| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "platform/globals.h" |
| #include "vm/globals.h" // Needed here to get TARGET_ARCH_IA32. |
| #if defined(TARGET_ARCH_IA32) && !defined(DART_PRECOMPILED_RUNTIME) |
| |
| #include "vm/compiler/backend/il.h" |
| |
| #include "vm/compiler/backend/flow_graph.h" |
| #include "vm/compiler/backend/flow_graph_compiler.h" |
| #include "vm/compiler/backend/locations.h" |
| #include "vm/compiler/backend/locations_helpers.h" |
| #include "vm/compiler/backend/range_analysis.h" |
| #include "vm/compiler/ffi.h" |
| #include "vm/compiler/frontend/flow_graph_builder.h" |
| #include "vm/compiler/jit/compiler.h" |
| #include "vm/dart_entry.h" |
| #include "vm/instructions.h" |
| #include "vm/object_store.h" |
| #include "vm/parser.h" |
| #include "vm/stack_frame.h" |
| #include "vm/stub_code.h" |
| #include "vm/symbols.h" |
| |
| #define __ compiler->assembler()-> |
| #define Z (compiler->zone()) |
| |
| namespace dart { |
| |
| // Generic summary for call instructions that have all arguments pushed |
| // on the stack and return the result in a fixed register EAX. |
| LocationSummary* Instruction::MakeCallSummary(Zone* zone) { |
| const intptr_t kNumInputs = 0; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* result = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| result->set_out(0, Location::RegisterLocation(EAX)); |
| return result; |
| } |
| |
| DEFINE_BACKEND(LoadIndexedUnsafe, (Register out, Register index)) { |
| ASSERT(instr->RequiredInputRepresentation(0) == kTagged); // It is a Smi. |
| __ movl(out, Address(instr->base_reg(), index, TIMES_2, instr->offset())); |
| |
| ASSERT(kSmiTag == 0); |
| ASSERT(kSmiTagSize == 1); |
| } |
| |
| DEFINE_BACKEND(StoreIndexedUnsafe, |
| (NoLocation, Register index, Register value)) { |
| ASSERT(instr->RequiredInputRepresentation( |
| StoreIndexedUnsafeInstr::kIndexPos) == kTagged); // It is a Smi. |
| __ movl(Address(instr->base_reg(), index, TIMES_2, instr->offset()), value); |
| |
| ASSERT(kSmiTag == 0); |
| ASSERT(kSmiTagSize == 1); |
| } |
| |
| DEFINE_BACKEND(TailCall, |
| (NoLocation, |
| Fixed<Register, ARGS_DESC_REG>, |
| Temp<Register> temp)) { |
| __ LoadObject(CODE_REG, instr->code()); |
| __ LeaveFrame(); // The arguments are still on the stack. |
| __ movl(temp, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| __ jmp(temp); |
| } |
| |
| LocationSummary* PushArgumentInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, LocationAnyOrConstant(value())); |
| return locs; |
| } |
| |
| void PushArgumentInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // In SSA mode, we need an explicit push. Nothing to do in non-SSA mode |
| // where PushArgument is handled by BindInstr::EmitNativeCode. |
| if (compiler->is_optimizing()) { |
| Location value = locs()->in(0); |
| if (value.IsRegister()) { |
| __ pushl(value.reg()); |
| } else if (value.IsConstant()) { |
| __ PushObject(value.constant()); |
| } else { |
| ASSERT(value.IsStackSlot()); |
| __ pushl(LocationToStackSlotAddress(value)); |
| } |
| } |
| } |
| |
| LocationSummary* ReturnInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RegisterLocation(EAX)); |
| return locs; |
| } |
| |
| // Attempt optimized compilation at return instruction instead of at the entry. |
| // The entry needs to be patchable, no inlined objects are allowed in the area |
| // that will be overwritten by the patch instruction: a jump). |
| void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register result = locs()->in(0).reg(); |
| ASSERT(result == EAX); |
| |
| if (compiler->intrinsic_mode()) { |
| // Intrinsics don't have a frame. |
| __ ret(); |
| return; |
| } |
| |
| #if defined(DEBUG) |
| __ Comment("Stack Check"); |
| Label done; |
| const intptr_t fp_sp_dist = |
| (compiler::target::frame_layout.first_local_from_fp + 1 - |
| compiler->StackSize()) * |
| kWordSize; |
| ASSERT(fp_sp_dist <= 0); |
| __ movl(EDI, ESP); |
| __ subl(EDI, EBP); |
| __ cmpl(EDI, Immediate(fp_sp_dist)); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| __ int3(); |
| __ Bind(&done); |
| #endif |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| void NativeReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| bool return_in_st0 = false; |
| if (result_representation_ == kUnboxedFloat || |
| result_representation_ == kUnboxedDouble) { |
| ASSERT(locs()->in(0).IsFpuRegister() && locs()->in(0).fpu_reg() == XMM0); |
| return_in_st0 = true; |
| } |
| |
| // Leave Dart frame. |
| __ LeaveFrame(); |
| |
| // EDI is the only sane choice for a temporary register here because: |
| // |
| // EDX is used for large return values. |
| // ESI == THR. |
| // Could be EBX or ECX, but that would make code below confusing. |
| const Register tmp = EDI; |
| |
| // Pop dummy return address. |
| __ popl(tmp); |
| |
| // Anything besides the return register(s!). Callee-saved registers will be |
| // restored later. |
| const Register vm_tag_reg = EBX, old_exit_frame_reg = ECX; |
| |
| __ popl(old_exit_frame_reg); |
| |
| // Restore top_resource. |
| __ popl(tmp); |
| __ movl(Address(THR, compiler::target::Thread::top_resource_offset()), tmp); |
| |
| __ popl(vm_tag_reg); |
| |
| // This will reset the exit frame info to old_exit_frame_reg *before* entering |
| // the safepoint. |
| __ TransitionGeneratedToNative(vm_tag_reg, old_exit_frame_reg, tmp); |
| |
| // Move XMM0 into ST0 if needed. |
| if (return_in_st0) { |
| if (result_representation_ == kUnboxedDouble) { |
| __ movsd(Address(SPREG, -8), XMM0); |
| __ fldl(Address(SPREG, -8)); |
| } else { |
| __ movss(Address(SPREG, -4), XMM0); |
| __ flds(Address(SPREG, -4)); |
| } |
| } |
| |
| // Restore C++ ABI callee-saved registers. |
| __ popl(EDI); |
| __ popl(ESI); |
| __ popl(EBX); |
| |
| // Leave the entry frame. |
| __ LeaveFrame(); |
| |
| __ ret(); |
| } |
| |
| LocationSummary* LoadLocalInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 0; |
| const intptr_t stack_index = |
| compiler::target::frame_layout.FrameSlotForVariable(&local()); |
| return LocationSummary::Make(zone, kNumInputs, |
| Location::StackSlot(stack_index, FPREG), |
| LocationSummary::kNoCall); |
| } |
| |
| void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(!compiler->is_optimizing()); |
| // Nothing to do. |
| } |
| |
| LocationSummary* StoreLocalInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| return LocationSummary::Make(zone, kNumInputs, Location::SameAsFirstInput(), |
| LocationSummary::kNoCall); |
| } |
| |
| void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register value = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| ASSERT(result == value); // Assert that register assignment is correct. |
| __ movl( |
| Address(EBP, compiler::target::FrameOffsetInBytesForVariable(&local())), |
| value); |
| } |
| |
| LocationSummary* ConstantInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 0; |
| return LocationSummary::Make(zone, kNumInputs, |
| Assembler::IsSafe(value()) |
| ? Location::Constant(this) |
| : Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The register allocator drops constant definitions that have no uses. |
| Location out = locs()->out(0); |
| ASSERT(out.IsRegister() || out.IsConstant() || out.IsInvalid()); |
| if (out.IsRegister()) { |
| Register result = out.reg(); |
| __ LoadObjectSafely(result, value()); |
| } |
| } |
| |
| void ConstantInstr::EmitMoveToLocation(FlowGraphCompiler* compiler, |
| const Location& destination, |
| Register tmp) { |
| if (destination.IsRegister()) { |
| if (value_.IsSmi() && Smi::Cast(value_).Value() == 0) { |
| __ xorl(destination.reg(), destination.reg()); |
| } else if (value_.IsSmi() && (representation() == kUnboxedInt32)) { |
| __ movl(destination.reg(), Immediate(Smi::Cast(value_).Value())); |
| } else { |
| ASSERT(representation() == kTagged); |
| __ LoadObjectSafely(destination.reg(), value_); |
| } |
| } else if (destination.IsFpuRegister()) { |
| const double value_as_double = Double::Cast(value_).value(); |
| uword addr = FindDoubleConstant(value_as_double); |
| if (addr == 0) { |
| __ pushl(EAX); |
| __ LoadObject(EAX, value_); |
| __ movsd(destination.fpu_reg(), |
| FieldAddress(EAX, Double::value_offset())); |
| __ popl(EAX); |
| } else if (Utils::DoublesBitEqual(value_as_double, 0.0)) { |
| __ xorps(destination.fpu_reg(), destination.fpu_reg()); |
| } else { |
| __ movsd(destination.fpu_reg(), Address::Absolute(addr)); |
| } |
| } else if (destination.IsDoubleStackSlot()) { |
| const double value_as_double = Double::Cast(value_).value(); |
| uword addr = FindDoubleConstant(value_as_double); |
| if (addr == 0) { |
| __ pushl(EAX); |
| __ LoadObject(EAX, value_); |
| __ movsd(FpuTMP, FieldAddress(EAX, Double::value_offset())); |
| __ popl(EAX); |
| } else if (Utils::DoublesBitEqual(value_as_double, 0.0)) { |
| __ xorps(FpuTMP, FpuTMP); |
| } else { |
| __ movsd(FpuTMP, Address::Absolute(addr)); |
| } |
| __ movsd(LocationToStackSlotAddress(destination), FpuTMP); |
| } else { |
| ASSERT(destination.IsStackSlot()); |
| if (value_.IsSmi() && representation() == kUnboxedInt32) { |
| __ movl(LocationToStackSlotAddress(destination), |
| Immediate(Smi::Cast(value_).Value())); |
| } else { |
| if (Assembler::IsSafeSmi(value_) || value_.IsNull()) { |
| __ movl(LocationToStackSlotAddress(destination), |
| Immediate(reinterpret_cast<int32_t>(value_.raw()))); |
| } else { |
| __ pushl(EAX); |
| __ LoadObjectSafely(EAX, value_); |
| __ movl(LocationToStackSlotAddress(destination), EAX); |
| __ popl(EAX); |
| } |
| } |
| } |
| } |
| |
| LocationSummary* UnboxedConstantInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 0; |
| const intptr_t kNumTemps = |
| (constant_address() == 0) && (representation() != kUnboxedInt32) ? 1 : 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| if (representation() == kUnboxedDouble) { |
| locs->set_out(0, Location::RequiresFpuRegister()); |
| } else { |
| ASSERT(representation() == kUnboxedInt32); |
| locs->set_out(0, Location::RequiresRegister()); |
| } |
| if (kNumTemps == 1) { |
| locs->set_temp(0, Location::RequiresRegister()); |
| } |
| return locs; |
| } |
| |
| void UnboxedConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The register allocator drops constant definitions that have no uses. |
| if (!locs()->out(0).IsInvalid()) { |
| EmitMoveToLocation(compiler, locs()->out(0)); |
| } |
| } |
| |
| LocationSummary* AssertAssignableInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 3; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| summary->set_in(0, Location::RegisterLocation(EAX)); // Value. |
| summary->set_in(1, Location::RegisterLocation(EDX)); // Instant. type args. |
| summary->set_in(2, Location::RegisterLocation(ECX)); // Function type args. |
| summary->set_out(0, Location::RegisterLocation(EAX)); |
| return summary; |
| } |
| |
| LocationSummary* AssertSubtypeInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| summary->set_in(0, Location::RegisterLocation(EDX)); // Instant. type args. |
| summary->set_in(1, Location::RegisterLocation(ECX)); // Function type args. |
| return summary; |
| } |
| |
| LocationSummary* AssertBooleanInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(EAX)); |
| locs->set_out(0, Location::RegisterLocation(EAX)); |
| return locs; |
| } |
| |
| static void EmitAssertBoolean(Register reg, |
| TokenPosition token_pos, |
| intptr_t deopt_id, |
| LocationSummary* locs, |
| FlowGraphCompiler* compiler) { |
| // Check that the type of the value is allowed in conditional context. |
| // Call the runtime if the object is not bool::true or bool::false. |
| ASSERT(locs->always_calls()); |
| Label done; |
| |
| __ CompareObject(reg, Object::null_instance()); |
| __ j(NOT_EQUAL, &done, Assembler::kNearJump); |
| |
| __ pushl(reg); // Push the source object. |
| compiler->GenerateRuntimeCall(token_pos, deopt_id, |
| kNonBoolTypeErrorRuntimeEntry, 1, locs); |
| // We should never return here. |
| __ int3(); |
| __ Bind(&done); |
| } |
| |
| void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register obj = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| |
| EmitAssertBoolean(obj, token_pos(), deopt_id(), locs(), compiler); |
| ASSERT(obj == result); |
| } |
| |
| static Condition TokenKindToSmiCondition(Token::Kind kind) { |
| switch (kind) { |
| case Token::kEQ: |
| return EQUAL; |
| case Token::kNE: |
| return NOT_EQUAL; |
| case Token::kLT: |
| return LESS; |
| case Token::kGT: |
| return GREATER; |
| case Token::kLTE: |
| return LESS_EQUAL; |
| case Token::kGTE: |
| return GREATER_EQUAL; |
| default: |
| UNREACHABLE(); |
| return OVERFLOW; |
| } |
| } |
| |
| LocationSummary* EqualityCompareInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| if (operation_cid() == kMintCid) { |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::Pair(Location::RequiresRegister(), |
| Location::RequiresRegister())); |
| locs->set_in(1, Location::Pair(Location::RequiresRegister(), |
| Location::RequiresRegister())); |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| if (operation_cid() == kDoubleCid) { |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresFpuRegister()); |
| locs->set_in(1, Location::RequiresFpuRegister()); |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| if (operation_cid() == kSmiCid) { |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, LocationRegisterOrConstant(left())); |
| // Only one input can be a constant operand. The case of two constant |
| // operands should be handled by constant propagation. |
| // Only right can be a stack slot. |
| locs->set_in(1, locs->in(0).IsConstant() |
| ? Location::RequiresRegister() |
| : LocationRegisterOrConstant(right())); |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| static void LoadValueCid(FlowGraphCompiler* compiler, |
| Register value_cid_reg, |
| Register value_reg, |
| Label* value_is_smi = NULL) { |
| Label done; |
| if (value_is_smi == NULL) { |
| __ movl(value_cid_reg, Immediate(kSmiCid)); |
| } |
| __ testl(value_reg, Immediate(kSmiTagMask)); |
| if (value_is_smi == NULL) { |
| __ j(ZERO, &done, Assembler::kNearJump); |
| } else { |
| __ j(ZERO, value_is_smi); |
| } |
| __ LoadClassId(value_cid_reg, value_reg); |
| __ Bind(&done); |
| } |
| |
| static Condition FlipCondition(Condition condition) { |
| switch (condition) { |
| case EQUAL: |
| return EQUAL; |
| case NOT_EQUAL: |
| return NOT_EQUAL; |
| case LESS: |
| return GREATER; |
| case LESS_EQUAL: |
| return GREATER_EQUAL; |
| case GREATER: |
| return LESS; |
| case GREATER_EQUAL: |
| return LESS_EQUAL; |
| case BELOW: |
| return ABOVE; |
| case BELOW_EQUAL: |
| return ABOVE_EQUAL; |
| case ABOVE: |
| return BELOW; |
| case ABOVE_EQUAL: |
| return BELOW_EQUAL; |
| default: |
| UNIMPLEMENTED(); |
| return EQUAL; |
| } |
| } |
| |
| static Condition NegateCondition(Condition condition) { |
| switch (condition) { |
| case EQUAL: |
| return NOT_EQUAL; |
| case NOT_EQUAL: |
| return EQUAL; |
| case LESS: |
| return GREATER_EQUAL; |
| case LESS_EQUAL: |
| return GREATER; |
| case GREATER: |
| return LESS_EQUAL; |
| case GREATER_EQUAL: |
| return LESS; |
| case BELOW: |
| return ABOVE_EQUAL; |
| case BELOW_EQUAL: |
| return ABOVE; |
| case ABOVE: |
| return BELOW_EQUAL; |
| case ABOVE_EQUAL: |
| return BELOW; |
| case PARITY_ODD: |
| return PARITY_EVEN; |
| case PARITY_EVEN: |
| return PARITY_ODD; |
| default: |
| UNIMPLEMENTED(); |
| return EQUAL; |
| } |
| } |
| |
| static void EmitBranchOnCondition(FlowGraphCompiler* compiler, |
| Condition true_condition, |
| BranchLabels labels) { |
| if (labels.fall_through == labels.false_label) { |
| // If the next block is the false successor, fall through to it. |
| __ j(true_condition, labels.true_label); |
| } else { |
| // If the next block is not the false successor, branch to it. |
| Condition false_condition = NegateCondition(true_condition); |
| __ j(false_condition, labels.false_label); |
| |
| // Fall through or jump to the true successor. |
| if (labels.fall_through != labels.true_label) { |
| __ jmp(labels.true_label); |
| } |
| } |
| } |
| |
| static Condition EmitSmiComparisonOp(FlowGraphCompiler* compiler, |
| const LocationSummary& locs, |
| Token::Kind kind, |
| BranchLabels labels) { |
| Location left = locs.in(0); |
| Location right = locs.in(1); |
| ASSERT(!left.IsConstant() || !right.IsConstant()); |
| |
| Condition true_condition = TokenKindToSmiCondition(kind); |
| |
| if (left.IsConstant()) { |
| __ CompareObject(right.reg(), left.constant()); |
| true_condition = FlipCondition(true_condition); |
| } else if (right.IsConstant()) { |
| __ CompareObject(left.reg(), right.constant()); |
| } else if (right.IsStackSlot()) { |
| __ cmpl(left.reg(), LocationToStackSlotAddress(right)); |
| } else { |
| __ cmpl(left.reg(), right.reg()); |
| } |
| return true_condition; |
| } |
| |
| static Condition TokenKindToMintCondition(Token::Kind kind) { |
| switch (kind) { |
| case Token::kEQ: |
| return EQUAL; |
| case Token::kNE: |
| return NOT_EQUAL; |
| case Token::kLT: |
| return LESS; |
| case Token::kGT: |
| return GREATER; |
| case Token::kLTE: |
| return LESS_EQUAL; |
| case Token::kGTE: |
| return GREATER_EQUAL; |
| default: |
| UNREACHABLE(); |
| return OVERFLOW; |
| } |
| } |
| |
| static Condition EmitUnboxedMintEqualityOp(FlowGraphCompiler* compiler, |
| const LocationSummary& locs, |
| Token::Kind kind, |
| BranchLabels labels) { |
| ASSERT(Token::IsEqualityOperator(kind)); |
| PairLocation* left_pair = locs.in(0).AsPairLocation(); |
| Register left1 = left_pair->At(0).reg(); |
| Register left2 = left_pair->At(1).reg(); |
| PairLocation* right_pair = locs.in(1).AsPairLocation(); |
| Register right1 = right_pair->At(0).reg(); |
| Register right2 = right_pair->At(1).reg(); |
| Label done; |
| // Compare lower. |
| __ cmpl(left1, right1); |
| __ j(NOT_EQUAL, &done); |
| // Lower is equal, compare upper. |
| __ cmpl(left2, right2); |
| __ Bind(&done); |
| Condition true_condition = TokenKindToMintCondition(kind); |
| return true_condition; |
| } |
| |
| static Condition EmitUnboxedMintComparisonOp(FlowGraphCompiler* compiler, |
| const LocationSummary& locs, |
| Token::Kind kind, |
| BranchLabels labels) { |
| PairLocation* left_pair = locs.in(0).AsPairLocation(); |
| Register left1 = left_pair->At(0).reg(); |
| Register left2 = left_pair->At(1).reg(); |
| PairLocation* right_pair = locs.in(1).AsPairLocation(); |
| Register right1 = right_pair->At(0).reg(); |
| Register right2 = right_pair->At(1).reg(); |
| |
| Condition hi_cond = OVERFLOW, lo_cond = OVERFLOW; |
| switch (kind) { |
| case Token::kLT: |
| hi_cond = LESS; |
| lo_cond = BELOW; |
| break; |
| case Token::kGT: |
| hi_cond = GREATER; |
| lo_cond = ABOVE; |
| break; |
| case Token::kLTE: |
| hi_cond = LESS; |
| lo_cond = BELOW_EQUAL; |
| break; |
| case Token::kGTE: |
| hi_cond = GREATER; |
| lo_cond = ABOVE_EQUAL; |
| break; |
| default: |
| break; |
| } |
| ASSERT(hi_cond != OVERFLOW && lo_cond != OVERFLOW); |
| // Compare upper halves first. |
| __ cmpl(left2, right2); |
| __ j(hi_cond, labels.true_label); |
| __ j(FlipCondition(hi_cond), labels.false_label); |
| |
| // If upper is equal, compare lower half. |
| __ cmpl(left1, right1); |
| return lo_cond; |
| } |
| |
| static Condition TokenKindToDoubleCondition(Token::Kind kind) { |
| switch (kind) { |
| case Token::kEQ: |
| return EQUAL; |
| case Token::kNE: |
| return NOT_EQUAL; |
| case Token::kLT: |
| return BELOW; |
| case Token::kGT: |
| return ABOVE; |
| case Token::kLTE: |
| return BELOW_EQUAL; |
| case Token::kGTE: |
| return ABOVE_EQUAL; |
| default: |
| UNREACHABLE(); |
| return OVERFLOW; |
| } |
| } |
| |
| static Condition EmitDoubleComparisonOp(FlowGraphCompiler* compiler, |
| const LocationSummary& locs, |
| Token::Kind kind, |
| BranchLabels labels) { |
| XmmRegister left = locs.in(0).fpu_reg(); |
| XmmRegister right = locs.in(1).fpu_reg(); |
| |
| __ comisd(left, right); |
| |
| Condition true_condition = TokenKindToDoubleCondition(kind); |
| Label* nan_result = |
| (true_condition == NOT_EQUAL) ? labels.true_label : labels.false_label; |
| __ j(PARITY_EVEN, nan_result); |
| return true_condition; |
| } |
| |
| Condition EqualityCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| BranchLabels labels) { |
| if (operation_cid() == kSmiCid) { |
| return EmitSmiComparisonOp(compiler, *locs(), kind(), labels); |
| } else if (operation_cid() == kMintCid) { |
| return EmitUnboxedMintEqualityOp(compiler, *locs(), kind(), labels); |
| } else { |
| ASSERT(operation_cid() == kDoubleCid); |
| return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels); |
| } |
| } |
| |
| void ComparisonInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Label is_true, is_false; |
| BranchLabels labels = {&is_true, &is_false, &is_false}; |
| Condition true_condition = EmitComparisonCode(compiler, labels); |
| if (true_condition != INVALID_CONDITION) { |
| EmitBranchOnCondition(compiler, true_condition, labels); |
| } |
| |
| Register result = locs()->out(0).reg(); |
| Label done; |
| __ Bind(&is_false); |
| __ LoadObject(result, Bool::False()); |
| __ jmp(&done, Assembler::kNearJump); |
| __ Bind(&is_true); |
| __ LoadObject(result, Bool::True()); |
| __ Bind(&done); |
| } |
| |
| void ComparisonInstr::EmitBranchCode(FlowGraphCompiler* compiler, |
| BranchInstr* branch) { |
| BranchLabels labels = compiler->CreateBranchLabels(branch); |
| Condition true_condition = EmitComparisonCode(compiler, labels); |
| if (true_condition != INVALID_CONDITION) { |
| EmitBranchOnCondition(compiler, true_condition, labels); |
| } |
| } |
| |
| LocationSummary* TestSmiInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresRegister()); |
| // Only one input can be a constant operand. The case of two constant |
| // operands should be handled by constant propagation. |
| locs->set_in(1, LocationRegisterOrConstant(right())); |
| return locs; |
| } |
| |
| Condition TestSmiInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| BranchLabels labels) { |
| Register left = locs()->in(0).reg(); |
| Location right = locs()->in(1); |
| if (right.IsConstant()) { |
| ASSERT(right.constant().IsSmi()); |
| const int32_t imm = reinterpret_cast<int32_t>(right.constant().raw()); |
| __ testl(left, Immediate(imm)); |
| } else { |
| __ testl(left, right.reg()); |
| } |
| Condition true_condition = (kind() == Token::kNE) ? NOT_ZERO : ZERO; |
| return true_condition; |
| } |
| |
| LocationSummary* TestCidsInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 1; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresRegister()); |
| locs->set_temp(0, Location::RequiresRegister()); |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| |
| Condition TestCidsInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| BranchLabels labels) { |
| ASSERT((kind() == Token::kIS) || (kind() == Token::kISNOT)); |
| Register val_reg = locs()->in(0).reg(); |
| Register cid_reg = locs()->temp(0).reg(); |
| |
| Label* deopt = CanDeoptimize() ? compiler->AddDeoptStub( |
| deopt_id(), ICData::kDeoptTestCids, |
| licm_hoisted_ ? ICData::kHoisted : 0) |
| : NULL; |
| |
| const intptr_t true_result = (kind() == Token::kIS) ? 1 : 0; |
| const ZoneGrowableArray<intptr_t>& data = cid_results(); |
| ASSERT(data[0] == kSmiCid); |
| bool result = data[1] == true_result; |
| __ testl(val_reg, Immediate(kSmiTagMask)); |
| __ j(ZERO, result ? labels.true_label : labels.false_label); |
| __ LoadClassId(cid_reg, val_reg); |
| for (intptr_t i = 2; i < data.length(); i += 2) { |
| const intptr_t test_cid = data[i]; |
| ASSERT(test_cid != kSmiCid); |
| result = data[i + 1] == true_result; |
| __ cmpl(cid_reg, Immediate(test_cid)); |
| __ j(EQUAL, result ? labels.true_label : labels.false_label); |
| } |
| // No match found, deoptimize or default action. |
| if (deopt == NULL) { |
| // If the cid is not in the list, jump to the opposite label from the cids |
| // that are in the list. These must be all the same (see asserts in the |
| // constructor). |
| Label* target = result ? labels.false_label : labels.true_label; |
| if (target != labels.fall_through) { |
| __ jmp(target); |
| } |
| } else { |
| __ jmp(deopt); |
| } |
| // Dummy result as this method already did the jump, there's no need |
| // for the caller to branch on a condition. |
| return INVALID_CONDITION; |
| } |
| |
| LocationSummary* RelationalOpInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| if (operation_cid() == kMintCid) { |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::Pair(Location::RequiresRegister(), |
| Location::RequiresRegister())); |
| locs->set_in(1, Location::Pair(Location::RequiresRegister(), |
| Location::RequiresRegister())); |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| if (operation_cid() == kDoubleCid) { |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresFpuRegister()); |
| summary->set_in(1, Location::RequiresFpuRegister()); |
| summary->set_out(0, Location::RequiresRegister()); |
| return summary; |
| } |
| ASSERT(operation_cid() == kSmiCid); |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, LocationRegisterOrConstant(left())); |
| // Only one input can be a constant operand. The case of two constant |
| // operands should be handled by constant propagation. |
| summary->set_in(1, summary->in(0).IsConstant() |
| ? Location::RequiresRegister() |
| : LocationRegisterOrConstant(right())); |
| summary->set_out(0, Location::RequiresRegister()); |
| return summary; |
| } |
| |
| Condition RelationalOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| BranchLabels labels) { |
| if (operation_cid() == kSmiCid) { |
| return EmitSmiComparisonOp(compiler, *locs(), kind(), labels); |
| } else if (operation_cid() == kMintCid) { |
| return EmitUnboxedMintComparisonOp(compiler, *locs(), kind(), labels); |
| } else { |
| ASSERT(operation_cid() == kDoubleCid); |
| return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels); |
| } |
| } |
| |
| LocationSummary* NativeCallInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| return MakeCallSummary(zone); |
| } |
| |
| void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| SetupNative(); |
| Register result = locs()->out(0).reg(); |
| const intptr_t argc_tag = NativeArguments::ComputeArgcTag(function()); |
| |
| // All arguments are already @ESP due to preceding PushArgument()s. |
| ASSERT(ArgumentCount() == |
| function().NumParameters() + (function().IsGeneric() ? 1 : 0)); |
| |
| // Push the result place holder initialized to NULL. |
| __ PushObject(Object::null_object()); |
| |
| // Pass a pointer to the first argument in EAX. |
| __ leal(EAX, Address(ESP, ArgumentCount() * kWordSize)); |
| |
| __ movl(EDX, Immediate(argc_tag)); |
| |
| const Code* stub; |
| |
| // There is no lazy-linking support on ia32. |
| ASSERT(!link_lazily()); |
| if (is_bootstrap_native()) { |
| stub = &StubCode::CallBootstrapNative(); |
| } else if (is_auto_scope()) { |
| stub = &StubCode::CallAutoScopeNative(); |
| } else { |
| stub = &StubCode::CallNoScopeNative(); |
| } |
| const ExternalLabel label(reinterpret_cast<uword>(native_c_function())); |
| __ movl(ECX, Immediate(label.address())); |
| compiler->GenerateCall(token_pos(), *stub, RawPcDescriptors::kOther, locs()); |
| |
| __ popl(result); |
| |
| __ Drop(ArgumentCount()); // Drop the arguments. |
| } |
| |
| void FfiCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| const Register saved_fp = locs()->temp(0).reg(); // volatile |
| const Register branch = locs()->in(TargetAddressIndex()).reg(); |
| const Register tmp = locs()->temp(1).reg(); // callee-saved |
| |
| // Save frame pointer because we're going to update it when we enter the exit |
| // frame. |
| __ movl(saved_fp, FPREG); |
| |
| // Make a space to put the return address. |
| __ pushl(Immediate(0)); |
| |
| // We need to create a dummy "exit frame". It will have a null code object. |
| __ LoadObject(CODE_REG, Object::null_object()); |
| __ EnterDartFrame(compiler::ffi::NumStackSlots(arg_locations_) * kWordSize); |
| |
| // Align frame before entering C++ world. |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andl(SPREG, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| FrameRebase rebase(/*old_base=*/FPREG, /*new_base=*/saved_fp, |
| /*stack_delta=*/0); |
| for (intptr_t i = 0, n = NativeArgCount(); i < n; ++i) { |
| const Location origin = rebase.Rebase(locs()->in(i)); |
| const Location target = arg_locations_[i]; |
| ConstantTemporaryAllocator tmp_alloc(tmp); |
| compiler->EmitMove(target, origin, &tmp_alloc); |
| } |
| |
| // We need to copy a dummy return address up into the dummy stack frame so the |
| // stack walker will know which safepoint to use. Unlike X64, there's no |
| // PC-relative 'leaq' available, so we have do a trick with 'call'. |
| Label get_pc; |
| __ call(&get_pc); |
| compiler->EmitCallsiteMetadata(TokenPosition::kNoSource, DeoptId::kNone, |
| RawPcDescriptors::Kind::kOther, locs()); |
| __ Bind(&get_pc); |
| __ popl(tmp); |
| __ movl(Address(FPREG, kSavedCallerPcSlotFromFp * kWordSize), tmp); |
| |
| __ TransitionGeneratedToNative(branch, FPREG, tmp); |
| __ call(branch); |
| |
| // The x86 calling convention requires floating point values to be returned on |
| // the "floating-point stack" (aka. register ST0). We don't use the |
| // floating-point stack in Dart, so we need to move the return value back into |
| // an XMM register. |
| if (representation() == kUnboxedDouble) { |
| __ fstpl(Address(SPREG, -kDoubleSize)); |
| __ movsd(XMM0, Address(SPREG, -kDoubleSize)); |
| } else if (representation() == kUnboxedFloat) { |
| __ fstps(Address(SPREG, -kFloatSize)); |
| __ movss(XMM0, Address(SPREG, -kFloatSize)); |
| } |
| |
| __ TransitionNativeToGenerated(tmp); |
| |
| // Leave dummy exit frame. |
| __ LeaveFrame(); |
| |
| // Instead of returning to the "fake" return address, we just pop it. |
| __ popl(tmp); |
| } |
| |
| void NativeEntryInstr::SaveArgument(FlowGraphCompiler* compiler, |
| Location loc) const { |
| if (loc.IsPairLocation()) { |
| // Save the components in reverse order so that they will be in |
| // little-endian order on the stack. |
| for (intptr_t i : {1, 0}) { |
| SaveArgument(compiler, loc.Component(i)); |
| } |
| return; |
| } |
| |
| if (loc.HasStackIndex()) return; |
| |
| if (loc.IsRegister()) { |
| __ pushl(loc.reg()); |
| } else if (loc.IsFpuRegister()) { |
| __ subl(SPREG, Immediate(8)); |
| __ movsd(Address(SPREG, 0), loc.fpu_reg()); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| void NativeEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| __ Bind(compiler->GetJumpLabel(this)); |
| |
| // Enter the entry frame. |
| __ EnterFrame(0); |
| |
| // Save a space for the code object. |
| __ xorl(EAX, EAX); |
| __ pushl(EAX); |
| |
| // Save ABI callee-saved registers. |
| __ pushl(EBX); |
| __ pushl(ESI); |
| __ pushl(EDI); |
| |
| // Load the thread object. |
| // TOOD(35934): Exclude native callbacks from snapshots. |
| // Linking in AOT is not relevant here since we don't support AOT for IA32. |
| // Create another frame to align the frame before continuing in "native" code. |
| { |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| |
| __ movl( |
| EAX, |
| Immediate(reinterpret_cast<int64_t>(DLRT_GetThreadForNativeCallback))); |
| __ call(EAX); |
| __ movl(THR, EAX); |
| |
| __ LeaveFrame(); |
| } |
| |
| // Save the current VMTag on the stack. |
| __ movl(ECX, Assembler::VMTagAddress()); |
| __ pushl(ECX); |
| |
| // Save top resource. |
| __ pushl(Address(THR, compiler::target::Thread::top_resource_offset())); |
| __ movl(Address(THR, compiler::target::Thread::top_resource_offset()), |
| Immediate(0)); |
| |
| // Save top exit frame info. Stack walker expects it to be here. |
| __ pushl( |
| Address(THR, compiler::target::Thread::top_exit_frame_info_offset())); |
| |
| // In debug mode, verify that we've pushed the top exit frame info at the |
| // correct offset from FP. |
| __ EmitEntryFrameVerification(); |
| |
| // TransitionNativeToGenerated will reset top exit frame info to 0 *after* |
| // leaving the safepoint. |
| __ TransitionNativeToGenerated(EAX); |
| |
| // Now that the safepoint has ended, we can hold Dart objects with bare hands. |
| // TODO(35934): fix linking issue |
| __ pushl(Immediate(callback_id_)); |
| __ movl( |
| EAX, |
| Address(THR, compiler::target::Thread::verify_callback_entry_offset())); |
| __ call(EAX); |
| __ popl(EAX); |
| |
| // Load the code object. |
| __ movl(EAX, Address(THR, compiler::target::Thread::callback_code_offset())); |
| __ movl(EAX, FieldAddress( |
| EAX, compiler::target::GrowableObjectArray::data_offset())); |
| __ movl(CODE_REG, |
| FieldAddress(EAX, compiler::target::Array::data_offset() + |
| callback_id_ * compiler::target::kWordSize)); |
| |
| // Put the code object in the reserved slot. |
| __ movl(Address(FPREG, kPcMarkerSlotFromFp * compiler::target::kWordSize), |
| CODE_REG); |
| |
| // Load a GC-safe value for the arguments descriptor (unused but tagged). |
| __ xorl(ARGS_DESC_REG, ARGS_DESC_REG); |
| |
| // Push a dummy return address which suggests that we are inside of |
| // InvokeDartCodeStub. This is how the stack walker detects an entry frame. |
| __ movl( |
| EAX, |
| Address(THR, compiler::target::Thread::invoke_dart_code_stub_offset())); |
| __ pushl(FieldAddress(EAX, compiler::target::Code::entry_point_offset())); |
| |
| // Continue with Dart frame setup. |
| FunctionEntryInstr::EmitNativeCode(compiler); |
| } |
| |
| static bool CanBeImmediateIndex(Value* value, intptr_t cid) { |
| ConstantInstr* constant = value->definition()->AsConstant(); |
| if ((constant == NULL) || !Assembler::IsSafeSmi(constant->value())) { |
| return false; |
| } |
| const int64_t index = Smi::Cast(constant->value()).AsInt64Value(); |
| const intptr_t scale = Instance::ElementSizeFor(cid); |
| const intptr_t offset = Instance::DataOffsetFor(cid); |
| const int64_t displacement = index * scale + offset; |
| return Utils::IsInt(32, displacement); |
| } |
| |
| LocationSummary* OneByteStringFromCharCodeInstr::MakeLocationSummary( |
| Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| // TODO(fschneider): Allow immediate operands for the char code. |
| return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| void OneByteStringFromCharCodeInstr::EmitNativeCode( |
| FlowGraphCompiler* compiler) { |
| Register char_code = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| __ movl(result, |
| Immediate(reinterpret_cast<uword>(Symbols::PredefinedAddress()))); |
| __ movl(result, Address(result, char_code, |
| TIMES_HALF_WORD_SIZE, // Char code is a smi. |
| Symbols::kNullCharCodeSymbolOffset * kWordSize)); |
| } |
| |
| LocationSummary* StringToCharCodeInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| void StringToCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(cid_ == kOneByteStringCid); |
| Register str = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| Label is_one, done; |
| __ movl(result, FieldAddress(str, String::length_offset())); |
| __ cmpl(result, Immediate(Smi::RawValue(1))); |
| __ j(EQUAL, &is_one, Assembler::kNearJump); |
| __ movl(result, Immediate(Smi::RawValue(-1))); |
| __ jmp(&done); |
| __ Bind(&is_one); |
| __ movzxb(result, FieldAddress(str, OneByteString::data_offset())); |
| __ SmiTag(result); |
| __ Bind(&done); |
| } |
| |
| LocationSummary* StringInterpolateInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| summary->set_in(0, Location::RegisterLocation(EAX)); |
| summary->set_out(0, Location::RegisterLocation(EAX)); |
| return summary; |
| } |
| |
| void StringInterpolateInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register array = locs()->in(0).reg(); |
| __ pushl(array); |
| const int kTypeArgsLen = 0; |
| const int kNumberOfArguments = 1; |
| const Array& kNoArgumentNames = Object::null_array(); |
| ArgumentsInfo args_info(kTypeArgsLen, kNumberOfArguments, kNoArgumentNames); |
| compiler->GenerateStaticCall(deopt_id(), token_pos(), CallFunction(), |
| args_info, locs(), ICData::Handle(), |
| ICData::kStatic); |
| ASSERT(locs()->out(0).reg() == EAX); |
| } |
| |
| LocationSummary* LoadUntaggedInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| return LocationSummary::Make(zone, kNumInputs, Location::SameAsFirstInput(), |
| LocationSummary::kNoCall); |
| } |
| |
| void LoadUntaggedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register obj = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| if (object()->definition()->representation() == kUntagged) { |
| __ movl(result, Address(obj, offset())); |
| } else { |
| ASSERT(object()->definition()->representation() == kTagged); |
| __ movl(result, FieldAddress(obj, offset())); |
| } |
| } |
| |
| DEFINE_BACKEND(StoreUntagged, (NoLocation, Register obj, Register value)) { |
| __ movl(Address(obj, instr->offset_from_tagged()), value); |
| } |
| |
| LocationSummary* LoadClassIdInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| void LoadClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| const Register object = locs()->in(0).reg(); |
| const Register result = locs()->out(0).reg(); |
| const AbstractType& value_type = *this->object()->Type()->ToAbstractType(); |
| if (CompileType::Smi().IsAssignableTo(value_type) || |
| value_type.IsTypeParameter()) { |
| // We don't use Assembler::LoadTaggedClassIdMayBeSmi() here---which uses |
| // a conditional move instead, and requires an additional register---because |
| // it is slower, probably due to branch prediction usually working just fine |
| // in this case. |
| ASSERT(result != object); |
| Label done; |
| __ movl(result, Immediate(kSmiCid << 1)); |
| __ testl(object, Immediate(kSmiTagMask)); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| __ LoadClassId(result, object); |
| __ SmiTag(result); |
| __ Bind(&done); |
| } else { |
| __ LoadClassId(result, object); |
| __ SmiTag(result); |
| } |
| } |
| |
| CompileType LoadIndexedInstr::ComputeType() const { |
| switch (class_id_) { |
| case kArrayCid: |
| case kImmutableArrayCid: |
| return CompileType::Dynamic(); |
| |
| case kTypedDataFloat32ArrayCid: |
| case kTypedDataFloat64ArrayCid: |
| return CompileType::FromCid(kDoubleCid); |
| case kTypedDataFloat32x4ArrayCid: |
| return CompileType::FromCid(kFloat32x4Cid); |
| case kTypedDataInt32x4ArrayCid: |
| return CompileType::FromCid(kInt32x4Cid); |
| case kTypedDataFloat64x2ArrayCid: |
| return CompileType::FromCid(kFloat64x2Cid); |
| |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: |
| case kOneByteStringCid: |
| case kTwoByteStringCid: |
| case kExternalOneByteStringCid: |
| case kExternalTwoByteStringCid: |
| return CompileType::FromCid(kSmiCid); |
| |
| case kTypedDataInt32ArrayCid: |
| case kTypedDataUint32ArrayCid: |
| case kTypedDataInt64ArrayCid: |
| case kTypedDataUint64ArrayCid: |
| return CompileType::Int(); |
| |
| default: |
| UNIMPLEMENTED(); |
| return CompileType::Dynamic(); |
| } |
| } |
| |
| Representation LoadIndexedInstr::representation() const { |
| switch (class_id_) { |
| case kArrayCid: |
| case kImmutableArrayCid: |
| return kTagged; |
| case kOneByteStringCid: |
| case kTwoByteStringCid: |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kTypedDataUint16ArrayCid: |
| case kExternalOneByteStringCid: |
| case kExternalTwoByteStringCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| return kUnboxedIntPtr; |
| case kTypedDataInt32ArrayCid: |
| return kUnboxedInt32; |
| case kTypedDataUint32ArrayCid: |
| return kUnboxedUint32; |
| case kTypedDataInt64ArrayCid: |
| case kTypedDataUint64ArrayCid: |
| return kUnboxedInt64; |
| case kTypedDataFloat32ArrayCid: |
| case kTypedDataFloat64ArrayCid: |
| return kUnboxedDouble; |
| case kTypedDataFloat32x4ArrayCid: |
| return kUnboxedFloat32x4; |
| case kTypedDataInt32x4ArrayCid: |
| return kUnboxedInt32x4; |
| case kTypedDataFloat64x2ArrayCid: |
| return kUnboxedFloat64x2; |
| default: |
| UNIMPLEMENTED(); |
| return kTagged; |
| } |
| } |
| |
| LocationSummary* LoadIndexedInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresRegister()); |
| if (CanBeImmediateIndex(index(), class_id())) { |
| // CanBeImmediateIndex must return false for unsafe smis. |
| locs->set_in(1, Location::Constant(index()->definition()->AsConstant())); |
| } else { |
| // The index is either untagged (element size == 1) or a smi (for all |
| // element sizes > 1). |
| locs->set_in(1, (index_scale() == 1) ? Location::WritableRegister() |
| : Location::RequiresRegister()); |
| } |
| if ((representation() == kUnboxedDouble) || |
| (representation() == kUnboxedFloat32x4) || |
| (representation() == kUnboxedInt32x4) || |
| (representation() == kUnboxedFloat64x2)) { |
| locs->set_out(0, Location::RequiresFpuRegister()); |
| } else if (representation() == kUnboxedInt64) { |
| ASSERT(class_id() == kTypedDataInt64ArrayCid || |
| class_id() == kTypedDataUint64ArrayCid); |
| locs->set_out(0, Location::Pair(Location::RequiresRegister(), |
| Location::RequiresRegister())); |
| } else { |
| locs->set_out(0, Location::RequiresRegister()); |
| } |
| return locs; |
| } |
| |
| void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The array register points to the backing store for external arrays. |
| const Register array = locs()->in(0).reg(); |
| const Location index = locs()->in(1); |
| |
| Address element_address = |
| index.IsRegister() |
| ? Assembler::ElementAddressForRegIndex( |
| IsExternal(), class_id(), index_scale(), array, index.reg()) |
| : Assembler::ElementAddressForIntIndex( |
| IsExternal(), class_id(), index_scale(), array, |
| Smi::Cast(index.constant()).Value()); |
| |
| if (index_scale() == 1) { |
| if (index.IsRegister()) { |
| __ SmiUntag(index.reg()); |
| } else { |
| ASSERT(index.IsConstant()); |
| } |
| } |
| |
| if ((representation() == kUnboxedDouble) || |
| (representation() == kUnboxedFloat32x4) || |
| (representation() == kUnboxedInt32x4) || |
| (representation() == kUnboxedFloat64x2)) { |
| XmmRegister result = locs()->out(0).fpu_reg(); |
| switch (class_id()) { |
| case kTypedDataFloat32ArrayCid: |
| __ movss(result, element_address); |
| break; |
| case kTypedDataFloat64ArrayCid: |
| __ movsd(result, element_address); |
| break; |
| case kTypedDataInt32x4ArrayCid: |
| case kTypedDataFloat32x4ArrayCid: |
| case kTypedDataFloat64x2ArrayCid: |
| __ movups(result, element_address); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return; |
| } |
| |
| switch (class_id()) { |
| case kTypedDataInt32ArrayCid: { |
| const Register result = locs()->out(0).reg(); |
| ASSERT(representation() == kUnboxedInt32); |
| __ movl(result, element_address); |
| break; |
| } |
| case kTypedDataUint32ArrayCid: { |
| const Register result = locs()->out(0).reg(); |
| ASSERT(representation() == kUnboxedUint32); |
| __ movl(result, element_address); |
| break; |
| } |
| case kTypedDataInt64ArrayCid: |
| case kTypedDataUint64ArrayCid: { |
| ASSERT(representation() == kUnboxedInt64); |
| ASSERT(locs()->out(0).IsPairLocation()); |
| PairLocation* result_pair = locs()->out(0).AsPairLocation(); |
| const Register result_lo = result_pair->At(0).reg(); |
| const Register result_hi = result_pair->At(1).reg(); |
| ASSERT(class_id() == kTypedDataInt64ArrayCid || |
| class_id() == kTypedDataUint64ArrayCid); |
| __ movl(result_lo, element_address); |
| element_address = |
| index.IsRegister() |
| ? Assembler::ElementAddressForRegIndex(IsExternal(), class_id(), |
| index_scale(), array, |
| index.reg(), kWordSize) |
| : Assembler::ElementAddressForIntIndex( |
| IsExternal(), class_id(), index_scale(), array, |
| Smi::Cast(index.constant()).Value(), kWordSize); |
| __ movl(result_hi, element_address); |
| break; |
| } |
| case kTypedDataInt8ArrayCid: { |
| const Register result = locs()->out(0).reg(); |
| ASSERT(representation() == kUnboxedIntPtr); |
| ASSERT(index_scale() == 1); |
| __ movsxb(result, element_address); |
| break; |
| } |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| case kOneByteStringCid: |
| case kExternalOneByteStringCid: { |
| const Register result = locs()->out(0).reg(); |
| ASSERT(representation() == kUnboxedIntPtr); |
| ASSERT(index_scale() == 1); |
| __ movzxb(result, element_address); |
| break; |
| } |
| case kTypedDataInt16ArrayCid: { |
| const Register result = locs()->out(0).reg(); |
| ASSERT(representation() == kUnboxedIntPtr); |
| __ movsxw(result, element_address); |
| break; |
| } |
| case kTypedDataUint16ArrayCid: |
| case kTwoByteStringCid: |
| case kExternalTwoByteStringCid: { |
| const Register result = locs()->out(0).reg(); |
| ASSERT(representation() == kUnboxedIntPtr); |
| __ movzxw(result, element_address); |
| break; |
| } |
| default: { |
| const Register result = locs()->out(0).reg(); |
| ASSERT(representation() == kTagged); |
| ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid)); |
| __ movl(result, element_address); |
| break; |
| } |
| } |
| } |
| |
| Representation StoreIndexedInstr::RequiredInputRepresentation( |
| intptr_t idx) const { |
| // Array can be a Dart object or a pointer to external data. |
| if (idx == 0) return kNoRepresentation; // Flexible input representation. |
| if (idx == 1) return kTagged; // Index is a smi. |
| ASSERT(idx == 2); |
| switch (class_id_) { |
| case kArrayCid: |
| return kTagged; |
| case kOneByteStringCid: |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kTypedDataUint16ArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| return kUnboxedIntPtr; |
| case kTypedDataInt32ArrayCid: |
| return kUnboxedInt32; |
| case kTypedDataUint32ArrayCid: |
| return kUnboxedUint32; |
| case kTypedDataInt64ArrayCid: |
| case kTypedDataUint64ArrayCid: |
| return kUnboxedInt64; |
| case kTypedDataFloat32ArrayCid: |
| case kTypedDataFloat64ArrayCid: |
| return kUnboxedDouble; |
| case kTypedDataFloat32x4ArrayCid: |
| return kUnboxedFloat32x4; |
| case kTypedDataInt32x4ArrayCid: |
| return kUnboxedInt32x4; |
| case kTypedDataFloat64x2ArrayCid: |
| return kUnboxedFloat64x2; |
| default: |
| UNIMPLEMENTED(); |
| return kTagged; |
| } |
| } |
| |
| LocationSummary* StoreIndexedInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 3; |
| const intptr_t kNumTemps = |
| class_id() == kArrayCid && ShouldEmitStoreBarrier() ? 1 : 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresRegister()); |
| if (CanBeImmediateIndex(index(), class_id())) { |
| // CanBeImmediateIndex must return false for unsafe smis. |
| locs->set_in(1, Location::Constant(index()->definition()->AsConstant())); |
| } else { |
| // The index is either untagged (element size == 1) or a smi (for all |
| // element sizes > 1). |
| locs->set_in(1, (index_scale() == 1) ? Location::WritableRegister() |
| : Location::RequiresRegister()); |
| } |
| switch (class_id()) { |
| case kArrayCid: |
| locs->set_in(2, ShouldEmitStoreBarrier() |
| ? Location::WritableRegister() |
| : LocationRegisterOrConstant(value())); |
| if (ShouldEmitStoreBarrier()) { |
| locs->set_in(0, Location::RegisterLocation(kWriteBarrierObjectReg)); |
| locs->set_temp(0, Location::RegisterLocation(kWriteBarrierSlotReg)); |
| } |
| break; |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kOneByteStringCid: |
| // TODO(fschneider): Add location constraint for byte registers (EAX, |
| // EBX, ECX, EDX) instead of using a fixed register. |
| locs->set_in(2, LocationFixedRegisterOrSmiConstant(value(), EAX)); |
| break; |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: |
| // Writable register because the value must be untagged before storing. |
| locs->set_in(2, Location::WritableRegister()); |
| break; |
| case kTypedDataInt32ArrayCid: |
| case kTypedDataUint32ArrayCid: |
| locs->set_in(2, Location::RequiresRegister()); |
| break; |
| case kTypedDataInt64ArrayCid: |
| case kTypedDataUint64ArrayCid: |
| locs->set_in(2, Location::Pair(Location::RequiresRegister(), |
| Location::RequiresRegister())); |
| break; |
| case kTypedDataFloat32ArrayCid: |
| case kTypedDataFloat64ArrayCid: |
| // TODO(srdjan): Support Float64 constants. |
| locs->set_in(2, Location::RequiresFpuRegister()); |
| break; |
| case kTypedDataInt32x4ArrayCid: |
| case kTypedDataFloat32x4ArrayCid: |
| case kTypedDataFloat64x2ArrayCid: |
| locs->set_in(2, Location::RequiresFpuRegister()); |
| break; |
| default: |
| UNREACHABLE(); |
| return NULL; |
| } |
| return locs; |
| } |
| |
| void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The array register points to the backing store for external arrays. |
| const Register array = locs()->in(0).reg(); |
| const Location index = locs()->in(1); |
| |
| Address element_address = |
| index.IsRegister() |
| ? Assembler::ElementAddressForRegIndex( |
| IsExternal(), class_id(), index_scale(), array, index.reg()) |
| : Assembler::ElementAddressForIntIndex( |
| IsExternal(), class_id(), index_scale(), array, |
| Smi::Cast(index.constant()).Value()); |
| |
| if ((index_scale() == 1) && index.IsRegister()) { |
| __ SmiUntag(index.reg()); |
| } |
| switch (class_id()) { |
| case kArrayCid: |
| if (ShouldEmitStoreBarrier()) { |
| Register value = locs()->in(2).reg(); |
| Register slot = locs()->temp(0).reg(); |
| __ leal(slot, element_address); |
| __ StoreIntoArray(array, slot, value, CanValueBeSmi()); |
| } else if (locs()->in(2).IsConstant()) { |
| const Object& constant = locs()->in(2).constant(); |
| __ StoreIntoObjectNoBarrier(array, element_address, constant); |
| } else { |
| Register value = locs()->in(2).reg(); |
| __ StoreIntoObjectNoBarrier(array, element_address, value); |
| } |
| break; |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kOneByteStringCid: |
| ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr); |
| if (locs()->in(2).IsConstant()) { |
| const Smi& constant = Smi::Cast(locs()->in(2).constant()); |
| __ movb(element_address, |
| Immediate(static_cast<int8_t>(constant.Value()))); |
| } else { |
| ASSERT(locs()->in(2).reg() == EAX); |
| __ movb(element_address, AL); |
| } |
| break; |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: { |
| ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr); |
| if (locs()->in(2).IsConstant()) { |
| const Smi& constant = Smi::Cast(locs()->in(2).constant()); |
| intptr_t value = constant.Value(); |
| // Clamp to 0x0 or 0xFF respectively. |
| if (value > 0xFF) { |
| value = 0xFF; |
| } else if (value < 0) { |
| value = 0; |
| } |
| __ movb(element_address, Immediate(static_cast<int8_t>(value))); |
| } else { |
| ASSERT(locs()->in(2).reg() == EAX); |
| Label store_value, store_0xff; |
| __ cmpl(EAX, Immediate(0xFF)); |
| __ j(BELOW_EQUAL, &store_value, Assembler::kNearJump); |
| // Clamp to 0x0 or 0xFF respectively. |
| __ j(GREATER, &store_0xff); |
| __ xorl(EAX, EAX); |
| __ jmp(&store_value, Assembler::kNearJump); |
| __ Bind(&store_0xff); |
| __ movl(EAX, Immediate(0xFF)); |
| __ Bind(&store_value); |
| __ movb(element_address, AL); |
| } |
| break; |
| } |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: { |
| ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr); |
| const Register value = locs()->in(2).reg(); |
| __ movw(element_address, value); |
| break; |
| } |
| case kTypedDataInt32ArrayCid: |
| case kTypedDataUint32ArrayCid: |
| __ movl(element_address, locs()->in(2).reg()); |
| break; |
| case kTypedDataInt64ArrayCid: |
| case kTypedDataUint64ArrayCid: { |
| ASSERT(locs()->in(2).IsPairLocation()); |
| PairLocation* value_pair = locs()->in(2).AsPairLocation(); |
| const Register value_lo = value_pair->At(0).reg(); |
| const Register value_hi = value_pair->At(1).reg(); |
| __ movl(element_address, value_lo); |
| element_address = |
| index.IsRegister() |
| ? Assembler::ElementAddressForRegIndex(IsExternal(), class_id(), |
| index_scale(), array, |
| index.reg(), kWordSize) |
| : Assembler::ElementAddressForIntIndex( |
| IsExternal(), class_id(), index_scale(), array, |
| Smi::Cast(index.constant()).Value(), kWordSize); |
| __ movl(element_address, value_hi); |
| break; |
| } |
| case kTypedDataFloat32ArrayCid: |
| __ movss(element_address, locs()->in(2).fpu_reg()); |
| break; |
| case kTypedDataFloat64ArrayCid: |
| __ movsd(element_address, locs()->in(2).fpu_reg()); |
| break; |
| case kTypedDataInt32x4ArrayCid: |
| case kTypedDataFloat32x4ArrayCid: |
| case kTypedDataFloat64x2ArrayCid: |
| __ movups(element_address, locs()->in(2).fpu_reg()); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| DEFINE_UNIMPLEMENTED_INSTRUCTION(GuardFieldTypeInstr) |
| DEFINE_UNIMPLEMENTED_INSTRUCTION(CheckConditionInstr) |
| |
| LocationSummary* GuardFieldClassInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| |
| const intptr_t value_cid = value()->Type()->ToCid(); |
| const intptr_t field_cid = field().guarded_cid(); |
| |
| const bool emit_full_guard = !opt || (field_cid == kIllegalCid); |
| const bool needs_value_cid_temp_reg = |
| (value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid)); |
| const bool needs_field_temp_reg = emit_full_guard; |
| |
| intptr_t num_temps = 0; |
| if (needs_value_cid_temp_reg) { |
| num_temps++; |
| } |
| if (needs_field_temp_reg) { |
| num_temps++; |
| } |
| |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, num_temps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| |
| for (intptr_t i = 0; i < num_temps; i++) { |
| summary->set_temp(i, Location::RequiresRegister()); |
| } |
| |
| return summary; |
| } |
| |
| void GuardFieldClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(sizeof(classid_t) == kInt16Size); |
| const intptr_t value_cid = value()->Type()->ToCid(); |
| const intptr_t field_cid = field().guarded_cid(); |
| const intptr_t nullability = field().is_nullable() ? kNullCid : kIllegalCid; |
| |
| if (field_cid == kDynamicCid) { |
| return; // Nothing to emit. |
| } |
| |
| const bool emit_full_guard = |
| !compiler->is_optimizing() || (field_cid == kIllegalCid); |
| |
| const bool needs_value_cid_temp_reg = |
| (value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid)); |
| |
| const bool needs_field_temp_reg = emit_full_guard; |
| |
| const Register value_reg = locs()->in(0).reg(); |
| |
| const Register value_cid_reg = |
| needs_value_cid_temp_reg ? locs()->temp(0).reg() : kNoRegister; |
| |
| const Register field_reg = needs_field_temp_reg |
| ? locs()->temp(locs()->temp_count() - 1).reg() |
| : kNoRegister; |
| |
| Label ok, fail_label; |
| |
| Label* deopt = nullptr; |
| if (compiler->is_optimizing()) { |
| deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField); |
| } |
| |
| Label* fail = (deopt != NULL) ? deopt : &fail_label; |
| |
| if (emit_full_guard) { |
| __ LoadObject(field_reg, Field::ZoneHandle(field().Original())); |
| |
| FieldAddress field_cid_operand(field_reg, Field::guarded_cid_offset()); |
| FieldAddress field_nullability_operand(field_reg, |
| Field::is_nullable_offset()); |
| |
| if (value_cid == kDynamicCid) { |
| LoadValueCid(compiler, value_cid_reg, value_reg); |
| __ cmpw(value_cid_reg, field_cid_operand); |
| __ j(EQUAL, &ok); |
| __ cmpw(value_cid_reg, field_nullability_operand); |
| } else if (value_cid == kNullCid) { |
| // Value in graph known to be null. |
| // Compare with null. |
| __ cmpw(field_nullability_operand, Immediate(value_cid)); |
| } else { |
| // Value in graph known to be non-null. |
| // Compare class id with guard field class id. |
| __ cmpw(field_cid_operand, Immediate(value_cid)); |
| } |
| __ j(EQUAL, &ok); |
| |
| // Check if the tracked state of the guarded field can be initialized |
| // inline. If the field needs length check we fall through to runtime |
| // which is responsible for computing offset of the length field |
| // based on the class id. |
| // Length guard will be emitted separately when needed via GuardFieldLength |
| // instruction after GuardFieldClass. |
| if (!field().needs_length_check()) { |
| // Uninitialized field can be handled inline. Check if the |
| // field is still unitialized. |
| __ cmpw(field_cid_operand, Immediate(kIllegalCid)); |
| // Jump to failure path when guard field has been initialized and |
| // the field and value class ids do not not match. |
| __ j(NOT_EQUAL, fail); |
| |
| if (value_cid == kDynamicCid) { |
| // Do not know value's class id. |
| __ movw(field_cid_operand, value_cid_reg); |
| __ movw(field_nullability_operand, value_cid_reg); |
| } else { |
| ASSERT(field_reg != kNoRegister); |
| __ movw(field_cid_operand, Immediate(value_cid)); |
| __ movw(field_nullability_operand, Immediate(value_cid)); |
| } |
| |
| __ jmp(&ok); |
| } |
| |
| if (deopt == NULL) { |
| ASSERT(!compiler->is_optimizing()); |
| __ Bind(fail); |
| |
| __ cmpw(FieldAddress(field_reg, Field::guarded_cid_offset()), |
| Immediate(kDynamicCid)); |
| __ j(EQUAL, &ok); |
| |
| __ pushl(field_reg); |
| __ pushl(value_reg); |
| __ CallRuntime(kUpdateFieldCidRuntimeEntry, 2); |
| __ Drop(2); // Drop the field and the value. |
| } else { |
| __ jmp(fail); |
| } |
| } else { |
| ASSERT(compiler->is_optimizing()); |
| ASSERT(deopt != NULL); |
| ASSERT(fail == deopt); |
| |
| // Field guard class has been initialized and is known. |
| if (value_cid == kDynamicCid) { |
| // Value's class id is not known. |
| __ testl(value_reg, Immediate(kSmiTagMask)); |
| |
| if (field_cid != kSmiCid) { |
| __ j(ZERO, fail); |
| __ LoadClassId(value_cid_reg, value_reg); |
| __ cmpl(value_cid_reg, Immediate(field_cid)); |
| } |
| |
| if (field().is_nullable() && (field_cid != kNullCid)) { |
| __ j(EQUAL, &ok); |
| if (field_cid != kSmiCid) { |
| __ cmpl(value_cid_reg, Immediate(kNullCid)); |
| } else { |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| __ cmpl(value_reg, raw_null); |
| } |
| } |
| __ j(NOT_EQUAL, fail); |
| } else { |
| // Both value's and field's class id is known. |
| ASSERT((value_cid != field_cid) && (value_cid != nullability)); |
| __ jmp(fail); |
| } |
| } |
| __ Bind(&ok); |
| } |
| |
| LocationSummary* GuardFieldLengthInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| if (!opt || (field().guarded_list_length() == Field::kUnknownFixedLength)) { |
| const intptr_t kNumTemps = 3; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| // We need temporaries for field object, length offset and expected length. |
| summary->set_temp(0, Location::RequiresRegister()); |
| summary->set_temp(1, Location::RequiresRegister()); |
| summary->set_temp(2, Location::RequiresRegister()); |
| return summary; |
| } else { |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, 0, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| return summary; |
| } |
| UNREACHABLE(); |
| } |
| |
| void GuardFieldLengthInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| if (field().guarded_list_length() == Field::kNoFixedLength) { |
| return; // Nothing to emit. |
| } |
| |
| Label* deopt = |
| compiler->is_optimizing() |
| ? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) |
| : NULL; |
| |
| const Register value_reg = locs()->in(0).reg(); |
| |
| if (!compiler->is_optimizing() || |
| (field().guarded_list_length() == Field::kUnknownFixedLength)) { |
| const Register field_reg = locs()->temp(0).reg(); |
| const Register offset_reg = locs()->temp(1).reg(); |
| const Register length_reg = locs()->temp(2).reg(); |
| |
| Label ok; |
| |
| __ LoadObject(field_reg, Field::ZoneHandle(field().Original())); |
| |
| __ movsxb( |
| offset_reg, |
| FieldAddress(field_reg, |
| Field::guarded_list_length_in_object_offset_offset())); |
| __ movl(length_reg, |
| FieldAddress(field_reg, Field::guarded_list_length_offset())); |
| |
| __ cmpl(offset_reg, Immediate(0)); |
| __ j(NEGATIVE, &ok); |
| |
| // Load the length from the value. GuardFieldClass already verified that |
| // value's class matches guarded class id of the field. |
| // offset_reg contains offset already corrected by -kHeapObjectTag that is |
| // why we use Address instead of FieldAddress. |
| __ cmpl(length_reg, Address(value_reg, offset_reg, TIMES_1, 0)); |
| |
| if (deopt == NULL) { |
| __ j(EQUAL, &ok); |
| |
| __ pushl(field_reg); |
| __ pushl(value_reg); |
| __ CallRuntime(kUpdateFieldCidRuntimeEntry, 2); |
| __ Drop(2); // Drop the field and the value. |
| } else { |
| __ j(NOT_EQUAL, deopt); |
| } |
| |
| __ Bind(&ok); |
| } else { |
| ASSERT(compiler->is_optimizing()); |
| ASSERT(field().guarded_list_length() >= 0); |
| ASSERT(field().guarded_list_length_in_object_offset() != |
| Field::kUnknownLengthOffset); |
| |
| __ cmpl( |
| FieldAddress(value_reg, field().guarded_list_length_in_object_offset()), |
| Immediate(Smi::RawValue(field().guarded_list_length()))); |
| __ j(NOT_EQUAL, deopt); |
| } |
| } |
| |
| class BoxAllocationSlowPath : public TemplateSlowPathCode<Instruction> { |
| public: |
| BoxAllocationSlowPath(Instruction* instruction, |
| const Class& cls, |
| Register result) |
| : TemplateSlowPathCode(instruction), cls_(cls), result_(result) {} |
| |
| virtual void EmitNativeCode(FlowGraphCompiler* compiler) { |
| if (Assembler::EmittingComments()) { |
| __ Comment("%s slow path allocation of %s", instruction()->DebugName(), |
| String::Handle(cls_.ScrubbedName()).ToCString()); |
| } |
| __ Bind(entry_label()); |
| const Code& stub = Code::ZoneHandle( |
| compiler->zone(), StubCode::GetAllocationStubForClass(cls_)); |
| |
| LocationSummary* locs = instruction()->locs(); |
| |
| locs->live_registers()->Remove(Location::RegisterLocation(result_)); |
| |
| compiler->SaveLiveRegisters(locs); |
| compiler->GenerateCall(TokenPosition::kNoSource, stub, |
| RawPcDescriptors::kOther, locs); |
| __ MoveRegister(result_, EAX); |
| compiler->RestoreLiveRegisters(locs); |
| __ jmp(exit_label()); |
| } |
| |
| static void Allocate(FlowGraphCompiler* compiler, |
| Instruction* instruction, |
| const Class& cls, |
| Register result, |
| Register temp) { |
| if (compiler->intrinsic_mode()) { |
| __ TryAllocate(cls, compiler->intrinsic_slow_path_label(), |
| Assembler::kFarJump, result, temp); |
| } else { |
| BoxAllocationSlowPath* slow_path = |
| new BoxAllocationSlowPath(instruction, cls, result); |
| compiler->AddSlowPathCode(slow_path); |
| |
| __ TryAllocate(cls, slow_path->entry_label(), Assembler::kFarJump, result, |
| temp); |
| __ Bind(slow_path->exit_label()); |
| } |
| } |
| |
| private: |
| const Class& cls_; |
| const Register result_; |
| }; |
| |
| LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = |
| (IsUnboxedStore() && opt) ? 2 : ((IsPotentialUnboxedStore()) ? 3 : 0); |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, |
| ((IsUnboxedStore() && opt && is_initialization()) || |
| IsPotentialUnboxedStore()) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall); |
| |
| summary->set_in(0, Location::RequiresRegister()); |
| if (IsUnboxedStore() && opt) { |
| summary->set_in(1, Location::RequiresFpuRegister()); |
| summary->set_temp(0, Location::RequiresRegister()); |
| summary->set_temp(1, Location::RequiresRegister()); |
| } else if (IsPotentialUnboxedStore()) { |
| summary->set_in(1, ShouldEmitStoreBarrier() ? Location::WritableRegister() |
| : Location::RequiresRegister()); |
| summary->set_temp(0, Location::RequiresRegister()); |
| summary->set_temp(1, Location::RequiresRegister()); |
| summary->set_temp(2, opt ? Location::RequiresFpuRegister() |
| : Location::FpuRegisterLocation(XMM1)); |
| } else { |
| summary->set_in(1, ShouldEmitStoreBarrier() |
| ? Location::WritableRegister() |
| : LocationRegisterOrConstant(value())); |
| } |
| return summary; |
| } |
| |
| static void EnsureMutableBox(FlowGraphCompiler* compiler, |
| StoreInstanceFieldInstr* instruction, |
| Register box_reg, |
| const Class& cls, |
| Register instance_reg, |
| intptr_t offset, |
| Register temp) { |
| Label done; |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| __ movl(box_reg, FieldAddress(instance_reg, offset)); |
| __ cmpl(box_reg, raw_null); |
| __ j(NOT_EQUAL, &done); |
| BoxAllocationSlowPath::Allocate(compiler, instruction, cls, box_reg, temp); |
| __ movl(temp, box_reg); |
| __ StoreIntoObject(instance_reg, FieldAddress(instance_reg, offset), temp, |
| Assembler::kValueIsNotSmi); |
| |
| __ Bind(&done); |
| } |
| |
| void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(sizeof(classid_t) == kInt16Size); |
| Label skip_store; |
| |
| const Register instance_reg = locs()->in(0).reg(); |
| const intptr_t offset_in_bytes = OffsetInBytes(); |
| |
| if (IsUnboxedStore() && compiler->is_optimizing()) { |
| XmmRegister value = locs()->in(1).fpu_reg(); |
| Register temp = locs()->temp(0).reg(); |
| Register temp2 = locs()->temp(1).reg(); |
| const intptr_t cid = slot().field().UnboxedFieldCid(); |
| |
| if (is_initialization()) { |
| const Class* cls = NULL; |
| switch (cid) { |
| case kDoubleCid: |
| cls = &compiler->double_class(); |
| break; |
| case kFloat32x4Cid: |
| cls = &compiler->float32x4_class(); |
| break; |
| case kFloat64x2Cid: |
| cls = &compiler->float64x2_class(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| BoxAllocationSlowPath::Allocate(compiler, this, *cls, temp, temp2); |
| __ movl(temp2, temp); |
| __ StoreIntoObject(instance_reg, |
| FieldAddress(instance_reg, offset_in_bytes), temp2, |
| Assembler::kValueIsNotSmi); |
| } else { |
| __ movl(temp, FieldAddress(instance_reg, offset_in_bytes)); |
| } |
| switch (cid) { |
| case kDoubleCid: |
| __ Comment("UnboxedDoubleStoreInstanceFieldInstr"); |
| __ movsd(FieldAddress(temp, Double::value_offset()), value); |
| break; |
| case kFloat32x4Cid: |
| __ Comment("UnboxedFloat32x4StoreInstanceFieldInstr"); |
| __ movups(FieldAddress(temp, Float32x4::value_offset()), value); |
| break; |
| case kFloat64x2Cid: |
| __ Comment("UnboxedFloat64x2StoreInstanceFieldInstr"); |
| __ movups(FieldAddress(temp, Float64x2::value_offset()), value); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return; |
| } |
| |
| if (IsPotentialUnboxedStore()) { |
| __ Comment("PotentialUnboxedStore"); |
| Register value_reg = locs()->in(1).reg(); |
| Register temp = locs()->temp(0).reg(); |
| Register temp2 = locs()->temp(1).reg(); |
| FpuRegister fpu_temp = locs()->temp(2).fpu_reg(); |
| |
| if (ShouldEmitStoreBarrier()) { |
| // Value input is a writable register and should be manually preserved |
| // across allocation slow-path. Add it to live_registers set which |
| // determines which registers to preserve. |
| locs()->live_registers()->Add(locs()->in(1), kTagged); |
| } |
| |
| Label store_pointer; |
| Label store_double; |
| Label store_float32x4; |
| Label store_float64x2; |
| |
| __ LoadObject(temp, Field::ZoneHandle(Z, slot().field().Original())); |
| |
| __ cmpw(FieldAddress(temp, Field::is_nullable_offset()), |
| Immediate(kNullCid)); |
| __ j(EQUAL, &store_pointer); |
| |
| __ movzxb(temp2, FieldAddress(temp, Field::kind_bits_offset())); |
| __ testl(temp2, Immediate(1 << Field::kUnboxingCandidateBit)); |
| __ j(ZERO, &store_pointer); |
| |
| __ cmpw(FieldAddress(temp, Field::guarded_cid_offset()), |
| Immediate(kDoubleCid)); |
| __ j(EQUAL, &store_double); |
| |
| __ cmpw(FieldAddress(temp, Field::guarded_cid_offset()), |
| Immediate(kFloat32x4Cid)); |
| __ j(EQUAL, &store_float32x4); |
| |
| __ cmpw(FieldAddress(temp, Field::guarded_cid_offset()), |
| Immediate(kFloat64x2Cid)); |
| __ j(EQUAL, &store_float64x2); |
| |
| // Fall through. |
| __ jmp(&store_pointer); |
| |
| if (!compiler->is_optimizing()) { |
| locs()->live_registers()->Add(locs()->in(0)); |
| locs()->live_registers()->Add(locs()->in(1)); |
| } |
| |
| { |
| __ Bind(&store_double); |
| EnsureMutableBox(compiler, this, temp, compiler->double_class(), |
| instance_reg, offset_in_bytes, temp2); |
| __ movsd(fpu_temp, FieldAddress(value_reg, Double::value_offset())); |
| __ movsd(FieldAddress(temp, Double::value_offset()), fpu_temp); |
| __ jmp(&skip_store); |
| } |
| |
| { |
| __ Bind(&store_float32x4); |
| EnsureMutableBox(compiler, this, temp, compiler->float32x4_class(), |
| instance_reg, offset_in_bytes, temp2); |
| __ movups(fpu_temp, FieldAddress(value_reg, Float32x4::value_offset())); |
| __ movups(FieldAddress(temp, Float32x4::value_offset()), fpu_temp); |
| __ jmp(&skip_store); |
| } |
| |
| { |
| __ Bind(&store_float64x2); |
| EnsureMutableBox(compiler, this, temp, compiler->float64x2_class(), |
| instance_reg, offset_in_bytes, temp2); |
| __ movups(fpu_temp, FieldAddress(value_reg, Float64x2::value_offset())); |
| __ movups(FieldAddress(temp, Float64x2::value_offset()), fpu_temp); |
| __ jmp(&skip_store); |
| } |
| |
| __ Bind(&store_pointer); |
| } |
| |
| if (ShouldEmitStoreBarrier()) { |
| Register value_reg = locs()->in(1).reg(); |
| __ StoreIntoObject(instance_reg, |
| FieldAddress(instance_reg, offset_in_bytes), value_reg, |
| CanValueBeSmi()); |
| } else { |
| if (locs()->in(1).IsConstant()) { |
| __ StoreIntoObjectNoBarrier(instance_reg, |
| FieldAddress(instance_reg, offset_in_bytes), |
| locs()->in(1).constant()); |
| } else { |
| Register value_reg = locs()->in(1).reg(); |
| __ StoreIntoObjectNoBarrier( |
| instance_reg, FieldAddress(instance_reg, offset_in_bytes), value_reg); |
| } |
| } |
| __ Bind(&skip_store); |
| } |
| |
| LocationSummary* LoadStaticFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| // By specifying same register as input, our simple register allocator can |
| // generate better code. |
| summary->set_out(0, Location::SameAsFirstInput()); |
| return summary; |
| } |
| |
| // When the parser is building an implicit static getter for optimization, |
| // it can generate a function body where deoptimization ids do not line up |
| // with the unoptimized code. |
| // |
| // This is safe only so long as LoadStaticFieldInstr cannot deoptimize. |
| void LoadStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register field = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| __ movl(result, FieldAddress(field, Field::static_value_offset())); |
| } |
| |
| LocationSummary* StoreStaticFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| LocationSummary* locs = |
| new (zone) LocationSummary(zone, 1, 1, LocationSummary::kNoCall); |
| locs->set_in(0, value()->NeedsWriteBarrier() ? Location::WritableRegister() |
| : Location::RequiresRegister()); |
| locs->set_temp(0, Location::RequiresRegister()); |
| return locs; |
| } |
| |
| void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register value = locs()->in(0).reg(); |
| Register temp = locs()->temp(0).reg(); |
| |
| __ LoadObject(temp, Field::ZoneHandle(Z, field().Original())); |
| if (this->value()->NeedsWriteBarrier()) { |
| __ StoreIntoObject(temp, FieldAddress(temp, Field::static_value_offset()), |
| value, CanValueBeSmi()); |
| } else { |
| __ StoreIntoObjectNoBarrier( |
| temp, FieldAddress(temp, Field::static_value_offset()), value); |
| } |
| } |
| |
| LocationSummary* InstanceOfInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 3; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| summary->set_in(0, Location::RegisterLocation(EAX)); // Instance. |
| summary->set_in(1, Location::RegisterLocation(EDX)); // Instant. type args. |
| summary->set_in(2, Location::RegisterLocation(ECX)); // Function type args. |
| summary->set_out(0, Location::RegisterLocation(EAX)); |
| return summary; |
| } |
| |
| void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(locs()->in(0).reg() == EAX); // Value. |
| ASSERT(locs()->in(1).reg() == EDX); // Instantiator type arguments. |
| ASSERT(locs()->in(2).reg() == ECX); // Function type arguments. |
| |
| compiler->GenerateInstanceOf(token_pos(), deopt_id(), type(), locs()); |
| ASSERT(locs()->out(0).reg() == EAX); |
| } |
| |
| // TODO(srdjan): In case of constant inputs make CreateArray kNoCall and |
| // use slow path stub. |
| LocationSummary* CreateArrayInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(ECX)); |
| locs->set_in(1, Location::RegisterLocation(EDX)); |
| locs->set_out(0, Location::RegisterLocation(EAX)); |
| return locs; |
| } |
| |
| // Inlines array allocation for known constant values. |
| static void InlineArrayAllocation(FlowGraphCompiler* compiler, |
| intptr_t num_elements, |
| Label* slow_path, |
| Label* done) { |
| const int kInlineArraySize = 12; // Same as kInlineInstanceSize. |
| const Register kLengthReg = EDX; |
| const Register kElemTypeReg = ECX; |
| const intptr_t instance_size = Array::InstanceSize(num_elements); |
| |
| // Instance in EAX. |
| // Object end address in EBX. |
| __ TryAllocateArray(kArrayCid, instance_size, slow_path, Assembler::kFarJump, |
| EAX, // instance |
| EBX, // end address |
| EDI); // temp |
| |
| // Store the type argument field. |
| __ StoreIntoObjectNoBarrier( |
| EAX, FieldAddress(EAX, Array::type_arguments_offset()), kElemTypeReg); |
| |
| // Set the length field. |
| __ StoreIntoObjectNoBarrier(EAX, FieldAddress(EAX, Array::length_offset()), |
| kLengthReg); |
| |
| // Initialize all array elements to raw_null. |
| // EAX: new object start as a tagged pointer. |
| // EBX: new object end address. |
| // EDI: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| if (num_elements > 0) { |
| const intptr_t array_size = instance_size - sizeof(RawArray); |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| __ leal(EDI, FieldAddress(EAX, sizeof(RawArray))); |
| if (array_size < (kInlineArraySize * kWordSize)) { |
| intptr_t current_offset = 0; |
| __ movl(EBX, raw_null); |
| while (current_offset < array_size) { |
| __ StoreIntoObjectNoBarrier(EAX, Address(EDI, current_offset), EBX); |
| current_offset += kWordSize; |
| } |
| } else { |
| Label init_loop; |
| __ Bind(&init_loop); |
| __ StoreIntoObjectNoBarrier(EAX, Address(EDI, 0), Object::null_object()); |
| __ addl(EDI, Immediate(kWordSize)); |
| __ cmpl(EDI, EBX); |
| __ j(BELOW, &init_loop, Assembler::kNearJump); |
| } |
| } |
| __ jmp(done, Assembler::kNearJump); |
| } |
| |
| void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // Allocate the array. EDX = length, ECX = element type. |
| const Register kLengthReg = EDX; |
| const Register kElemTypeReg = ECX; |
| const Register kResultReg = EAX; |
| ASSERT(locs()->in(0).reg() == kElemTypeReg); |
| ASSERT(locs()->in(1).reg() == kLengthReg); |
| |
| Label slow_path, done; |
| if (compiler->is_optimizing() && num_elements()->BindsToConstant() && |
| num_elements()->BoundConstant().IsSmi()) { |
| const intptr_t length = Smi::Cast(num_elements()->BoundConstant()).Value(); |
| if (Array::IsValidLength(length)) { |
| Label slow_path, done; |
| InlineArrayAllocation(compiler, length, &slow_path, &done); |
| __ Bind(&slow_path); |
| __ PushObject(Object::null_object()); // Make room for the result. |
| __ pushl(kLengthReg); |
| __ pushl(kElemTypeReg); |
| compiler->GenerateRuntimeCall(token_pos(), deopt_id(), |
| kAllocateArrayRuntimeEntry, 2, locs()); |
| __ Drop(2); |
| __ popl(kResultReg); |
| __ Bind(&done); |
| return; |
| } |
| } |
| |
| __ Bind(&slow_path); |
| compiler->GenerateCallWithDeopt(token_pos(), deopt_id(), |
| StubCode::AllocateArray(), |
| RawPcDescriptors::kOther, locs()); |
| __ Bind(&done); |
| ASSERT(locs()->out(0).reg() == kResultReg); |
| } |
| |
| LocationSummary* LoadFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = |
| (IsUnboxedLoad() && opt) ? 1 : ((IsPotentialUnboxedLoad()) ? 2 : 0); |
| |
| LocationSummary* locs = new (zone) LocationSummary( |
| zone, kNumInputs, kNumTemps, |
| (opt && !IsPotentialUnboxedLoad()) ? LocationSummary::kNoCall |
| : LocationSummary::kCallOnSlowPath); |
| |
| locs->set_in(0, Location::RequiresRegister()); |
| |
| if (IsUnboxedLoad() && opt) { |
| locs->set_temp(0, Location::RequiresRegister()); |
| } else if (IsPotentialUnboxedLoad()) { |
| locs->set_temp(0, opt ? Location::RequiresFpuRegister() |
| : Location::FpuRegisterLocation(XMM1)); |
| locs->set_temp(1, Location::RequiresRegister()); |
| } |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| |
| void LoadFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(sizeof(classid_t) == kInt16Size); |
| |
| Register instance_reg = locs()->in(0).reg(); |
| if (IsUnboxedLoad() && compiler->is_optimizing()) { |
| XmmRegister result = locs()->out(0).fpu_reg(); |
| Register temp = locs()->temp(0).reg(); |
| __ movl(temp, FieldAddress(instance_reg, OffsetInBytes())); |
| const intptr_t cid = slot().field().UnboxedFieldCid(); |
| switch (cid) { |
| case kDoubleCid: |
| __ Comment("UnboxedDoubleLoadFieldInstr"); |
| __ movsd(result, FieldAddress(temp, Double::value_offset())); |
| break; |
| case kFloat32x4Cid: |
| __ Comment("UnboxedFloat32x4LoadFieldInstr"); |
| __ movups(result, FieldAddress(temp, Float32x4::value_offset())); |
| break; |
| case kFloat64x2Cid: |
| __ Comment("UnboxedFloat64x2LoadFieldInstr"); |
| __ movups(result, FieldAddress(temp, Float64x2::value_offset())); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return; |
| } |
| |
| Label done; |
| Register result = locs()->out(0).reg(); |
| if (IsPotentialUnboxedLoad()) { |
| Register temp = locs()->temp(1).reg(); |
| XmmRegister value = locs()->temp(0).fpu_reg(); |
| |
| Label load_pointer; |
| Label load_double; |
| Label load_float32x4; |
| Label load_float64x2; |
| |
| __ LoadObject(result, Field::ZoneHandle(slot().field().Original())); |
| |
| FieldAddress field_cid_operand(result, Field::guarded_cid_offset()); |
| FieldAddress field_nullability_operand(result, Field::is_nullable_offset()); |
| |
| __ cmpw(field_nullability_operand, Immediate(kNullCid)); |
| __ j(EQUAL, &load_pointer); |
| |
| __ cmpw(field_cid_operand, Immediate(kDoubleCid)); |
| __ j(EQUAL, &load_double); |
| |
| __ cmpw(field_cid_operand, Immediate(kFloat32x4Cid)); |
| __ j(EQUAL, &load_float32x4); |
| |
| __ cmpw(field_cid_operand, Immediate(kFloat64x2Cid)); |
| __ j(EQUAL, &load_float64x2); |
| |
| // Fall through. |
| __ jmp(&load_pointer); |
| |
| if (!compiler->is_optimizing()) { |
| locs()->live_registers()->Add(locs()->in(0)); |
| } |
| |
| { |
| __ Bind(&load_double); |
| BoxAllocationSlowPath::Allocate(compiler, this, compiler->double_class(), |
| result, temp); |
| __ movl(temp, FieldAddress(instance_reg, OffsetInBytes())); |
| __ movsd(value, FieldAddress(temp, Double::value_offset())); |
| __ movsd(FieldAddress(result, Double::value_offset()), value); |
| __ jmp(&done); |
| } |
| |
| { |
| __ Bind(&load_float32x4); |
| BoxAllocationSlowPath::Allocate( |
| compiler, this, compiler->float32x4_class(), result, temp); |
| __ movl(temp, FieldAddress(instance_reg, OffsetInBytes())); |
| __ movups(value, FieldAddress(temp, Float32x4::value_offset())); |
| __ movups(FieldAddress(result, Float32x4::value_offset()), value); |
| __ jmp(&done); |
| } |
| |
| { |
| __ Bind(&load_float64x2); |
| BoxAllocationSlowPath::Allocate( |
| compiler, this, compiler->float64x2_class(), result, temp); |
| __ movl(temp, FieldAddress(instance_reg, OffsetInBytes())); |
| __ movups( |