blob: a51753bba9674675c353e063372e0057b5ec9da5 [file] [log] [blame]
// Copyright (c) 2018, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/compiler/assembler/disassembler_kbc.h"
#include "platform/assert.h"
#include "vm/constants_kbc.h"
#include "vm/cpu.h"
#include "vm/instructions.h"
namespace dart {
static const char* kOpcodeNames[] = {
#define BYTECODE_NAME(name, encoding, op1, op2, op3) #name,
KERNEL_BYTECODES_LIST(BYTECODE_NAME)
#undef BYTECODE_NAME
};
static const size_t kOpcodeCount =
sizeof(kOpcodeNames) / sizeof(kOpcodeNames[0]);
typedef void (*BytecodeFormatter)(char* buffer,
intptr_t size,
uword pc,
uint32_t bc);
typedef void (*Fmt)(char** buf, intptr_t* size, uword pc, int32_t value);
template <typename ValueType>
void FormatOperand(char** buf,
intptr_t* size,
const char* fmt,
ValueType value) {
intptr_t written = Utils::SNPrint(*buf, *size, fmt, value);
if (written < *size) {
*buf += written;
*size += written;
} else {
*size = -1;
}
}
static void Fmt___(char** buf, intptr_t* size, uword pc, int32_t value) {}
static void Fmttgt(char** buf, intptr_t* size, uword pc, int32_t value) {
FormatOperand(buf, size, "-> %" Px, pc + (value << 2));
}
static void Fmtlit(char** buf, intptr_t* size, uword pc, int32_t value) {
FormatOperand(buf, size, "k%d", value);
}
static void Fmtreg(char** buf, intptr_t* size, uword pc, int32_t value) {
FormatOperand(buf, size, "r%d", value);
}
static void Fmtxeg(char** buf, intptr_t* size, uword pc, int32_t value) {
if (value < 0) {
FormatOperand(buf, size, "FP[%d]", value);
} else {
Fmtreg(buf, size, pc, value);
}
}
static void Fmtnum(char** buf, intptr_t* size, uword pc, int32_t value) {
FormatOperand(buf, size, "#%d", value);
}
static void Apply(char** buf,
intptr_t* size,
uword pc,
Fmt fmt,
int32_t value,
const char* suffix) {
if (*size <= 0) {
return;
}
fmt(buf, size, pc, value);
if (*size > 0) {
FormatOperand(buf, size, "%s", suffix);
}
}
static void Format0(char* buf,
intptr_t size,
uword pc,
uint32_t op,
Fmt op1,
Fmt op2,
Fmt op3) {}
static void FormatT(char* buf,
intptr_t size,
uword pc,
uint32_t op,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t x = static_cast<int32_t>(op) >> 8;
Apply(&buf, &size, pc, op1, x, "");
}
static void FormatA(char* buf,
intptr_t size,
uword pc,
uint32_t op,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t a = (op & 0xFF00) >> 8;
Apply(&buf, &size, pc, op1, a, "");
}
static void FormatA_D(char* buf,
intptr_t size,
uword pc,
uint32_t op,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t a = (op & 0xFF00) >> 8;
const int32_t bc = op >> 16;
Apply(&buf, &size, pc, op1, a, ", ");
Apply(&buf, &size, pc, op2, bc, "");
}
// TODO(alexmarkov) This format is currently unused. Restore it if needed, or
// remove it once bytecode instruction set is finalized.
//
// static void FormatA_X(char* buf,
// intptr_t size,
// uword pc,
// uint32_t op,
// Fmt op1,
// Fmt op2,
// Fmt op3) {
// const int32_t a = (op & 0xFF00) >> 8;
// const int32_t bc = static_cast<int32_t>(op) >> 16;
// Apply(&buf, &size, pc, op1, a, ", ");
// Apply(&buf, &size, pc, op2, bc, "");
// }
static void FormatX(char* buf,
intptr_t size,
uword pc,
uint32_t op,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t bc = static_cast<int32_t>(op) >> 16;
Apply(&buf, &size, pc, op1, bc, "");
}
static void FormatD(char* buf,
intptr_t size,
uword pc,
uint32_t op,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t bc = op >> 16;
Apply(&buf, &size, pc, op1, bc, "");
}
static void FormatA_B_C(char* buf,
intptr_t size,
uword pc,
uint32_t op,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t a = (op >> 8) & 0xFF;
const int32_t b = (op >> 16) & 0xFF;
const int32_t c = (op >> 24) & 0xFF;
Apply(&buf, &size, pc, op1, a, ", ");
Apply(&buf, &size, pc, op2, b, ", ");
Apply(&buf, &size, pc, op3, c, "");
}
// TODO(alexmarkov) This format is currently unused. Restore it if needed, or
// remove it once bytecode instruction set is finalized.
//
// static void FormatA_B_Y(char* buf,
// intptr_t size,
// uword pc,
// uint32_t op,
// Fmt op1,
// Fmt op2,
// Fmt op3) {
// const int32_t a = (op >> 8) & 0xFF;
// const int32_t b = (op >> 16) & 0xFF;
// const int32_t y = static_cast<int8_t>((op >> 24) & 0xFF);
// Apply(&buf, &size, pc, op1, a, ", ");
// Apply(&buf, &size, pc, op2, b, ", ");
// Apply(&buf, &size, pc, op3, y, "");
// }
#define BYTECODE_FORMATTER(name, encoding, op1, op2, op3) \
static void Format##name(char* buf, intptr_t size, uword pc, uint32_t op) { \
Format##encoding(buf, size, pc, op, Fmt##op1, Fmt##op2, Fmt##op3); \
}
KERNEL_BYTECODES_LIST(BYTECODE_FORMATTER)
#undef BYTECODE_FORMATTER
static const BytecodeFormatter kFormatters[] = {
#define BYTECODE_FORMATTER(name, encoding, op1, op2, op3) &Format##name,
KERNEL_BYTECODES_LIST(BYTECODE_FORMATTER)
#undef BYTECODE_FORMATTER
};
static bool HasLoadFromPool(KBCInstr instr) {
switch (KernelBytecode::DecodeOpcode(instr)) {
case KernelBytecode::kLoadConstant:
case KernelBytecode::kPushConstant:
case KernelBytecode::kIndirectStaticCall:
case KernelBytecode::kInstanceCall:
case KernelBytecode::kStoreStaticTOS:
case KernelBytecode::kPushStatic:
case KernelBytecode::kAllocate:
case KernelBytecode::kInstantiateType:
case KernelBytecode::kInstantiateTypeArgumentsTOS:
case KernelBytecode::kAssertAssignable:
return true;
default:
return false;
}
}
static bool GetLoadedObjectAt(uword pc,
const ObjectPool& object_pool,
Object* obj) {
KBCInstr instr = KernelBytecode::At(pc);
if (HasLoadFromPool(instr)) {
uint16_t index = KernelBytecode::DecodeD(instr);
if (object_pool.TypeAt(index) == ObjectPool::kTaggedObject) {
*obj = object_pool.ObjectAt(index);
return true;
}
}
return false;
}
void KernelBytecodeDisassembler::DecodeInstruction(char* hex_buffer,
intptr_t hex_size,
char* human_buffer,
intptr_t human_size,
int* out_instr_size,
const Code& bytecode,
Object** object,
uword pc) {
const uint32_t instr = *reinterpret_cast<uint32_t*>(pc);
const uint8_t opcode = instr & 0xFF;
ASSERT(opcode < kOpcodeCount);
size_t name_size =
Utils::SNPrint(human_buffer, human_size, "%-10s\t", kOpcodeNames[opcode]);
human_buffer += name_size;
human_size -= name_size;
kFormatters[opcode](human_buffer, human_size, pc, instr);
Utils::SNPrint(hex_buffer, hex_size, "%08x", instr);
if (out_instr_size) {
*out_instr_size = sizeof(uint32_t);
}
*object = NULL;
if (!bytecode.IsNull()) {
*object = &Object::Handle();
const ObjectPool& pool = ObjectPool::Handle(bytecode.object_pool());
if (!GetLoadedObjectAt(pc, pool, *object)) {
*object = NULL;
}
}
}
void KernelBytecodeDisassembler::Disassemble(uword start,
uword end,
DisassemblyFormatter* formatter,
const Code& bytecode) {
#if !defined(PRODUCT)
const Code::Comments& comments =
bytecode.IsNull() ? Code::Comments::New(0) : bytecode.comments();
ASSERT(formatter != NULL);
char hex_buffer[kHexadecimalBufferSize]; // Instruction in hexadecimal form.
char human_buffer[kUserReadableBufferSize]; // Human-readable instruction.
uword pc = start;
intptr_t comment_finger = 0;
GrowableArray<const Function*> inlined_functions;
GrowableArray<TokenPosition> token_positions;
while (pc < end) {
const intptr_t offset = pc - start;
const intptr_t old_comment_finger = comment_finger;
while (comment_finger < comments.Length() &&
comments.PCOffsetAt(comment_finger) <= offset) {
formatter->Print(
" ;; %s\n",
String::Handle(comments.CommentAt(comment_finger)).ToCString());
comment_finger++;
}
if (old_comment_finger != comment_finger) {
char str[4000];
BufferFormatter f(str, sizeof(str));
// Comment emitted, emit inlining information.
bytecode.GetInlinedFunctionsAtInstruction(offset, &inlined_functions,
&token_positions);
// Skip top scope function printing (last entry in 'inlined_functions').
bool first = true;
for (intptr_t i = 1; i < inlined_functions.length(); i++) {
const char* name = inlined_functions[i]->ToQualifiedCString();
if (first) {
f.Print(" ;; Inlined [%s", name);
first = false;
} else {
f.Print(" -> %s", name);
}
}
if (!first) {
f.Print("]\n");
formatter->Print(str);
}
}
int instruction_length;
Object* object;
DecodeInstruction(hex_buffer, sizeof(hex_buffer), human_buffer,
sizeof(human_buffer), &instruction_length, bytecode,
&object, pc);
formatter->ConsumeInstruction(bytecode, hex_buffer, sizeof(hex_buffer),
human_buffer, sizeof(human_buffer), object,
pc);
pc += instruction_length;
}
#else
UNREACHABLE();
#endif
}
void KernelBytecodeDisassembler::Disassemble(const Function& function) {
#if !defined(PRODUCT)
ASSERT(function.HasBytecode());
const char* function_fullname = function.ToFullyQualifiedCString();
Zone* zone = Thread::Current()->zone();
const Code& bytecode = Code::Handle(zone, function.Bytecode());
THR_Print("Bytecode for function '%s' {\n", function_fullname);
const Instructions& instr = Instructions::Handle(bytecode.instructions());
uword start = instr.PayloadStart();
DisassembleToStdout stdout_formatter;
LogBlock lb;
Disassemble(start, start + instr.Size(), &stdout_formatter, bytecode);
THR_Print("}\n");
const ObjectPool& object_pool =
ObjectPool::Handle(zone, bytecode.GetObjectPool());
object_pool.DebugPrint();
THR_Print("PC Descriptors for function '%s' {\n", function_fullname);
PcDescriptors::PrintHeaderString();
const PcDescriptors& descriptors =
PcDescriptors::Handle(zone, bytecode.pc_descriptors());
THR_Print("%s}\n", descriptors.ToCString());
THR_Print("Exception Handlers for function '%s' {\n", function_fullname);
const ExceptionHandlers& handlers =
ExceptionHandlers::Handle(zone, bytecode.exception_handlers());
THR_Print("%s}\n", handlers.ToCString());
#else
UNREACHABLE();
#endif
}
} // namespace dart
#endif // !defined(DART_PRECOMPILED_RUNTIME)