blob: 1b5b2c3ccebc2698d80190be8148a01b3a655360 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM64.
#if defined(TARGET_ARCH_ARM64) && !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/compiler/backend/il.h"
#include "vm/compiler/backend/flow_graph.h"
#include "vm/compiler/backend/flow_graph_compiler.h"
#include "vm/compiler/backend/locations.h"
#include "vm/compiler/backend/locations_helpers.h"
#include "vm/compiler/backend/range_analysis.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/dart_entry.h"
#include "vm/instructions.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/simulator.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#include "vm/type_testing_stubs.h"
#define __ compiler->assembler()->
#define Z (compiler->zone())
namespace dart {
// Generic summary for call instructions that have all arguments pushed
// on the stack and return the result in a fixed register R0.
LocationSummary* Instruction::MakeCallSummary(Zone* zone) {
LocationSummary* result =
new (zone) LocationSummary(zone, 0, 0, LocationSummary::kCall);
result->set_out(0, Location::RegisterLocation(R0));
return result;
}
DEFINE_BACKEND(LoadIndexedUnsafe, (Register out, Register index)) {
ASSERT(instr->RequiredInputRepresentation(0) == kTagged); // It is a Smi.
__ add(out, instr->base_reg(), Operand(index, LSL, 2));
__ ldr(out, Address(out, instr->offset()));
ASSERT(kSmiTag == 0);
ASSERT(kSmiTagSize == 1);
}
DEFINE_BACKEND(StoreIndexedUnsafe,
(NoLocation, Register index, Register value)) {
ASSERT(instr->RequiredInputRepresentation(
StoreIndexedUnsafeInstr::kIndexPos) == kTagged); // It is a Smi.
__ add(TMP, instr->base_reg(), Operand(index, LSL, 2));
__ str(value, Address(TMP, instr->offset()));
ASSERT(kSmiTag == 0);
ASSERT(kSmiTagSize == 1);
}
DEFINE_BACKEND(TailCall,
(NoLocation,
Fixed<Register, ARGS_DESC_REG>,
Temp<Register> temp)) {
__ LoadObject(CODE_REG, instr->code());
__ LeaveDartFrame(); // The arguments are still on the stack.
__ ldr(temp, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ br(temp);
// Even though the TailCallInstr will be the last instruction in a basic
// block, the flow graph compiler will emit native code for other blocks after
// the one containing this instruction and needs to be able to use the pool.
// (The `LeaveDartFrame` above disables usages of the pool.)
__ set_constant_pool_allowed(true);
}
LocationSummary* PushArgumentInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, LocationAnyOrConstant(value()));
return locs;
}
void PushArgumentInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// In SSA mode, we need an explicit push. Nothing to do in non-SSA mode
// where PushArgument is handled by BindInstr::EmitNativeCode.
if (compiler->is_optimizing()) {
Location value = locs()->in(0);
if (value.IsRegister()) {
__ Push(value.reg());
} else if (value.IsConstant()) {
__ PushObject(value.constant());
} else {
ASSERT(value.IsStackSlot());
const intptr_t value_offset = value.ToStackSlotOffset();
__ LoadFromOffset(TMP, value.base_reg(), value_offset);
__ Push(TMP);
}
}
}
LocationSummary* ReturnInstr::MakeLocationSummary(Zone* zone, bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterLocation(R0));
return locs;
}
// Attempt optimized compilation at return instruction instead of at the entry.
// The entry needs to be patchable, no inlined objects are allowed in the area
// that will be overwritten by the patch instructions: a branch macro sequence.
void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result = locs()->in(0).reg();
ASSERT(result == R0);
if (compiler->intrinsic_mode()) {
// Intrinsics don't have a frame.
__ ret();
return;
}
#if defined(DEBUG)
Label stack_ok;
__ Comment("Stack Check");
const intptr_t fp_sp_dist =
(compiler::target::frame_layout.first_local_from_fp + 1 -
compiler->StackSize()) *
kWordSize;
ASSERT(fp_sp_dist <= 0);
__ sub(R2, SP, Operand(FP));
__ CompareImmediate(R2, fp_sp_dist);
__ b(&stack_ok, EQ);
__ brk(0);
__ Bind(&stack_ok);
#endif
ASSERT(__ constant_pool_allowed());
__ LeaveDartFrame(); // Disallows constant pool use.
__ ret();
// This ReturnInstr may be emitted out of order by the optimizer. The next
// block may be a target expecting a properly set constant pool pointer.
__ set_constant_pool_allowed(true);
}
static Condition NegateCondition(Condition condition) {
switch (condition) {
case EQ:
return NE;
case NE:
return EQ;
case LT:
return GE;
case LE:
return GT;
case GT:
return LE;
case GE:
return LT;
case CC:
return CS;
case LS:
return HI;
case HI:
return LS;
case CS:
return CC;
case VS:
return VC;
case VC:
return VS;
default:
UNREACHABLE();
return EQ;
}
}
// Detect pattern when one value is zero and another is a power of 2.
static bool IsPowerOfTwoKind(intptr_t v1, intptr_t v2) {
return (Utils::IsPowerOfTwo(v1) && (v2 == 0)) ||
(Utils::IsPowerOfTwo(v2) && (v1 == 0));
}
LocationSummary* IfThenElseInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
comparison()->InitializeLocationSummary(zone, opt);
return comparison()->locs();
}
void IfThenElseInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result = locs()->out(0).reg();
Location left = locs()->in(0);
Location right = locs()->in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
// Emit comparison code. This must not overwrite the result register.
// IfThenElseInstr::Supports() should prevent EmitComparisonCode from using
// the labels or returning an invalid condition.
BranchLabels labels = {NULL, NULL, NULL};
Condition true_condition = comparison()->EmitComparisonCode(compiler, labels);
ASSERT(true_condition != kInvalidCondition);
const bool is_power_of_two_kind = IsPowerOfTwoKind(if_true_, if_false_);
intptr_t true_value = if_true_;
intptr_t false_value = if_false_;
if (is_power_of_two_kind) {
if (true_value == 0) {
// We need to have zero in result on true_condition.
true_condition = NegateCondition(true_condition);
}
} else {
if (true_value == 0) {
// Swap values so that false_value is zero.
intptr_t temp = true_value;
true_value = false_value;
false_value = temp;
} else {
true_condition = NegateCondition(true_condition);
}
}
__ cset(result, true_condition);
if (is_power_of_two_kind) {
const intptr_t shift =
Utils::ShiftForPowerOfTwo(Utils::Maximum(true_value, false_value));
__ LslImmediate(result, result, shift + kSmiTagSize);
} else {
__ sub(result, result, Operand(1));
const int64_t val = Smi::RawValue(true_value) - Smi::RawValue(false_value);
__ AndImmediate(result, result, val);
if (false_value != 0) {
__ AddImmediate(result, Smi::RawValue(false_value));
}
}
}
LocationSummary* ClosureCallInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R0)); // Function.
summary->set_out(0, Location::RegisterLocation(R0));
return summary;
}
void ClosureCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Load arguments descriptor in R4.
const intptr_t argument_count = ArgumentCount(); // Includes type args.
const Array& arguments_descriptor =
Array::ZoneHandle(Z, GetArgumentsDescriptor());
__ LoadObject(R4, arguments_descriptor);
// R4: Arguments descriptor.
// R0: Function.
ASSERT(locs()->in(0).reg() == R0);
__ LoadFieldFromOffset(CODE_REG, R0, Function::code_offset());
__ LoadFieldFromOffset(R2, R0, Function::entry_point_offset());
// R2: instructions.
// R5: Smi 0 (no IC data; the lazy-compile stub expects a GC-safe value).
__ LoadImmediate(R5, 0);
//??
__ blr(R2);
compiler->EmitCallsiteMetadata(token_pos(), deopt_id(),
RawPcDescriptors::kOther, locs());
__ Drop(argument_count);
}
LocationSummary* LoadLocalInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone, 0, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result = locs()->out(0).reg();
__ LoadFromOffset(result, FP,
compiler::target::FrameOffsetInBytesForVariable(&local()));
}
LocationSummary* StoreLocalInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone, 1, Location::SameAsFirstInput(),
LocationSummary::kNoCall);
}
void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
ASSERT(result == value); // Assert that register assignment is correct.
__ StoreToOffset(value, FP,
compiler::target::FrameOffsetInBytesForVariable(&local()));
}
LocationSummary* ConstantInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone, 0, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The register allocator drops constant definitions that have no uses.
if (!locs()->out(0).IsInvalid()) {
const Register result = locs()->out(0).reg();
__ LoadObject(result, value());
}
}
void ConstantInstr::EmitMoveToLocation(FlowGraphCompiler* compiler,
const Location& destination,
Register tmp) {
if (destination.IsRegister()) {
if (representation() == kUnboxedInt32 ||
representation() == kUnboxedInt64) {
const int64_t value = Integer::Cast(value_).AsInt64Value();
__ LoadImmediate(destination.reg(), value);
} else {
ASSERT(representation() == kTagged);
__ LoadObject(destination.reg(), value_);
}
} else if (destination.IsFpuRegister()) {
const VRegister dst = destination.fpu_reg();
if (Utils::DoublesBitEqual(Double::Cast(value_).value(), 0.0)) {
__ veor(dst, dst, dst);
} else {
__ LoadDImmediate(dst, Double::Cast(value_).value());
}
} else if (destination.IsDoubleStackSlot()) {
if (Utils::DoublesBitEqual(Double::Cast(value_).value(), 0.0)) {
__ veor(VTMP, VTMP, VTMP);
} else {
__ LoadDImmediate(VTMP, Double::Cast(value_).value());
}
const intptr_t dest_offset = destination.ToStackSlotOffset();
__ StoreDToOffset(VTMP, destination.base_reg(), dest_offset);
} else {
ASSERT(destination.IsStackSlot());
ASSERT(tmp != kNoRegister);
const intptr_t dest_offset = destination.ToStackSlotOffset();
if (representation() == kUnboxedInt32 ||
representation() == kUnboxedInt64) {
const int64_t value = Integer::Cast(value_).AsInt64Value();
__ LoadImmediate(tmp, value);
} else {
ASSERT(representation() == kTagged);
__ LoadObject(tmp, value_);
}
__ StoreToOffset(tmp, destination.base_reg(), dest_offset);
}
}
LocationSummary* UnboxedConstantInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = IsUnboxedSignedIntegerConstant() ? 0 : 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
switch (representation()) {
case kUnboxedDouble:
locs->set_out(0, Location::RequiresFpuRegister());
locs->set_temp(0, Location::RequiresRegister());
break;
case kUnboxedInt32:
case kUnboxedInt64:
locs->set_out(0, Location::RequiresRegister());
break;
default:
UNREACHABLE();
break;
}
return locs;
}
void UnboxedConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (!locs()->out(0).IsInvalid()) {
const Register scratch =
IsUnboxedSignedIntegerConstant() ? kNoRegister : locs()->temp(0).reg();
EmitMoveToLocation(compiler, locs()->out(0), scratch);
}
}
LocationSummary* AssertAssignableInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
// When using a type testing stub, we want to prevent spilling of the
// function/instantiator type argument vectors, since stub preserves them. So
// we make this a `kNoCall` summary, even though most other registers can be
// modified by the stub. To tell the register allocator about it, we reserve
// all the other registers as temporary registers.
// TODO(http://dartbug.com/32788): Simplify this.
const Register kInstanceReg = R0;
const Register kInstantiatorTypeArgumentsReg = R1;
const Register kFunctionTypeArgumentsReg = R2;
const bool using_stub =
FlowGraphCompiler::ShouldUseTypeTestingStubFor(opt, dst_type());
const intptr_t kNonChangeableInputRegs =
(1 << kInstanceReg) | (1 << kInstantiatorTypeArgumentsReg) |
(1 << kFunctionTypeArgumentsReg);
const intptr_t kNumInputs = 3;
// We invoke a stub that can potentially clobber any CPU register
// but can only clobber FPU registers on the slow path when
// entering runtime. ARM64 ABI only guarantees that lower
// 64-bits of an V registers are preserved so we block all
// of them except for FpuTMP.
const intptr_t kCpuRegistersToPreserve =
kDartAvailableCpuRegs & ~kNonChangeableInputRegs;
const intptr_t kFpuRegistersToPreserve =
Utils::SignedNBitMask(kNumberOfFpuRegisters) & ~(1l << FpuTMP);
const intptr_t kNumTemps =
using_stub ? (Utils::CountOneBits64(kCpuRegistersToPreserve) +
Utils::CountOneBits64(kFpuRegistersToPreserve))
: 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps,
using_stub ? LocationSummary::kCallCalleeSafe : LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(kInstanceReg)); // Value.
summary->set_in(1,
Location::RegisterLocation(
kInstantiatorTypeArgumentsReg)); // Instant. type args.
summary->set_in(2, Location::RegisterLocation(
kFunctionTypeArgumentsReg)); // Function type args.
// TODO(http://dartbug.com/32787): Use Location::SameAsFirstInput() instead,
// once register allocator no longer hits assertion.
summary->set_out(0, Location::RegisterLocation(kInstanceReg));
if (using_stub) {
// Let's reserve all registers except for the input ones.
intptr_t next_temp = 0;
for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) {
const bool should_preserve = ((1 << i) & kCpuRegistersToPreserve) != 0;
if (should_preserve) {
summary->set_temp(next_temp++,
Location::RegisterLocation(static_cast<Register>(i)));
}
}
for (intptr_t i = 0; i < kNumberOfFpuRegisters; i++) {
const bool should_preserve = ((1l << i) & kFpuRegistersToPreserve) != 0;
if (should_preserve) {
summary->set_temp(next_temp++, Location::FpuRegisterLocation(
static_cast<FpuRegister>(i)));
}
}
}
return summary;
}
LocationSummary* AssertSubtypeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R1)); // Instant. type args.
summary->set_in(1, Location::RegisterLocation(R2)); // Function type args.
return summary;
}
LocationSummary* AssertBooleanInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R0));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
static void EmitAssertBoolean(Register reg,
TokenPosition token_pos,
intptr_t deopt_id,
LocationSummary* locs,
FlowGraphCompiler* compiler) {
// Check that the type of the value is allowed in conditional context.
// Call the runtime if the object is not bool::true or bool::false.
ASSERT(locs->always_calls());
Label done;
__ CompareObject(reg, Object::null_instance());
__ b(&done, NE);
__ Push(reg); // Push the source object.
compiler->GenerateRuntimeCall(token_pos, deopt_id,
kNonBoolTypeErrorRuntimeEntry, 1, locs);
// We should never return here.
__ brk(0);
__ Bind(&done);
}
void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register obj = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
EmitAssertBoolean(obj, token_pos(), deopt_id(), locs(), compiler);
ASSERT(obj == result);
}
static Condition TokenKindToSmiCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ:
return EQ;
case Token::kNE:
return NE;
case Token::kLT:
return LT;
case Token::kGT:
return GT;
case Token::kLTE:
return LE;
case Token::kGTE:
return GE;
default:
UNREACHABLE();
return VS;
}
}
static Condition FlipCondition(Condition condition) {
switch (condition) {
case EQ:
return EQ;
case NE:
return NE;
case LT:
return GT;
case LE:
return GE;
case GT:
return LT;
case GE:
return LE;
case CC:
return HI;
case LS:
return CS;
case HI:
return CC;
case CS:
return LS;
default:
UNREACHABLE();
return EQ;
}
}
static void EmitBranchOnCondition(FlowGraphCompiler* compiler,
Condition true_condition,
BranchLabels labels) {
if (labels.fall_through == labels.false_label) {
// If the next block is the false successor we will fall through to it.
__ b(labels.true_label, true_condition);
} else {
// If the next block is not the false successor we will branch to it.
Condition false_condition = NegateCondition(true_condition);
__ b(labels.false_label, false_condition);
// Fall through or jump to the true successor.
if (labels.fall_through != labels.true_label) {
__ b(labels.true_label);
}
}
}
static Condition EmitInt64ComparisonOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind) {
Location left = locs->in(0);
Location right = locs->in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
Condition true_condition = TokenKindToSmiCondition(kind);
if (left.IsConstant() || right.IsConstant()) {
// Ensure constant is on the right.
ConstantInstr* right_constant = NULL;
if (left.IsConstant()) {
right_constant = left.constant_instruction();
Location tmp = right;
right = left;
left = tmp;
true_condition = FlipCondition(true_condition);
} else {
right_constant = right.constant_instruction();
}
if (right_constant->IsUnboxedSignedIntegerConstant()) {
__ CompareImmediate(
left.reg(), right_constant->GetUnboxedSignedIntegerConstantValue());
} else {
ASSERT(right_constant->representation() == kTagged);
__ CompareObject(left.reg(), right.constant());
}
} else {
__ CompareRegisters(left.reg(), right.reg());
}
return true_condition;
}
LocationSummary* EqualityCompareInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
if (operation_cid() == kDoubleCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_out(0, Location::RequiresRegister());
return locs;
}
if (operation_cid() == kSmiCid || operation_cid() == kMintCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, LocationRegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
// Only right can be a stack slot.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: LocationRegisterOrConstant(right()));
locs->set_out(0, Location::RequiresRegister());
return locs;
}
UNREACHABLE();
return NULL;
}
static Condition TokenKindToDoubleCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ:
return EQ;
case Token::kNE:
return NE;
case Token::kLT:
return LT;
case Token::kGT:
return GT;
case Token::kLTE:
return LE;
case Token::kGTE:
return GE;
default:
UNREACHABLE();
return VS;
}
}
static Condition EmitDoubleComparisonOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
BranchLabels labels,
Token::Kind kind) {
const VRegister left = locs->in(0).fpu_reg();
const VRegister right = locs->in(1).fpu_reg();
__ fcmpd(left, right);
Condition true_condition = TokenKindToDoubleCondition(kind);
if (true_condition != NE) {
// Special case for NaN comparison. Result is always false unless
// relational operator is !=.
__ b(labels.false_label, VS);
}
return true_condition;
}
Condition EqualityCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if (operation_cid() == kSmiCid || operation_cid() == kMintCid) {
return EmitInt64ComparisonOp(compiler, locs(), kind());
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, locs(), labels, kind());
}
}
LocationSummary* TestSmiInstr::MakeLocationSummary(Zone* zone, bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
locs->set_in(1, LocationRegisterOrConstant(right()));
return locs;
}
Condition TestSmiInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
const Register left = locs()->in(0).reg();
Location right = locs()->in(1);
if (right.IsConstant()) {
ASSERT(right.constant().IsSmi());
const int64_t imm = reinterpret_cast<int64_t>(right.constant().raw());
__ TestImmediate(left, imm);
} else {
__ tst(left, Operand(right.reg()));
}
Condition true_condition = (kind() == Token::kNE) ? NE : EQ;
return true_condition;
}
LocationSummary* TestCidsInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(0, Location::RequiresRegister());
return locs;
}
Condition TestCidsInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
ASSERT((kind() == Token::kIS) || (kind() == Token::kISNOT));
const Register val_reg = locs()->in(0).reg();
const Register cid_reg = locs()->temp(0).reg();
Label* deopt = CanDeoptimize() ? compiler->AddDeoptStub(
deopt_id(), ICData::kDeoptTestCids,
licm_hoisted_ ? ICData::kHoisted : 0)
: NULL;
const intptr_t true_result = (kind() == Token::kIS) ? 1 : 0;
const ZoneGrowableArray<intptr_t>& data = cid_results();
ASSERT(data[0] == kSmiCid);
bool result = data[1] == true_result;
__ BranchIfSmi(val_reg, result ? labels.true_label : labels.false_label);
__ LoadClassId(cid_reg, val_reg);
for (intptr_t i = 2; i < data.length(); i += 2) {
const intptr_t test_cid = data[i];
ASSERT(test_cid != kSmiCid);
result = data[i + 1] == true_result;
__ CompareImmediate(cid_reg, test_cid);
__ b(result ? labels.true_label : labels.false_label, EQ);
}
// No match found, deoptimize or default action.
if (deopt == NULL) {
// If the cid is not in the list, jump to the opposite label from the cids
// that are in the list. These must be all the same (see asserts in the
// constructor).
Label* target = result ? labels.false_label : labels.true_label;
if (target != labels.fall_through) {
__ b(target);
}
} else {
__ b(deopt);
}
// Dummy result as this method already did the jump, there's no need
// for the caller to branch on a condition.
return kInvalidCondition;
}
LocationSummary* RelationalOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (operation_cid() == kDoubleCid) {
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
if (operation_cid() == kSmiCid || operation_cid() == kMintCid) {
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, LocationRegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
summary->set_in(1, summary->in(0).IsConstant()
? Location::RequiresRegister()
: LocationRegisterOrConstant(right()));
summary->set_out(0, Location::RequiresRegister());
return summary;
}
UNREACHABLE();
return NULL;
}
Condition RelationalOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if (operation_cid() == kSmiCid || operation_cid() == kMintCid) {
return EmitInt64ComparisonOp(compiler, locs(), kind());
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, locs(), labels, kind());
}
}
LocationSummary* NativeCallInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return MakeCallSummary(zone);
}
void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
SetupNative();
const Register result = locs()->out(0).reg();
// All arguments are already @SP due to preceding PushArgument()s.
ASSERT(ArgumentCount() ==
function().NumParameters() + (function().IsGeneric() ? 1 : 0));
// Push the result place holder initialized to NULL.
__ PushObject(Object::null_object());
// Pass a pointer to the first argument in R2.
__ AddImmediate(R2, SP, ArgumentCount() * kWordSize);
// Compute the effective address. When running under the simulator,
// this is a redirection address that forces the simulator to call
// into the runtime system.
uword entry;
const intptr_t argc_tag = NativeArguments::ComputeArgcTag(function());
const Code* stub;
if (link_lazily()) {
stub = &StubCode::CallBootstrapNative();
entry = NativeEntry::LinkNativeCallEntry();
} else {
entry = reinterpret_cast<uword>(native_c_function());
if (is_bootstrap_native()) {
stub = &StubCode::CallBootstrapNative();
#if defined(USING_SIMULATOR)
entry = Simulator::RedirectExternalReference(
entry, Simulator::kBootstrapNativeCall, NativeEntry::kNumArguments);
#endif
} else if (is_auto_scope()) {
// In the case of non bootstrap native methods the CallNativeCFunction
// stub generates the redirection address when running under the simulator
// and hence we do not change 'entry' here.
stub = &StubCode::CallAutoScopeNative();
} else {
// In the case of non bootstrap native methods the CallNativeCFunction
// stub generates the redirection address when running under the simulator
// and hence we do not change 'entry' here.
stub = &StubCode::CallNoScopeNative();
}
}
__ LoadImmediate(R1, argc_tag);
ExternalLabel label(entry);
__ LoadNativeEntry(R5, &label,
link_lazily() ? ObjectPool::Patchability::kPatchable
: ObjectPool::Patchability::kNotPatchable);
if (link_lazily()) {
compiler->GeneratePatchableCall(token_pos(), *stub,
RawPcDescriptors::kOther, locs());
} else {
compiler->GenerateCall(token_pos(), *stub, RawPcDescriptors::kOther,
locs());
}
__ Pop(result);
__ Drop(ArgumentCount()); // Drop the arguments.
}
void FfiCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register saved_fp = locs()->temp(0).reg();
Register temp = locs()->temp(1).reg();
Register branch = locs()->in(TargetAddressIndex()).reg();
// Save frame pointer because we're going to update it when we enter the exit
// frame.
__ mov(saved_fp, FPREG);
// We need to create a dummy "exit frame". It will share the same pool pointer
// but have a null code object.
__ LoadObject(CODE_REG, Object::null_object());
__ set_constant_pool_allowed(false);
__ EnterDartFrame(0, PP);
// Save the stack limit address.
__ PushRegister(CSP);
// Make space for arguments and align the frame.
__ ReserveAlignedFrameSpace(compiler::ffi::NumStackSlots(arg_locations_) *
kWordSize);
FrameRebase rebase(/*old_base=*/FPREG, /*new_base=*/saved_fp,
/*stack_delta=*/0);
for (intptr_t i = 0, n = NativeArgCount(); i < n; ++i) {
const Location origin = rebase.Rebase(locs()->in(i));
const Location target = arg_locations_[i];
ConstantTemporaryAllocator temp_alloc(temp);
compiler->EmitMove(target, origin, &temp_alloc);
}
// We need to copy a dummy return address up into the dummy stack frame so the
// stack walker will know which safepoint to use.
__ adr(temp, Immediate(0));
compiler->EmitCallsiteMetadata(token_pos(), DeoptId::kNone,
RawPcDescriptors::Kind::kOther, locs());
__ StoreToOffset(temp, FPREG, kSavedCallerPcSlotFromFp * kWordSize);
// We are entering runtime code, so the C stack pointer must be restored from
// the stack limit to the top of the stack.
__ mov(CSP, SP);
// Update information in the thread object and enter a safepoint.
__ TransitionGeneratedToNative(branch, FPREG, temp);
__ blr(branch);
// Update information in the thread object and leave the safepoint.
__ TransitionNativeToGenerated(temp);
// Restore the Dart stack pointer and the saved C stack pointer.
__ mov(SP, CSP);
__ LoadFromOffset(CSP, FPREG, kFirstLocalSlotFromFp * kWordSize);
// Refresh write barrier mask.
__ ldr(BARRIER_MASK,
Address(THR, compiler::target::Thread::write_barrier_mask_offset()));
// Although PP is a callee-saved register, it may have been moved by the GC.
__ LeaveDartFrame(compiler::kRestoreCallerPP);
// Restore the global object pool after returning from runtime (old space is
// moving, so the GOP could have been relocated).
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
__ ldr(PP, Address(THR, Thread::global_object_pool_offset()));
__ sub(PP, PP, Operand(kHeapObjectTag)); // Pool in PP is untagged!
}
__ set_constant_pool_allowed(true);
}
void NativeReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ LeaveDartFrame();
// The dummy return address is in LR, no need to pop it as on Intel.
// These can be anything besides the return register (R0) and THR (R26).
const Register vm_tag_reg = R1, old_exit_frame_reg = R2, tmp = R3;
__ Pop(old_exit_frame_reg);
// Restore top_resource.
__ Pop(tmp);
__ StoreToOffset(tmp, THR, compiler::target::Thread::top_resource_offset());
__ Pop(vm_tag_reg);
// Reset the exit frame info to
// old_exit_frame_reg *before* entering the safepoint.
__ TransitionGeneratedToNative(vm_tag_reg, old_exit_frame_reg, tmp);
__ PopNativeCalleeSavedRegisters();
// Leave the entry frame.
__ LeaveFrame();
// Leave the dummy frame holding the pushed arguments.
__ LeaveFrame();
// Restore the actual stack pointer from SPREG.
__ RestoreCSP();
__ Ret();
// For following blocks.
__ set_constant_pool_allowed(true);
}
void NativeEntryInstr::SaveArgument(FlowGraphCompiler* compiler,
Location loc) const {
ASSERT(!loc.IsPairLocation());
if (loc.HasStackIndex()) return;
if (loc.IsRegister()) {
__ Push(loc.reg());
} else if (loc.IsFpuRegister()) {
__ PushDouble(loc.fpu_reg());
} else {
UNREACHABLE();
}
}
void NativeEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (FLAG_precompiled_mode) {
UNREACHABLE();
}
// Constant pool cannot be used until we enter the actual Dart frame.
__ set_constant_pool_allowed(false);
__ Bind(compiler->GetJumpLabel(this));
// We don't use the regular stack pointer in ARM64, so we have to copy the
// native stack pointer into the Dart stack pointer.
__ SetupDartSP();
// Create a dummy frame holding the pushed arguments. This simplifies
// NativeReturnInstr::EmitNativeCode.
__ EnterFrame(0);
// Save the argument registers, in reverse order.
for (intptr_t i = argument_locations_->length(); i-- > 0;) {
SaveArgument(compiler, argument_locations_->At(i));
}
// Enter the entry frame.
__ EnterFrame(0);
// Save a space for the code object.
__ PushImmediate(0);
__ PushNativeCalleeSavedRegisters();
// Load the thread object.
// TODO(35765): Fix linking issue on AOT.
// TOOD(35934): Exclude native callbacks from snapshots.
//
// Create another frame to align the frame before continuing in "native" code.
{
__ EnterFrame(0);
__ ReserveAlignedFrameSpace(0);
__ LoadImmediate(
R0, reinterpret_cast<int64_t>(DLRT_GetThreadForNativeCallback));
__ blr(R0);
__ mov(THR, R0);
__ LeaveFrame();
}
// Refresh write barrier mask.
__ ldr(BARRIER_MASK,
Address(THR, compiler::target::Thread::write_barrier_mask_offset()));
// Save the current VMTag on the stack.
__ LoadFromOffset(R0, THR, compiler::target::Thread::vm_tag_offset());
__ Push(R0);
// Save the top resource.
__ LoadFromOffset(R0, THR, compiler::target::Thread::top_resource_offset());
__ Push(R0);
__ StoreToOffset(ZR, THR, compiler::target::Thread::top_resource_offset());
// Save the top exit frame info. We don't set it to 0 yet in Thread because we
// need to leave the safepoint first.
__ LoadFromOffset(R0, THR,
compiler::target::Thread::top_exit_frame_info_offset());
__ Push(R0);
// In debug mode, verify that we've pushed the top exit frame info at the
// correct offset from FP.
__ EmitEntryFrameVerification();
// TransitionNativeToGenerated will reset top exit frame info to 0 *after*
// leaving the safepoint.
__ TransitionNativeToGenerated(R0);
// Now that the safepoint has ended, we can touch Dart objects without
// handles.
// Otherwise we'll clobber the argument sent from the caller.
ASSERT(CallingConventions::ArgumentRegisters[0] != TMP &&
CallingConventions::ArgumentRegisters[0] != TMP2 &&
CallingConventions::ArgumentRegisters[0] != R1);
__ LoadImmediate(CallingConventions::ArgumentRegisters[0], callback_id_);
__ LoadFromOffset(R1, THR,
compiler::target::Thread::verify_callback_entry_offset());
__ blr(R1);
// Load the code object.
__ LoadFromOffset(R0, THR, compiler::target::Thread::callback_code_offset());
__ LoadFieldFromOffset(R0, R0,
compiler::target::GrowableObjectArray::data_offset());
__ LoadFieldFromOffset(CODE_REG, R0,
compiler::target::Array::data_offset() +
callback_id_ * compiler::target::kWordSize);
// Put the code object in the reserved slot.
__ StoreToOffset(CODE_REG, FPREG,
kPcMarkerSlotFromFp * compiler::target::kWordSize);
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
__ ldr(PP,
Address(THR, compiler::target::Thread::global_object_pool_offset()));
__ sub(PP, PP, Operand(kHeapObjectTag)); // Pool in PP is untagged!
} else {
// We now load the pool pointer (PP) with a GC safe value as we are about to
// invoke dart code. We don't need a real object pool here.
// Smi zero does not work because ARM64 assumes PP to be untagged.
__ LoadObject(PP, compiler::NullObject());
}
// Load a GC-safe value for the arguments descriptor (unused but tagged).
__ mov(ARGS_DESC_REG, ZR);
// Load a dummy return address which suggests that we are inside of
// InvokeDartCodeStub. This is how the stack walker detects an entry frame.
__ LoadFromOffset(LR, THR,
compiler::target::Thread::invoke_dart_code_stub_offset());
__ LoadFieldFromOffset(LR, LR, compiler::target::Code::entry_point_offset());
FunctionEntryInstr::EmitNativeCode(compiler);
}
LocationSummary* OneByteStringFromCharCodeInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
// TODO(fschneider): Allow immediate operands for the char code.
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void OneByteStringFromCharCodeInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
ASSERT(compiler->is_optimizing());
const Register char_code = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
__ ldr(result, Address(THR, Thread::predefined_symbols_address_offset()));
__ AddImmediate(result, Symbols::kNullCharCodeSymbolOffset * kWordSize);
__ SmiUntag(TMP, char_code); // Untag to use scaled address mode.
__ ldr(result, Address(result, TMP, UXTX, Address::Scaled));
}
LocationSummary* StringToCharCodeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void StringToCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(cid_ == kOneByteStringCid);
const Register str = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
__ LoadFieldFromOffset(result, str, String::length_offset());
__ ldr(TMP, FieldAddress(str, OneByteString::data_offset()), kUnsignedByte);
__ CompareImmediate(result, Smi::RawValue(1));
__ LoadImmediate(result, -1);
__ csel(result, TMP, result, EQ);
__ SmiTag(result);
}
LocationSummary* StringInterpolateInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R0));
summary->set_out(0, Location::RegisterLocation(R0));
return summary;
}
void StringInterpolateInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register array = locs()->in(0).reg();
__ Push(array);
const int kTypeArgsLen = 0;
const int kNumberOfArguments = 1;
const Array& kNoArgumentNames = Object::null_array();
ArgumentsInfo args_info(kTypeArgsLen, kNumberOfArguments, kNoArgumentNames);
compiler->GenerateStaticCall(deopt_id(), token_pos(), CallFunction(),
args_info, locs(), ICData::Handle(),
ICData::kStatic);
ASSERT(locs()->out(0).reg() == R0);
}
LocationSummary* LoadUntaggedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadUntaggedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register obj = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
if (object()->definition()->representation() == kUntagged) {
__ LoadFromOffset(result, obj, offset());
} else {
ASSERT(object()->definition()->representation() == kTagged);
__ LoadFieldFromOffset(result, obj, offset());
}
}
DEFINE_BACKEND(StoreUntagged, (NoLocation, Register obj, Register value)) {
__ StoreToOffset(value, obj, instr->offset_from_tagged());
}
LocationSummary* LoadClassIdInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register object = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
const AbstractType& value_type = *this->object()->Type()->ToAbstractType();
if (CompileType::Smi().IsAssignableTo(value_type) ||
value_type.IsTypeParameter()) {
__ LoadTaggedClassIdMayBeSmi(result, object);
} else {
__ LoadClassId(result, object);
__ SmiTag(result);
}
}
CompileType LoadIndexedInstr::ComputeType() const {
switch (class_id_) {
case kArrayCid:
case kImmutableArrayCid:
return CompileType::Dynamic();
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return CompileType::FromCid(kDoubleCid);
case kTypedDataFloat32x4ArrayCid:
return CompileType::FromCid(kFloat32x4Cid);
case kTypedDataInt32x4ArrayCid:
return CompileType::FromCid(kInt32x4Cid);
case kTypedDataFloat64x2ArrayCid:
return CompileType::FromCid(kFloat64x2Cid);
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kOneByteStringCid:
case kTwoByteStringCid:
case kExternalOneByteStringCid:
case kExternalTwoByteStringCid:
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
return CompileType::FromCid(kSmiCid);
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
return CompileType::Int();
default:
UNIMPLEMENTED();
return CompileType::Dynamic();
}
}
Representation LoadIndexedInstr::representation() const {
switch (class_id_) {
case kArrayCid:
case kImmutableArrayCid:
return kTagged;
case kOneByteStringCid:
case kTwoByteStringCid:
case kTypedDataInt8ArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kTypedDataUint16ArrayCid:
case kExternalOneByteStringCid:
case kExternalTwoByteStringCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
return kUnboxedIntPtr;
case kTypedDataInt32ArrayCid:
return kUnboxedInt32;
case kTypedDataUint32ArrayCid:
return kUnboxedUint32;
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
return kUnboxedInt64;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataInt32x4ArrayCid:
return kUnboxedInt32x4;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
case kTypedDataFloat64x2ArrayCid:
return kUnboxedFloat64x2;
default:
UNIMPLEMENTED();
return kTagged;
}
}
static bool CanBeImmediateIndex(Value* value, intptr_t cid, bool is_external) {
ConstantInstr* constant = value->definition()->AsConstant();
if ((constant == NULL) || !constant->value().IsSmi()) {
return false;
}
const int64_t index = Smi::Cast(constant->value()).AsInt64Value();
const intptr_t scale = Instance::ElementSizeFor(cid);
const int64_t offset =
index * scale +
(is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag));
if (!Utils::IsInt(32, offset)) {
return false;
}
return Address::CanHoldOffset(static_cast<int32_t>(offset), Address::Offset,
Address::OperandSizeFor(cid));
}
LocationSummary* LoadIndexedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = aligned() ? 0 : 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
if (CanBeImmediateIndex(index(), class_id(), IsExternal())) {
locs->set_in(1, Location::Constant(index()->definition()->AsConstant()));
} else {
locs->set_in(1, Location::RequiresRegister());
}
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4) ||
(representation() == kUnboxedFloat64x2)) {
locs->set_out(0, Location::RequiresFpuRegister());
} else {
locs->set_out(0, Location::RequiresRegister());
}
if (!aligned()) {
locs->set_temp(0, Location::RequiresRegister());
}
return locs;
}
void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The array register points to the backing store for external arrays.
const Register array = locs()->in(0).reg();
const Location index = locs()->in(1);
const Register address = aligned() ? kNoRegister : locs()->temp(0).reg();
Address element_address(TMP); // Bad address.
if (aligned()) {
element_address =
index.IsRegister()
? __ ElementAddressForRegIndex(true, // Load.
IsExternal(), class_id(),
index_scale(), array, index.reg())
: __ ElementAddressForIntIndex(IsExternal(), class_id(),
index_scale(), array,
Smi::Cast(index.constant()).Value());
// Warning: element_address may use register TMP as base.
} else {
if (index.IsRegister()) {
__ LoadElementAddressForRegIndex(address,
true, // Load.
IsExternal(), class_id(), index_scale(),
array, index.reg());
} else {
__ LoadElementAddressForIntIndex(address, IsExternal(), class_id(),
index_scale(), array,
Smi::Cast(index.constant()).Value());
}
}
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4) ||
(representation() == kUnboxedFloat64x2)) {
const VRegister result = locs()->out(0).fpu_reg();
switch (class_id()) {
case kTypedDataFloat32ArrayCid:
// Load single precision float.
if (aligned()) {
__ fldrs(result, element_address);
} else {
__ LoadUnaligned(TMP, address, TMP2, kUnsignedWord);
__ fmovsr(result, TMP);
}
break;
case kTypedDataFloat64ArrayCid:
// Load double precision float.
if (aligned()) {
__ fldrd(result, element_address);
} else {
__ LoadUnaligned(TMP, address, TMP2, kDoubleWord);
__ fmovdr(result, TMP);
}
break;
case kTypedDataFloat64x2ArrayCid:
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid:
ASSERT(aligned());
__ fldrq(result, element_address);
break;
default:
UNREACHABLE();
}
return;
}
const Register result = locs()->out(0).reg();
switch (class_id()) {
case kTypedDataInt32ArrayCid:
ASSERT(representation() == kUnboxedInt32);
if (aligned()) {
__ ldr(result, element_address, kWord);
} else {
__ LoadUnaligned(result, address, TMP, kWord);
}
break;
case kTypedDataUint32ArrayCid:
ASSERT(representation() == kUnboxedUint32);
if (aligned()) {
__ ldr(result, element_address, kUnsignedWord);
} else {
__ LoadUnaligned(result, address, TMP, kUnsignedWord);
}
break;
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
ASSERT(representation() == kUnboxedInt64);
if (aligned()) {
__ ldr(result, element_address, kDoubleWord);
} else {
__ LoadUnaligned(result, address, TMP, kDoubleWord);
}
break;
case kTypedDataInt8ArrayCid:
ASSERT(representation() == kUnboxedIntPtr);
ASSERT(index_scale() == 1);
__ ldr(result, element_address, kByte);
break;
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
case kExternalOneByteStringCid:
ASSERT(representation() == kUnboxedIntPtr);
ASSERT(index_scale() == 1);
__ ldr(result, element_address, kUnsignedByte);
break;
case kTypedDataInt16ArrayCid:
ASSERT(representation() == kUnboxedIntPtr);
if (aligned()) {
__ ldr(result, element_address, kHalfword);
} else {
__ LoadUnaligned(result, address, TMP, kHalfword);
}
break;
case kTypedDataUint16ArrayCid:
case kTwoByteStringCid:
case kExternalTwoByteStringCid:
ASSERT(representation() == kUnboxedIntPtr);
if (aligned()) {
__ ldr(result, element_address, kUnsignedHalfword);
} else {
__ LoadUnaligned(result, address, TMP, kUnsignedHalfword);
}
break;
default:
ASSERT(representation() == kTagged);
ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid));
ASSERT(aligned());
__ ldr(result, element_address);
break;
}
}
LocationSummary* LoadCodeUnitsInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void LoadCodeUnitsInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The string register points to the backing store for external strings.
const Register str = locs()->in(0).reg();
const Location index = locs()->in(1);
Address element_address = __ ElementAddressForRegIndex(
true, IsExternal(), class_id(), index_scale(), str, index.reg());
// Warning: element_address may use register TMP as base.
Register result = locs()->out(0).reg();
switch (class_id()) {
case kOneByteStringCid:
case kExternalOneByteStringCid:
switch (element_count()) {
case 1:
__ ldr(result, element_address, kUnsignedByte);
break;
case 2:
__ ldr(result, element_address, kUnsignedHalfword);
break;
case 4:
__ ldr(result, element_address, kUnsignedWord);
break;
default:
UNREACHABLE();
}
__ SmiTag(result);
break;
case kTwoByteStringCid:
case kExternalTwoByteStringCid:
switch (element_count()) {
case 1:
__ ldr(result, element_address, kUnsignedHalfword);
break;
case 2:
__ ldr(result, element_address, kUnsignedWord);
break;
default:
UNREACHABLE();
}
__ SmiTag(result);
break;
default:
UNREACHABLE();
break;
}
}
Representation StoreIndexedInstr::RequiredInputRepresentation(
intptr_t idx) const {
// Array can be a Dart object or a pointer to external data.
if (idx == 0) return kNoRepresentation; // Flexible input representation.
if (idx == 1) return kTagged; // Index is a smi.
ASSERT(idx == 2);
switch (class_id_) {
case kArrayCid:
return kTagged;
case kOneByteStringCid:
case kTypedDataInt8ArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kTypedDataUint16ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
return kUnboxedIntPtr;
case kTypedDataInt32ArrayCid:
return kUnboxedInt32;
case kTypedDataUint32ArrayCid:
return kUnboxedUint32;
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
return kUnboxedInt64;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
case kTypedDataInt32x4ArrayCid:
return kUnboxedInt32x4;
case kTypedDataFloat64x2ArrayCid:
return kUnboxedFloat64x2;
default:
UNREACHABLE();
return kTagged;
}
}
LocationSummary* StoreIndexedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = aligned() ? 1 : 2;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
if (CanBeImmediateIndex(index(), class_id(), IsExternal())) {
locs->set_in(1, Location::Constant(index()->definition()->AsConstant()));
} else {
locs->set_in(1, Location::WritableRegister());
}
for (intptr_t i = 0; i < kNumTemps; i++) {
locs->set_temp(i, Location::RequiresRegister());
}
switch (class_id()) {
case kArrayCid:
locs->set_in(2, ShouldEmitStoreBarrier()
? Location::RegisterLocation(kWriteBarrierValueReg)
: LocationRegisterOrConstant(value()));
if (ShouldEmitStoreBarrier()) {
locs->set_in(0, Location::RegisterLocation(kWriteBarrierObjectReg));
locs->set_temp(0, Location::RegisterLocation(kWriteBarrierSlotReg));
}
break;
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
locs->set_in(2, Location::RequiresRegister());
break;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid: // TODO(srdjan): Support Float64 constants.
locs->set_in(2, Location::RequiresFpuRegister());
break;
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid:
case kTypedDataFloat64x2ArrayCid:
locs->set_in(2, Location::RequiresFpuRegister());
break;
default:
UNREACHABLE();
return NULL;
}
return locs;
}
void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The array register points to the backing store for external arrays.
const Register array = locs()->in(0).reg();
const Location index = locs()->in(1);
const Register address = locs()->temp(0).reg();
const Register scratch = aligned() ? kNoRegister : locs()->temp(1).reg();
if (index.IsRegister()) {
__ LoadElementAddressForRegIndex(address,
false, // Store.
IsExternal(), class_id(), index_scale(),
array, index.reg());
} else {
__ LoadElementAddressForIntIndex(address, IsExternal(), class_id(),
index_scale(), array,
Smi::Cast(index.constant()).Value());
}
switch (class_id()) {
case kArrayCid:
ASSERT(aligned());
if (ShouldEmitStoreBarrier()) {
const Register value = locs()->in(2).reg();
__ StoreIntoArray(array, address, value, CanValueBeSmi(),
/*lr_reserved=*/!compiler->intrinsic_mode());
} else if (locs()->in(2).IsConstant()) {
const Object& constant = locs()->in(2).constant();
__ StoreIntoObjectNoBarrier(array, Address(address), constant);
} else {
const Register value = locs()->in(2).reg();
__ StoreIntoObjectNoBarrier(array, Address(address), value);
}
break;
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kOneByteStringCid: {
ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr);
ASSERT(aligned());
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
__ LoadImmediate(TMP, static_cast<int8_t>(constant.Value()));
__ str(TMP, Address(address), kUnsignedByte);
} else {
const Register value = locs()->in(2).reg();
__ str(value, Address(address), kUnsignedByte);
}
break;
}
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ClampedArrayCid: {
ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr);
ASSERT(aligned());
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
intptr_t value = constant.Value();
// Clamp to 0x0 or 0xFF respectively.
if (value > 0xFF) {
value = 0xFF;
} else if (value < 0) {
value = 0;
}
__ LoadImmediate(TMP, static_cast<int8_t>(value));
__ str(TMP, Address(address), kUnsignedByte);
} else {
const Register value = locs()->in(2).reg();
// Clamp to 0x00 or 0xFF respectively.
__ CompareImmediate(value, 0xFF);
__ csetm(TMP, GT); // TMP = value > 0xFF ? -1 : 0.
__ csel(TMP, value, TMP, LS); // TMP = value in range ? value : TMP.
__ str(TMP, Address(address), kUnsignedByte);
}
break;
}
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid: {
ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr);
const Register value = locs()->in(2).reg();
if (aligned()) {
__ str(value, Address(address), kUnsignedHalfword);
} else {
__ StoreUnaligned(value, address, scratch, kUnsignedHalfword);
}
break;
}
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid: {
const Register value = locs()->in(2).reg();
if (aligned()) {
__ str(value, Address(address), kUnsignedWord);
} else {
__ StoreUnaligned(value, address, scratch, kUnsignedWord);
}
break;
}
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid: {
const Register value = locs()->in(2).reg();
if (aligned()) {
__ str(value, Address(address), kDoubleWord);
} else {
__ StoreUnaligned(value, address, scratch, kDoubleWord);
}
break;
}
case kTypedDataFloat32ArrayCid: {
const VRegister value_reg = locs()->in(2).fpu_reg();
if (aligned()) {
__ fstrs(value_reg, Address(address));
} else {
__ fmovrs(TMP, value_reg);
__ StoreUnaligned(TMP, address, scratch, kWord);
}
break;
}
case kTypedDataFloat64ArrayCid: {
const VRegister value_reg = locs()->in(2).fpu_reg();
if (aligned()) {
__ fstrd(value_reg, Address(address));
} else {
__ fmovrd(TMP, value_reg);
__ StoreUnaligned(TMP, address, scratch, kDoubleWord);
}
break;
}
case kTypedDataFloat64x2ArrayCid:
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid: {
ASSERT(aligned());
const VRegister value_reg = locs()->in(2).fpu_reg();
__ fstrq(value_reg, Address(address));
break;
}
default:
UNREACHABLE();
}
}
static void LoadValueCid(FlowGraphCompiler* compiler,
Register value_cid_reg,
Register value_reg,
Label* value_is_smi = NULL) {
Label done;
if (value_is_smi == NULL) {
__ LoadImmediate(value_cid_reg, kSmiCid);
}
__ BranchIfSmi(value_reg, value_is_smi == NULL ? &done : value_is_smi);
__ LoadClassId(value_cid_reg, value_reg);
__ Bind(&done);
}
DEFINE_UNIMPLEMENTED_INSTRUCTION(GuardFieldTypeInstr)
DEFINE_UNIMPLEMENTED_INSTRUCTION(CheckConditionInstr)
LocationSummary* GuardFieldClassInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t field_cid = field().guarded_cid();
const bool emit_full_guard = !opt || (field_cid == kIllegalCid);
const bool needs_value_cid_temp_reg =
emit_full_guard || ((value_cid == kDynamicCid) && (field_cid != kSmiCid));
const bool needs_field_temp_reg = emit_full_guard;
intptr_t num_temps = 0;
if (needs_value_cid_temp_reg) {
num_temps++;
}
if (needs_field_temp_reg) {
num_temps++;
}
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, num_temps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
for (intptr_t i = 0; i < num_temps; i++) {
summary->set_temp(i, Location::RequiresRegister());
}
return summary;
}
void GuardFieldClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(sizeof(classid_t) == kInt16Size);
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t field_cid = field().guarded_cid();
const intptr_t nullability = field().is_nullable() ? kNullCid : kIllegalCid;
if (field_cid == kDynamicCid) {
return; // Nothing to emit.
}
const bool emit_full_guard =
!compiler->is_optimizing() || (field_cid == kIllegalCid);
const bool needs_value_cid_temp_reg =
emit_full_guard || ((value_cid == kDynamicCid) && (field_cid != kSmiCid));
const bool needs_field_temp_reg = emit_full_guard;
const Register value_reg = locs()->in(0).reg();
const Register value_cid_reg =
needs_value_cid_temp_reg ? locs()->temp(0).reg() : kNoRegister;
const Register field_reg = needs_field_temp_reg
? locs()->temp(locs()->temp_count() - 1).reg()
: kNoRegister;
Label ok, fail_label;
Label* deopt =
compiler->is_optimizing()
? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField)
: NULL;
Label* fail = (deopt != NULL) ? deopt : &fail_label;
if (emit_full_guard) {
__ LoadObject(field_reg, Field::ZoneHandle((field().Original())));
FieldAddress field_cid_operand(field_reg, Field::guarded_cid_offset(),
kUnsignedHalfword);
FieldAddress field_nullability_operand(
field_reg, Field::is_nullable_offset(), kUnsignedHalfword);
if (value_cid == kDynamicCid) {
LoadValueCid(compiler, value_cid_reg, value_reg);
Label skip_length_check;
__ ldr(TMP, field_cid_operand, kUnsignedHalfword);
__ CompareRegisters(value_cid_reg, TMP);
__ b(&ok, EQ);
__ ldr(TMP, field_nullability_operand, kUnsignedHalfword);
__ CompareRegisters(value_cid_reg, TMP);
} else if (value_cid == kNullCid) {
__ ldr(value_cid_reg, field_nullability_operand, kUnsignedHalfword);
__ CompareImmediate(value_cid_reg, value_cid);
} else {
Label skip_length_check;
__ ldr(value_cid_reg, field_cid_operand, kUnsignedHalfword);
__ CompareImmediate(value_cid_reg, value_cid);
}
__ b(&ok, EQ);
// Check if the tracked state of the guarded field can be initialized
// inline. If the field needs length check we fall through to runtime
// which is responsible for computing offset of the length field
// based on the class id.
// Length guard will be emitted separately when needed via GuardFieldLength
// instruction after GuardFieldClass.
if (!field().needs_length_check()) {
// Uninitialized field can be handled inline. Check if the
// field is still unitialized.
__ ldr(TMP, field_cid_operand, kUnsignedHalfword);
__ CompareImmediate(TMP, kIllegalCid);
__ b(fail, NE);
if (value_cid == kDynamicCid) {
__ str(value_cid_reg, field_cid_operand, kUnsignedHalfword);
__ str(value_cid_reg, field_nullability_operand, kUnsignedHalfword);
} else {
__ LoadImmediate(TMP, value_cid);
__ str(TMP, field_cid_operand, kUnsignedHalfword);
__ str(TMP, field_nullability_operand, kUnsignedHalfword);
}
__ b(&ok);
}
if (deopt == NULL) {
ASSERT(!compiler->is_optimizing());
__ Bind(fail);
__ LoadFieldFromOffset(TMP, field_reg, Field::guarded_cid_offset(),
kUnsignedHalfword);
__ CompareImmediate(TMP, kDynamicCid);
__ b(&ok, EQ);
__ Push(field_reg);
__ Push(value_reg);
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
} else {
__ b(fail);
}
} else {
ASSERT(compiler->is_optimizing());
ASSERT(deopt != NULL);
// Field guard class has been initialized and is known.
if (value_cid == kDynamicCid) {
// Value's class id is not known.
__ tsti(value_reg, Immediate(kSmiTagMask));
if (field_cid != kSmiCid) {
__ b(fail, EQ);
__ LoadClassId(value_cid_reg, value_reg);
__ CompareImmediate(value_cid_reg, field_cid);
}
if (field().is_nullable() && (field_cid != kNullCid)) {
__ b(&ok, EQ);
__ CompareObject(value_reg, Object::null_object());
}
__ b(fail, NE);
} else {
// Both value's and field's class id is known.
ASSERT((value_cid != field_cid) && (value_cid != nullability));
__ b(fail);
}
}
__ Bind(&ok);
}
LocationSummary* GuardFieldLengthInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
if (!opt || (field().guarded_list_length() == Field::kUnknownFixedLength)) {
const intptr_t kNumTemps = 3;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
// We need temporaries for field object, length offset and expected length.
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
summary->set_temp(2, Location::RequiresRegister());
return summary;
} else {
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, 0, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
return summary;
}
UNREACHABLE();
}
void GuardFieldLengthInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (field().guarded_list_length() == Field::kNoFixedLength) {
return; // Nothing to emit.
}
Label* deopt =
compiler->is_optimizing()
? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField)
: NULL;
const Register value_reg = locs()->in(0).reg();
if (!compiler->is_optimizing() ||
(field().guarded_list_length() == Field::kUnknownFixedLength)) {
const Register field_reg = locs()->temp(0).reg();
const Register offset_reg = locs()->temp(1).reg();
const Register length_reg = locs()->temp(2).reg();
Label ok;
__ LoadObject(field_reg, Field::ZoneHandle(field().Original()));
__ ldr(offset_reg,
FieldAddress(field_reg,
Field::guarded_list_length_in_object_offset_offset()),
kByte);
__ ldr(length_reg,
FieldAddress(field_reg, Field::guarded_list_length_offset()));
__ tst(offset_reg, Operand(offset_reg));
__ b(&ok, MI);
// Load the length from the value. GuardFieldClass already verified that
// value's class matches guarded class id of the field.
// offset_reg contains offset already corrected by -kHeapObjectTag that is
// why we use Address instead of FieldAddress.
__ ldr(TMP, Address(value_reg, offset_reg));
__ CompareRegisters(length_reg, TMP);
if (deopt == NULL) {
__ b(&ok, EQ);
__ Push(field_reg);
__ Push(value_reg);
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
} else {
__ b(deopt, NE);
}
__ Bind(&ok);
} else {
ASSERT(compiler->is_optimizing());
ASSERT(field().guarded_list_length() >= 0);
ASSERT(field().guarded_list_length_in_object_offset() !=
Field::kUnknownLengthOffset);
__ ldr(TMP, FieldAddress(value_reg,
field().guarded_list_length_in_object_offset()));
__ CompareImmediate(TMP, Smi::RawValue(field().guarded_list_length()));
__ b(deopt, NE);
}
}
class BoxAllocationSlowPath : public TemplateSlowPathCode<Instruction> {
public:
BoxAllocationSlowPath(Instruction* instruction,
const Class& cls,
Register result)
: TemplateSlowPathCode(instruction), cls_(cls), result_(result) {}
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
if (Assembler::EmittingComments()) {
__ Comment("%s slow path allocation of %s", instruction()->DebugName(),
String::Handle(cls_.ScrubbedName()).ToCString());
}
__ Bind(entry_label());
const Code& stub = Code::ZoneHandle(
compiler->zone(), StubCode::GetAllocationStubForClass(cls_));
LocationSummary* locs = instruction()->locs();
locs->live_registers()->Remove(Location::RegisterLocation(result_));
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(TokenPosition::kNoSource, // No token position.
stub, RawPcDescriptors::kOther, locs);
__ MoveRegister(result_, R0);
compiler->RestoreLiveRegisters(locs);
__ b(exit_label());
}
static void Allocate(FlowGraphCompiler* compiler,
Instruction* instruction,
const Class& cls,
Register result,
Register temp) {
if (compiler->intrinsic_mode()) {
__ TryAllocate(cls, compiler->intrinsic_slow_path_label(), result, temp);
} else {
BoxAllocationSlowPath* slow_path =
new BoxAllocationSlowPath(instruction, cls, result);
compiler->AddSlowPathCode(slow_path);
__ TryAllocate(cls, slow_path->entry_label(), result, temp);
__ Bind(slow_path->exit_label());
}
}
private:
const Class& cls_;
const Register result_;
};
static void EnsureMutableBox(FlowGraphCompiler* compiler,
StoreInstanceFieldInstr* instruction,
Register box_reg,
const Class& cls,
Register instance_reg,
intptr_t offset,
Register temp) {
Label done;
__ LoadFieldFromOffset(box_reg, instance_reg, offset);
__ CompareObject(box_reg, Object::null_object());
__ b(&done, NE);
BoxAllocationSlowPath::Allocate(compiler, instruction, cls, box_reg, temp);
__ MoveRegister(temp, box_reg);
__ StoreIntoObjectOffset(instance_reg, offset, temp,
Assembler::kValueIsNotSmi,
/*lr_reserved=*/!compiler->intrinsic_mode());
__ Bind(&done);
}
LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps =
(IsUnboxedStore() && opt) ? 2 : ((IsPotentialUnboxedStore()) ? 2 : 0);
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps,
((IsUnboxedStore() && opt && is_initialization()) ||
IsPotentialUnboxedStore())
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (IsUnboxedStore() && opt) {
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
} else if (IsPotentialUnboxedStore()) {
summary->set_in(1, ShouldEmitStoreBarrier() ? Location::WritableRegister()
: Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
} else {
summary->set_in(1, ShouldEmitStoreBarrier()
? Location::RegisterLocation(kWriteBarrierValueReg)
: LocationRegisterOrConstant(value()));
}
return summary;
}
void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(sizeof(classid_t) == kInt16Size);
Label skip_store;
const Register instance_reg = locs()->in(0).reg();
const intptr_t offset_in_bytes = OffsetInBytes();
if (IsUnboxedStore() && compiler->is_optimizing()) {
const VRegister value = locs()->in(1).fpu_reg();
const Register temp = locs()->temp(0).reg();
const Register temp2 = locs()->temp(1).reg();
const intptr_t cid = slot().field().UnboxedFieldCid();
if (is_initialization()) {
const Class* cls = NULL;
switch (cid) {
case kDoubleCid:
cls = &compiler->double_class();
break;
case kFloat32x4Cid:
cls = &compiler->float32x4_class();
break;
case kFloat64x2Cid:
cls = &compiler->float64x2_class();
break;
default:
UNREACHABLE();
}
BoxAllocationSlowPath::Allocate(compiler, this, *cls, temp, temp2);
__ MoveRegister(temp2, temp);
__ StoreIntoObjectOffset(instance_reg, offset_in_bytes, temp2,
Assembler::kValueIsNotSmi,
/*lr_reserved=*/!compiler->intrinsic_mode());
} else {
__ LoadFieldFromOffset(temp, instance_reg, offset_in_bytes);
}
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleStoreInstanceFieldInstr");
__ StoreDFieldToOffset(value, temp, Double::value_offset());
break;
case kFloat32x4Cid:
__ Comment("UnboxedFloat32x4StoreInstanceFieldInstr");
__ StoreQFieldToOffset(value, temp, Float32x4::value_offset());
break;
case kFloat64x2Cid:
__ Comment("UnboxedFloat64x2StoreInstanceFieldInstr");
__ StoreQFieldToOffset(value, temp, Float64x2::value_offset());
break;
default:
UNREACHABLE();
}
return;
}
if (IsPotentialUnboxedStore()) {
const Register value_reg = locs()->in(1).reg();
const Register temp = locs()->temp(0).reg();
const Register temp2 = locs()->temp(1).reg();
if (ShouldEmitStoreBarrier()) {
// Value input is a writable register and should be manually preserved
// across allocation slow-path.
locs()->live_registers()->Add(locs()->in(1), kTagged);
}
Label store_pointer;
Label store_double;
Label store_float32x4;
Label store_float64x2;
__ LoadObject(temp, Field::ZoneHandle(Z, slot().field().Original()));
__ LoadFieldFromOffset(temp2, temp, Field::is_nullable_offset(),
kUnsignedHalfword);
__ CompareImmediate(temp2, kNullCid);
__ b(&store_pointer, EQ);
__ LoadFromOffset(temp2, temp, Field::kind_bits_offset() - kHeapObjectTag,
kUnsignedByte);
__ tsti(temp2, Immediate(1 << Field::kUnboxingCandidateBit));
__ b(&store_pointer, EQ);
__ LoadFieldFromOffset(temp2, temp, Field::guarded_cid_offset(),
kUnsignedHalfword);
__ CompareImmediate(temp2, kDoubleCid);
__ b(&store_double, EQ);
__ LoadFieldFromOffset(temp2, temp, Field::guarded_cid_offset(),
kUnsignedHalfword);
__ CompareImmediate(temp2, kFloat32x4Cid);
__ b(&store_float32x4, EQ);
__ LoadFieldFromOffset(temp2, temp, Field::guarded_cid_offset(),
kUnsignedHalfword);
__ CompareImmediate(temp2, kFloat64x2Cid);
__ b(&store_float64x2, EQ);
// Fall through.
__ b(&store_pointer);
if (!compiler->is_optimizing()) {
locs()->live_registers()->Add(locs()->in(0));
locs()->live_registers()->Add(locs()->in(1));
}
{
__ Bind(&store_double);
EnsureMutableBox(compiler, this, temp, compiler->double_class(),
instance_reg, offset_in_bytes, temp2);
__ LoadDFieldFromOffset(VTMP, value_reg, Double::value_offset());
__ StoreDFieldToOffset(VTMP, temp, Double::value_offset());
__ b(&skip_store);
}
{
__ Bind(&store_float32x4);
EnsureMutableBox(compiler, this, temp, compiler->float32x4_class(),
instance_reg, offset_in_bytes, temp2);
__ LoadQFieldFromOffset(VTMP, value_reg, Float32x4::value_offset());
__ StoreQFieldToOffset(VTMP, temp, Float32x4::value_offset());
__ b(&skip_store);
}
{
__ Bind(&store_float64x2);
EnsureMutableBox(compiler, this, temp, compiler->float64x2_class(),
instance_reg, offset_in_bytes, temp2);
__ LoadQFieldFromOffset(VTMP, value_reg, Float64x2::value_offset());
__ StoreQFieldToOffset(VTMP, temp, Float64x2::value_offset());
__ b(&skip_store);
}
__ Bind(&store_pointer);
}
if (ShouldEmitStoreBarrier()) {
const Register value_reg = locs()->in(1).reg();
// In intrinsic mode, there is no stack frame and the function will return
// by executing 'ret LR' directly. Therefore we cannot overwrite LR. (see
// ReturnInstr::EmitNativeCode).
ASSERT((kDartAvailableCpuRegs & (1 << LR)) == 0);
__ StoreIntoObjectOffset(instance_reg, offset_in_bytes, value_reg,
CanValueBeSmi(),
/*lr_reserved=*/!compiler->intrinsic_mode());
} else {
if (locs()->in(1).IsConstant()) {
__ StoreIntoObjectOffsetNoBarrier(instance_reg, offset_in_bytes,
locs()->in(1).constant());
} else {
const Register value_reg = locs()->in(1).reg();
__ StoreIntoObjectOffsetNoBarrier(instance_reg, offset_in_bytes,
value_reg);
}
}
__ Bind(&skip_store);
}
LocationSummary* LoadStaticFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
// When the parser is building an implicit static getter for optimization,
// it can generate a function body where deoptimization ids do not line up
// with the unoptimized code.
//
// This is safe only so long as LoadStaticFieldInstr cannot deoptimize.
void LoadStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register field = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
__ LoadFieldFromOffset(result, field, Field::static_value_offset());
}
LocationSummary* StoreStaticFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
LocationSummary* locs =
new (zone) LocationSummary(zone, 1, 1, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterLocation(kWriteBarrierValueReg));
locs->set_temp(0, Location::RequiresRegister());
return locs;
}
void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register temp = locs()->temp(0).reg();
__ LoadObject(temp, Field::ZoneHandle(Z, field().Original()));
if (this->value()->NeedsWriteBarrier()) {
__ StoreIntoObjectOffset(temp, Field::static_value_offset(), value,
CanValueBeSmi(),
/*lr_reserved=*/!compiler->intrinsic_mode());
} else {
__ StoreIntoObjectOffsetNoBarrier(temp, Field::static_value_offset(),
value);
}
}
LocationSummary* InstanceOfInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R0)); // Instance.
summary->set_in(1, Location::RegisterLocation(R1)); // Instant. type args.
summary->set_in(2, Location::RegisterLocation(R2)); // Function type args.
summary->set_out(0, Location::RegisterLocation(R0));
return summary;
}
void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).reg() == R0); // Value.
ASSERT(locs()->in(1).reg() == R1); // Instantiator type arguments.
ASSERT(locs()->in(2).reg() == R2); // Function type arguments.
compiler->GenerateInstanceOf(token_pos(), deopt_id(), type(), locs());
ASSERT(locs()->out(0).reg() == R0);
}
LocationSummary* CreateArrayInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(kElementTypePos, Location::RegisterLocation(R1));
locs->set_in(kLengthPos, Location::RegisterLocation(R2));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
// Inlines array allocation for known constant values.
static void InlineArrayAllocation(FlowGraphCompiler* compiler,
intptr_t num_elements,
Label* slow_path,
Label* done) {
const int kInlineArraySize = 12; // Same as kInlineInstanceSize.
const Register kLengthReg = R2;
const Register kElemTypeReg = R1;
const intptr_t instance_size = Array::InstanceSize(num_elements);
__ TryAllocateArray(kArrayCid, instance_size, slow_path,
R0, // instance
R3, // end address
R6, R8);
// R0: new object start as a tagged pointer.
// R3: new object end address.
// Store the type argument field.
__ StoreIntoObjectNoBarrier(
R0, FieldAddress(R0, Array::type_arguments_offset()), kElemTypeReg);
// Set the length field.
__ StoreIntoObjectNoBarrier(R0, FieldAddress(R0, Array::length_offset()),
kLengthReg);
// TODO(zra): Use stp once added.
// Initialize all array elements to raw_null.
// R0: new object start as a tagged pointer.
// R3: new object end address.
// R8: iterator which initially points to the start of the variable
// data area to be initialized.
// R6: null
if (num_elements > 0) {
const intptr_t array_size = instance_size - sizeof(RawArray);
__ LoadObject(R6, Object::null_object());
__ AddImmediate(R8, R0, sizeof(RawArray) - kHeapObjectTag);
if (array_size < (kInlineArraySize * kWordSize)) {
intptr_t current_offset = 0;
while (current_offset < array_size) {
__ str(R6, Address(R8, current_offset));
current_offset += kWordSize;
}
} else {
Label end_loop, init_loop;
__ Bind(&init_loop);
__ CompareRegisters(R8, R3);
__ b(&end_loop, CS);
__ str(R6, Address(R8));
__ AddImmediate(R8, kWordSize);
__ b(&init_loop);
__ Bind(&end_loop);
}
}
__ b(done);
}
void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
TypeUsageInfo* type_usage_info = compiler->thread()->type_usage_info();
if (type_usage_info != nullptr) {
const Class& list_class = Class::Handle(
compiler->thread()->isolate()->class_table()->At(kArrayCid));
RegisterTypeArgumentsUse(compiler->function(), type_usage_info, list_class,
element_type()->definition());
}
const Register kLengthReg = R2;
const Register kElemTypeReg = R1;
const Register kResultReg = R0;
ASSERT(locs()->in(kElementTypePos).reg() == kElemTypeReg);
ASSERT(locs()->in(kLengthPos).reg() == kLengthReg);
if (compiler->is_optimizing() && !FLAG_precompiled_mode &&
num_elements()->BindsToConstant() &&
num_elements()->BoundConstant().IsSmi()) {
const intptr_t length = Smi::Cast(num_elements()->BoundConstant()).Value();
if (Array::IsValidLength(length)) {
Label slow_path, done;
InlineArrayAllocation(compiler, length, &slow_path, &done);
__ Bind(&slow_path);
__ PushObject(Object::null_object()); // Make room for the result.
__ Push(kLengthReg); // length.
__ Push(kElemTypeReg);
compiler->GenerateRuntimeCall(token_pos(), deopt_id(),
kAllocateArrayRuntimeEntry, 2, locs());
__ Drop(2);
__ Pop(kResultReg);
__ Bind(&done);
return;
}
}
compiler->GenerateCallWithDeopt(token_pos(), deopt_id(),
StubCode::AllocateArray(),
RawPcDescriptors::kOther, locs());
ASSERT(locs()->out(0).reg() == kResultReg);
}
LocationSummary* LoadFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps =
(IsUnboxedLoad() && opt) ? 1 : ((IsPotentialUnboxedLoad()) ? 1 : 0);
LocationSummary* locs = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps,
(opt && !IsPotentialUnboxedLoad()) ? LocationSummary::kNoCall
: LocationSummary::kCallOnSlowPath);
locs->set_in(0, Location::RequiresRegister());
if (IsUnboxedLoad() && opt) {
locs->set_temp(0, Location::RequiresRegister());
} else if (IsPotentialUnboxedLoad()) {
locs->set_temp(0, Location::RequiresRegister());
}
locs->set_out(0, Location::RequiresRegister());
return locs;
}
void LoadFieldInstr::Em