blob: 77e894fe775136b1437fc0b8507a86b59095f6a9 [file] [log] [blame]
// Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/compiler/runtime_api.h"
#include "vm/globals.h"
// For `AllocateObjectInstr::WillAllocateNewOrRemembered`
#include "vm/compiler/backend/il.h"
#define SHOULD_NOT_INCLUDE_RUNTIME
#include "vm/compiler/backend/locations.h"
#include "vm/compiler/stub_code_compiler.h"
#if defined(TARGET_ARCH_X64) && !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/class_id.h"
#include "vm/code_entry_kind.h"
#include "vm/compiler/assembler/assembler.h"
#include "vm/constants.h"
#include "vm/instructions.h"
#include "vm/static_type_exactness_state.h"
#include "vm/tags.h"
#define __ assembler->
namespace dart {
DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects.");
DEFINE_FLAG(bool,
use_slow_path,
false,
"Set to true for debugging & verifying the slow paths.");
DECLARE_FLAG(bool, precompiled_mode);
namespace compiler {
// Ensures that [RAX] is a new object, if not it will be added to the remembered
// set via a leaf runtime call.
//
// WARNING: This might clobber all registers except for [RAX], [THR] and [FP].
// The caller should simply call LeaveStubFrame() and return.
static void EnsureIsNewOrRemembered(Assembler* assembler,
bool preserve_registers = true) {
// If the object is not remembered we call a leaf-runtime to add it to the
// remembered set.
Label done;
__ testq(RAX, Immediate(1 << target::ObjectAlignment::kNewObjectBitPosition));
__ BranchIf(NOT_ZERO, &done);
if (preserve_registers) {
__ EnterCallRuntimeFrame(0);
} else {
__ ReserveAlignedFrameSpace(0);
}
__ movq(CallingConventions::kArg1Reg, RAX);
__ movq(CallingConventions::kArg2Reg, THR);
__ CallRuntime(kAddAllocatedObjectToRememberedSetRuntimeEntry, 2);
if (preserve_registers) {
__ LeaveCallRuntimeFrame();
}
__ Bind(&done);
}
// Input parameters:
// RSP : points to return address.
// RSP + 8 : address of last argument in argument array.
// RSP + 8*R10 : address of first argument in argument array.
// RSP + 8*R10 + 8 : address of return value.
// RBX : address of the runtime function to call.
// R10 : number of arguments to the call.
// Must preserve callee saved registers R12 and R13.
void StubCodeCompiler::GenerateCallToRuntimeStub(Assembler* assembler) {
const intptr_t thread_offset = target::NativeArguments::thread_offset();
const intptr_t argc_tag_offset = target::NativeArguments::argc_tag_offset();
const intptr_t argv_offset = target::NativeArguments::argv_offset();
const intptr_t retval_offset = target::NativeArguments::retval_offset();
__ movq(CODE_REG,
Address(THR, target::Thread::call_to_runtime_stub_offset()));
__ EnterStubFrame();
// Save exit frame information to enable stack walking as we are about
// to transition to Dart VM C++ code.
__ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), RBP);
#if defined(DEBUG)
{
Label ok;
// Check that we are always entering from Dart code.
__ movq(RAX, Immediate(VMTag::kDartCompiledTagId));
__ cmpq(RAX, Assembler::VMTagAddress());
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Not coming from Dart code.");
__ Bind(&ok);
}
#endif
// Mark that the thread is executing VM code.
__ movq(Assembler::VMTagAddress(), RBX);
// Reserve space for arguments and align frame before entering C++ world.
__ subq(RSP, Immediate(target::NativeArguments::StructSize()));
if (OS::ActivationFrameAlignment() > 1) {
__ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1)));
}
// Pass target::NativeArguments structure by value and call runtime.
__ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs.
// There are no runtime calls to closures, so we do not need to set the tag
// bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_.
__ movq(Address(RSP, argc_tag_offset),
R10); // Set argc in target::NativeArguments.
// Compute argv.
__ leaq(RAX,
Address(RBP, R10, TIMES_8,
target::frame_layout.param_end_from_fp * target::kWordSize));
__ movq(Address(RSP, argv_offset),
RAX); // Set argv in target::NativeArguments.
__ addq(RAX,
Immediate(1 * target::kWordSize)); // Retval is next to 1st argument.
__ movq(Address(RSP, retval_offset),
RAX); // Set retval in target::NativeArguments.
#if defined(_WIN64)
ASSERT(target::NativeArguments::StructSize() >
CallingConventions::kRegisterTransferLimit);
__ movq(CallingConventions::kArg1Reg, RSP);
#endif
__ CallCFunction(RBX);
// Mark that the thread is executing Dart code.
__ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId));
// Reset exit frame information in Isolate structure.
__ movq(Address(THR, target::Thread::top_exit_frame_info_offset()),
Immediate(0));
// Restore the global object pool after returning from runtime (old space is
// moving, so the GOP could have been relocated).
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
__ movq(PP, Address(THR, target::Thread::global_object_pool_offset()));
}
__ LeaveStubFrame();
// The following return can jump to a lazy-deopt stub, which assumes RAX
// contains a return value and will save it in a GC-visible way. We therefore
// have to ensure RAX does not contain any garbage value left from the C
// function we called (which has return type "void").
// (See GenerateDeoptimizationSequence::saved_result_slot_from_fp.)
__ xorq(RAX, RAX);
__ ret();
}
void StubCodeCompiler::GenerateSharedStub(
Assembler* assembler,
bool save_fpu_registers,
const RuntimeEntry* target,
intptr_t self_code_stub_offset_from_thread,
bool allow_return) {
// We want the saved registers to appear like part of the caller's frame, so
// we push them before calling EnterStubFrame.
__ PushRegisters(kDartAvailableCpuRegs,
save_fpu_registers ? kAllFpuRegistersList : 0);
const intptr_t kSavedCpuRegisterSlots =
Utils::CountOneBitsWord(kDartAvailableCpuRegs);
const intptr_t kSavedFpuRegisterSlots =
save_fpu_registers
? kNumberOfFpuRegisters * kFpuRegisterSize / target::kWordSize
: 0;
const intptr_t kAllSavedRegistersSlots =
kSavedCpuRegisterSlots + kSavedFpuRegisterSlots;
// Copy down the return address so the stack layout is correct.
__ pushq(Address(RSP, kAllSavedRegistersSlots * target::kWordSize));
__ movq(CODE_REG, Address(THR, self_code_stub_offset_from_thread));
__ EnterStubFrame();
__ CallRuntime(*target, /*argument_count=*/0);
if (!allow_return) {
__ Breakpoint();
return;
}
__ LeaveStubFrame();
// Drop "official" return address -- we can just use the one stored above the
// saved registers.
__ Drop(1);
__ PopRegisters(kDartAvailableCpuRegs,
save_fpu_registers ? kAllFpuRegistersList : 0);
__ ret();
}
void StubCodeCompiler::GenerateEnterSafepointStub(Assembler* assembler) {
RegisterSet all_registers;
all_registers.AddAllGeneralRegisters();
__ PushRegisters(all_registers.cpu_registers(),
all_registers.fpu_registers());
__ EnterFrame(0);
__ ReserveAlignedFrameSpace(0);
__ movq(RAX, Address(THR, kEnterSafepointRuntimeEntry.OffsetFromThread()));
__ CallCFunction(RAX);
__ LeaveFrame();
__ PopRegisters(all_registers.cpu_registers(), all_registers.fpu_registers());
__ ret();
}
void StubCodeCompiler::GenerateExitSafepointStub(Assembler* assembler) {
RegisterSet all_registers;
all_registers.AddAllGeneralRegisters();
__ PushRegisters(all_registers.cpu_registers(),
all_registers.fpu_registers());
__ EnterFrame(0);
__ ReserveAlignedFrameSpace(0);
__ movq(RAX, Address(THR, kExitSafepointRuntimeEntry.OffsetFromThread()));
__ CallCFunction(RAX);
__ LeaveFrame();
__ PopRegisters(all_registers.cpu_registers(), all_registers.fpu_registers());
__ ret();
}
void StubCodeCompiler::GenerateVerifyCallbackStub(Assembler* assembler) {
// SP points to return address, which needs to be the second argument to
// VerifyCallbackIsolate.
__ movq(CallingConventions::kArg2Reg, Address(SPREG, 0));
__ EnterFrame(0);
__ ReserveAlignedFrameSpace(0);
__ movq(RAX,
Address(THR, kVerifyCallbackIsolateRuntimeEntry.OffsetFromThread()));
__ CallCFunction(RAX);
__ LeaveFrame();
__ ret();
}
// RBX: The extracted method.
// RDX: The type_arguments_field_offset (or 0)
void StubCodeCompiler::GenerateBuildMethodExtractorStub(
Assembler* assembler,
const Object& closure_allocation_stub,
const Object& context_allocation_stub) {
const intptr_t kReceiverOffsetInWords =
compiler::target::frame_layout.param_end_from_fp + 1;
__ EnterStubFrame();
// Push type_arguments vector (or null)
Label no_type_args;
__ movq(RCX, Address(THR, target::Thread::object_null_offset()));
__ cmpq(RDX, Immediate(0));
__ j(EQUAL, &no_type_args, Assembler::kNearJump);
__ movq(RAX,
Address(RBP, compiler::target::kWordSize * kReceiverOffsetInWords));
__ movq(RCX, Address(RAX, RDX, TIMES_1, 0));
__ Bind(&no_type_args);
__ pushq(RCX);
// Push extracted method.
__ pushq(RBX);
// Allocate context.
{
Label done, slow_path;
__ TryAllocateArray(kContextCid, target::Context::InstanceSize(1),
&slow_path, Assembler::kFarJump,
RAX, // instance
RSI, // end address
RDI);
__ movq(RSI, Address(THR, target::Thread::object_null_offset()));
__ movq(FieldAddress(RAX, target::Context::parent_offset()), RSI);
__ movq(FieldAddress(RAX, target::Context::num_variables_offset()),
Immediate(1));
__ jmp(&done);
__ Bind(&slow_path);
__ LoadImmediate(/*num_vars=*/R10, Immediate(1));
__ LoadObject(CODE_REG, context_allocation_stub);
__ call(FieldAddress(CODE_REG, target::Code::entry_point_offset()));
__ Bind(&done);
}
// Store receiver in context
__ movq(RSI,
Address(RBP, compiler::target::kWordSize * kReceiverOffsetInWords));
__ StoreIntoObject(
RAX, FieldAddress(RAX, target::Context::variable_offset(0)), RSI);
// Push context.
__ pushq(RAX);
// Allocate closure.
__ LoadObject(CODE_REG, closure_allocation_stub);
__ call(FieldAddress(
CODE_REG, target::Code::entry_point_offset(CodeEntryKind::kUnchecked)));
// Populate closure object.
__ popq(RCX); // Pop context.
__ StoreIntoObject(RAX, FieldAddress(RAX, target::Closure::context_offset()),
RCX);
__ popq(RCX); // Pop extracted method.
__ StoreIntoObjectNoBarrier(
RAX, FieldAddress(RAX, target::Closure::function_offset()), RCX);
__ popq(RCX); // Pop type argument vector.
__ StoreIntoObjectNoBarrier(
RAX,
FieldAddress(RAX, target::Closure::instantiator_type_arguments_offset()),
RCX);
__ LoadObject(RCX, EmptyTypeArguments());
__ StoreIntoObjectNoBarrier(
RAX, FieldAddress(RAX, target::Closure::delayed_type_arguments_offset()),
RCX);
__ LeaveStubFrame();
__ Ret();
}
void StubCodeCompiler::GenerateNullErrorSharedWithoutFPURegsStub(
Assembler* assembler) {
GenerateSharedStub(
assembler, /*save_fpu_registers=*/false, &kNullErrorRuntimeEntry,
target::Thread::null_error_shared_without_fpu_regs_stub_offset(),
/*allow_return=*/false);
}
void StubCodeCompiler::GenerateNullErrorSharedWithFPURegsStub(
Assembler* assembler) {
GenerateSharedStub(
assembler, /*save_fpu_registers=*/true, &kNullErrorRuntimeEntry,
target::Thread::null_error_shared_with_fpu_regs_stub_offset(),
/*allow_return=*/false);
}
void StubCodeCompiler::GenerateStackOverflowSharedWithoutFPURegsStub(
Assembler* assembler) {
GenerateSharedStub(
assembler, /*save_fpu_registers=*/false, &kStackOverflowRuntimeEntry,
target::Thread::stack_overflow_shared_without_fpu_regs_stub_offset(),
/*allow_return=*/true);
}
void StubCodeCompiler::GenerateStackOverflowSharedWithFPURegsStub(
Assembler* assembler) {
GenerateSharedStub(
assembler, /*save_fpu_registers=*/true, &kStackOverflowRuntimeEntry,
target::Thread::stack_overflow_shared_with_fpu_regs_stub_offset(),
/*allow_return=*/true);
}
// Input parameters:
// RSP : points to return address.
// RDI : stop message (const char*).
// Must preserve all registers.
void StubCodeCompiler::GeneratePrintStopMessageStub(Assembler* assembler) {
__ EnterCallRuntimeFrame(0);
// Call the runtime leaf function. RDI already contains the parameter.
#if defined(_WIN64)
__ movq(CallingConventions::kArg1Reg, RDI);
#endif
__ CallRuntime(kPrintStopMessageRuntimeEntry, 1);
__ LeaveCallRuntimeFrame();
__ ret();
}
// Input parameters:
// RSP : points to return address.
// RSP + 8 : address of return value.
// RAX : address of first argument in argument array.
// RBX : address of the native function to call.
// R10 : argc_tag including number of arguments and function kind.
static void GenerateCallNativeWithWrapperStub(Assembler* assembler,
Address wrapper_address) {
const intptr_t native_args_struct_offset = 0;
const intptr_t thread_offset =
target::NativeArguments::thread_offset() + native_args_struct_offset;
const intptr_t argc_tag_offset =
target::NativeArguments::argc_tag_offset() + native_args_struct_offset;
const intptr_t argv_offset =
target::NativeArguments::argv_offset() + native_args_struct_offset;
const intptr_t retval_offset =
target::NativeArguments::retval_offset() + native_args_struct_offset;
__ EnterStubFrame();
// Save exit frame information to enable stack walking as we are about
// to transition to native code.
__ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), RBP);
#if defined(DEBUG)
{
Label ok;
// Check that we are always entering from Dart code.
__ movq(R8, Immediate(VMTag::kDartCompiledTagId));
__ cmpq(R8, Assembler::VMTagAddress());
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Not coming from Dart code.");
__ Bind(&ok);
}
#endif
// Mark that the thread is executing native code.
__ movq(Assembler::VMTagAddress(), RBX);
// Reserve space for the native arguments structure passed on the stack (the
// outgoing pointer parameter to the native arguments structure is passed in
// RDI) and align frame before entering the C++ world.
__ subq(RSP, Immediate(target::NativeArguments::StructSize()));
if (OS::ActivationFrameAlignment() > 1) {
__ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1)));
}
// Pass target::NativeArguments structure by value and call native function.
__ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs.
__ movq(Address(RSP, argc_tag_offset),
R10); // Set argc in target::NativeArguments.
__ movq(Address(RSP, argv_offset),
RAX); // Set argv in target::NativeArguments.
__ leaq(RAX,
Address(RBP, 2 * target::kWordSize)); // Compute return value addr.
__ movq(Address(RSP, retval_offset),
RAX); // Set retval in target::NativeArguments.
// Pass the pointer to the target::NativeArguments.
__ movq(CallingConventions::kArg1Reg, RSP);
// Pass pointer to function entrypoint.
__ movq(CallingConventions::kArg2Reg, RBX);
__ movq(RAX, wrapper_address);
__ CallCFunction(RAX);
// Mark that the thread is executing Dart code.
__ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId));
// Reset exit frame information in Isolate structure.
__ movq(Address(THR, target::Thread::top_exit_frame_info_offset()),
Immediate(0));
// Restore the global object pool after returning from runtime (old space is
// moving, so the GOP could have been relocated).
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
__ movq(PP, Address(THR, target::Thread::global_object_pool_offset()));
}
__ LeaveStubFrame();
__ ret();
}
void StubCodeCompiler::GenerateCallNoScopeNativeStub(Assembler* assembler) {
GenerateCallNativeWithWrapperStub(
assembler,
Address(THR,
target::Thread::no_scope_native_wrapper_entry_point_offset()));
}
void StubCodeCompiler::GenerateCallAutoScopeNativeStub(Assembler* assembler) {
GenerateCallNativeWithWrapperStub(
assembler,
Address(THR,
target::Thread::auto_scope_native_wrapper_entry_point_offset()));
}
// Input parameters:
// RSP : points to return address.
// RSP + 8 : address of return value.
// RAX : address of first argument in argument array.
// RBX : address of the native function to call.
// R10 : argc_tag including number of arguments and function kind.
void StubCodeCompiler::GenerateCallBootstrapNativeStub(Assembler* assembler) {
const intptr_t native_args_struct_offset = 0;
const intptr_t thread_offset =
target::NativeArguments::thread_offset() + native_args_struct_offset;
const intptr_t argc_tag_offset =
target::NativeArguments::argc_tag_offset() + native_args_struct_offset;
const intptr_t argv_offset =
target::NativeArguments::argv_offset() + native_args_struct_offset;
const intptr_t retval_offset =
target::NativeArguments::retval_offset() + native_args_struct_offset;
__ EnterStubFrame();
// Save exit frame information to enable stack walking as we are about
// to transition to native code.
__ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), RBP);
#if defined(DEBUG)
{
Label ok;
// Check that we are always entering from Dart code.
__ movq(R8, Immediate(VMTag::kDartCompiledTagId));
__ cmpq(R8, Assembler::VMTagAddress());
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Not coming from Dart code.");
__ Bind(&ok);
}
#endif
// Mark that the thread is executing native code.
__ movq(Assembler::VMTagAddress(), RBX);
// Reserve space for the native arguments structure passed on the stack (the
// outgoing pointer parameter to the native arguments structure is passed in
// RDI) and align frame before entering the C++ world.
__ subq(RSP, Immediate(target::NativeArguments::StructSize()));
if (OS::ActivationFrameAlignment() > 1) {
__ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1)));
}
// Pass target::NativeArguments structure by value and call native function.
__ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs.
__ movq(Address(RSP, argc_tag_offset),
R10); // Set argc in target::NativeArguments.
__ movq(Address(RSP, argv_offset),
RAX); // Set argv in target::NativeArguments.
__ leaq(RAX,
Address(RBP, 2 * target::kWordSize)); // Compute return value addr.
__ movq(Address(RSP, retval_offset),
RAX); // Set retval in target::NativeArguments.
// Pass the pointer to the target::NativeArguments.
__ movq(CallingConventions::kArg1Reg, RSP);
__ CallCFunction(RBX);
// Mark that the thread is executing Dart code.
__ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId));
// Reset exit frame information in Isolate structure.
__ movq(Address(THR, target::Thread::top_exit_frame_info_offset()),
Immediate(0));
// Restore the global object pool after returning from runtime (old space is
// moving, so the GOP could have been relocated).
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
__ movq(PP, Address(THR, target::Thread::global_object_pool_offset()));
}
__ LeaveStubFrame();
__ ret();
}
// Input parameters:
// R10: arguments descriptor array.
void StubCodeCompiler::GenerateCallStaticFunctionStub(Assembler* assembler) {
__ EnterStubFrame();
__ pushq(R10); // Preserve arguments descriptor array.
// Setup space on stack for return value.
__ pushq(Immediate(0));
__ CallRuntime(kPatchStaticCallRuntimeEntry, 0);
__ popq(CODE_REG); // Get Code object result.
__ popq(R10); // Restore arguments descriptor array.
// Remove the stub frame as we are about to jump to the dart function.
__ LeaveStubFrame();
__ movq(RBX, FieldAddress(CODE_REG, target::Code::entry_point_offset()));
__ jmp(RBX);
}
// Called from a static call only when an invalid code has been entered
// (invalid because its function was optimized or deoptimized).
// R10: arguments descriptor array.
void StubCodeCompiler::GenerateFixCallersTargetStub(Assembler* assembler) {
// Load code pointer to this stub from the thread:
// The one that is passed in, is not correct - it points to the code object
// that needs to be replaced.
__ movq(CODE_REG,
Address(THR, target::Thread::fix_callers_target_code_offset()));
__ EnterStubFrame();
__ pushq(R10); // Preserve arguments descriptor array.
// Setup space on stack for return value.
__ pushq(Immediate(0));
__ CallRuntime(kFixCallersTargetRuntimeEntry, 0);
__ popq(CODE_REG); // Get Code object.
__ popq(R10); // Restore arguments descriptor array.
__ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset()));
__ LeaveStubFrame();
__ jmp(RAX);
__ int3();
}
// Called from object allocate instruction when the allocation stub has been
// disabled.
void StubCodeCompiler::GenerateFixAllocationStubTargetStub(
Assembler* assembler) {
// Load code pointer to this stub from the thread:
// The one that is passed in, is not correct - it points to the code object
// that needs to be replaced.
__ movq(CODE_REG,
Address(THR, target::Thread::fix_allocation_stub_code_offset()));
__ EnterStubFrame();
// Setup space on stack for return value.
__ pushq(Immediate(0));
__ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0);
__ popq(CODE_REG); // Get Code object.
__ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset()));
__ LeaveStubFrame();
__ jmp(RAX);
__ int3();
}
// Input parameters:
// R10: smi-tagged argument count, may be zero.
// RBP[target::frame_layout.param_end_from_fp + 1]: last argument.
static void PushArrayOfArguments(Assembler* assembler) {
__ LoadObject(R12, NullObject());
// Allocate array to store arguments of caller.
__ movq(RBX, R12); // Null element type for raw Array.
__ Call(StubCodeAllocateArray());
__ SmiUntag(R10);
// RAX: newly allocated array.
// R10: length of the array (was preserved by the stub).
__ pushq(RAX); // Array is in RAX and on top of stack.
__ leaq(R12,
Address(RBP, R10, TIMES_8,
target::frame_layout.param_end_from_fp * target::kWordSize));
__ leaq(RBX, FieldAddress(RAX, target::Array::data_offset()));
// R12: address of first argument on stack.
// RBX: address of first argument in array.
Label loop, loop_condition;
#if defined(DEBUG)
static const bool kJumpLength = Assembler::kFarJump;
#else
static const bool kJumpLength = Assembler::kNearJump;
#endif // DEBUG
__ jmp(&loop_condition, kJumpLength);
__ Bind(&loop);
__ movq(RDI, Address(R12, 0));
// Generational barrier is needed, array is not necessarily in new space.
__ StoreIntoObject(RAX, Address(RBX, 0), RDI);
__ addq(RBX, Immediate(target::kWordSize));
__ subq(R12, Immediate(target::kWordSize));
__ Bind(&loop_condition);
__ decq(R10);
__ j(POSITIVE, &loop, Assembler::kNearJump);
}
// Used by eager and lazy deoptimization. Preserve result in RAX if necessary.
// This stub translates optimized frame into unoptimized frame. The optimized
// frame can contain values in registers and on stack, the unoptimized
// frame contains all values on stack.
// Deoptimization occurs in following steps:
// - Push all registers that can contain values.
// - Call C routine to copy the stack and saved registers into temporary buffer.
// - Adjust caller's frame to correct unoptimized frame size.
// - Fill the unoptimized frame.
// - Materialize objects that require allocation (e.g. Double instances).
// GC can occur only after frame is fully rewritten.
// Stack after EnterDartFrame(0, PP, kNoRegister) below:
// +------------------+
// | Saved PP | <- PP
// +------------------+
// | PC marker | <- TOS
// +------------------+
// | Saved FP | <- FP of stub
// +------------------+
// | return-address | (deoptimization point)
// +------------------+
// | Saved CODE_REG |
// +------------------+
// | ... | <- SP of optimized frame
//
// Parts of the code cannot GC, part of the code can GC.
static void GenerateDeoptimizationSequence(Assembler* assembler,
DeoptStubKind kind) {
// DeoptimizeCopyFrame expects a Dart frame, i.e. EnterDartFrame(0), but there
// is no need to set the correct PC marker or load PP, since they get patched.
__ EnterStubFrame();
// The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry
// and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls.
const intptr_t saved_result_slot_from_fp =
compiler::target::frame_layout.first_local_from_fp + 1 -
(kNumberOfCpuRegisters - RAX);
const intptr_t saved_exception_slot_from_fp =
compiler::target::frame_layout.first_local_from_fp + 1 -
(kNumberOfCpuRegisters - RAX);
const intptr_t saved_stacktrace_slot_from_fp =
compiler::target::frame_layout.first_local_from_fp + 1 -
(kNumberOfCpuRegisters - RDX);
// Result in RAX is preserved as part of pushing all registers below.
// Push registers in their enumeration order: lowest register number at
// lowest address.
for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; i--) {
if (i == CODE_REG) {
// Save the original value of CODE_REG pushed before invoking this stub
// instead of the value used to call this stub.
__ pushq(Address(RBP, 2 * target::kWordSize));
} else {
__ pushq(static_cast<Register>(i));
}
}
__ subq(RSP, Immediate(kNumberOfXmmRegisters * kFpuRegisterSize));
intptr_t offset = 0;
for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) {
XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx);
__ movups(Address(RSP, offset), xmm_reg);
offset += kFpuRegisterSize;
}
// Pass address of saved registers block.
__ movq(CallingConventions::kArg1Reg, RSP);
bool is_lazy =
(kind == kLazyDeoptFromReturn) || (kind == kLazyDeoptFromThrow);
__ movq(CallingConventions::kArg2Reg, Immediate(is_lazy ? 1 : 0));
__ ReserveAlignedFrameSpace(0); // Ensure stack is aligned before the call.
__ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry, 2);
// Result (RAX) is stack-size (FP - SP) in bytes.
if (kind == kLazyDeoptFromReturn) {
// Restore result into RBX temporarily.
__ movq(RBX, Address(RBP, saved_result_slot_from_fp * target::kWordSize));
} else if (kind == kLazyDeoptFromThrow) {
// Restore result into RBX temporarily.
__ movq(RBX,
Address(RBP, saved_exception_slot_from_fp * target::kWordSize));
__ movq(RDX,
Address(RBP, saved_stacktrace_slot_from_fp * target::kWordSize));
}
// There is a Dart Frame on the stack. We must restore PP and leave frame.
__ RestoreCodePointer();
__ LeaveStubFrame();
__ popq(RCX); // Preserve return address.
__ movq(RSP, RBP); // Discard optimized frame.
__ subq(RSP, RAX); // Reserve space for deoptimized frame.
__ pushq(RCX); // Restore return address.
// DeoptimizeFillFrame expects a Dart frame, i.e. EnterDartFrame(0), but there
// is no need to set the correct PC marker or load PP, since they get patched.
__ EnterStubFrame();
if (kind == kLazyDeoptFromReturn) {
__ pushq(RBX); // Preserve result as first local.
} else if (kind == kLazyDeoptFromThrow) {
__ pushq(RBX); // Preserve exception as first local.
__ pushq(RDX); // Preserve stacktrace as second local.
}
__ ReserveAlignedFrameSpace(0);
// Pass last FP as a parameter.
__ movq(CallingConventions::kArg1Reg, RBP);
__ CallRuntime(kDeoptimizeFillFrameRuntimeEntry, 1);
if (kind == kLazyDeoptFromReturn) {
// Restore result into RBX.
__ movq(RBX,
Address(RBP, compiler::target::frame_layout.first_local_from_fp *
target::kWordSize));
} else if (kind == kLazyDeoptFromThrow) {
// Restore exception into RBX.
__ movq(RBX,
Address(RBP, compiler::target::frame_layout.first_local_from_fp *
target::kWordSize));
// Restore stacktrace into RDX.
__ movq(
RDX,
Address(RBP, (compiler::target::frame_layout.first_local_from_fp - 1) *
target::kWordSize));
}
// Code above cannot cause GC.
// There is a Dart Frame on the stack. We must restore PP and leave frame.
__ RestoreCodePointer();
__ LeaveStubFrame();
// Frame is fully rewritten at this point and it is safe to perform a GC.
// Materialize any objects that were deferred by FillFrame because they
// require allocation.
// Enter stub frame with loading PP. The caller's PP is not materialized yet.
__ EnterStubFrame();
if (kind == kLazyDeoptFromReturn) {
__ pushq(RBX); // Preserve result, it will be GC-d here.
} else if (kind == kLazyDeoptFromThrow) {
__ pushq(RBX); // Preserve exception.
__ pushq(RDX); // Preserve stacktrace.
}
__ pushq(Immediate(target::ToRawSmi(0))); // Space for the result.
__ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0);
// Result tells stub how many bytes to remove from the expression stack
// of the bottom-most frame. They were used as materialization arguments.
__ popq(RBX);
__ SmiUntag(RBX);
if (kind == kLazyDeoptFromReturn) {
__ popq(RAX); // Restore result.
} else if (kind == kLazyDeoptFromThrow) {
__ popq(RDX); // Restore stacktrace.
__ popq(RAX); // Restore exception.
}
__ LeaveStubFrame();
__ popq(RCX); // Pop return address.
__ addq(RSP, RBX); // Remove materialization arguments.
__ pushq(RCX); // Push return address.
// The caller is responsible for emitting the return instruction.
}
// RAX: result, must be preserved
void StubCodeCompiler::GenerateDeoptimizeLazyFromReturnStub(
Assembler* assembler) {
// Push zap value instead of CODE_REG for lazy deopt.
__ pushq(Immediate(kZapCodeReg));
// Return address for "call" to deopt stub.
__ pushq(Immediate(kZapReturnAddress));
__ movq(CODE_REG,
Address(THR, target::Thread::lazy_deopt_from_return_stub_offset()));
GenerateDeoptimizationSequence(assembler, kLazyDeoptFromReturn);
__ ret();
}
// RAX: exception, must be preserved
// RDX: stacktrace, must be preserved
void StubCodeCompiler::GenerateDeoptimizeLazyFromThrowStub(
Assembler* assembler) {
// Push zap value instead of CODE_REG for lazy deopt.
__ pushq(Immediate(kZapCodeReg));
// Return address for "call" to deopt stub.
__ pushq(Immediate(kZapReturnAddress));
__ movq(CODE_REG,
Address(THR, target::Thread::lazy_deopt_from_throw_stub_offset()));
GenerateDeoptimizationSequence(assembler, kLazyDeoptFromThrow);
__ ret();
}
void StubCodeCompiler::GenerateDeoptimizeStub(Assembler* assembler) {
__ popq(TMP);
__ pushq(CODE_REG);
__ pushq(TMP);
__ movq(CODE_REG, Address(THR, target::Thread::deoptimize_stub_offset()));
GenerateDeoptimizationSequence(assembler, kEagerDeopt);
__ ret();
}
static void GenerateDispatcherCode(Assembler* assembler,
Label* call_target_function) {
__ Comment("NoSuchMethodDispatch");
// When lazily generated invocation dispatchers are disabled, the
// miss-handler may return null.
__ CompareObject(RAX, NullObject());
__ j(NOT_EQUAL, call_target_function);
__ EnterStubFrame();
// Load the receiver.
__ movq(RDI, FieldAddress(R10, target::ArgumentsDescriptor::count_offset()));
__ movq(RAX,
Address(RBP, RDI, TIMES_HALF_WORD_SIZE,
target::frame_layout.param_end_from_fp * target::kWordSize));
__ pushq(Immediate(0)); // Setup space on stack for result.
__ pushq(RAX); // Receiver.
__ pushq(RBX); // ICData/MegamorphicCache.
__ pushq(R10); // Arguments descriptor array.
// Adjust arguments count.
__ cmpq(
FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()),
Immediate(0));
__ movq(R10, RDI);
Label args_count_ok;
__ j(EQUAL, &args_count_ok, Assembler::kNearJump);
__ addq(R10, Immediate(target::ToRawSmi(1))); // Include the type arguments.
__ Bind(&args_count_ok);
// R10: Smi-tagged arguments array length.
PushArrayOfArguments(assembler);
const intptr_t kNumArgs = 4;
__ CallRuntime(kNoSuchMethodFromCallStubRuntimeEntry, kNumArgs);
__ Drop(4);
__ popq(RAX); // Return value.
__ LeaveStubFrame();
__ ret();
}
void StubCodeCompiler::GenerateMegamorphicMissStub(Assembler* assembler) {
__ EnterStubFrame();
// Load the receiver into RAX. The argument count in the arguments
// descriptor in R10 is a smi.
__ movq(RAX, FieldAddress(R10, target::ArgumentsDescriptor::count_offset()));
// Three words (saved pp, saved fp, stub's pc marker)
// in the stack above the return address.
__ movq(RAX, Address(RSP, RAX, TIMES_4,
compiler::target::frame_layout.saved_below_pc() *
target::kWordSize));
// Preserve IC data and arguments descriptor.
__ pushq(RBX);
__ pushq(R10);
// Space for the result of the runtime call.
__ pushq(Immediate(0));
__ pushq(RDX); // Receiver.
__ pushq(RBX); // IC data.
__ pushq(R10); // Arguments descriptor.
__ CallRuntime(kMegamorphicCacheMissHandlerRuntimeEntry, 3);
// Discard arguments.
__ popq(RAX);
__ popq(RAX);
__ popq(RAX);
__ popq(RAX); // Return value from the runtime call (function).
__ popq(R10); // Restore arguments descriptor.
__ popq(RBX); // Restore IC data.
__ RestoreCodePointer();
__ LeaveStubFrame();
if (!FLAG_lazy_dispatchers) {
Label call_target_function;
GenerateDispatcherCode(assembler, &call_target_function);
__ Bind(&call_target_function);
}
__ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset()));
__ movq(RCX, FieldAddress(RAX, target::Function::entry_point_offset()));
__ jmp(RCX);
}
// Called for inline allocation of arrays.
// Input parameters:
// R10 : Array length as Smi.
// RBX : array element type (either NULL or an instantiated type).
// NOTE: R10 cannot be clobbered here as the caller relies on it being saved.
// The newly allocated object is returned in RAX.
void StubCodeCompiler::GenerateAllocateArrayStub(Assembler* assembler) {
Label slow_case;
// Compute the size to be allocated, it is based on the array length
// and is computed as:
// RoundedAllocationSize(
// (array_length * target::kwordSize) + target::Array::header_size()).
__ movq(RDI, R10); // Array Length.
// Check that length is a positive Smi.
__ testq(RDI, Immediate(kSmiTagMask));
if (FLAG_use_slow_path) {
__ jmp(&slow_case);
} else {
__ j(NOT_ZERO, &slow_case);
}
__ cmpq(RDI, Immediate(0));
__ j(LESS, &slow_case);
// Check for maximum allowed length.
const Immediate& max_len =
Immediate(target::ToRawSmi(target::Array::kMaxNewSpaceElements));
__ cmpq(RDI, max_len);
__ j(GREATER, &slow_case);
// Check for allocation tracing.
NOT_IN_PRODUCT(
__ MaybeTraceAllocation(kArrayCid, &slow_case, Assembler::kFarJump));
const intptr_t fixed_size_plus_alignment_padding =
target::Array::header_size() + target::ObjectAlignment::kObjectAlignment -
1;
// RDI is a Smi.
__ leaq(RDI, Address(RDI, TIMES_4, fixed_size_plus_alignment_padding));
ASSERT(kSmiTagShift == 1);
__ andq(RDI, Immediate(-target::ObjectAlignment::kObjectAlignment));
const intptr_t cid = kArrayCid;
__ movq(RAX, Address(THR, target::Thread::top_offset()));
// RDI: allocation size.
__ movq(RCX, RAX);
__ addq(RCX, RDI);
__ j(CARRY, &slow_case);
// Check if the allocation fits into the remaining space.
// RAX: potential new object start.
// RCX: potential next object start.
// RDI: allocation size.
__ cmpq(RCX, Address(THR, target::Thread::end_offset()));
__ j(ABOVE_EQUAL, &slow_case);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ movq(Address(THR, target::Thread::top_offset()), RCX);
__ addq(RAX, Immediate(kHeapObjectTag));
NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, RDI));
// Initialize the tags.
// RAX: new object start as a tagged pointer.
// RDI: allocation size.
{
Label size_tag_overflow, done;
__ cmpq(RDI, Immediate(target::RawObject::kSizeTagMaxSizeTag));
__ j(ABOVE, &size_tag_overflow, Assembler::kNearJump);
__ shlq(RDI, Immediate(target::RawObject::kTagBitsSizeTagPos -
target::ObjectAlignment::kObjectAlignmentLog2));
__ jmp(&done, Assembler::kNearJump);
__ Bind(&size_tag_overflow);
__ LoadImmediate(RDI, Immediate(0));
__ Bind(&done);
// Get the class index and insert it into the tags.
uint32_t tags = target::MakeTagWordForNewSpaceObject(cid, 0);
__ orq(RDI, Immediate(tags));
__ movq(FieldAddress(RAX, target::Array::tags_offset()), RDI); // Tags.
}
// RAX: new object start as a tagged pointer.
// Store the type argument field.
// No generational barrier needed, since we store into a new object.
__ StoreIntoObjectNoBarrier(
RAX, FieldAddress(RAX, target::Array::type_arguments_offset()), RBX);
// Set the length field.
__ StoreIntoObjectNoBarrier(
RAX, FieldAddress(RAX, target::Array::length_offset()), R10);
// Initialize all array elements to raw_null.
// RAX: new object start as a tagged pointer.
// RCX: new object end address.
// RDI: iterator which initially points to the start of the variable
// data area to be initialized.
__ LoadObject(R12, NullObject());
__ leaq(RDI, FieldAddress(RAX, target::Array::header_size()));
Label done;
Label init_loop;
__ Bind(&init_loop);
__ cmpq(RDI, RCX);
#if defined(DEBUG)
static const bool kJumpLength = Assembler::kFarJump;
#else
static const bool kJumpLength = Assembler::kNearJump;
#endif // DEBUG
__ j(ABOVE_EQUAL, &done, kJumpLength);
// No generational barrier needed, since we are storing null.
__ StoreIntoObjectNoBarrier(RAX, Address(RDI, 0), R12);
__ addq(RDI, Immediate(target::kWordSize));
__ jmp(&init_loop, kJumpLength);
__ Bind(&done);
__ ret(); // returns the newly allocated object in RAX.
// Unable to allocate the array using the fast inline code, just call
// into the runtime.
__ Bind(&slow_case);
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Setup space on stack for return value.
__ pushq(Immediate(0));
__ pushq(R10); // Array length as Smi.
__ pushq(RBX); // Element type.
__ CallRuntime(kAllocateArrayRuntimeEntry, 2);
__ popq(RAX); // Pop element type argument.
__ popq(R10); // Pop array length argument.
__ popq(RAX); // Pop return value from return slot.
// Write-barrier elimination might be enabled for this array (depending on the
// array length). To be sure we will check if the allocated object is in old
// space and if so call a leaf runtime to add it to the remembered set.
EnsureIsNewOrRemembered(assembler);
__ LeaveStubFrame();
__ ret();
}
// Called when invoking Dart code from C++ (VM code).
// Input parameters:
// RSP : points to return address.
// RDI : target code
// RSI : arguments descriptor array.
// RDX : arguments array.
// RCX : current thread.
void StubCodeCompiler::GenerateInvokeDartCodeStub(Assembler* assembler) {
__ pushq(Address(RSP, 0)); // Marker for the profiler.
__ EnterFrame(0);
const Register kTargetCodeReg = CallingConventions::kArg1Reg;
const Register kArgDescReg = CallingConventions::kArg2Reg;
const Register kArgsReg = CallingConventions::kArg3Reg;
const Register kThreadReg = CallingConventions::kArg4Reg;
// Push code object to PC marker slot.
__ pushq(Address(kThreadReg, target::Thread::invoke_dart_code_stub_offset()));
// At this point, the stack looks like:
// | stub code object
// | saved RBP | <-- RBP
// | saved PC (return to DartEntry::InvokeFunction) |
const intptr_t kInitialOffset = 2;
// Save arguments descriptor array, later replaced by Smi argument count.
const intptr_t kArgumentsDescOffset = -(kInitialOffset)*target::kWordSize;
__ pushq(kArgDescReg);
// Save C++ ABI callee-saved registers.
__ PushRegisters(CallingConventions::kCalleeSaveCpuRegisters,
CallingConventions::kCalleeSaveXmmRegisters);
// If any additional (or fewer) values are pushed, the offsets in
// target::frame_layout.exit_link_slot_from_entry_fp will need to be changed.
// Set up THR, which caches the current thread in Dart code.
if (THR != kThreadReg) {
__ movq(THR, kThreadReg);
}
// Save the current VMTag on the stack.
__ movq(RAX, Assembler::VMTagAddress());
__ pushq(RAX);
// Save top resource and top exit frame info. Use RAX as a temporary register.
// StackFrameIterator reads the top exit frame info saved in this frame.
__ movq(RAX, Address(THR, target::Thread::top_resource_offset()));
__ pushq(RAX);
__ movq(Address(THR, target::Thread::top_resource_offset()), Immediate(0));
__ movq(RAX, Address(THR, target::Thread::top_exit_frame_info_offset()));
__ pushq(RAX);
// The constant target::frame_layout.exit_link_slot_from_entry_fp must be kept
// in sync with the code above.
__ EmitEntryFrameVerification();
__ movq(Address(THR, target::Thread::top_exit_frame_info_offset()),
Immediate(0));
// Mark that the thread is executing Dart code. Do this after initializing the
// exit link for the profiler.
__ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId));
// Load arguments descriptor array into R10, which is passed to Dart code.
__ movq(R10, Address(kArgDescReg, VMHandles::kOffsetOfRawPtrInHandle));
// Push arguments. At this point we only need to preserve kTargetCodeReg.
ASSERT(kTargetCodeReg != RDX);
// Load number of arguments into RBX and adjust count for type arguments.
__ movq(RBX, FieldAddress(R10, target::ArgumentsDescriptor::count_offset()));
__ cmpq(
FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()),
Immediate(0));
Label args_count_ok;
__ j(EQUAL, &args_count_ok, Assembler::kNearJump);
__ addq(RBX, Immediate(target::ToRawSmi(1))); // Include the type arguments.
__ Bind(&args_count_ok);
// Save number of arguments as Smi on stack, replacing saved ArgumentsDesc.
__ movq(Address(RBP, kArgumentsDescOffset), RBX);
__ SmiUntag(RBX);
// Compute address of 'arguments array' data area into RDX.
__ movq(RDX, Address(kArgsReg, VMHandles::kOffsetOfRawPtrInHandle));
__ leaq(RDX, FieldAddress(RDX, target::Array::data_offset()));
// Set up arguments for the Dart call.
Label push_arguments;
Label done_push_arguments;
__ j(ZERO, &done_push_arguments, Assembler::kNearJump);
__ LoadImmediate(RAX, Immediate(0));
__ Bind(&push_arguments);
__ pushq(Address(RDX, RAX, TIMES_8, 0));
__ incq(RAX);
__ cmpq(RAX, RBX);
__ j(LESS, &push_arguments, Assembler::kNearJump);
__ Bind(&done_push_arguments);
// Call the Dart code entrypoint.
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
__ movq(PP, Address(THR, target::Thread::global_object_pool_offset()));
} else {
__ xorq(PP, PP); // GC-safe value into PP.
}
__ movq(CODE_REG,
Address(kTargetCodeReg, VMHandles::kOffsetOfRawPtrInHandle));
__ movq(kTargetCodeReg,
FieldAddress(CODE_REG, target::Code::entry_point_offset()));
__ call(kTargetCodeReg); // R10 is the arguments descriptor array.
// Read the saved number of passed arguments as Smi.
__ movq(RDX, Address(RBP, kArgumentsDescOffset));
// Get rid of arguments pushed on the stack.
__ leaq(RSP, Address(RSP, RDX, TIMES_4, 0)); // RDX is a Smi.
// Restore the saved top exit frame info and top resource back into the
// Isolate structure.
__ popq(Address(THR, target::Thread::top_exit_frame_info_offset()));
__ popq(Address(THR, target::Thread::top_resource_offset()));
// Restore the current VMTag from the stack.
__ popq(Assembler::VMTagAddress());
// Restore C++ ABI callee-saved registers.
__ PopRegisters(CallingConventions::kCalleeSaveCpuRegisters,
CallingConventions::kCalleeSaveXmmRegisters);
__ set_constant_pool_allowed(false);
// Restore the frame pointer.
__ LeaveFrame();
__ popq(RCX);
__ ret();
}
// Called when invoking compiled Dart code from interpreted Dart code.
// Input parameters:
// RSP : points to return address.
// RDI : target raw code
// RSI : arguments raw descriptor array.
// RDX : address of first argument.
// RCX : current thread.
void StubCodeCompiler::GenerateInvokeDartCodeFromBytecodeStub(
Assembler* assembler) {
#if defined(DART_PRECOMPILED_RUNTIME)
__ Stop("Not using interpreter");
#else
__ pushq(Address(RSP, 0)); // Marker for the profiler.
__ EnterFrame(0);
const Register kTargetCodeReg = CallingConventions::kArg1Reg;
const Register kArgDescReg = CallingConventions::kArg2Reg;
const Register kArg0Reg = CallingConventions::kArg3Reg;
const Register kThreadReg = CallingConventions::kArg4Reg;
// Push code object to PC marker slot.
__ pushq(
Address(kThreadReg,
target::Thread::invoke_dart_code_from_bytecode_stub_offset()));
// At this point, the stack looks like:
// | stub code object
// | saved RBP | <-- RBP
// | saved PC (return to interpreter's InvokeCompiled) |
const intptr_t kInitialOffset = 2;
// Save arguments descriptor array, later replaced by Smi argument count.
const intptr_t kArgumentsDescOffset = -(kInitialOffset)*target::kWordSize;
__ pushq(kArgDescReg);
// Save C++ ABI callee-saved registers.
__ PushRegisters(CallingConventions::kCalleeSaveCpuRegisters,
CallingConventions::kCalleeSaveXmmRegisters);
// If any additional (or fewer) values are pushed, the offsets in
// target::frame_layout.exit_link_slot_from_entry_fp will need to be changed.
// Set up THR, which caches the current thread in Dart code.
if (THR != kThreadReg) {
__ movq(THR, kThreadReg);
}
// Save the current VMTag on the stack.
__ movq(RAX, Assembler::VMTagAddress());
__ pushq(RAX);
// Save top resource and top exit frame info. Use RAX as a temporary register.
// StackFrameIterator reads the top exit frame info saved in this frame.
__ movq(RAX, Address(THR, target::Thread::top_resource_offset()));
__ pushq(RAX);
__ movq(Address(THR, target::Thread::top_resource_offset()), Immediate(0));
__ movq(RAX, Address(THR, target::Thread::top_exit_frame_info_offset()));
__ pushq(RAX);
__ movq(Address(THR, target::Thread::top_exit_frame_info_offset()),
Immediate(0));
// The constant target::frame_layout.exit_link_slot_from_entry_fp must be kept
// in sync with the code below.
#if defined(DEBUG)
{
Label ok;
__ leaq(RAX,
Address(RBP, target::frame_layout.exit_link_slot_from_entry_fp *
target::kWordSize));
__ cmpq(RAX, RSP);
__ j(EQUAL, &ok);
__ Stop("target::frame_layout.exit_link_slot_from_entry_fp mismatch");
__ Bind(&ok);
}
#endif
// Mark that the thread is executing Dart code. Do this after initializing the
// exit link for the profiler.
__ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId));
// Load arguments descriptor array into R10, which is passed to Dart code.
__ movq(R10, kArgDescReg);
// Push arguments. At this point we only need to preserve kTargetCodeReg.
ASSERT(kTargetCodeReg != RDX);
// Load number of arguments into RBX and adjust count for type arguments.
__ movq(RBX, FieldAddress(R10, target::ArgumentsDescriptor::count_offset()));
__ cmpq(
FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()),
Immediate(0));
Label args_count_ok;
__ j(EQUAL, &args_count_ok, Assembler::kNearJump);
__ addq(RBX, Immediate(target::ToRawSmi(1))); // Include the type arguments.
__ Bind(&args_count_ok);
// Save number of arguments as Smi on stack, replacing saved ArgumentsDesc.
__ movq(Address(RBP, kArgumentsDescOffset), RBX);
__ SmiUntag(RBX);
// Compute address of first argument into RDX.
if (kArg0Reg != RDX) { // Different registers on WIN64.
__ movq(RDX, kArg0Reg);
}
// Set up arguments for the Dart call.
Label push_arguments;
Label done_push_arguments;
__ j(ZERO, &done_push_arguments, Assembler::kNearJump);
__ LoadImmediate(RAX, Immediate(0));
__ Bind(&push_arguments);
__ pushq(Address(RDX, RAX, TIMES_8, 0));
__ incq(RAX);
__ cmpq(RAX, RBX);
__ j(LESS, &push_arguments, Assembler::kNearJump);
__ Bind(&done_push_arguments);
// Call the Dart code entrypoint.
__ xorq(PP, PP); // GC-safe value into PP.
__ movq(CODE_REG, kTargetCodeReg);
__ movq(kTargetCodeReg,
FieldAddress(CODE_REG, target::Code::entry_point_offset()));
__ call(kTargetCodeReg); // R10 is the arguments descriptor array.
// Read the saved number of passed arguments as Smi.
__ movq(RDX, Address(RBP, kArgumentsDescOffset));
// Get rid of arguments pushed on the stack.
__ leaq(RSP, Address(RSP, RDX, TIMES_4, 0)); // RDX is a Smi.
// Restore the saved top exit frame info and top resource back into the
// Isolate structure.
__ popq(Address(THR, target::Thread::top_exit_frame_info_offset()));
__ popq(Address(THR, target::Thread::top_resource_offset()));
// Restore the current VMTag from the stack.
__ popq(Assembler::VMTagAddress());
// Restore C++ ABI callee-saved registers.
__ PopRegisters(CallingConventions::kCalleeSaveCpuRegisters,
CallingConventions::kCalleeSaveXmmRegisters);
__ set_constant_pool_allowed(false);
// Restore the frame pointer.
__ LeaveFrame();
__ popq(RCX);
__ ret();
#endif // defined(DART_PRECOMPILED_RUNTIME)
}
// Called for inline allocation of contexts.
// Input:
// R10: number of context variables.
// Output:
// RAX: new allocated RawContext object.
void StubCodeCompiler::GenerateAllocateContextStub(Assembler* assembler) {
__ LoadObject(R9, NullObject());
if (FLAG_inline_alloc) {
Label slow_case;
// First compute the rounded instance size.
// R10: number of context variables.
intptr_t fixed_size_plus_alignment_padding =
(target::Context::header_size() +
target::ObjectAlignment::kObjectAlignment - 1);
__ leaq(R13, Address(R10, TIMES_8, fixed_size_plus_alignment_padding));
__ andq(R13, Immediate(-target::ObjectAlignment::kObjectAlignment));
// Check for allocation tracing.
NOT_IN_PRODUCT(
__ MaybeTraceAllocation(kContextCid, &slow_case, Assembler::kFarJump));
// Now allocate the object.
// R10: number of context variables.
const intptr_t cid = kContextCid;
__ movq(RAX, Address(THR, target::Thread::top_offset()));
__ addq(R13, RAX);
// Check if the allocation fits into the remaining space.
// RAX: potential new object.
// R13: potential next object start.
// R10: number of context variables.
__ cmpq(R13, Address(THR, target::Thread::end_offset()));
if (FLAG_use_slow_path) {
__ jmp(&slow_case);
} else {
__ j(ABOVE_EQUAL, &slow_case);
}
// Successfully allocated the object, now update top to point to
// next object start and initialize the object.
// RAX: new object.
// R13: next object start.
// R10: number of context variables.
__ movq(Address(THR, target::Thread::top_offset()), R13);
// R13: Size of allocation in bytes.
__ subq(R13, RAX);
__ addq(RAX, Immediate(kHeapObjectTag));
// Generate isolate-independent code to allow sharing between isolates.
NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, R13));
// Calculate the size tag.
// RAX: new object.
// R10: number of context variables.
{
Label size_tag_overflow, done;
__ leaq(R13, Address(R10, TIMES_8, fixed_size_plus_alignment_padding));
__ andq(R13, Immediate(-target::ObjectAlignment::kObjectAlignment));
__ cmpq(R13, Immediate(target::RawObject::kSizeTagMaxSizeTag));
__ j(ABOVE, &size_tag_overflow, Assembler::kNearJump);
__ shlq(R13, Immediate(target::RawObject::kTagBitsSizeTagPos -
target::ObjectAlignment::kObjectAlignmentLog2));
__ jmp(&done);
__ Bind(&size_tag_overflow);
// Set overflow size tag value.
__ LoadImmediate(R13, Immediate(0));
__ Bind(&done);
// RAX: new object.
// R10: number of context variables.
// R13: size and bit tags.
uint32_t tags = target::MakeTagWordForNewSpaceObject(cid, 0);
__ orq(R13, Immediate(tags));
__ movq(FieldAddress(RAX, target::Object::tags_offset()), R13); // Tags.
}
// Setup up number of context variables field.
// RAX: new object.
// R10: number of context variables as integer value (not object).
__ movq(FieldAddress(RAX, target::Context::num_variables_offset()), R10);
// Setup the parent field.
// RAX: new object.
// R10: number of context variables.
// No generational barrier needed, since we are storing null.
__ StoreIntoObjectNoBarrier(
RAX, FieldAddress(RAX, target::Context::parent_offset()), R9);
// Initialize the context variables.
// RAX: new object.
// R10: number of context variables.
{
Label loop, entry;
__ leaq(R13, FieldAddress(RAX, target::Context::variable_offset(0)));
#if defined(DEBUG)
static const bool kJumpLength = Assembler::kFarJump;
#else
static const bool kJumpLength = Assembler::kNearJump;
#endif // DEBUG
__ jmp(&entry, kJumpLength);
__ Bind(&loop);
__ decq(R10);
// No generational barrier needed, since we are storing null.
__ StoreIntoObjectNoBarrier(RAX, Address(R13, R10, TIMES_8, 0), R9);
__ Bind(&entry);
__ cmpq(R10, Immediate(0));
__ j(NOT_EQUAL, &loop, Assembler::kNearJump);
}
// Done allocating and initializing the context.
// RAX: new object.
__ ret();
__ Bind(&slow_case);
}
// Create a stub frame.
__ EnterStubFrame();
__ pushq(R9); // Setup space on stack for the return value.
__ SmiTag(R10);
__ pushq(R10); // Push number of context variables.
__ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context.
__ popq(RAX); // Pop number of context variables argument.
__ popq(RAX); // Pop the new context object.
// Write-barrier elimination might be enabled for this context (depending on
// the size). To be sure we will check if the allocated object is in old
// space and if so call a leaf runtime to add it to the remembered set.
EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false);
// RAX: new object
// Restore the frame pointer.
__ LeaveStubFrame();
__ ret();
}
void StubCodeCompiler::GenerateWriteBarrierWrappersStub(Assembler* assembler) {
for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) {
if ((kDartAvailableCpuRegs & (1 << i)) == 0) continue;
Register reg = static_cast<Register>(i);
intptr_t start = __ CodeSize();
__ pushq(kWriteBarrierObjectReg);
__ movq(kWriteBarrierObjectReg, reg);
__ call(Address(THR, target::Thread::write_barrier_entry_point_offset()));
__ popq(kWriteBarrierObjectReg);
__ ret();
intptr_t end = __ CodeSize();
RELEASE_ASSERT(end - start == kStoreBufferWrapperSize);
}
}
// Helper stub to implement Assembler::StoreIntoObject/Array.
// Input parameters:
// RDX: Object (old)
// RAX: Value (old or new)
// R13: Slot
// If RAX is new, add RDX to the store buffer. Otherwise RAX is old, mark RAX
// and add it to the mark list.
COMPILE_ASSERT(kWriteBarrierObjectReg == RDX);
COMPILE_ASSERT(kWriteBarrierValueReg == RAX);
COMPILE_ASSERT(kWriteBarrierSlotReg == R13);
static void GenerateWriteBarrierStubHelper(Assembler* assembler,
Address stub_code,
bool cards) {
Label add_to_mark_stack, remember_card;
__ testq(RAX, Immediate(1 << target::ObjectAlignment::kNewObjectBitPosition));
__ j(ZERO, &add_to_mark_stack);
if (cards) {
__ movl(TMP, FieldAddress(RDX, target::Object::tags_offset()));
__ testl(TMP, Immediate(1 << target::RawObject::kCardRememberedBit));
__ j(NOT_ZERO, &remember_card, Assembler::kFarJump);
} else {
#if defined(DEBUG)
Label ok;
__ movl(TMP, FieldAddress(RDX, target::Object::tags_offset()));
__ testl(TMP, Immediate(1 << target::RawObject::kCardRememberedBit));
__ j(ZERO, &ok, Assembler::kFarJump);
__ Stop("Wrong barrier");
__ Bind(&ok);
#endif
}
// Update the tags that this object has been remembered.
// Note that we use 32 bit operations here to match the size of the
// background sweeper which is also manipulating this 32 bit word.
// RDX: Address being stored
// RAX: Current tag value
// lock+andl is an atomic read-modify-write.
__ lock();
__ andl(FieldAddress(RDX, target::Object::tags_offset()),
Immediate(~(1 << target::RawObject::kOldAndNotRememberedBit)));
// Save registers being destroyed.
__ pushq(RAX);
__ pushq(RCX);
// Load the StoreBuffer block out of the thread. Then load top_ out of the
// StoreBufferBlock and add the address to the pointers_.
// RDX: Address being stored
__ movq(RAX, Address(THR, target::Thread::store_buffer_block_offset()));
__ movl(RCX, Address(RAX, target::StoreBufferBlock::top_offset()));
__ movq(
Address(RAX, RCX, TIMES_8, target::StoreBufferBlock::pointers_offset()),
RDX);
// Increment top_ and check for overflow.
// RCX: top_
// RAX: StoreBufferBlock
Label overflow;
__ incq(RCX);
__ movl(Address(RAX, target::StoreBufferBlock::top_offset()), RCX);
__ cmpl(RCX, Immediate(target::StoreBufferBlock::kSize));
// Restore values.
__ popq(RCX);
__ popq(RAX);
__ j(EQUAL, &overflow, Assembler::kNearJump);
__ ret();
// Handle overflow: Call the runtime leaf function.
__ Bind(&overflow);
// Setup frame, push callee-saved registers.
__ pushq(CODE_REG);
__ movq(CODE_REG, stub_code);
__ EnterCallRuntimeFrame(0);
__ movq(CallingConventions::kArg1Reg, THR);
__ CallRuntime(kStoreBufferBlockProcessRuntimeEntry, 1);
__ LeaveCallRuntimeFrame();
__ popq(CODE_REG);
__ ret();
__ Bind(&add_to_mark_stack);
__ pushq(RAX); // Spill.
__ pushq(RCX); // Spill.
__ movq(TMP, RAX); // RAX is fixed implicit operand of CAS.
// Atomically clear kOldAndNotMarkedBit.
// Note that we use 32 bit operations here to match the size of the
// background marker which is also manipulating this 32 bit word.
Label retry, lost_race, marking_overflow;
__ movl(RAX, FieldAddress(TMP, target::Object::tags_offset()));
__ Bind(&retry);
__ movl(RCX, RAX);
__ testl(RCX, Immediate(1 << target::RawObject::kOldAndNotMarkedBit));
__ j(ZERO, &lost_race); // Marked by another thread.
__ andl(RCX, Immediate(~(1 << target::RawObject::kOldAndNotMarkedBit)));
__ LockCmpxchgl(FieldAddress(TMP, target::Object::tags_offset()), RCX);
__ j(NOT_EQUAL, &retry, Assembler::kNearJump);
__ movq(RAX, Address(THR, target::Thread::marking_stack_block_offset()));
__ movl(RCX, Address(RAX, target::MarkingStackBlock::top_offset()));
__ movq(
Address(RAX, RCX, TIMES_8, target::MarkingStackBlock::pointers_offset()),
TMP);
__ incq(RCX);
__ movl(Address(RAX, target::MarkingStackBlock::top_offset()), RCX);
__ cmpl(RCX, Immediate(target::MarkingStackBlock::kSize));
__ popq(RCX); // Unspill.
__ popq(RAX); // Unspill.
__ j(EQUAL, &marking_overflow, Assembler::kNearJump);
__ ret();
__ Bind(&marking_overflow);
__ pushq(CODE_REG);
__ movq(CODE_REG, stub_code);
__ EnterCallRuntimeFrame(0);
__ movq(CallingConventions::kArg1Reg, THR);
__ CallRuntime(kMarkingStackBlockProcessRuntimeEntry, 1);
__ LeaveCallRuntimeFrame();
__ popq(CODE_REG);
__ ret();
__ Bind(&lost_race);
__ popq(RCX); // Unspill.
__ popq(RAX); // Unspill.
__ ret();
if (cards) {
Label remember_card_slow;
// Get card table.
__ Bind(&remember_card);
__ movq(TMP, RDX); // Object.
__ andq(TMP, Immediate(target::kPageMask)); // HeapPage.
__ cmpq(Address(TMP, target::HeapPage::card_table_offset()), Immediate(0));
__ j(EQUAL, &remember_card_slow, Assembler::kNearJump);
// Dirty the card.
__ subq(R13, TMP); // Offset in page.
__ movq(
TMP,
Address(TMP, target::HeapPage::card_table_offset())); // Card table.
__ shrq(R13,
Immediate(
target::HeapPage::kBytesPerCardLog2)); // Index in card table.
__ movb(Address(TMP, R13, TIMES_1, 0), Immediate(1));
__ ret();
// Card table not yet allocated.
__ Bind(&remember_card_slow);
__ pushq(CODE_REG);
__ movq(CODE_REG, stub_code);
__ EnterCallRuntimeFrame(0);
__ movq(CallingConventions::kArg1Reg, RDX);
__ movq(CallingConventions::kArg2Reg, R13);
__ CallRuntime(kRememberCardRuntimeEntry, 2);
__ LeaveCallRuntimeFrame();
__ popq(CODE_REG);
__ ret();
}
}
void StubCodeCompiler::GenerateWriteBarrierStub(Assembler* assembler) {
GenerateWriteBarrierStubHelper(
assembler, Address(THR, target::Thread::write_barrier_code_offset()),
false);
}
void StubCodeCompiler::GenerateArrayWriteBarrierStub(Assembler* assembler) {
GenerateWriteBarrierStubHelper(
assembler,
Address(THR, target::Thread::array_write_barrier_code_offset()), true);
}
// Called for inline allocation of objects.
// Input parameters:
// RSP + 8 : type arguments object (only if class is parameterized).
// RSP : points to return address.
void StubCodeCompiler::GenerateAllocationStubForClass(Assembler* assembler,
const Class& cls) {
const intptr_t kObjectTypeArgumentsOffset = 1 * target::kWordSize;
// The generated code is different if the class is parameterized.
const bool is_cls_parameterized = target::Class::NumTypeArguments(cls) > 0;
ASSERT(!is_cls_parameterized || target::Class::TypeArgumentsFieldOffset(
cls) != target::Class::kNoTypeArguments);
// kInlineInstanceSize is a constant used as a threshold for determining
// when the object initialization should be done as a loop or as
// straight line code.
const int kInlineInstanceSize = 12; // In words.
const intptr_t instance_size = target::Class::GetInstanceSize(cls);
ASSERT(instance_size > 0);
__ LoadObject(R9, NullObject());
if (is_cls_parameterized) {
__ movq(RDX, Address(RSP, kObjectTypeArgumentsOffset));
// RDX: instantiated type arguments.
}
if (FLAG_inline_alloc &&
target::Heap::IsAllocatableInNewSpace(instance_size) &&
!target::Class::TraceAllocation(cls)) {
Label slow_case;
// Allocate the object and update top to point to
// next object start and initialize the allocated object.
// RDX: instantiated type arguments (if is_cls_parameterized).
__ movq(RAX, Address(THR, target::Thread::top_offset()));
__ leaq(RBX, Address(RAX, instance_size));
// Check if the allocation fits into the remaining space.
// RAX: potential new object start.
// RBX: potential next object start.
__ cmpq(RBX, Address(THR, target::Thread::end_offset()));
if (FLAG_use_slow_path) {
__ jmp(&slow_case);
} else {
__ j(ABOVE_EQUAL, &slow_case);
}
__ movq(Address(THR, target::Thread::top_offset()), RBX);
NOT_IN_PRODUCT(__ UpdateAllocationStats(target::Class::GetId(cls)));
// RAX: new object start (untagged).
// RBX: next object start.
// RDX: new object type arguments (if is_cls_parameterized).
// Set the tags.
ASSERT(target::Class::GetId(cls) != kIllegalCid);
const uint32_t tags = target::MakeTagWordForNewSpaceObject(
target::Class::GetId(cls), instance_size);
// 64 bit store also zeros the identity hash field.
__ movq(Address(RAX, target::Object::tags_offset()), Immediate(tags));
__ addq(RAX, Immediate(kHeapObjectTag));
// Initialize the remaining words of the object.
// RAX: new object (tagged).
// RBX: next object start.
// RDX: new object type arguments (if is_cls_parameterized).
// R9: raw null.
// First try inlining the initialization without a loop.
if (instance_size < (kInlineInstanceSize * target::kWordSize)) {
// Check if the object contains any non-header fields.
// Small objects are initialized using a consecutive set of writes.
for (intptr_t current_offset = target::Instance::first_field_offset();
current_offset < instance_size;
current_offset += target::kWordSize) {
__ StoreIntoObjectNoBarrier(RAX, FieldAddress(RAX, current_offset), R9);
}
} else {
__ leaq(RCX, FieldAddress(RAX, target::Instance::first_field_offset()));
// Loop until the whole object is initialized.
// RAX: new object (tagged).
// RBX: next object start.
// RCX: next word to be initialized.
// RDX: new object type arguments (if is_cls_parameterized).
Label init_loop;
Label done;
__ Bind(&init_loop);
__ cmpq(RCX, RBX);
#if defined(DEBUG)
static const bool kJumpLength = Assembler::kFarJump;
#else
static const bool kJumpLength = Assembler::kNearJump;
#endif // DEBUG
__ j(ABOVE_EQUAL, &done, kJumpLength);
__ StoreIntoObjectNoBarrier(RAX, Address(RCX, 0), R9);
__ addq(RCX, Immediate(target::kWordSize));
__ jmp(&init_loop, Assembler::kNearJump);
__ Bind(&done);
}
if (is_cls_parameterized) {
// RAX: new object (tagged).
// RDX: new object type arguments.
// Set the type arguments in the new object.
const intptr_t offset = target::Class::TypeArgumentsFieldOffset(cls);
__ StoreIntoObjectNoBarrier(RAX, FieldAddress(RAX, offset), RDX);
}
// Done allocating and initializing the instance.
// RAX: new object (tagged).
__ ret();
__ Bind(&slow_case);
}
// If is_cls_parameterized:
// RDX: new object type arguments.
// Create a stub frame.
__ EnterStubFrame(); // Uses PP to access class object.
__ pushq(R9); // Setup space on stack for return value.
__ PushObject(
CastHandle<Object>(cls)); // Push class of object to be allocated.
if (is_cls_parameterized) {
__ pushq(RDX); // Push type arguments of object to be allocated.
} else {
__ pushq(R9); // Push null type arguments.
}
__ CallRuntime(kAllocateObjectRuntimeEntry, 2); // Allocate object.
__ popq(RAX); // Pop argument (type arguments of object).
__ popq(RAX); // Pop argument (class of object).
__ popq(RAX); // Pop result (newly allocated object).
if (AllocateObjectInstr::WillAllocateNewOrRemembered(cls)) {
// Write-barrier elimination is enabled for [cls] and we therefore need to
// ensure that the object is in new-space or has remembered bit set.
EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false);
}
// RAX: new object
// Restore the frame pointer.
__ LeaveStubFrame();
__ ret();
}
// Called for invoking "dynamic noSuchMethod(Invocation invocation)" function
// from the entry code of a dart function after an error in passed argument
// name or number is detected.
// Input parameters:
// RSP : points to return address.
// RSP + 8 : address of last argument.
// R10 : arguments descriptor array.
void StubCodeCompiler::GenerateCallClosureNoSuchMethodStub(
Assembler* assembler) {
__ EnterStubFrame();
// Load the receiver.
__ movq(R13, FieldAddress(R10, target::ArgumentsDescriptor::count_offset()));
__ movq(RAX,
Address(RBP, R13, TIMES_4,
target::frame_layout.param_end_from_fp * target::kWordSize));
// Load the function.
__ movq(RBX, FieldAddress(RAX, target::Closure::function_offset()));
__ pushq(Immediate(0)); // Result slot.
__ pushq(RAX); // Receiver.
__ pushq(RBX); // Function.
__ pushq(R10); // Arguments descriptor array.
// Adjust arguments count.
__ cmpq(
FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()),
Immediate(0));
__ movq(R10, R13);
Label args_count_ok;
__ j(EQUAL, &args_count_ok, Assembler::kNearJump);
__ addq(R10, Immediate(target::ToRawSmi(1))); // Include the type arguments.
__ Bind(&args_count_ok);
// R10: Smi-tagged arguments array length.
PushArrayOfArguments(assembler);
const intptr_t kNumArgs = 4;
__ CallRuntime(kNoSuchMethodFromPrologueRuntimeEntry, kNumArgs);
// noSuchMethod on closures always throws an error, so it will never return.
__ int3();
}
// Cannot use function object from ICData as it may be the inlined
// function and not the top-scope function.
void StubCodeCompiler::GenerateOptimizedUsageCounterIncrement(
Assembler* assembler) {
Register ic_reg = RBX;
Register func_reg = RDI;
if (FLAG_trace_optimized_ic_calls) {
__ EnterStubFrame();
__ pushq(func_reg); // Preserve
__ pushq(ic_reg); // Preserve.
__ pushq(ic_reg); // Argument.
__ pushq(func_reg); // Argument.
__ CallRuntime(kTraceICCallRuntimeEntry, 2);
__ popq(RAX); // Discard argument;
__ popq(RAX); // Discard argument;
__ popq(ic_reg); // Restore.
__ popq(func_reg); // Restore.
__ LeaveStubFrame();
}
__ incl(FieldAddress(func_reg, target::Function::usage_counter_offset()));
}
// Loads function into 'temp_reg', preserves 'ic_reg'.
void StubCodeCompiler::GenerateUsageCounterIncrement(Assembler* assembler,
Register temp_reg) {
if (FLAG_optimization_counter_threshold >= 0) {
Register ic_reg = RBX;
Register func_reg = temp_reg;
ASSERT(ic_reg != func_reg);
__ Comment("Increment function counter");
__ movq(func_reg, FieldAddress(ic_reg, target::ICData::owner_offset()));
__ incl(FieldAddress(func_reg, target::Function::usage_counter_offset()));
}
}
// Note: RBX must be preserved.
// Attempt a quick Smi operation for known operations ('kind'). The ICData
// must have been primed with a Smi/Smi check that will be used for counting
// the invocations.
static void EmitFastSmiOp(Assembler* assembler,
Token::Kind kind,
intptr_t num_args,
Label* not_smi_or_overflow) {
__ Comment("Fast Smi op");
ASSERT(num_args == 2);
__ movq(RAX, Address(RSP, +2 * target::kWordSize)); // Left.
__ movq(RCX, Address(RSP, +1 * target::kWordSize)); // Right
__ movq(R13, RCX);
__ orq(R13, RAX);
__ testq(R13, Immediate(kSmiTagMask));
__ j(NOT_ZERO, not_smi_or_overflow);
switch (kind) {
case Token::kADD: {
__ addq(RAX, RCX);
__ j(OVERFLOW, not_smi_or_overflow);
break;
}
case Token::kLT: {
__ cmpq(RAX, RCX);
__ setcc(GREATER_EQUAL, ByteRegisterOf(RAX));
__ movzxb(RAX, RAX); // RAX := RAX < RCX ? 0 : 1
__ movq(RAX,
Address(THR, RAX, TIMES_8, target::Thread::bool_true_offset()));
ASSERT(target::Thread::bool_true_offset() + 8 ==
target::Thread::bool_false_offset());
break;
}
case Token::kEQ: {
__ cmpq(RAX, RCX);
__ setcc(NOT_EQUAL, ByteRegisterOf(RAX));
__ movzxb(RAX, RAX); // RAX := RAX == RCX ? 0 : 1
__ movq(RAX,
Address(THR, RAX, TIMES_8, target::Thread::bool_true_offset()));
ASSERT(target::Thread::bool_true_offset() + 8 ==
target::Thread::bool_false_offset());
break;
}
default:
UNIMPLEMENTED();
}
// RBX: IC data object (preserved).
__ movq(R13, FieldAddress(RBX, target::ICData::entries_offset()));
// R13: ic_data_array with check entries: classes and target functions.
__ leaq(R13, FieldAddress(R13, target::Array::data_offset()));
// R13: points directly to the first ic data array element.
#if defined(DEBUG)
// Check that first entry is for Smi/Smi.
Label error, ok;
const Immediate& imm_smi_cid = Immediate(target::ToRawSmi(kSmiCid));
__ cmpq(Address(R13, 0 * target::kWordSize), imm_smi_cid);
__ j(NOT_EQUAL, &error, Assembler::kNearJump);
__ cmpq(Address(R13, 1 * target::kWordSize), imm_smi_cid);
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Bind(&error);
__ Stop("Incorrect IC data");
__ Bind(&ok);
#endif
if (FLAG_optimization_counter_threshold >= 0) {
const intptr_t count_offset =
target::ICData::CountIndexFor(num_args) * target::kWordSize;
// Update counter, ignore overflow.
__ addq(Address(R13, count_offset), Immediate(target::ToRawSmi(1)));
}
__ ret();
}
// Generate inline cache check for 'num_args'.
// RDX: receiver (if instance call)
// RBX: ICData
// RSP[0]: return address
// Control flow:
// - If receiver is null -> jump to IC miss.
// - If receiver is Smi -> load Smi class.
// - If receiver is not-Smi -> load receiver's class.
// - Check if 'num_args' (including receiver) match any IC data group.
// - Match found -> jump to target.
// - Match not found -> jump to IC miss.
void StubCodeCompiler::GenerateNArgsCheckInlineCacheStub(
Assembler* assembler,
intptr_t num_args,
const RuntimeEntry& handle_ic_miss,
Token::Kind kind,
Optimized optimized,
CallType type,
Exactness exactness) {
ASSERT(num_args == 1 || num_args == 2);
#if defined(DEBUG)
{
Label ok;
// Check that the IC data array has NumArgsTested() == num_args.
// 'NumArgsTested' is stored in the least significant bits of 'state_bits'.
__ movl(RCX, FieldAddress(RBX, target::ICData::state_bits_offset()));
ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed.
__ andq(RCX, Immediate(target::ICData::NumArgsTestedMask()));
__ cmpq(RCX, Immediate(num_args));
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Incorrect stub for IC data");
__ Bind(&ok);
}
#endif // DEBUG
#if !defined(PRODUCT)
Label stepping, done_stepping;
if (optimized == kUnoptimized) {
__ Comment("Check single stepping");
__ LoadIsolate(RAX);
__ cmpb(Address(RAX, target::Isolate::single_step_offset()), Immediate(0));
__ j(NOT_EQUAL, &stepping);
__ Bind(&done_stepping);
}
#endif
Label not_smi_or_overflow;
if (kind != Token::kILLEGAL) {
EmitFastSmiOp(assembler, kind, num_args, &not_smi_or_overflow);
}
__ Bind(&not_smi_or_overflow);
__ Comment("Extract ICData initial values and receiver cid");
// RBX: IC data object (preserved).
__ movq(R13, FieldAddress(RBX, target::ICData::entries_offset()));
// R13: ic_data_array with check entries: classes and target functions.
__ leaq(R13, FieldAddress(R13, target::Array::data_offset()));
// R13: points directly to the first ic data array element.
if (type == kInstanceCall) {
__ LoadTaggedClassIdMayBeSmi(RAX, RDX);
__ movq(R10,
FieldAddress(RBX, target::ICData::arguments_descriptor_offset()));
if (num_args == 2) {
__ movq(RCX,
FieldAddress(R10, target::ArgumentsDescriptor::count_offset()));
__ movq(R9, Address(RSP, RCX, TIMES_4, -target::kWordSize));
__ LoadTaggedClassIdMayBeSmi(RCX, R9);
}
} else {
__ movq(R10,
FieldAddress(RBX, target::ICData::arguments_descriptor_offset()));
__ movq(RCX,
FieldAddress(R10, target::ArgumentsDescriptor::count_offset()));
__ movq(RDX, Address(RSP, RCX, TIMES_4, 0));
__ LoadTaggedClassIdMayBeSmi(RAX, RDX);
if (num_args == 2) {
__ movq(R9, Address(RSP, RCX, TIMES_4, -target::kWordSize));
__ LoadTaggedClassIdMayBeSmi(RCX, R9);
}
}
// RAX: first argument class ID as Smi.
// RCX: second argument class ID as Smi.
// R10: args descriptor
// Loop that checks if there is an IC data match.
Label loop, found, miss;
__ Comment("ICData loop");
// We unroll the generic one that is generated once more than the others.
const bool optimize = kind == Token::kILLEGAL;
const intptr_t target_offset =
target::ICData::TargetIndexFor(num_args) * target::kWordSize;
const intptr_t count_offset =
target::ICData::CountIndexFor(num_args) * target::kWordSize;
const intptr_t exactness_offset =
target::ICData::ExactnessIndexFor(num_args) * target::kWordSize;
__ Bind(&loop);
for (int unroll = optimize ? 4 : 2; unroll >= 0; unroll--) {
Label update;
__ movq(R9, Address(R13, 0));
__ cmpq(RAX, R9); // Class id match?
if (num_args == 2) {
__ j(NOT_EQUAL, &update); // Continue.
__ movq(R9, Address(R13, target::kWordSize));
// R9: next class ID to check (smi).
__ cmpq(RCX, R9); // Class id match?
}
__ j(EQUAL, &found); // Break.
__ Bind(&update);
const intptr_t entry_size = target::ICData::TestEntryLengthFor(
num_args, exactness == kCheckExactness) *
target::kWordSize;
__ addq(R13, Immediate(entry_size)); // Next entry.
__ cmpq(R9, Immediate(target::ToRawSmi(kIllegalCid))); // Done?
if (unroll == 0) {
__ j(NOT_EQUAL, &loop);
} else {
__ j(EQUAL, &miss);
}
}
__ Bind(&miss);
__ Comment("IC miss");
// Compute address of arguments (first read number of arguments from
// arguments descriptor array and then compute address on the stack).
__ movq(RAX, FieldAddress(R10, target::ArgumentsDescriptor::count_offset()));
__ leaq(RAX, Address(RSP, RAX, TIMES_4, 0)); // RAX is Smi.
__ EnterStubFrame();
__ pushq(R10); // Preserve arguments descriptor array.
__ pushq(RBX); // Preserve IC data object.
__ pushq(Immediate(0)); // Result slot.
// Push call arguments.
for (intptr_t i = 0; i < num_args; i++) {
__ movq(RCX, Address(RAX, -target::kWordSize * i));
__ pushq(RCX);
}
__ pushq(RBX); // Pass IC data object.
__ CallRuntime(handle_ic_miss, num_args + 1);
// Remove the call arguments pushed earlier, including the IC data object.
for (intptr_t i = 0; i < num_args + 1; i++) {
__ popq(RAX);
}
__ popq(RAX); // Pop returned function object into RAX.
__ popq(RBX); // Restore IC data array.
__ popq(R10); // Restore arguments descriptor array.
__ RestoreCodePointer();
__ LeaveStubFrame();
Label call_target_function;
if (!FLAG_lazy_dispatchers) {
GenerateDispatcherCode(assembler, &call_target_function);
} else {
__ jmp(&call_target_function);
}
__ Bind(&found);
// R13: Pointer to an IC data check group.
Label call_target_function_through_unchecked_entry;
if (exactness == kCheckExactness) {
Label exactness_ok;
ASSERT(num_args == 1);
__ movq(RAX, Address(R13, exactness_offset));
__ cmpq(RAX, Immediate(target::ToRawSmi(
StaticTypeExactnessState::HasExactSuperType().Encode())));
__ j(LESS, &exactness_ok);
__ j(EQUAL, &call_target_function_through_unchecked_entry);
// Check trivial exactness.
// Note: RawICData::receivers_static_type_ is guaranteed to be not null
// because we only emit calls to this stub when it is not null.
__ movq(RCX,
FieldAddress(RBX, target::ICData::receivers_static_type_offset()));
__ movq(RCX, FieldAddress(RCX, target::Type::arguments_offset()));
// RAX contains an offset to type arguments in words as a smi,
// hence TIMES_4. RDX is guaranteed to be non-smi because it is expected to
// have type arguments.
__ cmpq(RCX, FieldAddress(RDX, RAX, TIMES_4, 0));
__ j(EQUAL, &call_target_function_through_unchecked_entry);
// Update exactness state (not-exact anymore).
__ movq(Address(R13, exactness_offset),
Immediate(target::ToRawSmi(
StaticTypeExactnessState::NotExact().Encode())));
__ Bind(&exactness_ok);
}
__ movq(RAX, Address(R13, target_offset));
if (FLAG_optimization_counter_threshold >= 0) {
__ Comment("Update ICData counter");
// Ignore overflow.
__ addq(Address(R13, count_offset), Immediate(target::ToRawSmi(1)));
}
__ Comment("Call target (via checked entry point)");
__ Bind(&call_target_function);
// RAX: Target function.
__ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset()));
__ jmp(FieldAddress(RAX, target::Function::entry_point_offset()));
if (exactness == kCheckExactness) {
__ Bind(&call_target_function_through_unchecked_entry);
if (FLAG_optimization_counter_threshold >= 0) {
__ Comment("Update ICData counter");
// Ignore overflow.
__ addq(Address(R13, count_offset), Immediate(target::ToRawSmi(1)));
}
__ Comment("Call target (via unchecked entry point)");
__ movq(RAX, Address(R13, target_offset));
__ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset()));
__ jmp(FieldAddress(RAX, target::Function::unchecked_entry_point_offset()));
}
#if !defined(PRODUCT)
if (optimized == kUnoptimized) {
__ Bind(&stepping);
__ EnterStubFrame();
if (type == kInstanceCall) {
__ pushq(RDX); // Preserve receiver.
}
__ pushq(RBX); // Preserve ICData.
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ popq(RBX); // Restore ICData.
if (type == kInstanceCall) {
__ popq(RDX); // Restore receiver.
}
__ RestoreCodePointer();
__ LeaveStubFrame();
__ jmp(&done_stepping);
}
#endif
}
// RDX: receiver
// RBX: ICData
// RSP[0]: return address
void StubCodeCompiler::GenerateOneArgCheckInlineCacheStub(
Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, /* scratch */ RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL,
kUnoptimized, kInstanceCall, kIgnoreExactness);
}
// RDX: receiver
// RBX: ICData
// RSP[0]: return address
void StubCodeCompiler::GenerateOneArgCheckInlineCacheWithExactnessCheckStub(
Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, /* scratch */ RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL,
kUnoptimized, kInstanceCall, kCheckExactness);
}
// RDX: receiver
// RBX: ICData
// RSP[0]: return address
void StubCodeCompiler::GenerateTwoArgsCheckInlineCacheStub(
Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, /* scratch */ RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL,
kUnoptimized, kInstanceCall, kIgnoreExactness);
}
// RDX: receiver
// RBX: ICData
// RSP[0]: return address
void StubCodeCompiler::GenerateSmiAddInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, /* scratch */ RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kADD,
kUnoptimized, kInstanceCall, kIgnoreExactness);
}
// RDX: receiver
// RBX: ICData
// RSP[0]: return address
void StubCodeCompiler::GenerateSmiLessInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, /* scratch */ RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kLT,
kUnoptimized, kInstanceCall, kIgnoreExactness);
}
// RDX: receiver
// RBX: ICData
// RSP[0]: return address
void StubCodeCompiler::GenerateSmiEqualInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, /* scratch */ RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kEQ,
kUnoptimized, kInstanceCall, kIgnoreExactness);
}
// RDX: receiver
// RBX: ICData
// RDI: Function
// RSP[0]: return address
void StubCodeCompiler::GenerateOneArgOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL,
kOptimized, kInstanceCall, kIgnoreExactness);
}
// RDX: receiver
// RBX: ICData
// RDI: Function
// RSP[0]: return address
void StubCodeCompiler::
GenerateOneArgOptimizedCheckInlineCacheWithExactnessCheckStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL,
kOptimized, kInstanceCall, kCheckExactness);
}
// RDX: receiver
// RBX: ICData
// RDI: Function
// RSP[0]: return address
void StubCodeCompiler::GenerateTwoArgsOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL,
kOptimized, kInstanceCall, kIgnoreExactness);
}
// RBX: ICData
// RSP[0]: return address
void StubCodeCompiler::GenerateZeroArgsUnoptimizedStaticCallStub(
Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, /* scratch */ RCX);
#if defined(DEBUG)
{
Label ok;
// Check that the IC data array has NumArgsTested() == 0.
// 'NumArgsTested' is stored in the least significant bits of 'state_bits'.
__ movl(RCX, FieldAddress(RBX, target::ICData::state_bits_offset()));
ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed.
__ andq(RCX, Immediate(target::ICData::NumArgsTestedMask()));
__ cmpq(RCX, Immediate(0));
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Incorrect IC data for unoptimized static call");
__ Bind(&ok);
}
#endif // DEBUG
#if !defined(PRODUCT)
// Check single stepping.
Label stepping, done_stepping;
__ LoadIsolate(RAX);
__ movzxb(RAX, Address(RAX, target::Isolate::single_step_offset()));
__ cmpq(RAX, Immediate(0));
#if defined(DEBUG)
static const bool kJumpLength = Assembler::kFarJump;
#else
static const bool kJumpLength = Assembler::kNearJump;
#endif // DEBUG
__ j(NOT_EQUAL, &stepping, kJumpLength);
__ Bind(&done_stepping);
#endif
// RBX: IC data object (preserved).
__ movq(R12, FieldAddress(RBX, target::ICData::entries_offset()));
// R12: ic_data_array with entries: target functions and count.
__ leaq(R12, FieldAddress(R12, target::Array::data_offset()));
// R12: points directly to the first ic data array element.
const intptr_t target_offset =
target::ICData::TargetIndexFor(0) * target::kWordSize;
const intptr_t count_offset =
target::ICData::CountIndexFor(0) * target::kWordSize;
if (FLAG_optimization_counter_threshold >= 0) {
// Increment count for this call, ignore overflow.
__ addq(Address(R12, count_offset), Immediate(target::ToRawSmi(1)));
}
// Load arguments descriptor into R10.
__ movq(R10,
FieldAddress(RBX, target::ICData::arguments_descriptor_offset()));
// Get function and call it, if possible.
__ movq(RAX, Address(R12, target_offset));
__ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset()));
__ movq(RCX, FieldAddress(RAX, target::Function::entry_point_offset()));
__ jmp(RCX);
#if !defined(PRODUCT)
__ Bind(&stepping);
__ EnterStubFrame();
__ pushq(RBX); // Preserve IC data object.
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ popq(RBX);
__ RestoreCodePointer();
__ LeaveStubFrame();
__ jmp(&done_stepping, Assembler::kNearJump);
#endif
}
// RBX: ICData
// RSP[0]: return address
void StubCodeCompiler::GenerateOneArgUnoptimizedStaticCallStub(
Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, /* scratch */ RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kStaticCallMissHandlerOneArgRuntimeEntry, Token::kILLEGAL,
kUnoptimized, kStaticCall, kIgnoreExactness);
}
// RBX: ICData
// RSP[0]: return address
void StubCodeCompiler::GenerateTwoArgsUnoptimizedStaticCallStub(
Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, /* scratch */ RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL,
kUnoptimized, kStaticCall, kIgnoreExactness);
}
// Stub for compiling a function and jumping to the compiled code.
// R10: Arguments descriptor.
// RAX: Function.
void StubCodeCompiler::GenerateLazyCompileStub(Assembler* assembler) {
__ EnterStubFrame();
__ pushq(R10); // Preserve arguments descriptor array.
__ pushq(RAX); // Pass function.
__ CallRuntime(kCompileFunctionRuntimeEntry, 1);
__ popq(RAX); // Restore function.
__ popq(R10); // Restore arguments descriptor array.
__ LeaveStubFrame();
// When using the interpreter, the function's code may now point to the
// InterpretCall stub. Make sure RAX, R10, and RBX are preserved.
__ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset()));
__ movq(RCX, FieldAddress(RAX, target::Function::entry_point_offset()));
__ jmp(RCX);
}
// Stub for interpreting a function call.
// R10: Arguments descriptor.
// RAX: Function.
void StubCodeCompiler::GenerateInterpretCallStub(Assembler* assembler) {
#if defined(DART_PRECOMPILED_RUNTIME)
__ Stop("Not using interpreter");
#else
__ EnterStubFrame();
#if defined(DEBUG)
{
Label ok;
// Check that we are always entering from Dart code.
__ movq(R8, Immediate(VMTag::kDartCompiledTagId));
__ cmpq(R8, Assembler::VMTagAddress());
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Not coming from Dart code.");
__ Bind(&ok);
}
#endif
// Adjust arguments count for type arguments vector.
__ movq(R11, FieldAddress(R10, target::ArgumentsDescriptor::count_offset()));
__ SmiUntag(R11);
__ cmpq(
FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()),
Immediate(0));
Label args_count_ok;
__ j(EQUAL, &args_count_ok, Assembler::kNearJump);
__ incq(R11);
__ Bind(&args_count_ok);
// Compute argv.
__ leaq(R12,
Address(RBP, R11, TIMES_8,
target::frame_layout.param_end_from_fp * target::kWordSize));
// Indicate decreasing memory addresses of arguments with negative argc.
__ negq(R11);
// Reserve shadow space for args and align frame before entering C++ world.
__ subq(RSP, Immediate(5 * target::kWordSize));
if (OS::ActivationFrameAlignment() > 1) {
__ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1)));
}
__ movq(CallingConventions::kArg1Reg, RAX); // Function.
__ movq(CallingConventions::kArg2Reg, R10); // Arguments descriptor.
__ movq(CallingConventions::kArg3Reg, R11); // Negative argc.
__ movq(CallingConventions::kArg4Reg, R12); // Argv.
#if defined(_WIN64)
__ movq(Address(RSP, 0 * target::kWordSize), THR); // Thread.
#else
__ movq(CallingConventions::kArg5Reg, THR); // Thread.
#endif
// Save exit frame information to enable stack walking as we are about
// to transition to Dart VM C++ code.
__ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), RBP);
// Mark that the thread is executing VM code.
__ movq(RAX,
Address(THR, target::Thread::interpret_call_entry_point_offset()));
__ movq(Assembler::VMTagAddress(), RAX);
__ call(RAX);
// Mark that the thread is executing Dart code.
__ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId));
// Reset exit frame information in Isolate structure.
__ movq(Address(THR, target::Thread::top_exit_frame_info_offset()),
Immediate(0));
__ LeaveStubFrame();
__ ret();
#endif // defined(DART_PRECOMPILED_RUNTIME)
}
// RBX: Contains an ICData.
// TOS(0): return address (Dart code).
void StubCodeCompiler::GenerateICCallBreakpointStub(Assembler* assembler) {
#if defined(PRODUCT)
__ Stop("No debugging in PRODUCT mode");
#else
__ EnterStubFrame();
__ pushq(RDX); // Preserve receiver.
__ pushq(RBX); // Preserve IC data.
__ pushq(Immediate(0)); // Result slot.
__ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0);
__ popq(CODE_REG); // Original stub.
__ popq(RBX); // Restore IC data.
__ popq(RDX); // Restore receiver.
__ LeaveStubFrame();
__ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset()));
__ jmp(RAX); // Jump to original stub.
#endif // defined(PRODUCT)
}
// TOS(0): return address (Dart code).
void StubCodeCompiler::GenerateRuntimeCallBreakpointStub(Assembler* assembler) {
#if defined(PRODUCT)
__ Stop("No debugging in PRODUCT mode");
#else
__ EnterStubFrame();
__ pushq(Immediate(0)); // Result slot.
__ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0);
__ popq(CODE_REG); // Original stub.
__ LeaveStubFrame();
__ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset()));
__ jmp(RAX); // Jump to original stub.
#endif // defined(PRODUCT)
}
// Called only from unoptimized code.
void StubCodeCompiler::GenerateDebugStepCheckStub(Assembler* assembler) {
#if defined(PRODUCT)
__ Stop("No debugging in PRODUCT mode");
#else
// Check single stepping.
Label stepping, done_stepping;
__ LoadIsolate(RAX);
__ movzxb(RAX, Address(RAX, target::Isolate::single_step_offset()));
__ cmpq(RAX, Immediate(0));
__ j(NOT_EQUAL, &stepping, Assembler::kNearJump);
__ Bind(&done_stepping);
__ ret();
__ Bind(&stepping);
__ EnterStubFrame();
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ LeaveStubFrame();
__ jmp(&done_stepping, Assembler::kNearJump);
#endif // defined(PRODUCT)
}
// Used to check class and type arguments. Arguments passed in registers:
//
// Inputs:
// - R9 : RawSubtypeTestCache
// - RAX : instance to test against.
// - RDX : instantiator type arguments (for n=4).
// - RCX : function type arguments (for n=4).
//
// - TOS + 0: return address.
//
// Preserves R9/RAX/RCX/RDX, RBX.
//
// Result in R8: null -> not found, otherwise result (true or false).
static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) {
ASSERT(n == 1 || n == 2 || n == 4 || n == 6);
const Register kCacheReg = R9;
const Register kInstanceReg = RAX;
const Register kInstantiatorTypeArgumentsReg = RDX;
const Register kFunctionTypeArgumentsReg = RCX;
const Register kInstanceCidOrFunction = R10;
const Register kInstanceInstantiatorTypeArgumentsReg = R13;
const Register kInstanceParentFunctionTypeArgumentsReg = PP;
const Register kInstanceDelayedFunctionTypeArgumentsReg = CODE_REG;
const Register kNullReg = R8;
__ LoadObject(kNullReg, NullObject());
// Free up these 2 registers to be used for 6-value test.
if (n >= 6) {
__ pushq(kInstanceParentFunctionTypeArgumentsReg);
__ pushq(kInstanceDelayedFunctionTypeArgumentsReg);
}
// Loop initialization (moved up here to avoid having all dependent loads
// after each other).
__ movq(RSI,
FieldAddress(kCacheReg, target::SubtypeTestCache::cache_offset()));
__ addq(RSI, Immediate(target::Array::data_offset() - kHeapObjectTag));
Label loop, not_closure;
if (n >= 4) {
__ LoadClassIdMayBeSmi(kInstanceCidOrFunction, kInstanceReg);
} else {
__ LoadClassId(kInstanceCidOrFunction, kInstanceReg);
}
__ cmpq(kInstanceCidOrFunction, Immediate(kClosureCid));
__ j(NOT_EQUAL, &not_closure, Assembler::kNearJump);
// Closure handling.
{
__ movq(kInstanceCidOrFunction,
FieldAddress(kInstanceReg, target::Closure::function_offset()));
if (n >= 2) {
__ movq(
kInstanceInstantiatorTypeArgumentsReg,
FieldAddress(kInstanceReg,
target::Closure::instantiator_type_arguments_offset()));
if (n >= 6) {
ASSERT(n == 6);
__ movq(
kInstanceParentFunctionTypeArgumentsReg,
FieldAddress(kInstanceReg,
target::Closure::function_type_arguments_offset()));
__ movq(kInstanceDelayedFunctionTypeArgumentsReg,
FieldAddress(kInstanceReg,
target::Closure::delayed_type_arguments_offset()));
}
}
__ jmp(&loop, Assembler::kNearJump);
}
// Non-Closure handling.
{
__ Bind(&not_closure);
if (n == 1) {
__ SmiTag(kInstanceCidOrFunction);
} else {
ASSERT(n >= 2);
Label has_no_type_arguments;
// [LoadClassById] also tags [kInstanceCidOrFunction] as a side-effect.
__ LoadClassById(RDI, kInstanceCidOrFunction);
__ movq(kInstanceInstantiatorTypeArgumentsReg, kNullReg);
__ movl(
RDI,
FieldAddress(
RDI,
target::Class::type_arguments_field_offset_in_words_offset()));
__ cmpl(RDI, Immediate(target::Class::kNoTypeArguments));
__ j(EQUAL, &has_no_type_arguments, Assembler::kNearJump);
__ movq(kInstanceInstantiatorTypeArgumentsReg,
FieldAddress(kInstanceReg, RDI, TIMES_8, 0));
__ Bind(&has_no_type_arguments);
if (n >= 6) {
__ movq(kInstanceParentFunctionTypeArgumentsReg, kNullReg);
__ movq(kInstanceDelayedFunctionTypeArgumentsReg, kNullReg);
}
}
}
Label found, not_found, next_iteration;
// Loop header.
__ Bind(&loop);
__ movq(
RDI,
Address(RSI, target::kWordSize *
target::SubtypeTestCache::kInstanceClassIdOrFunction));
__ cmpq(RDI, kNullReg);
__ j(EQUAL, &not_found, Assembler::kNearJump);
__ cmpq(RDI, kInstanceCidOrFunction);
if (n == 1) {
__ j(EQUAL, &found, Assembler::kNearJump);
} else {
__ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump);
__ cmpq(kInstanceInstantiatorTypeArgumentsReg,
Address(RSI, target::kWordSize *
target::SubtypeTestCache::kInstanceTypeArguments));
if (n == 2) {
__ j(EQUAL, &found, Assembler::kNearJump);
} else {
__ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump);
__ cmpq(
kInstantiatorTypeArgumentsReg,
Address(RSI,
target::kWordSize *
target::SubtypeTestCache::kInstantiatorTypeArguments));
__ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump);
__ cmpq(
kFunctionTypeArgumentsReg,
Address(RSI, target::kWordSize *
target::SubtypeTestCache::kFunctionTypeArguments));