__ movq(RDI, FieldAddress(kTypeArgumentsReg, TypeArguments::type_at_offset(
type_param.index())));
// RDI: Concrete type of type.
// Check if type argument is dynamic, Object, or void.
__ CompareObject(RDI, Object::dynamic_type());
__ j(EQUAL, is_instance_lbl);
const Type& object_type = Type::ZoneHandle(zone(), Type::ObjectType());
__ CompareObject(RDI, object_type);
__ j(EQUAL, is_instance_lbl);
__ CompareObject(RDI, Object::void_type());
__ j(EQUAL, is_instance_lbl);
// For Smi check quickly against int and num interfaces.
Label not_smi;
__ testq(RAX, Immediate(kSmiTagMask)); // Value is Smi?
__ j(NOT_ZERO, &not_smi, Assembler::kNearJump);
__ CompareObject(RDI, Type::ZoneHandle(zone(), Type::IntType()));
__ j(EQUAL, is_instance_lbl);
__ CompareObject(RDI, Type::ZoneHandle(zone(), Type::Number()));
__ j(EQUAL, is_instance_lbl);
// Smi can be handled by type test cache.
__ Bind(&not_smi);
// If it's guaranteed, by type-parameter bound, that the type parameter will
// never have a value of a function type, then we can safely do a 4-type
// test instead of a 6-type test.
auto test_kind = !bound.IsTopType() && !bound.IsFunctionType() &&
!bound.IsDartFunctionType() && bound.IsType()
? kTestTypeSixArgs
: kTestTypeFourArgs;
const SubtypeTestCache& type_test_cache = SubtypeTestCache::ZoneHandle(
zone(), GenerateCallSubtypeTestStub(
test_kind, kInstanceReg, kInstantiatorTypeArgumentsReg,
kFunctionTypeArgumentsReg, kTempReg, is_instance_lbl,
is_not_instance_lbl));
return type_test_cache.raw();
}
if (type.IsType()) {
// Smi is FutureOr<T>, when T is a top type or int or num.
if (!Class::Handle(type.type_class()).IsFutureOrClass()) {
__ testq(kInstanceReg, Immediate(kSmiTagMask)); // Is instance Smi?
__ j(ZERO, is_not_instance_lbl);
}
// Uninstantiated type class is known at compile time, but the type
// arguments are determined at runtime by the instantiator(s).
return GenerateCallSubtypeTestStub(kTestTypeFourArgs, kInstanceReg,
kInstantiatorTypeArgumentsReg,
kFunctionTypeArgumentsReg, kTempReg,
is_instance_lbl, is_not_instance_lbl);
}
return SubtypeTestCache::null();
}
// Generates function type check.
//
// See [GenerateUninstantiatedTypeTest] for calling convention.
RawSubtypeTestCache* FlowGraphCompiler::GenerateFunctionTypeTest(
TokenPosition token_pos,
const AbstractType& type,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
const Register kInstanceReg = RAX;
const Register kInstantiatorTypeArgumentsReg = RDX;
const Register kFunctionTypeArgumentsReg = RCX;
const Register kTempReg = kNoRegister;
__ Comment("FunctionTypeTest");
__ testq(kInstanceReg, Immediate(kSmiTagMask));
__ j(ZERO, is_not_instance_lbl);
return GenerateCallSubtypeTestStub(kTestTypeSixArgs, kInstanceReg,
kInstantiatorTypeArgumentsReg,
kFunctionTypeArgumentsReg, kTempReg,
is_instance_lbl, is_not_instance_lbl);
}
// Inputs:
// - RAX : instance to test against.
// - RDX : instantiator type arguments.
// - RCX : function type arguments.
//
// Preserves RAX/RCX/RDX.
//
// Note that this inlined code must be followed by the runtime_call code, as it
// may fall through to it. Otherwise, this inline code will jump to the label
// is_instance or to the label is_not_instance.
RawSubtypeTestCache* FlowGraphCompiler::GenerateInlineInstanceof(
TokenPosition token_pos,
const AbstractType& type,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("InlineInstanceof");
if (type.IsFunctionType()) {
return GenerateFunctionTypeTest(token_pos, type, is_instance_lbl,
is_not_instance_lbl);
}
if (type.IsInstantiated()) {
const Class& type_class = Class::ZoneHandle(zone(), type.type_class());
// A class equality check is only applicable with a dst type (not a
// function type) of a non-parameterized class or with a raw dst type of
// a parameterized class.
if (type_class.NumTypeArguments() > 0) {
return GenerateInstantiatedTypeWithArgumentsTest(
token_pos, type, is_instance_lbl, is_not_instance_lbl);
// Fall through to runtime call.
}
const bool has_fall_through = GenerateInstantiatedTypeNoArgumentsTest(
token_pos, type, is_instance_lbl, is_not_instance_lbl);
if (has_fall_through) {
// If test non-conclusive so far, try the inlined type-test cache.
// 'type' is known at compile time.
return GenerateSubtype1TestCacheLookup(
token_pos, type_class, is_instance_lbl, is_not_instance_lbl);
} else {
return SubtypeTestCache::null();
}
}
return GenerateUninstantiatedTypeTest(token_pos, type, is_instance_lbl,
is_not_instance_lbl);
}
// If instanceof type test cannot be performed successfully at compile time and
// therefore eliminated, optimize it by adding inlined tests for:
// - NULL -> return type == Null (type is not Object or dynamic).
// - Smi -> compile time subtype check (only if dst class is not parameterized).
// - Class equality (only if class is not parameterized).
// Inputs:
// - RAX: object.
// - RDX: instantiator type arguments or raw_null.
// - RCX: function type arguments or raw_null.
// Returns:
// - true or false in RAX.
void FlowGraphCompiler::GenerateInstanceOf(TokenPosition token_pos,
intptr_t deopt_id,
const AbstractType& type,
LocationSummary* locs) {
ASSERT(type.IsFinalized());
ASSERT(!type.IsObjectType() && !type.IsDynamicType() && !type.IsVoidType());
Label is_instance, is_not_instance;
// If type is instantiated and non-parameterized, we can inline code
// checking whether the tested instance is a Smi.
if (type.IsInstantiated()) {
// A null object is only an instance of Null, Object, void and dynamic.
// Object void and dynamic have already been checked above (if the type is
// instantiated). So we can return false here if the instance is null,
// unless the type is Null (and if the type is instantiated).
// We can only inline this null check if the type is instantiated at compile
// time, since an uninstantiated type at compile time could be Null, Object,
// or dynamic at run time.
__ CompareObject(RAX, Object::null_object());
__ j(EQUAL, type.IsNullType() ? &is_instance : &is_not_instance);
}
// Generate inline instanceof test.
SubtypeTestCache& test_cache = SubtypeTestCache::ZoneHandle(zone());
// The registers RAX, RCX, RDX are preserved across the call.
test_cache =
GenerateInlineInstanceof(token_pos, type, &is_instance, &is_not_instance);
// test_cache is null if there is no fall-through.
Label done;
if (!test_cache.IsNull()) {
// Generate runtime call.
__ PushObject(Object::null_object()); // Make room for the result.
__ pushq(RAX); // Push the instance.
__ PushObject(type); // Push the type.
__ pushq(RDX); // Instantiator type arguments.
__ pushq(RCX); // Function type arguments.
__ LoadUniqueObject(RAX, test_cache);
__ pushq(RAX);
GenerateRuntimeCall(token_pos, deopt_id, kInstanceofRuntimeEntry, 5, locs);
// Pop the parameters supplied to the runtime entry. The result of the
// instanceof runtime call will be left as the result of the operation.
__ Drop(5);
__ popq(RAX);
__ jmp(&done, Assembler::kNearJump);
}
__ Bind(&is_not_instance);
__ LoadObject(RAX, Bool::Get(false));
__ jmp(&done, Assembler::kNearJump);
__ Bind(&is_instance);
__ LoadObject(RAX, Bool::Get(true));
__ Bind(&done);
}
// Optimize assignable type check by adding inlined tests for:
// - NULL -> return NULL.
// - Smi -> compile time subtype check (only if dst class is not parameterized).
// - Class equality (only if class is not parameterized).
// Inputs:
// - RAX: object.
// - RDX: instantiator type arguments or raw_null.
// - RCX: function type arguments or raw_null.
// Returns:
// - object in RAX for successful assignable check (or throws TypeError).
// Performance notes: positive checks must be quick, negative checks can be slow
// as they throw an exception.
void FlowGraphCompiler::GenerateAssertAssignable(TokenPosition token_pos,
intptr_t deopt_id,
const AbstractType& dst_type,
const String& dst_name,
LocationSummary* locs) {
ASSERT(!token_pos.IsClassifying());
ASSERT(!dst_type.IsNull());
ASSERT(dst_type.IsFinalized());
// Assignable check is skipped in FlowGraphBuilder, not here.
ASSERT(!dst_type.IsDynamicType() && !dst_type.IsObjectType() &&
!dst_type.IsVoidType());
const Register kInstantiatorTypeArgumentsReg = RDX;
const Register kFunctionTypeArgumentsReg = RCX;
if (ShouldUseTypeTestingStubFor(is_optimizing(), dst_type)) {
GenerateAssertAssignableViaTypeTestingStub(token_pos, deopt_id, dst_type,
dst_name, locs);
} else {
Label is_assignable, runtime_call;
// A null object is always assignable and is returned as result.
__ CompareObject(RAX, Object::null_object());
__ j(EQUAL, &is_assignable);
// Generate inline type check, linking to runtime call if not assignable.
SubtypeTestCache& test_cache = SubtypeTestCache::ZoneHandle(zone());
// The registers RAX, RCX, RDX are preserved across the call.
test_cache = GenerateInlineInstanceof(token_pos, dst_type, &is_assignable,
&runtime_call);
__ Bind(&runtime_call);
__ PushObject(Object::null_object()); // Make room for the result.
__ pushq(RAX); // Push the source object.
__ PushObject(dst_type); // Push the type of the destination.
__ pushq(kInstantiatorTypeArgumentsReg);
__ pushq(kFunctionTypeArgumentsReg);
__ PushObject(dst_name); // Push the name of the destination.
__ LoadUniqueObject(RAX, test_cache);
__ pushq(RAX);
__ PushObject(Smi::ZoneHandle(zone(), Smi::New(kTypeCheckFromInline)));
GenerateRuntimeCall(token_pos, deopt_id, kTypeCheckRuntimeEntry, 7, locs);
// Pop the parameters supplied to the runtime entry. The result of the
// type check runtime call is the checked value.
__ Drop(7);
__ popq(RAX);
__ Bind(&is_assignable);
}
}
void FlowGraphCompiler::GenerateAssertAssignableViaTypeTestingStub(
TokenPosition token_pos,
intptr_t deopt_id,
const AbstractType& dst_type,
const String& dst_name,
LocationSummary* locs) {
const Register kInstanceReg = RAX;
const Register kInstantiatorTypeArgumentsReg = RDX;
const Register kFunctionTypeArgumentsReg = RCX;
Label done;
const Register subtype_cache_reg = R9;
const Register kScratchReg = RBX;
GenerateAssertAssignableViaTypeTestingStub(
dst_type, dst_name, kInstanceReg, kInstantiatorTypeArgumentsReg,
kFunctionTypeArgumentsReg, subtype_cache_reg, kScratchReg, kScratchReg,
&done);
// We use 2 consecutive entries in the pool for the subtype cache and the
// destination name. The second entry, namely [dst_name] seems to be unused,
// but it will be used by the code throwing a TypeError if the type test fails
// (see runtime/vm/runtime_entry.cc:TypeCheck). It will use pattern matching
// on the call site to find out at which pool index the destination name is
// located.
const intptr_t sub_type_cache_index = __ object_pool_builder().AddObject(
Object::null_object(), compiler::ObjectPoolBuilderEntry::kPatchable);
const intptr_t sub_type_cache_offset =
ObjectPool::element_offset(sub_type_cache_index) - kHeapObjectTag;
const intptr_t dst_name_index = __ object_pool_builder().AddObject(
dst_name, compiler::ObjectPoolBuilderEntry::kPatchable);
ASSERT((sub_type_cache_index + 1) == dst_name_index);
ASSERT(__ constant_pool_allowed());
__ movq(subtype_cache_reg, Address(PP, sub_type_cache_offset));
__ call(FieldAddress(RBX, AbstractType::type_test_stub_entry_point_offset()));
EmitCallsiteMetadata(token_pos, deopt_id, RawPcDescriptors::kOther, locs);
__ Bind(&done);
}
void FlowGraphCompiler::EmitInstructionEpilogue(Instruction* instr) {
if (is_optimizing()) {
return;
}
Definition* defn = instr->AsDefinition();
if ((defn != NULL) && defn->HasTemp()) {
Location value = defn->locs()->out(0);
if (value.IsRegister()) {
__ pushq(value.reg());
} else if (value.IsConstant()) {
__ PushObject(value.constant());
} else {
ASSERT(value.IsStackSlot());
__ pushq(LocationToStackSlotAddress(value));
}
}
}
void FlowGraphCompiler::GenerateMethodExtractorIntrinsic(
const Function& extracted_method,
intptr_t type_arguments_field_offset) {
// No frame has been setup here.
ASSERT(!__ constant_pool_allowed());
ASSERT(extracted_method.IsZoneHandle());
const Code& build_method_extractor = Code::ZoneHandle(
isolate()->object_store()->build_method_extractor_code());
ASSERT(!build_method_extractor.IsNull());
const intptr_t stub_index = __ object_pool_builder().AddObject(
build_method_extractor, compiler::ObjectPoolBuilderEntry::kNotPatchable);
const intptr_t function_index = __ object_pool_builder().AddObject(
extracted_method, compiler::ObjectPoolBuilderEntry::kNotPatchable);
// We use a custom pool register to preserve caller PP.
Register kPoolReg = RAX;
// RBX = extracted function
// RDX = offset of type argument vector (or 0 if class is not generic)
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
kPoolReg = PP;
} else {
__ movq(kPoolReg, FieldAddress(CODE_REG, Code::object_pool_offset()));
}
__ movq(RDX, Immediate(type_arguments_field_offset));
__ movq(RBX,
FieldAddress(kPoolReg, ObjectPool::element_offset(function_index)));
__ movq(CODE_REG,
FieldAddress(kPoolReg, ObjectPool::element_offset(stub_index)));
__ jmp(FieldAddress(CODE_REG,
Code::entry_point_offset(Code::EntryKind::kUnchecked)));
}
void FlowGraphCompiler::GenerateGetterIntrinsic(intptr_t offset) {
// TOS: return address.
// +1 : receiver.
// Sequence node has one return node, its input is load field node.
__ Comment("Inlined Getter");
__ movq(RAX, Address(RSP, 1 * kWordSize));
__ movq(RAX, FieldAddress(RAX, offset));
__ ret();
}
void FlowGraphCompiler::GenerateSetterIntrinsic(intptr_t offset) {
// TOS: return address.
// +1 : value
// +2 : receiver.
// Sequence node has one store node and one return NULL node.
__ Comment("Inlined Setter");
__ movq(RAX, Address(RSP, 2 * kWordSize)); // Receiver.
__ movq(RBX, Address(RSP, 1 * kWordSize)); // Value.
__ StoreIntoObject(RAX, FieldAddress(RAX, offset), RBX);
__ LoadObject(RAX, Object::null_object());
__ ret();
}
// NOTE: If the entry code shape changes, ReturnAddressLocator in profiler.cc
// needs to be updated to match.
void FlowGraphCompiler::EmitFrameEntry() {
if (flow_graph().IsCompiledForOsr()) {
const intptr_t extra_slots = ExtraStackSlotsOnOsrEntry();
ASSERT(extra_slots >= 0);
__ EnterOsrFrame(extra_slots * kWordSize);
} else {
const Function& function = parsed_function().function();
if (CanOptimizeFunction() && function.IsOptimizable() &&
(!is_optimizing() || may_reoptimize())) {
__ Comment("Invocation Count Check");
const Register function_reg = RDI;
__ movq(function_reg, FieldAddress(CODE_REG, Code::owner_offset()));
// Reoptimization of an optimized function is triggered by counting in
// IC stubs, but not at the entry of the function.
if (!is_optimizing()) {
__ incl(FieldAddress(function_reg, Function::usage_counter_offset()));
}
__ cmpl(FieldAddress(function_reg, Function::usage_counter_offset()),
Immediate(GetOptimizationThreshold()));
ASSERT(function_reg == RDI);
Label dont_optimize;
__ j(LESS, &dont_optimize, Assembler::kNearJump);
__ jmp(Address(THR, Thread::optimize_entry_offset()));
__ Bind(&dont_optimize);
}
ASSERT(StackSize() >= 0);
__ Comment("Enter frame");
__ EnterDartFrame(StackSize() * kWordSize);
}
}
void FlowGraphCompiler::EmitPrologue() {
BeginCodeSourceRange();
EmitFrameEntry();
ASSERT(assembler()->constant_pool_allowed());
// In unoptimized code, initialize (non-argument) stack allocated slots.
if (!is_optimizing()) {
const int num_locals = parsed_function().num_stack_locals();
intptr_t args_desc_slot = -1;
if (parsed_function().has_arg_desc_var()) {
args_desc_slot = compiler::target::frame_layout.FrameSlotForVariable(
parsed_function().arg_desc_var());
}
__ Comment("Initialize spill slots");
if (num_locals > 1 || (num_locals == 1 && args_desc_slot == -1)) {
__ LoadObject(RAX, Object::null_object());
}
for (intptr_t i = 0; i < num_locals; ++i) {
const intptr_t slot_index =
compiler::target::frame_layout.FrameSlotForVariableIndex(-i);
Register value_reg = slot_index == args_desc_slot ? ARGS_DESC_REG : RAX;
__ movq(Address(RBP, slot_index * kWordSize), value_reg);
}
}
EndCodeSourceRange(TokenPosition::kDartCodePrologue);
}
void FlowGraphCompiler::CompileGraph() {
InitCompiler();
// We have multiple entrypoints functionality which moved the frame
// setup into the [FunctionEntryInstr] (which will set the constant pool
// allowed bit to true). Despite this we still have to set the
// constant pool allowed bit to true here as well, because we can generate
// code for [CatchEntryInstr]s, which need the pool.
__ set_constant_pool_allowed(true);
ASSERT(!block_order().is_empty());
VisitBlocks();
__ int3();
if (!skip_body_compilation()) {
ASSERT(assembler()->constant_pool_allowed());
GenerateDeferredCode();
}
}
void FlowGraphCompiler::GenerateCall(TokenPosition token_pos,
const Code& stub,
RawPcDescriptors::Kind kind,
LocationSummary* locs) {
if (FLAG_precompiled_mode && FLAG_use_bare_instructions &&
!stub.InVMIsolateHeap()) {
AddPcRelativeCallStubTarget(stub);
__ GenerateUnRelocatedPcRelativeCall();
EmitCallsiteMetadata(token_pos, DeoptId::kNone, kind, locs);
} else {
ASSERT(!stub.IsNull());
__ Call(stub);
EmitCallsiteMetadata(token_pos, DeoptId::kNone, kind, locs);
AddStubCallTarget(stub);
}
}
void FlowGraphCompiler::GeneratePatchableCall(TokenPosition token_pos,
const Code& stub,
RawPcDescriptors::Kind kind,
LocationSummary* locs) {
__ CallPatchable(stub);
EmitCallsiteMetadata(token_pos, DeoptId::kNone, kind, locs);
}
void FlowGraphCompiler::GenerateDartCall(intptr_t deopt_id,
TokenPosition token_pos,
const Code& stub,
RawPcDescriptors::Kind kind,
LocationSummary* locs,
Code::EntryKind entry_kind) {
__ CallPatchable(stub, entry_kind);
EmitCallsiteMetadata(token_pos, deopt_id, kind, locs);
}
void FlowGraphCompiler::GenerateStaticDartCall(intptr_t deopt_id,
TokenPosition token_pos,
RawPcDescriptors::Kind kind,
LocationSummary* locs,
const Function& target,
Code::EntryKind entry_kind) {
ASSERT(is_optimizing());
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
AddPcRelativeCallTarget(target, entry_kind);
__ GenerateUnRelocatedPcRelativeCall();
EmitCallsiteMetadata(token_pos, deopt_id, kind, locs);
} else {
// Call sites to the same target can share object pool entries. These
// call sites are never patched for breakpoints: the function is deoptimized
// and the unoptimized code with IC calls for static calls is patched
// instead.
const auto& stub_entry = StubCode::CallStaticFunction();
__ CallWithEquivalence(stub_entry, target, entry_kind);
EmitCallsiteMetadata(token_pos, deopt_id, kind, locs);
AddStaticCallTarget(target, entry_kind);
}
}
void FlowGraphCompiler::GenerateRuntimeCall(TokenPosition token_pos,
intptr_t deopt_id,
const RuntimeEntry& entry,
intptr_t argument_count,
LocationSummary* locs) {
__ CallRuntime(entry, argument_count);
EmitCallsiteMetadata(token_pos, deopt_id, RawPcDescriptors::kOther, locs);
}
void FlowGraphCompiler::EmitUnoptimizedStaticCall(intptr_t count_with_type_args,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs,
const ICData& ic_data) {
const Code& stub =
StubCode::UnoptimizedStaticCallEntry(ic_data.NumArgsTested());
__ LoadObject(RBX, ic_data);
GenerateDartCall(deopt_id, token_pos, stub,
RawPcDescriptors::kUnoptStaticCall, locs);
__ Drop(count_with_type_args, RCX);
}
void FlowGraphCompiler::EmitEdgeCounter(intptr_t edge_id) {
// We do not check for overflow when incrementing the edge counter. The
// function should normally be optimized long before the counter can
// overflow; and though we do not reset the counters when we optimize or
// deoptimize, there is a bound on the number of
// optimization/deoptimization cycles we will attempt.
ASSERT(!edge_counters_array_.IsNull());
ASSERT(assembler_->constant_pool_allowed());
__ Comment("Edge counter");
__ LoadObject(RAX, edge_counters_array_);
__ IncrementSmiField(FieldAddress(RAX, Array::element_offset(edge_id)), 1);
}
void FlowGraphCompiler::EmitOptimizedInstanceCall(const Code& stub,
const ICData& ic_data,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs,
Code::EntryKind entry_kind) {
ASSERT(Array::Handle(zone(), ic_data.arguments_descriptor()).Length() > 0);
// Each ICData propagated from unoptimized to optimized code contains the
// function that corresponds to the Dart function of that IC call. Due
// to inlining in optimized code, that function may not correspond to the
// top-level function (parsed_function().function()) which could be
// reoptimized and which counter needs to be incremented.
// Pass the function explicitly, it is used in IC stub.
__ LoadObject(RDI, parsed_function().function());
// Load receiver into RDX.
__ movq(RDX, Address(RSP, (ic_data.CountWithoutTypeArgs() - 1) * kWordSize));
__ LoadUniqueObject(RBX, ic_data);
GenerateDartCall(deopt_id, token_pos, stub, RawPcDescriptors::kIcCall, locs,
entry_kind);
__ Drop(ic_data.CountWithTypeArgs(), RCX);
}
void FlowGraphCompiler::EmitInstanceCall(const Code& stub,
const ICData& ic_data,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs) {
ASSERT(Array::Handle(zone(), ic_data.arguments_descriptor()).Length() > 0);
// Load receiver into RDX.
__ movq(RDX, Address(RSP, (ic_data.CountWithoutTypeArgs() - 1) * kWordSize));
__ LoadUniqueObject(RBX, ic_data);
GenerateDartCall(deopt_id, token_pos, stub, RawPcDescriptors::kIcCall, locs,
Code::EntryKind::kMonomorphic);
__ Drop(ic_data.CountWithTypeArgs(), RCX);
}
void FlowGraphCompiler::EmitMegamorphicInstanceCall(
const String& name,
const Array& arguments_descriptor,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs,
intptr_t try_index,
intptr_t slow_path_argument_count) {
ASSERT(!arguments_descriptor.IsNull() && (arguments_descriptor.Length() > 0));
const ArgumentsDescriptor args_desc(arguments_descriptor);
const MegamorphicCache& cache = MegamorphicCache::ZoneHandle(
zone(),
MegamorphicCacheTable::Lookup(isolate(), name, arguments_descriptor));
__ Comment("MegamorphicCall");
// Load receiver into RDX.
__ movq(RDX, Address(RSP, (args_desc.Count() - 1) * kWordSize));
__ LoadObject(RBX, cache);
__ call(Address(THR, Thread::megamorphic_call_checked_entry_offset()));
RecordSafepoint(locs, slow_path_argument_count);
const intptr_t deopt_id_after = DeoptId::ToDeoptAfter(deopt_id);
if (FLAG_precompiled_mode) {
// Megamorphic calls may occur in slow path stubs.
// If valid use try_index argument.
if (try_index == kInvalidTryIndex) {
try_index = CurrentTryIndex();
}
AddDescriptor(RawPcDescriptors::kOther, assembler()->CodeSize(),
DeoptId::kNone, token_pos, try_index);
} else if (is_optimizing()) {
AddCurrentDescriptor(RawPcDescriptors::kOther, DeoptId::kNone, token_pos);
AddDeoptIndexAtCall(deopt_id_after);
} else {
AddCurrentDescriptor(RawPcDescriptors::kOther, DeoptId::kNone, token_pos);
// Add deoptimization continuation point after the call and before the
// arguments are removed.
AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id_after, token_pos);
}
RecordCatchEntryMoves(pending_deoptimization_env_, try_index);
__ Drop(args_desc.CountWithTypeArgs(), RCX);
}
void FlowGraphCompiler::EmitSwitchableInstanceCall(const ICData& ic_data,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs,
Code::EntryKind entry_kind) {
ASSERT(entry_kind == Code::EntryKind::kNormal ||
entry_kind == Code::EntryKind::kUnchecked);
ASSERT(ic_data.NumArgsTested() == 1);
const Code& initial_stub = StubCode::ICCallThroughFunction();
__ Comment("SwitchableCall");
__ movq(RDX, Address(RSP, (ic_data.CountWithoutTypeArgs() - 1) * kWordSize));
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
// The AOT runtime will replace the slot in the object pool with the
// entrypoint address - see clustered_snapshot.cc.
__ LoadUniqueObject(RCX, initial_stub);
} else {
intptr_t entry_point_offset =
entry_kind == Code::EntryKind::kNormal
? Code::entry_point_offset(Code::EntryKind::kMonomorphic)
: Code::entry_point_offset(Code::EntryKind::kMonomorphicUnchecked);
__ LoadUniqueObject(CODE_REG, initial_stub);
__ movq(RCX, FieldAddress(CODE_REG, entry_point_offset));
}
__ LoadUniqueObject(RBX, ic_data);
__ call(RCX);
EmitCallsiteMetadata(token_pos, deopt_id, RawPcDescriptors::kOther, locs);
__ Drop(ic_data.CountWithTypeArgs(), RCX);
}
void FlowGraphCompiler::EmitOptimizedStaticCall(
const Function& function,
const Array& arguments_descriptor,
intptr_t count_with_type_args,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs,
Code::EntryKind entry_kind) {
ASSERT(!function.IsClosureFunction());
if (function.HasOptionalParameters() || function.IsGeneric()) {
__ LoadObject(R10, arguments_descriptor);
} else {
if (!(FLAG_precompiled_mode && FLAG_use_bare_instructions)) {
__ xorl(R10, R10); // GC safe smi zero because of stub.
}
}
// Do not use the code from the function, but let the code be patched so that
// we can record the outgoing edges to other code.
GenerateStaticDartCall(deopt_id, token_pos, RawPcDescriptors::kOther, locs,
function, entry_kind);
__ Drop(count_with_type_args, RCX);
}
Condition FlowGraphCompiler::EmitEqualityRegConstCompare(
Register reg,
const Object& obj,
bool needs_number_check,
TokenPosition token_pos,
intptr_t deopt_id) {
ASSERT(!needs_number_check || (!obj.IsMint() && !obj.IsDouble()));
if (obj.IsSmi() && (Smi::Cast(obj).Value() == 0)) {
ASSERT(!needs_number_check);
__ testq(reg, reg);
return EQUAL;
}
if (needs_number_check) {
__ pushq(reg);
__ PushObject(obj);
if (is_optimizing()) {
__ CallPatchable(StubCode::OptimizedIdenticalWithNumberCheck());
} else {
__ CallPatchable(StubCode::UnoptimizedIdenticalWithNumberCheck());
}
AddCurrentDescriptor(RawPcDescriptors::kRuntimeCall, deopt_id, token_pos);
// Stub returns result in flags (result of a cmpq, we need ZF computed).
__ popq(reg); // Discard constant.
__ popq(reg); // Restore 'reg'.
} else {
__ CompareObject(reg, obj);
}
return EQUAL;
}
Condition FlowGraphCompiler::EmitEqualityRegRegCompare(Register left,
Register right,
bool needs_number_check,
TokenPosition token_pos,
intptr_t deopt_id) {
if (needs_number_check) {
__ pushq(left);
__ pushq(right);
if (is_optimizing()) {
__ CallPatchable(StubCode::OptimizedIdenticalWithNumberCheck());
} else {
__ CallPatchable(StubCode::UnoptimizedIdenticalWithNumberCheck());
}
AddCurrentDescriptor(RawPcDescriptors::kRuntimeCall, deopt_id, token_pos);
// Stub returns result in flags (result of a cmpq, we need ZF computed).
__ popq(right);
__ popq(left);
} else {
__ CompareRegisters(left, right);
}
return EQUAL;
}
// This function must be in sync with FlowGraphCompiler::RecordSafepoint and
// FlowGraphCompiler::SlowPathEnvironmentFor.
void FlowGraphCompiler::SaveLiveRegisters(LocationSummary* locs) {
#if defined(DEBUG)
locs->CheckWritableInputs();
ClobberDeadTempRegisters(locs);
#endif
// TODO(vegorov): avoid saving non-volatile registers.
__ PushRegisters(locs->live_registers()->cpu_registers(),
locs->live_registers()->fpu_registers());
}
void FlowGraphCompiler::RestoreLiveRegisters(LocationSummary* locs) {
__ PopRegisters(locs->live_registers()->cpu_registers(),
locs->live_registers()->fpu_registers());
}
#if defined(DEBUG)
void FlowGraphCompiler::ClobberDeadTempRegisters(LocationSummary* locs) {
// Clobber temporaries that have not been manually preserved.
for (intptr_t i = 0; i < locs->temp_count(); ++i) {
Location tmp = locs->temp(i);
// TODO(zerny): clobber non-live temporary FPU registers.
if (tmp.IsRegister() &&
!locs->live_registers()->ContainsRegister(tmp.reg())) {
__ movq(tmp.reg(), Immediate(0xf7));
}
}
}
#endif
Register FlowGraphCompiler::EmitTestCidRegister() {
return RDI;
}
void FlowGraphCompiler::EmitTestAndCallLoadReceiver(
intptr_t count_without_type_args,
const Array& arguments_descriptor) {
__ Comment("EmitTestAndCall");
// Load receiver into RAX.
__ movq(RAX, Address(RSP, (count_without_type_args - 1) * kWordSize));
__ LoadObject(R10, arguments_descriptor);
}
void FlowGraphCompiler::EmitTestAndCallSmiBranch(Label* label, bool if_smi) {
__ testq(RAX, Immediate(kSmiTagMask));
// Jump if receiver is (not) Smi.
__ j(if_smi ? ZERO : NOT_ZERO, label);
}
void FlowGraphCompiler::EmitTestAndCallLoadCid(Register class_id_reg) {
ASSERT(class_id_reg != RAX);
__ LoadClassId(class_id_reg, RAX);
}
#undef __
#define __ assembler->
int FlowGraphCompiler::EmitTestAndCallCheckCid(Assembler* assembler,
Label* label,
Register class_id_reg,
const CidRange& range,
int bias,
bool jump_on_miss) {
// Note of WARNING: Due to smaller instruction encoding we use the 32-bit
// instructions on x64, which means the compare instruction has to be
// 32-bit (since the subtraction instruction is as well).
intptr_t cid_start = range.cid_start;
if (range.IsSingleCid()) {
__ cmpl(class_id_reg, Immediate(cid_start - bias));
__ BranchIf(jump_on_miss ? NOT_EQUAL : EQUAL, label);
} else {
__ addl(class_id_reg, Immediate(bias - cid_start));
bias = cid_start;
__ cmpl(class_id_reg, Immediate(range.Extent()));
__ BranchIf(jump_on_miss ? UNSIGNED_GREATER : UNSIGNED_LESS_EQUAL, label);
}
return bias;
}
#undef __
#define __ assembler()->
void FlowGraphCompiler::EmitMove(Location destination,
Location source,
TemporaryRegisterAllocator* tmp) {
if (destination.Equals(source)) return;
if (source.IsRegister()) {
if (destination.IsRegister()) {
__ movq(destination.reg(), source.reg());
} else {
ASSERT(destination.IsStackSlot());
__ movq(LocationToStackSlotAddress(destination), source.reg());
}
} else if (source.IsStackSlot()) {
if (destination.IsRegister()) {
__ movq(destination.reg(), LocationToStackSlotAddress(source));
} else if (destination.IsFpuRegister()) {
// 32-bit float
__ movq(TMP, LocationToStackSlotAddress(source));
__ movq(destination.fpu_reg(), TMP);
} else {
ASSERT(destination.IsStackSlot());
__ MoveMemoryToMemory(LocationToStackSlotAddress(destination),
LocationToStackSlotAddress(source));
}
} else if (source.IsFpuRegister()) {
if (destination.IsFpuRegister()) {
// Optimization manual recommends using MOVAPS for register
// to register moves.
__ movaps(destination.fpu_reg(), source.fpu_reg());
} else {
if (destination.IsDoubleStackSlot()) {
__ movsd(LocationToStackSlotAddress(destination), source.fpu_reg());
} else {
ASSERT(destination.IsQuadStackSlot());
__ movups(LocationToStackSlotAddress(destination), source.fpu_reg());
}
}
} else if (source.IsDoubleStackSlot()) {
if (destination.IsFpuRegister()) {
__ movsd(destination.fpu_reg(), LocationToStackSlotAddress(source));
} else {
ASSERT(destination.IsDoubleStackSlot() ||
destination.IsStackSlot() /*32-bit float*/);
__ movsd(FpuTMP, LocationToStackSlotAddress(source));
__ movsd(LocationToStackSlotAddress(destination), FpuTMP);
}
} else if (source.IsQuadStackSlot()) {
if (destination.IsFpuRegister()) {
__ movups(destination.fpu_reg(), LocationToStackSlotAddress(source));
} else {
ASSERT(destination.IsQuadStackSlot());
__ movups(FpuTMP, LocationToStackSlotAddress(source));
__ movups(LocationToStackSlotAddress(destination), FpuTMP);
}
} else {
ASSERT(source.IsConstant());
if (destination.IsFpuRegister() || destination.IsDoubleStackSlot()) {
Register scratch = tmp->AllocateTemporary();
source.constant_instruction()->EmitMoveToLocation(this, destination,
scratch);
tmp->ReleaseTemporary();
} else {
source.constant_instruction()->EmitMoveToLocation(this, destination);
}
}
}
#undef __
#define __ compiler_->assembler()->
void ParallelMoveResolver::EmitSwap(int index) {
MoveOperands* move = moves_[index];
const Location source = move->src();
const Location destination = move->dest();
if (source.IsRegister() && destination.IsRegister()) {
__ xchgq(destination.reg(), source.reg());
} else if (source.IsRegister() && destination.IsStackSlot()) {
Exchange(source.reg(), LocationToStackSlotAddress(destination));
} else if (source.IsStackSlot() && destination.IsRegister()) {
Exchange(destination.reg(), LocationToStackSlotAddress(source));
} else if (source.IsStackSlot() && destination.IsStackSlot()) {
Exchange(LocationToStackSlotAddress(destination),
LocationToStackSlotAddress(source));
} else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
__ movaps(FpuTMP, source.fpu_reg());
__ movaps(source.fpu_reg(), destination.fpu_reg());
__ movaps(destination.fpu_reg(), FpuTMP);
} else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
ASSERT(destination.IsDoubleStackSlot() || destination.IsQuadStackSlot() ||
source.IsDoubleStackSlot() || source.IsQuadStackSlot());
bool double_width =
destination.IsDoubleStackSlot() || source.IsDoubleStackSlot();
XmmRegister reg =
source.IsFpuRegister() ? source.fpu_reg() : destination.fpu_reg();
Address slot_address = source.IsFpuRegister()
? LocationToStackSlotAddress(destination)
: LocationToStackSlotAddress(source);
if (double_width) {
__ movsd(FpuTMP, slot_address);
__ movsd(slot_address, reg);
} else {
__ movups(FpuTMP, slot_address);
__ movups(slot_address, reg);
}
__ movaps(reg, FpuTMP);
} else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
const Address& source_slot_address = LocationToStackSlotAddress(source);
const Address& destination_slot_address =
LocationToStackSlotAddress(destination);
ScratchFpuRegisterScope ensure_scratch(this, FpuTMP);
__ movsd(FpuTMP, source_slot_address);
__ movsd(ensure_scratch.reg(), destination_slot_address);
__ movsd(destination_slot_address, FpuTMP);
__ movsd(source_slot_address, ensure_scratch.reg());
} else if (source.IsQuadStackSlot() && destination.IsQuadStackSlot()) {
const Address& source_slot_address = LocationToStackSlotAddress(source);
const Address& destination_slot_address =
LocationToStackSlotAddress(destination);
ScratchFpuRegisterScope ensure_scratch(this, FpuTMP);
__ movups(FpuTMP, source_slot_address);
__ movups(ensure_scratch.reg(), destination_slot_address);
__ movups(destination_slot_address, FpuTMP);
__ movups(source_slot_address, ensure_scratch.reg());
} else {
UNREACHABLE();
}
// The swap of source and destination has executed a move from source to
// destination.
move->Eliminate();
// Any unperformed (including pending) move with a source of either
// this move's source or destination needs to have their source
// changed to reflect the state of affairs after the swap.
for (int i = 0; i < moves_.length(); ++i) {
const MoveOperands& other_move = *moves_[i];
if (other_move.Blocks(source)) {
moves_[i]->set_src(destination);
} else if (other_move.Blocks(destination)) {
moves_[i]->set_src(source);
}
}
}
void ParallelMoveResolver::MoveMemoryToMemory(const Address& dst,
const Address& src) {
__ MoveMemoryToMemory(dst, src);
}
void ParallelMoveResolver::Exchange(Register reg, const Address& mem) {
__ Exchange(reg, mem);
}
void ParallelMoveResolver::Exchange(const Address& mem1, const Address& mem2) {
__ Exchange(mem1, mem2);
}
void ParallelMoveResolver::Exchange(Register reg,
Register base_reg,
intptr_t stack_offset) {
UNREACHABLE();
}
void ParallelMoveResolver::Exchange(Register base_reg1,
intptr_t stack_offset1,
Register base_reg2,
intptr_t stack_offset2) {
UNREACHABLE();
}
void ParallelMoveResolver::SpillScratch(Register reg) {
__ pushq(reg);
}
void ParallelMoveResolver::RestoreScratch(Register reg) {
__ popq(reg);
}
void ParallelMoveResolver::SpillFpuScratch(FpuRegister reg) {
__ AddImmediate(RSP, Immediate(-kFpuRegisterSize));
__ movups(Address(RSP, 0), reg);
}
void ParallelMoveResolver::RestoreFpuScratch(FpuRegister reg) {
__ movups(reg, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(kFpuRegisterSize));
}
#undef __
} // namespace dart
#endif // defined(TARGET_ARCH_X64) && !defined(DART_PRECOMPILED_RUNTIME)