blob: 5d4d35f2e49c1259eaa5f42fa50626a07abe86fb [file] [log] [blame]
// Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/compiler/relocation.h"
#include "vm/code_patcher.h"
#include "vm/heap/pages.h"
#include "vm/instructions.h"
#include "vm/object_store.h"
#include "vm/stub_code.h"
namespace dart {
#if defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_DBC) && \
!defined(TARGET_ARCH_IA32)
// Only for testing.
DEFINE_FLAG(bool,
always_generate_trampolines_for_testing,
false,
"Generate always trampolines (for testing purposes).");
// The trampolines will have a 1-word object header in front of them.
const intptr_t kOffsetInTrampoline = kWordSize;
const intptr_t kTrampolineSize = OS::kMaxPreferredCodeAlignment;
CodeRelocator::CodeRelocator(Thread* thread,
GrowableArray<RawCode*>* code_objects,
GrowableArray<ImageWriterCommand>* commands)
: StackResource(thread),
code_objects_(code_objects),
commands_(commands),
kind_type_and_offset_(Smi::Handle(thread->zone())),
target_(Object::Handle(thread->zone())),
destination_(Code::Handle(thread->zone())) {}
void CodeRelocator::Relocate(bool is_vm_isolate) {
Zone* zone = Thread::Current()->zone();
auto& current_caller = Code::Handle(zone);
auto& call_targets = Array::Handle(zone);
// Do one linear pass over all code objects and determine:
//
// * the maximum instruction size
// * the maximum number of calls
// * the maximum offset into a target instruction
//
FindInstructionAndCallLimits();
// Emit all instructions and do relocations on the way.
for (intptr_t i = 0; i < code_objects_->length(); ++i) {
current_caller = (*code_objects_)[i];
const intptr_t code_text_offset = next_text_offset_;
if (!AddInstructionsToText(current_caller.raw())) {
continue;
}
call_targets = current_caller.static_calls_target_table();
ScanCallTargets(current_caller, call_targets, code_text_offset);
// Any unresolved calls to this instruction can be fixed now.
ResolveUnresolvedCallsTargeting(current_caller.instructions());
// If we have forward/backwards calls which are almost out-of-range, we'll
// create trampolines now.
BuildTrampolinesForAlmostOutOfRangeCalls();
}
// We're guaranteed to have all calls resolved, since
// * backwards calls are resolved eagerly
// * forward calls are resolved once the target is written
ASSERT(all_unresolved_calls_.IsEmpty());
ASSERT(unresolved_calls_by_destination_.IsEmpty());
// Any trampolines we created must be patched with the right offsets.
auto it = trampolines_by_destination_.GetIterator();
while (true) {
auto entry = it.Next();
if (entry == nullptr) break;
UnresolvedTrampolineList* trampoline_list = entry->value;
while (!trampoline_list->IsEmpty()) {
auto unresolved_trampoline = trampoline_list->RemoveFirst();
ResolveTrampoline(unresolved_trampoline);
delete unresolved_trampoline;
}
delete trampoline_list;
}
trampolines_by_destination_.Clear();
// We're done now, so we clear out the targets tables.
auto& caller = Code::Handle(zone);
if (!is_vm_isolate) {
for (intptr_t i = 0; i < code_objects_->length(); ++i) {
caller = (*code_objects_)[i];
caller.set_static_calls_target_table(Array::empty_array());
}
}
}
void CodeRelocator::FindInstructionAndCallLimits() {
Zone* zone = Thread::Current()->zone();
auto& current_caller = Code::Handle(zone);
auto& call_targets = Array::Handle(zone);
for (intptr_t i = 0; i < code_objects_->length(); ++i) {
current_caller = (*code_objects_)[i];
const intptr_t size = current_caller.instructions()->HeapSize();
if (size > max_instructions_size_) {
max_instructions_size_ = size;
}
call_targets = current_caller.static_calls_target_table();
if (!call_targets.IsNull()) {
intptr_t num_calls = 0;
StaticCallsTable calls(call_targets);
for (auto call : calls) {
kind_type_and_offset_ = call.Get<Code::kSCallTableKindAndOffset>();
auto kind = Code::KindField::decode(kind_type_and_offset_.Value());
auto offset = Code::OffsetField::decode(kind_type_and_offset_.Value());
auto call_entry_point =
Code::EntryPointField::decode(kind_type_and_offset_.Value());
if (kind == Code::kCallViaCode) {
continue;
}
num_calls++;
target_ = call.Get<Code::kSCallTableFunctionTarget>();
if (target_.IsFunction()) {
auto& fun = Function::Cast(target_);
ASSERT(fun.HasCode());
destination_ = fun.CurrentCode();
ASSERT(!destination_.IsStubCode());
} else {
target_ = call.Get<Code::kSCallTableCodeTarget>();
ASSERT(target_.IsCode());
destination_ = Code::Cast(target_).raw();
}
// A call site can decide to jump not to the beginning of a function but
// rather jump into it at a certain (positive) offset.
int32_t offset_into_target = 0;
{
PcRelativeCallPattern call(
Instructions::PayloadStart(current_caller.instructions()) +
offset);
ASSERT(call.IsValid());
offset_into_target = call.distance();
}
const uword destination_payload =
Instructions::PayloadStart(destination_.instructions());
const uword entry_point =
call_entry_point == Code::kUncheckedEntry
? Instructions::UncheckedEntryPoint(destination_.instructions())
: Instructions::EntryPoint(destination_.instructions());
offset_into_target += (entry_point - destination_payload);
if (offset_into_target > max_offset_into_target_) {
max_offset_into_target_ = offset_into_target;
}
}
if (num_calls > max_calls_) {
max_calls_ = num_calls;
}
}
}
}
bool CodeRelocator::AddInstructionsToText(RawCode* code) {
RawInstructions* instructions = Code::InstructionsOf(code);
// If two [Code] objects point to the same [Instructions] object, we'll just
// use the first one (they are equivalent for all practical purposes).
if (text_offsets_.HasKey(instructions)) {
return false;
}
text_offsets_.Insert({instructions, next_text_offset_});
commands_->Add(ImageWriterCommand(next_text_offset_, code));
next_text_offset_ += instructions->HeapSize();
return true;
}
UnresolvedTrampoline* CodeRelocator::FindTrampolineFor(
UnresolvedCall* unresolved_call) {
auto destination = Code::InstructionsOf(unresolved_call->callee);
auto entry = trampolines_by_destination_.Lookup(destination);
if (entry != nullptr) {
UnresolvedTrampolineList* trampolines = entry->value;
ASSERT(!trampolines->IsEmpty());
// For the destination of [unresolved_call] we might have multiple
// trampolines. The trampolines are sorted according to insertion order,
// which guarantees increasing text_offset's. So we go from the back of the
// list as long as we have trampolines that are in-range and then check
// whether the target offset matches.
auto it = trampolines->End();
--it;
do {
UnresolvedTrampoline* trampoline = *it;
if (!IsTargetInRangeFor(unresolved_call, trampoline->text_offset)) {
break;
}
if (trampoline->offset_into_target ==
unresolved_call->offset_into_target) {
return trampoline;
}
--it;
} while (it != trampolines->Begin());
}
return nullptr;
}
void CodeRelocator::AddTrampolineToText(RawInstructions* destination,
uint8_t* trampoline_bytes,
intptr_t trampoline_length) {
commands_->Add(ImageWriterCommand(next_text_offset_, trampoline_bytes,
trampoline_length));
next_text_offset_ += trampoline_length;
}
void CodeRelocator::ScanCallTargets(const Code& code,
const Array& call_targets,
intptr_t code_text_offset) {
if (call_targets.IsNull()) {
return;
}
StaticCallsTable calls(call_targets);
for (auto call : calls) {
kind_type_and_offset_ = call.Get<Code::kSCallTableKindAndOffset>();
auto kind = Code::KindField::decode(kind_type_and_offset_.Value());
auto offset = Code::OffsetField::decode(kind_type_and_offset_.Value());
auto call_entry_point =
Code::EntryPointField::decode(kind_type_and_offset_.Value());
if (kind == Code::kCallViaCode) {
continue;
}
target_ = call.Get<Code::kSCallTableFunctionTarget>();
if (target_.IsFunction()) {
auto& fun = Function::Cast(target_);
ASSERT(fun.HasCode());
destination_ = fun.CurrentCode();
ASSERT(!destination_.IsStubCode());
} else {
target_ = call.Get<Code::kSCallTableCodeTarget>();
ASSERT(target_.IsCode());
destination_ = Code::Cast(target_).raw();
}
// A call site can decide to jump not to the beginning of a function but
// rather jump into it at a certain offset.
int32_t offset_into_target = 0;
{
PcRelativeCallPattern call(
Instructions::PayloadStart(code.instructions()) + offset);
ASSERT(call.IsValid());
offset_into_target = call.distance();
}
const uword destination_payload =
Instructions::PayloadStart(destination_.instructions());
const uword entry_point =
call_entry_point == Code::kUncheckedEntry
? Instructions::UncheckedEntryPoint(destination_.instructions())
: Instructions::EntryPoint(destination_.instructions());
offset_into_target += (entry_point - destination_payload);
const intptr_t text_offset =
code_text_offset + Instructions::HeaderSize() + offset;
UnresolvedCall unresolved_call(code.raw(), offset, text_offset,
destination_.raw(), offset_into_target);
if (!TryResolveBackwardsCall(&unresolved_call)) {
EnqueueUnresolvedCall(new UnresolvedCall(unresolved_call));
}
}
}
void CodeRelocator::EnqueueUnresolvedCall(UnresolvedCall* unresolved_call) {
// Add it to the min-heap by .text offset.
all_unresolved_calls_.Append(unresolved_call);
// Add it to callers of destination.
RawInstructions* destination = Code::InstructionsOf(unresolved_call->callee);
if (!unresolved_calls_by_destination_.HasKey(destination)) {
unresolved_calls_by_destination_.Insert(
{destination, new SameDestinationUnresolvedCallsList()});
}
unresolved_calls_by_destination_.LookupValue(destination)
->Append(unresolved_call);
}
void CodeRelocator::EnqueueUnresolvedTrampoline(
UnresolvedTrampoline* unresolved_trampoline) {
auto destination = Code::InstructionsOf(unresolved_trampoline->callee);
auto entry = trampolines_by_destination_.Lookup(destination);
UnresolvedTrampolineList* trampolines = nullptr;
if (entry == nullptr) {
trampolines = new UnresolvedTrampolineList();
trampolines_by_destination_.Insert({destination, trampolines});
} else {
trampolines = entry->value;
}
trampolines->Append(unresolved_trampoline);
}
bool CodeRelocator::TryResolveBackwardsCall(UnresolvedCall* unresolved_call) {
auto callee = Code::InstructionsOf(unresolved_call->callee);
auto map_entry = text_offsets_.Lookup(callee);
if (map_entry == nullptr) return false;
ResolveCall(unresolved_call);
return true;
}
void CodeRelocator::ResolveUnresolvedCallsTargeting(
const RawInstructions* instructions) {
if (unresolved_calls_by_destination_.HasKey(instructions)) {
SameDestinationUnresolvedCallsList* calls =
unresolved_calls_by_destination_.LookupValue(instructions);
auto it = calls->Begin();
while (it != calls->End()) {
UnresolvedCall* unresolved_call = *it;
++it;
ASSERT(Code::InstructionsOf(unresolved_call->callee) == instructions);
ResolveCall(unresolved_call);
// Remove the call from both lists.
calls->Remove(unresolved_call);
all_unresolved_calls_.Remove(unresolved_call);
delete unresolved_call;
}
ASSERT(calls->IsEmpty());
delete calls;
bool ok = unresolved_calls_by_destination_.Remove(instructions);
ASSERT(ok);
}
}
void CodeRelocator::ResolveCall(UnresolvedCall* unresolved_call) {
const intptr_t destination_text =
FindDestinationInText(Code::InstructionsOf(unresolved_call->callee),
unresolved_call->offset_into_target);
ResolveCallToDestination(unresolved_call, destination_text);
}
void CodeRelocator::ResolveCallToDestination(UnresolvedCall* unresolved_call,
intptr_t destination_text) {
const intptr_t call_text_offset = unresolved_call->text_offset;
const intptr_t call_offset = unresolved_call->call_offset;
auto caller = Code::InstructionsOf(unresolved_call->caller);
const int32_t distance = destination_text - call_text_offset;
{
uword addr = Instructions::PayloadStart(caller) + call_offset;
if (FLAG_write_protect_code) {
addr -= HeapPage::Of(caller)->AliasOffset();
}
PcRelativeCallPattern call(addr);
ASSERT(call.IsValid());
call.set_distance(static_cast<int32_t>(distance));
ASSERT(call.distance() == distance);
}
unresolved_call->caller = nullptr;
unresolved_call->callee = nullptr;
}
void CodeRelocator::ResolveTrampoline(
UnresolvedTrampoline* unresolved_trampoline) {
const intptr_t trampoline_text_offset = unresolved_trampoline->text_offset;
const uword trampoline_start =
reinterpret_cast<uword>(unresolved_trampoline->trampoline_bytes);
auto callee = Code::InstructionsOf(unresolved_trampoline->callee);
auto destination_text =
FindDestinationInText(callee, unresolved_trampoline->offset_into_target);
const int32_t distance = destination_text - trampoline_text_offset;
PcRelativeTrampolineJumpPattern pattern(trampoline_start +
kOffsetInTrampoline);
pattern.Initialize();
pattern.set_distance(distance);
ASSERT(pattern.distance() == distance);
}
bool CodeRelocator::IsTargetInRangeFor(UnresolvedCall* unresolved_call,
intptr_t target_text_offset) {
const auto forward_distance =
target_text_offset - unresolved_call->text_offset;
return PcRelativeCallPattern::kLowerCallingRange < forward_distance &&
forward_distance < PcRelativeCallPattern::kUpperCallingRange;
}
static void MarkAsFreeListElement(uint8_t* trampoline_bytes,
intptr_t trampoline_length) {
uint32_t tags = 0;
tags = RawObject::SizeTag::update(trampoline_length, tags);
tags = RawObject::ClassIdTag::update(kFreeListElement, tags);
tags = RawObject::OldBit::update(true, tags);
tags = RawObject::OldAndNotMarkedBit::update(true, tags);
tags = RawObject::OldAndNotRememberedBit::update(true, tags);
tags = RawObject::NewBit::update(false, tags);
auto header_word = reinterpret_cast<uintptr_t*>(trampoline_bytes);
*header_word = tags;
}
void CodeRelocator::BuildTrampolinesForAlmostOutOfRangeCalls() {
while (!all_unresolved_calls_.IsEmpty()) {
UnresolvedCall* unresolved_call = all_unresolved_calls_.First();
// If we can emit another instructions object without causing the unresolved
// forward calls to become out-of-range, we'll not resolve it yet (maybe the
// target function will come very soon and we don't need a trampoline at
// all).
const intptr_t future_boundary =
next_text_offset_ + max_instructions_size_ +
kTrampolineSize *
(unresolved_calls_by_destination_.Length() + max_calls_) +
kOffsetInTrampoline;
if (IsTargetInRangeFor(unresolved_call, future_boundary) &&
!FLAG_always_generate_trampolines_for_testing) {
break;
}
// We have a "critical" [unresolved_call] we have to resolve. If an
// existing trampoline is in range, we use that otherwise we create a new
// trampoline.
// In the worst case we'll make a new trampoline here, in which case the
// current text offset must be in range for the "critical"
// [unresolved_call].
ASSERT(IsTargetInRangeFor(unresolved_call, next_text_offset_));
// See if there is already a trampoline we could use.
intptr_t trampoline_text_offset = -1;
auto callee = Code::InstructionsOf(unresolved_call->callee);
if (!FLAG_always_generate_trampolines_for_testing) {
auto old_trampoline_entry = FindTrampolineFor(unresolved_call);
if (old_trampoline_entry != nullptr) {
trampoline_text_offset = old_trampoline_entry->text_offset;
}
}
// If there is no trampoline yet, we'll create a new one.
if (trampoline_text_offset == -1) {
// The ownership of the trampoline bytes will be transferred to the
// [ImageWriter], which will eventually write out the bytes and delete the
// buffer.
auto trampoline_bytes = new uint8_t[kTrampolineSize];
memset(trampoline_bytes, 0x00, kTrampolineSize);
ASSERT((kOffsetInTrampoline +
PcRelativeTrampolineJumpPattern::kLengthInBytes) <
kTrampolineSize);
auto unresolved_trampoline = new UnresolvedTrampoline{
unresolved_call->callee,
unresolved_call->offset_into_target,
trampoline_bytes,
next_text_offset_ + kOffsetInTrampoline,
};
MarkAsFreeListElement(trampoline_bytes, kTrampolineSize);
AddTrampolineToText(callee, trampoline_bytes, kTrampolineSize);
EnqueueUnresolvedTrampoline(unresolved_trampoline);
trampoline_text_offset = unresolved_trampoline->text_offset;
}
// Let the unresolved call to [destination] jump to the trampoline
// instead.
auto destination = Code::InstructionsOf(unresolved_call->callee);
ResolveCallToDestination(unresolved_call, trampoline_text_offset);
// Remove this unresolved call from the global list and the per-destination
// list.
auto calls = unresolved_calls_by_destination_.LookupValue(destination);
calls->Remove(unresolved_call);
all_unresolved_calls_.Remove(unresolved_call);
delete unresolved_call;
// If this destination has no longer any unresolved calls, remove it.
if (calls->IsEmpty()) {
unresolved_calls_by_destination_.Remove(destination);
delete calls;
}
}
}
intptr_t CodeRelocator::FindDestinationInText(
const RawInstructions* destination,
intptr_t offset_into_target) {
auto destination_offset = text_offsets_.LookupValue(destination);
return destination_offset + Instructions::HeaderSize() + offset_into_target;
}
#endif // defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_DBC) && \
// !defined(TARGET_ARCH_IA32)
} // namespace dart