blob: 0a91641fff1739a1a544a40cc0dac267c96aa722 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
/// Specialized integers and floating point numbers,
/// with SIMD support and efficient lists.
library dart.typed_data.implementation;
import 'dart:collection' show ListMixin;
import 'dart:_internal' show FixedLengthListMixin hide Symbol;
import 'dart:_interceptors' show JSIndexable, JSUInt32, JSUInt31;
import 'dart:_js_helper'
show
Creates,
JavaScriptIndexingBehavior,
JSName,
Native,
Returns,
diagnoseIndexError,
diagnoseRangeError;
import 'dart:_foreign_helper' show JS;
import 'dart:math' as Math;
import 'dart:typed_data';
@Native('ArrayBuffer')
class NativeByteBuffer implements ByteBuffer {
@JSName('byteLength')
final int lengthInBytes;
Type get runtimeType => ByteBuffer;
Uint8List asUint8List([int offsetInBytes = 0, int length]) {
return new NativeUint8List.view(this, offsetInBytes, length);
}
Int8List asInt8List([int offsetInBytes = 0, int length]) {
return new NativeInt8List.view(this, offsetInBytes, length);
}
Uint8ClampedList asUint8ClampedList([int offsetInBytes = 0, int length]) {
return new NativeUint8ClampedList.view(this, offsetInBytes, length);
}
Uint16List asUint16List([int offsetInBytes = 0, int length]) {
return new NativeUint16List.view(this, offsetInBytes, length);
}
Int16List asInt16List([int offsetInBytes = 0, int length]) {
return new NativeInt16List.view(this, offsetInBytes, length);
}
Uint32List asUint32List([int offsetInBytes = 0, int length]) {
return new NativeUint32List.view(this, offsetInBytes, length);
}
Int32List asInt32List([int offsetInBytes = 0, int length]) {
return new NativeInt32List.view(this, offsetInBytes, length);
}
Uint64List asUint64List([int offsetInBytes = 0, int length]) {
throw new UnsupportedError('Uint64List not supported by dart2js.');
}
Int64List asInt64List([int offsetInBytes = 0, int length]) {
throw new UnsupportedError('Int64List not supported by dart2js.');
}
Int32x4List asInt32x4List([int offsetInBytes = 0, int length]) {
NativeInt32List storage =
this.asInt32List(offsetInBytes, length != null ? length * 4 : null);
return new NativeInt32x4List._externalStorage(storage);
}
Float32List asFloat32List([int offsetInBytes = 0, int length]) {
return new NativeFloat32List.view(this, offsetInBytes, length);
}
Float64List asFloat64List([int offsetInBytes = 0, int length]) {
return new NativeFloat64List.view(this, offsetInBytes, length);
}
Float32x4List asFloat32x4List([int offsetInBytes = 0, int length]) {
NativeFloat32List storage =
this.asFloat32List(offsetInBytes, length != null ? length * 4 : null);
return new NativeFloat32x4List._externalStorage(storage);
}
Float64x2List asFloat64x2List([int offsetInBytes = 0, int length]) {
NativeFloat64List storage =
this.asFloat64List(offsetInBytes, length != null ? length * 2 : null);
return new NativeFloat64x2List._externalStorage(storage);
}
ByteData asByteData([int offsetInBytes = 0, int length]) {
return new NativeByteData.view(this, offsetInBytes, length);
}
}
/// A fixed-length list of Float32x4 numbers that is viewable as a
/// [TypedData]. For long lists, this implementation will be considerably more
/// space- and time-efficient than the default [List] implementation.
class NativeFloat32x4List extends Object
with ListMixin<Float32x4>, FixedLengthListMixin<Float32x4>
implements Float32x4List {
final NativeFloat32List _storage;
/// Creates a [Float32x4List] of the specified length (in elements),
/// all of whose elements are initially zero.
NativeFloat32x4List(int length)
: _storage = new NativeFloat32List(length * 4);
NativeFloat32x4List._externalStorage(this._storage);
NativeFloat32x4List._slowFromList(List<Float32x4> list)
: _storage = new NativeFloat32List(list.length * 4) {
for (int i = 0; i < list.length; i++) {
var e = list[i];
_storage[(i * 4) + 0] = e.x;
_storage[(i * 4) + 1] = e.y;
_storage[(i * 4) + 2] = e.z;
_storage[(i * 4) + 3] = e.w;
}
}
Type get runtimeType => Float32x4List;
/// Creates a [Float32x4List] with the same size as the [elements] list
/// and copies over the elements.
factory NativeFloat32x4List.fromList(List<Float32x4> list) {
if (list is NativeFloat32x4List) {
return new NativeFloat32x4List._externalStorage(
new NativeFloat32List.fromList(list._storage));
} else {
return new NativeFloat32x4List._slowFromList(list);
}
}
ByteBuffer get buffer => _storage.buffer;
int get lengthInBytes => _storage.lengthInBytes;
int get offsetInBytes => _storage.offsetInBytes;
int get elementSizeInBytes => Float32x4List.bytesPerElement;
int get length => _storage.length ~/ 4;
Float32x4 operator [](int index) {
_checkValidIndex(index, this, this.length);
double _x = _storage[(index * 4) + 0];
double _y = _storage[(index * 4) + 1];
double _z = _storage[(index * 4) + 2];
double _w = _storage[(index * 4) + 3];
return new NativeFloat32x4._truncated(_x, _y, _z, _w);
}
void operator []=(int index, Float32x4 value) {
_checkValidIndex(index, this, this.length);
_storage[(index * 4) + 0] = value.x;
_storage[(index * 4) + 1] = value.y;
_storage[(index * 4) + 2] = value.z;
_storage[(index * 4) + 3] = value.w;
}
Float32x4List sublist(int start, [int end]) {
end = _checkValidRange(start, end, this.length);
return new NativeFloat32x4List._externalStorage(
_storage.sublist(start * 4, end * 4));
}
}
/// A fixed-length list of Int32x4 numbers that is viewable as a
/// [TypedData]. For long lists, this implementation will be considerably more
/// space- and time-efficient than the default [List] implementation.
class NativeInt32x4List extends Object
with ListMixin<Int32x4>, FixedLengthListMixin<Int32x4>
implements Int32x4List {
final Int32List _storage;
/// Creates a [Int32x4List] of the specified length (in elements),
/// all of whose elements are initially zero.
NativeInt32x4List(int length) : _storage = new NativeInt32List(length * 4);
NativeInt32x4List._externalStorage(Int32List storage) : _storage = storage;
NativeInt32x4List._slowFromList(List<Int32x4> list)
: _storage = new NativeInt32List(list.length * 4) {
for (int i = 0; i < list.length; i++) {
var e = list[i];
_storage[(i * 4) + 0] = e.x;
_storage[(i * 4) + 1] = e.y;
_storage[(i * 4) + 2] = e.z;
_storage[(i * 4) + 3] = e.w;
}
}
Type get runtimeType => Int32x4List;
/// Creates a [Int32x4List] with the same size as the [elements] list
/// and copies over the elements.
factory NativeInt32x4List.fromList(List<Int32x4> list) {
if (list is NativeInt32x4List) {
return new NativeInt32x4List._externalStorage(
new NativeInt32List.fromList(list._storage));
} else {
return new NativeInt32x4List._slowFromList(list);
}
}
ByteBuffer get buffer => _storage.buffer;
int get lengthInBytes => _storage.lengthInBytes;
int get offsetInBytes => _storage.offsetInBytes;
int get elementSizeInBytes => Int32x4List.bytesPerElement;
int get length => _storage.length ~/ 4;
Int32x4 operator [](int index) {
_checkValidIndex(index, this, this.length);
int _x = _storage[(index * 4) + 0];
int _y = _storage[(index * 4) + 1];
int _z = _storage[(index * 4) + 2];
int _w = _storage[(index * 4) + 3];
return new NativeInt32x4._truncated(_x, _y, _z, _w);
}
void operator []=(int index, Int32x4 value) {
_checkValidIndex(index, this, this.length);
_storage[(index * 4) + 0] = value.x;
_storage[(index * 4) + 1] = value.y;
_storage[(index * 4) + 2] = value.z;
_storage[(index * 4) + 3] = value.w;
}
Int32x4List sublist(int start, [int end]) {
end = _checkValidRange(start, end, this.length);
return new NativeInt32x4List._externalStorage(
_storage.sublist(start * 4, end * 4));
}
}
/// A fixed-length list of Float64x2 numbers that is viewable as a
/// [TypedData]. For long lists, this implementation will be considerably more
/// space- and time-efficient than the default [List] implementation.
class NativeFloat64x2List extends Object
with ListMixin<Float64x2>, FixedLengthListMixin<Float64x2>
implements Float64x2List {
final NativeFloat64List _storage;
/// Creates a [Float64x2List] of the specified length (in elements),
/// all of whose elements are initially zero.
NativeFloat64x2List(int length)
: _storage = new NativeFloat64List(length * 2);
NativeFloat64x2List._externalStorage(this._storage);
NativeFloat64x2List._slowFromList(List<Float64x2> list)
: _storage = new NativeFloat64List(list.length * 2) {
for (int i = 0; i < list.length; i++) {
var e = list[i];
_storage[(i * 2) + 0] = e.x;
_storage[(i * 2) + 1] = e.y;
}
}
/// Creates a [Float64x2List] with the same size as the [elements] list
/// and copies over the elements.
factory NativeFloat64x2List.fromList(List<Float64x2> list) {
if (list is NativeFloat64x2List) {
return new NativeFloat64x2List._externalStorage(
new NativeFloat64List.fromList(list._storage));
} else {
return new NativeFloat64x2List._slowFromList(list);
}
}
Type get runtimeType => Float64x2List;
ByteBuffer get buffer => _storage.buffer;
int get lengthInBytes => _storage.lengthInBytes;
int get offsetInBytes => _storage.offsetInBytes;
int get elementSizeInBytes => Float64x2List.bytesPerElement;
int get length => _storage.length ~/ 2;
Float64x2 operator [](int index) {
_checkValidIndex(index, this, this.length);
double _x = _storage[(index * 2) + 0];
double _y = _storage[(index * 2) + 1];
return new Float64x2(_x, _y);
}
void operator []=(int index, Float64x2 value) {
_checkValidIndex(index, this, this.length);
_storage[(index * 2) + 0] = value.x;
_storage[(index * 2) + 1] = value.y;
}
Float64x2List sublist(int start, [int end]) {
end = _checkValidRange(start, end, this.length);
return new NativeFloat64x2List._externalStorage(
_storage.sublist(start * 2, end * 2));
}
}
@Native('ArrayBufferView')
class NativeTypedData implements TypedData {
/// Returns the byte buffer associated with this object.
@Creates('NativeByteBuffer')
// May be Null for IE's CanvasPixelArray.
@Returns('NativeByteBuffer|Null')
final ByteBuffer buffer;
/// Returns the length of this view, in bytes.
@JSName('byteLength')
final int lengthInBytes;
/// Returns the offset in bytes into the underlying byte buffer of this view.
@JSName('byteOffset')
final int offsetInBytes;
/// Returns the number of bytes in the representation of each element in this
/// list.
@JSName('BYTES_PER_ELEMENT')
final int elementSizeInBytes;
void _invalidPosition(int position, int length, String name) {
if (position is! int) {
throw new ArgumentError.value(position, name, 'Invalid list position');
} else {
throw new RangeError.range(position, 0, length, name);
}
}
void _checkPosition(int position, int length, String name) {
if (JS('bool', '(# >>> 0) !== #', position, position) ||
JS('int', '#', position) > length) {
// 'int' guaranteed by above test.
_invalidPosition(position, length, name);
}
}
}
// Validates the unnamed constructor length argument. Checking is necessary
// because passing unvalidated values to the native constructors can cause
// conversions or create views.
int _checkLength(length) {
return length is int
? length
: throw new ArgumentError('Invalid length $length');
}
// Validates `.view` constructor arguments. Checking is necessary because
// passing unvalidated values to the native constructors can cause conversions
// (e.g. String arguments) or create typed data objects that are not actually
// views of the input.
void _checkViewArguments(buffer, offsetInBytes, length) {
if (buffer is! NativeByteBuffer) {
throw new ArgumentError('Invalid view buffer');
}
if (offsetInBytes is! int) {
throw new ArgumentError('Invalid view offsetInBytes $offsetInBytes');
}
if (length != null && length is! int) {
throw new ArgumentError('Invalid view length $length');
}
}
// Ensures that [list] is a JavaScript Array or a typed array. If necessary,
// returns a copy of the list.
List _ensureNativeList(List list) {
if (list is JSIndexable) return list;
List result = new List(list.length);
for (int i = 0; i < list.length; i++) {
result[i] = list[i];
}
return result;
}
@Native('DataView')
class NativeByteData extends NativeTypedData implements ByteData {
/// Creates a [ByteData] of the specified length (in elements), all of
/// whose elements are initially zero.
factory NativeByteData(int length) => _create1(_checkLength(length));
/// Creates an [ByteData] _view_ of the specified region in the specified
/// byte buffer. Changes in the [ByteData] will be visible in the byte
/// buffer and vice versa. If the [offsetInBytes] index of the region is not
/// specified, it defaults to zero (the first byte in the byte buffer).
/// If the length is not specified, it defaults to null, which indicates
/// that the view extends to the end of the byte buffer.
///
/// Throws [RangeError] if [offsetInBytes] or [length] are negative, or
/// if [offsetInBytes] + ([length] * elementSizeInBytes) is greater than
/// the length of [buffer].
factory NativeByteData.view(
ByteBuffer buffer, int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => ByteData;
int get elementSizeInBytes => 1;
/// Returns the floating point number represented by the four bytes at
/// the specified [byteOffset] in this object, in IEEE 754
/// single-precision binary floating-point format (binary32).
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 4` is greater than the length of this object.
double getFloat32(int byteOffset, [Endian endian = Endian.big]) =>
_getFloat32(byteOffset, Endian.little == endian);
@JSName('getFloat32')
@Returns('num')
num _getFloat32(int byteOffset, [bool littleEndian]) native;
/// Returns the floating point number represented by the eight bytes at
/// the specified [byteOffset] in this object, in IEEE 754
/// double-precision binary floating-point format (binary64).
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 8` is greater than the length of this object.
double getFloat64(int byteOffset, [Endian endian = Endian.big]) =>
_getFloat64(byteOffset, Endian.little == endian);
@JSName('getFloat64')
@Returns('num')
num _getFloat64(int byteOffset, [bool littleEndian]) native;
/// Returns the (possibly negative) integer represented by the two bytes at
/// the specified [byteOffset] in this object, in two's complement binary
/// form.
/// The return value will be between 2<sup>15</sup> and 2<sup>15</sup> - 1,
/// inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 2` is greater than the length of this object.
int getInt16(int byteOffset, [Endian endian = Endian.big]) =>
_getInt16(byteOffset, Endian.little == endian);
@JSName('getInt16')
@Returns('int')
int _getInt16(int byteOffset, [bool littleEndian]) native;
/// Returns the (possibly negative) integer represented by the four bytes at
/// the specified [byteOffset] in this object, in two's complement binary
/// form.
/// The return value will be between 2<sup>31</sup> and 2<sup>31</sup> - 1,
/// inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 4` is greater than the length of this object.
int getInt32(int byteOffset, [Endian endian = Endian.big]) =>
_getInt32(byteOffset, Endian.little == endian);
@JSName('getInt32')
@Returns('int')
int _getInt32(int byteOffset, [bool littleEndian]) native;
/// Returns the (possibly negative) integer represented by the eight bytes at
/// the specified [byteOffset] in this object, in two's complement binary
/// form.
/// The return value will be between 2<sup>63</sup> and 2<sup>63</sup> - 1,
/// inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 8` is greater than the length of this object.
int getInt64(int byteOffset, [Endian endian = Endian.big]) {
throw new UnsupportedError('Int64 accessor not supported by dart2js.');
}
/// Returns the (possibly negative) integer represented by the byte at the
/// specified [byteOffset] in this object, in two's complement binary
/// representation. The return value will be between -128 and 127, inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// greater than or equal to the length of this object.
int getInt8(int byteOffset) native;
/// Returns the positive integer represented by the two bytes starting
/// at the specified [byteOffset] in this object, in unsigned binary
/// form.
/// The return value will be between 0 and 2<sup>16</sup> - 1, inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 2` is greater than the length of this object.
int getUint16(int byteOffset, [Endian endian = Endian.big]) =>
_getUint16(byteOffset, Endian.little == endian);
@JSName('getUint16')
@Returns('JSUInt31')
int _getUint16(int byteOffset, [bool littleEndian]) native;
/// Returns the positive integer represented by the four bytes starting
/// at the specified [byteOffset] in this object, in unsigned binary
/// form.
/// The return value will be between 0 and 2<sup>32</sup> - 1, inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 4` is greater than the length of this object.
int getUint32(int byteOffset, [Endian endian = Endian.big]) =>
_getUint32(byteOffset, Endian.little == endian);
@JSName('getUint32')
@Returns('JSUInt32')
int _getUint32(int byteOffset, [bool littleEndian]) native;
/// Returns the positive integer represented by the eight bytes starting
/// at the specified [byteOffset] in this object, in unsigned binary
/// form.
/// The return value will be between 0 and 2<sup>64</sup> - 1, inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 8` is greater than the length of this object.
int getUint64(int byteOffset, [Endian endian = Endian.big]) {
throw new UnsupportedError('Uint64 accessor not supported by dart2js.');
}
/// Returns the positive integer represented by the byte at the specified
/// [byteOffset] in this object, in unsigned binary form. The
/// return value will be between 0 and 255, inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// greater than or equal to the length of this object.
int getUint8(int byteOffset) native;
/// Sets the four bytes starting at the specified [byteOffset] in this
/// object to the IEEE 754 single-precision binary floating-point
/// (binary32) representation of the specified [value].
///
/// **Note that this method can lose precision.** The input [value] is
/// a 64-bit floating point value, which will be converted to 32-bit
/// floating point value by IEEE 754 rounding rules before it is stored.
/// If [value] cannot be represented exactly as a binary32, it will be
/// converted to the nearest binary32 value. If two binary32 values are
/// equally close, the one whose least significant bit is zero will be used.
/// Note that finite (but large) values can be converted to infinity, and
/// small non-zero values can be converted to zero.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 4` is greater than the length of this object.
void setFloat32(int byteOffset, num value, [Endian endian = Endian.big]) =>
_setFloat32(byteOffset, value, Endian.little == endian);
@JSName('setFloat32')
void _setFloat32(int byteOffset, num value, [bool littleEndian]) native;
/// Sets the eight bytes starting at the specified [byteOffset] in this
/// object to the IEEE 754 double-precision binary floating-point
/// (binary64) representation of the specified [value].
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 8` is greater than the length of this object.
void setFloat64(int byteOffset, num value, [Endian endian = Endian.big]) =>
_setFloat64(byteOffset, value, Endian.little == endian);
@JSName('setFloat64')
void _setFloat64(int byteOffset, num value, [bool littleEndian]) native;
/// Sets the two bytes starting at the specified [byteOffset] in this
/// object to the two's complement binary representation of the specified
/// [value], which must fit in two bytes. In other words, [value] must lie
/// between 2<sup>15</sup> and 2<sup>15</sup> - 1, inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 2` is greater than the length of this object.
void setInt16(int byteOffset, int value, [Endian endian = Endian.big]) =>
_setInt16(byteOffset, value, Endian.little == endian);
@JSName('setInt16')
void _setInt16(int byteOffset, int value, [bool littleEndian]) native;
/// Sets the four bytes starting at the specified [byteOffset] in this
/// object to the two's complement binary representation of the specified
/// [value], which must fit in four bytes. In other words, [value] must lie
/// between 2<sup>31</sup> and 2<sup>31</sup> - 1, inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 4` is greater than the length of this object.
void setInt32(int byteOffset, int value, [Endian endian = Endian.big]) =>
_setInt32(byteOffset, value, Endian.little == endian);
@JSName('setInt32')
void _setInt32(int byteOffset, int value, [bool littleEndian]) native;
/// Sets the eight bytes starting at the specified [byteOffset] in this
/// object to the two's complement binary representation of the specified
/// [value], which must fit in eight bytes. In other words, [value] must lie
/// between 2<sup>63</sup> and 2<sup>63</sup> - 1, inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 8` is greater than the length of this object.
void setInt64(int byteOffset, int value, [Endian endian = Endian.big]) {
throw new UnsupportedError('Int64 accessor not supported by dart2js.');
}
/// Sets the byte at the specified [byteOffset] in this object to the
/// two's complement binary representation of the specified [value], which
/// must fit in a single byte. In other words, [value] must be between
/// -128 and 127, inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// greater than or equal to the length of this object.
void setInt8(int byteOffset, int value) native;
/// Sets the two bytes starting at the specified [byteOffset] in this object
/// to the unsigned binary representation of the specified [value],
/// which must fit in two bytes. in other words, [value] must be between
/// 0 and 2<sup>16</sup> - 1, inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 2` is greater than the length of this object.
void setUint16(int byteOffset, int value, [Endian endian = Endian.big]) =>
_setUint16(byteOffset, value, Endian.little == endian);
@JSName('setUint16')
void _setUint16(int byteOffset, int value, [bool littleEndian]) native;
/// Sets the four bytes starting at the specified [byteOffset] in this object
/// to the unsigned binary representation of the specified [value],
/// which must fit in four bytes. in other words, [value] must be between
/// 0 and 2<sup>32</sup> - 1, inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 4` is greater than the length of this object.
void setUint32(int byteOffset, int value, [Endian endian = Endian.big]) =>
_setUint32(byteOffset, value, Endian.little == endian);
@JSName('setUint32')
void _setUint32(int byteOffset, int value, [bool littleEndian]) native;
/// Sets the eight bytes starting at the specified [byteOffset] in this object
/// to the unsigned binary representation of the specified [value],
/// which must fit in eight bytes. in other words, [value] must be between
/// 0 and 2<sup>64</sup> - 1, inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative, or
/// `byteOffset + 8` is greater than the length of this object.
void setUint64(int byteOffset, int value, [Endian endian = Endian.big]) {
throw new UnsupportedError('Uint64 accessor not supported by dart2js.');
}
/// Sets the byte at the specified [byteOffset] in this object to the
/// unsigned binary representation of the specified [value], which must fit
/// in a single byte. in other words, [value] must be between 0 and 255,
/// inclusive.
///
/// Throws [RangeError] if [byteOffset] is negative,
/// or greater than or equal to the length of this object.
void setUint8(int byteOffset, int value) native;
static NativeByteData _create1(arg) =>
JS('NativeByteData', 'new DataView(new ArrayBuffer(#))', arg);
static NativeByteData _create2(arg1, arg2) =>
JS('NativeByteData', 'new DataView(#, #)', arg1, arg2);
static NativeByteData _create3(arg1, arg2, arg3) =>
JS('NativeByteData', 'new DataView(#, #, #)', arg1, arg2, arg3);
}
abstract class NativeTypedArray extends NativeTypedData
implements JavaScriptIndexingBehavior {
int get length => JS('JSUInt32', '#.length', this);
void _setRangeFast(
int start, int end, NativeTypedArray source, int skipCount) {
int targetLength = this.length;
_checkPosition(start, targetLength, 'start');
_checkPosition(end, targetLength, 'end');
if (start > end) throw new RangeError.range(start, 0, end);
int count = end - start;
if (skipCount < 0) throw new ArgumentError(skipCount);
int sourceLength = source.length;
if (sourceLength - skipCount < count) {
throw new StateError('Not enough elements');
}
if (skipCount != 0 || sourceLength != count) {
// Create a view of the exact subrange that is copied from the source.
source = JS('', '#.subarray(#, #)', source, skipCount, skipCount + count);
}
JS('void', '#.set(#, #)', this, source, start);
}
}
abstract class NativeTypedArrayOfDouble extends NativeTypedArray
with ListMixin<double>, FixedLengthListMixin<double> {
double operator [](int index) {
_checkValidIndex(index, this, this.length);
return JS('num', '#[#]', this, index);
}
void operator []=(int index, double value) {
_checkValidIndex(index, this, this.length);
JS('void', '#[#] = #', this, index, value);
}
void setRange(int start, int end, Iterable<double> iterable,
[int skipCount = 0]) {
if (iterable is NativeTypedArrayOfDouble) {
_setRangeFast(start, end, iterable, skipCount);
return;
}
super.setRange(start, end, iterable, skipCount);
}
}
abstract class NativeTypedArrayOfInt extends NativeTypedArray
with ListMixin<int>, FixedLengthListMixin<int>
implements List<int> {
// operator[]() is not here since different versions have different return
// types
void operator []=(int index, int value) {
_checkValidIndex(index, this, this.length);
JS('void', '#[#] = #', this, index, value);
}
void setRange(int start, int end, Iterable<int> iterable,
[int skipCount = 0]) {
if (iterable is NativeTypedArrayOfInt) {
_setRangeFast(start, end, iterable, skipCount);
return;
}
super.setRange(start, end, iterable, skipCount);
}
}
@Native('Float32Array')
class NativeFloat32List extends NativeTypedArrayOfDouble
implements Float32List {
factory NativeFloat32List(int length) => _create1(_checkLength(length));
factory NativeFloat32List.fromList(List<double> elements) =>
_create1(_ensureNativeList(elements));
factory NativeFloat32List.view(
ByteBuffer buffer, int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Float32List;
Float32List sublist(int start, [int end]) {
end = _checkValidRange(start, end, this.length);
var source = JS('NativeFloat32List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeFloat32List _create1(arg) =>
JS('NativeFloat32List', 'new Float32Array(#)', arg);
static NativeFloat32List _create2(arg1, arg2) =>
JS('NativeFloat32List', 'new Float32Array(#, #)', arg1, arg2);
static NativeFloat32List _create3(arg1, arg2, arg3) =>
JS('NativeFloat32List', 'new Float32Array(#, #, #)', arg1, arg2, arg3);
}
@Native('Float64Array')
class NativeFloat64List extends NativeTypedArrayOfDouble
implements Float64List {
factory NativeFloat64List(int length) => _create1(_checkLength(length));
factory NativeFloat64List.fromList(List<double> elements) =>
_create1(_ensureNativeList(elements));
factory NativeFloat64List.view(
ByteBuffer buffer, int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Float64List;
Float64List sublist(int start, [int end]) {
end = _checkValidRange(start, end, this.length);
var source = JS('NativeFloat64List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeFloat64List _create1(arg) =>
JS('NativeFloat64List', 'new Float64Array(#)', arg);
static NativeFloat64List _create2(arg1, arg2) =>
JS('NativeFloat64List', 'new Float64Array(#, #)', arg1, arg2);
static NativeFloat64List _create3(arg1, arg2, arg3) =>
JS('NativeFloat64List', 'new Float64Array(#, #, #)', arg1, arg2, arg3);
}
@Native('Int16Array')
class NativeInt16List extends NativeTypedArrayOfInt implements Int16List {
factory NativeInt16List(int length) => _create1(_checkLength(length));
factory NativeInt16List.fromList(List<int> elements) =>
_create1(_ensureNativeList(elements));
factory NativeInt16List.view(
NativeByteBuffer buffer, int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Int16List;
int operator [](int index) {
_checkValidIndex(index, this, this.length);
return JS('int', '#[#]', this, index);
}
Int16List sublist(int start, [int end]) {
end = _checkValidRange(start, end, this.length);
var source = JS('NativeInt16List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeInt16List _create1(arg) =>
JS('NativeInt16List', 'new Int16Array(#)', arg);
static NativeInt16List _create2(arg1, arg2) =>
JS('NativeInt16List', 'new Int16Array(#, #)', arg1, arg2);
static NativeInt16List _create3(arg1, arg2, arg3) =>
JS('NativeInt16List', 'new Int16Array(#, #, #)', arg1, arg2, arg3);
}
@Native('Int32Array')
class NativeInt32List extends NativeTypedArrayOfInt implements Int32List {
factory NativeInt32List(int length) => _create1(_checkLength(length));
factory NativeInt32List.fromList(List<int> elements) =>
_create1(_ensureNativeList(elements));
factory NativeInt32List.view(
ByteBuffer buffer, int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Int32List;
int operator [](int index) {
_checkValidIndex(index, this, this.length);
return JS('int', '#[#]', this, index);
}
Int32List sublist(int start, [int end]) {
end = _checkValidRange(start, end, this.length);
var source = JS('NativeInt32List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeInt32List _create1(arg) =>
JS('NativeInt32List', 'new Int32Array(#)', arg);
static NativeInt32List _create2(arg1, arg2) =>
JS('NativeInt32List', 'new Int32Array(#, #)', arg1, arg2);
static NativeInt32List _create3(arg1, arg2, arg3) =>
JS('NativeInt32List', 'new Int32Array(#, #, #)', arg1, arg2, arg3);
}
@Native('Int8Array')
class NativeInt8List extends NativeTypedArrayOfInt implements Int8List {
factory NativeInt8List(int length) => _create1(_checkLength(length));
factory NativeInt8List.fromList(List<int> elements) =>
_create1(_ensureNativeList(elements));
factory NativeInt8List.view(
ByteBuffer buffer, int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Int8List;
int operator [](int index) {
_checkValidIndex(index, this, this.length);
return JS('int', '#[#]', this, index);
}
Int8List sublist(int start, [int end]) {
end = _checkValidRange(start, end, this.length);
var source = JS('NativeInt8List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeInt8List _create1(arg) =>
JS('NativeInt8List', 'new Int8Array(#)', arg);
static NativeInt8List _create2(arg1, arg2) =>
JS('NativeInt8List', 'new Int8Array(#, #)', arg1, arg2);
static Int8List _create3(arg1, arg2, arg3) =>
JS('NativeInt8List', 'new Int8Array(#, #, #)', arg1, arg2, arg3);
}
@Native('Uint16Array')
class NativeUint16List extends NativeTypedArrayOfInt implements Uint16List {
factory NativeUint16List(int length) => _create1(_checkLength(length));
factory NativeUint16List.fromList(List<int> list) =>
_create1(_ensureNativeList(list));
factory NativeUint16List.view(
ByteBuffer buffer, int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Uint16List;
int operator [](int index) {
_checkValidIndex(index, this, this.length);
return JS('JSUInt31', '#[#]', this, index);
}
Uint16List sublist(int start, [int end]) {
end = _checkValidRange(start, end, this.length);
var source = JS('NativeUint16List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeUint16List _create1(arg) =>
JS('NativeUint16List', 'new Uint16Array(#)', arg);
static NativeUint16List _create2(arg1, arg2) =>
JS('NativeUint16List', 'new Uint16Array(#, #)', arg1, arg2);
static NativeUint16List _create3(arg1, arg2, arg3) =>
JS('NativeUint16List', 'new Uint16Array(#, #, #)', arg1, arg2, arg3);
}
@Native('Uint32Array')
class NativeUint32List extends NativeTypedArrayOfInt implements Uint32List {
factory NativeUint32List(int length) => _create1(_checkLength(length));
factory NativeUint32List.fromList(List<int> elements) =>
_create1(_ensureNativeList(elements));
factory NativeUint32List.view(
ByteBuffer buffer, int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Uint32List;
int operator [](int index) {
_checkValidIndex(index, this, this.length);
return JS('JSUInt32', '#[#]', this, index);
}
Uint32List sublist(int start, [int end]) {
end = _checkValidRange(start, end, this.length);
var source = JS('NativeUint32List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeUint32List _create1(arg) =>
JS('NativeUint32List', 'new Uint32Array(#)', arg);
static NativeUint32List _create2(arg1, arg2) =>
JS('NativeUint32List', 'new Uint32Array(#, #)', arg1, arg2);
static NativeUint32List _create3(arg1, arg2, arg3) =>
JS('NativeUint32List', 'new Uint32Array(#, #, #)', arg1, arg2, arg3);
}
@Native('Uint8ClampedArray,CanvasPixelArray')
class NativeUint8ClampedList extends NativeTypedArrayOfInt
implements Uint8ClampedList {
factory NativeUint8ClampedList(int length) => _create1(_checkLength(length));
factory NativeUint8ClampedList.fromList(List<int> elements) =>
_create1(_ensureNativeList(elements));
factory NativeUint8ClampedList.view(
ByteBuffer buffer, int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Uint8ClampedList;
int get length => JS('JSUInt32', '#.length', this);
int operator [](int index) {
_checkValidIndex(index, this, this.length);
return JS('JSUInt31', '#[#]', this, index);
}
Uint8ClampedList sublist(int start, [int end]) {
end = _checkValidRange(start, end, this.length);
var source =
JS('NativeUint8ClampedList', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeUint8ClampedList _create1(arg) =>
JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#)', arg);
static NativeUint8ClampedList _create2(arg1, arg2) =>
JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#, #)', arg1, arg2);
static NativeUint8ClampedList _create3(arg1, arg2, arg3) => JS(
'NativeUint8ClampedList',
'new Uint8ClampedArray(#, #, #)',
arg1,
arg2,
arg3);
}
// On some browsers Uint8ClampedArray is a subtype of Uint8Array. Marking
// Uint8List as !nonleaf ensures that the native dispatch correctly handles
// the potential for Uint8ClampedArray to 'accidentally' pick up the
// dispatch record for Uint8List.
@Native('Uint8Array,!nonleaf')
class NativeUint8List extends NativeTypedArrayOfInt implements Uint8List {
factory NativeUint8List(int length) => _create1(_checkLength(length));
factory NativeUint8List.fromList(List<int> elements) =>
_create1(_ensureNativeList(elements));
factory NativeUint8List.view(
ByteBuffer buffer, int offsetInBytes, int length) {
_checkViewArguments(buffer, offsetInBytes, length);
return length == null
? _create2(buffer, offsetInBytes)
: _create3(buffer, offsetInBytes, length);
}
Type get runtimeType => Uint8List;
int get length => JS('JSUInt32', '#.length', this);
int operator [](int index) {
_checkValidIndex(index, this, this.length);
return JS('JSUInt31', '#[#]', this, index);
}
Uint8List sublist(int start, [int end]) {
end = _checkValidRange(start, end, this.length);
var source = JS('NativeUint8List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static NativeUint8List _create1(arg) =>
JS('NativeUint8List', 'new Uint8Array(#)', arg);
static NativeUint8List _create2(arg1, arg2) =>
JS('NativeUint8List', 'new Uint8Array(#, #)', arg1, arg2);
static NativeUint8List _create3(arg1, arg2, arg3) =>
JS('NativeUint8List', 'new Uint8Array(#, #, #)', arg1, arg2, arg3);
}
/// Implementation of Dart Float32x4 immutable value type and operations.
/// Float32x4 stores 4 32-bit floating point values in "lanes".
/// The lanes are "x", "y", "z", and "w" respectively.
class NativeFloat32x4 implements Float32x4 {
final double x;
final double y;
final double z;
final double w;
static final NativeFloat32List _list = new NativeFloat32List(4);
static final Uint32List _uint32view = _list.buffer.asUint32List();
static _truncate(x) {
_list[0] = x;
return _list[0];
}
NativeFloat32x4(double x, double y, double z, double w)
: this.x = _truncate(x),
this.y = _truncate(y),
this.z = _truncate(z),
this.w = _truncate(w) {
// We would prefer to check for `double` but in dart2js we can't see the
// difference anyway.
if (x is! num) throw new ArgumentError(x);
if (y is! num) throw new ArgumentError(y);
if (z is! num) throw new ArgumentError(z);
if (w is! num) throw new ArgumentError(w);
}
NativeFloat32x4.splat(double v) : this(v, v, v, v);
NativeFloat32x4.zero() : this._truncated(0.0, 0.0, 0.0, 0.0);
/// Returns a bit-wise copy of [i] as a Float32x4.
factory NativeFloat32x4.fromInt32x4Bits(Int32x4 i) {
_uint32view[0] = i.x;
_uint32view[1] = i.y;
_uint32view[2] = i.z;
_uint32view[3] = i.w;
return new NativeFloat32x4._truncated(
_list[0], _list[1], _list[2], _list[3]);
}
NativeFloat32x4.fromFloat64x2(Float64x2 v)
: this._truncated(_truncate(v.x), _truncate(v.y), 0.0, 0.0);
/// Creates a new NativeFloat32x4.
///
/// Does not verify if the given arguments are non-null.
NativeFloat32x4._doubles(double x, double y, double z, double w)
: this.x = _truncate(x),
this.y = _truncate(y),
this.z = _truncate(z),
this.w = _truncate(w);
/// Creates a new NativeFloat32x4.
///
/// The constructor does not truncate the arguments. They must already be in
/// the correct range. It does not verify the type of the given arguments,
/// either.
NativeFloat32x4._truncated(this.x, this.y, this.z, this.w);
String toString() {
return '[$x, $y, $z, $w]';
}
/// Addition operator.
Float32x4 operator +(Float32x4 other) {
double _x = x + other.x;
double _y = y + other.y;
double _z = z + other.z;
double _w = w + other.w;
return new NativeFloat32x4._doubles(_x, _y, _z, _w);
}
/// Negate operator.
Float32x4 operator -() {
return new NativeFloat32x4._truncated(-x, -y, -z, -w);
}
/// Subtraction operator.
Float32x4 operator -(Float32x4 other) {
double _x = x - other.x;
double _y = y - other.y;
double _z = z - other.z;
double _w = w - other.w;
return new NativeFloat32x4._doubles(_x, _y, _z, _w);
}
/// Multiplication operator.
Float32x4 operator *(Float32x4 other) {
double _x = x * other.x;
double _y = y * other.y;
double _z = z * other.z;
double _w = w * other.w;
return new NativeFloat32x4._doubles(_x, _y, _z, _w);
}
/// Division operator.
Float32x4 operator /(Float32x4 other) {
double _x = x / other.x;
double _y = y / other.y;
double _z = z / other.z;
double _w = w / other.w;
return new NativeFloat32x4._doubles(_x, _y, _z, _w);
}
/// Relational less than.
Int32x4 lessThan(Float32x4 other) {
bool _cx = x < other.x;
bool _cy = y < other.y;
bool _cz = z < other.z;
bool _cw = w < other.w;
return new NativeInt32x4._truncated(
_cx ? -1 : 0, _cy ? -1 : 0, _cz ? -1 : 0, _cw ? -1 : 0);
}
/// Relational less than or equal.
Int32x4 lessThanOrEqual(Float32x4 other) {
bool _cx = x <= other.x;
bool _cy = y <= other.y;
bool _cz = z <= other.z;
bool _cw = w <= other.w;
return new NativeInt32x4._truncated(
_cx ? -1 : 0, _cy ? -1 : 0, _cz ? -1 : 0, _cw ? -1 : 0);
}
/// Relational greater than.
Int32x4 greaterThan(Float32x4 other) {
bool _cx = x > other.x;
bool _cy = y > other.y;
bool _cz = z > other.z;
bool _cw = w > other.w;
return new NativeInt32x4._truncated(
_cx ? -1 : 0, _cy ? -1 : 0, _cz ? -1 : 0, _cw ? -1 : 0);
}
/// Relational greater than or equal.
Int32x4 greaterThanOrEqual(Float32x4 other) {
bool _cx = x >= other.x;
bool _cy = y >= other.y;
bool _cz = z >= other.z;
bool _cw = w >= other.w;
return new NativeInt32x4._truncated(
_cx ? -1 : 0, _cy ? -1 : 0, _cz ? -1 : 0, _cw ? -1 : 0);
}
/// Relational equal.
Int32x4 equal(Float32x4 other) {
bool _cx = x == other.x;
bool _cy = y == other.y;
bool _cz = z == other.z;
bool _cw = w == other.w;
return new NativeInt32x4._truncated(
_cx ? -1 : 0, _cy ? -1 : 0, _cz ? -1 : 0, _cw ? -1 : 0);
}
/// Relational not-equal.
Int32x4 notEqual(Float32x4 other) {
bool _cx = x != other.x;
bool _cy = y != other.y;
bool _cz = z != other.z;
bool _cw = w != other.w;
return new NativeInt32x4._truncated(
_cx ? -1 : 0, _cy ? -1 : 0, _cz ? -1 : 0, _cw ? -1 : 0);
}
/// Returns a copy of [this] each lane being scaled by [s].
Float32x4 scale(double s) {
double _x = s * x;
double _y = s * y;
double _z = s * z;
double _w = s * w;
return new NativeFloat32x4._doubles(_x, _y, _z, _w);
}
/// Returns the absolute value of this [Float32x4].
Float32x4 abs() {
double _x = x.abs();
double _y = y.abs();
double _z = z.abs();
double _w = w.abs();
return new NativeFloat32x4._truncated(_x, _y, _z, _w);
}
/// Clamps [this] to be in the range [lowerLimit]-[upperLimit].
Float32x4 clamp(Float32x4 lowerLimit, Float32x4 upperLimit) {
double _lx = lowerLimit.x;
double _ly = lowerLimit.y;
double _lz = lowerLimit.z;
double _lw = lowerLimit.w;
double _ux = upperLimit.x;
double _uy = upperLimit.y;
double _uz = upperLimit.z;
double _uw = upperLimit.w;
double _x = x;
double _y = y;
double _z = z;
double _w = w;
// MAX(MIN(self, upper), lower).
_x = _x > _ux ? _ux : _x;
_y = _y > _uy ? _uy : _y;
_z = _z > _uz ? _uz : _z;
_w = _w > _uw ? _uw : _w;
_x = _x < _lx ? _lx : _x;
_y = _y < _ly ? _ly : _y;
_z = _z < _lz ? _lz : _z;
_w = _w < _lw ? _lw : _w;
return new NativeFloat32x4._truncated(_x, _y, _z, _w);
}
/// Extract the sign bit from each lane return them in the first 4 bits.
int get signMask {
var view = _uint32view;
var mx, my, mz, mw;
_list[0] = x;
_list[1] = y;
_list[2] = z;
_list[3] = w;
// This is correct because dart2js uses the unsigned right shift.
mx = (view[0] & 0x80000000) >> 31;
my = (view[1] & 0x80000000) >> 30;
mz = (view[2] & 0x80000000) >> 29;
mw = (view[3] & 0x80000000) >> 28;
return mx | my | mz | mw;
}
/// Shuffle the lane values. [mask] must be one of the 256 shuffle constants.
Float32x4 shuffle(int mask) {
if ((mask < 0) || (mask > 255)) {
throw new RangeError.range(mask, 0, 255, 'mask');
}
_list[0] = x;
_list[1] = y;
_list[2] = z;
_list[3] = w;
double _x = _list[mask & 0x3];
double _y = _list[(mask >> 2) & 0x3];
double _z = _list[(mask >> 4) & 0x3];
double _w = _list[(mask >> 6) & 0x3];
return new NativeFloat32x4._truncated(_x, _y, _z, _w);
}
/// Shuffle the lane values in [this] and [other]. The returned
/// Float32x4 will have XY lanes from [this] and ZW lanes from [other].
/// Uses the same [mask] as [shuffle].
Float32x4 shuffleMix(Float32x4 other, int mask) {
if ((mask < 0) || (mask > 255)) {
throw new RangeError.range(mask, 0, 255, 'mask');
}
_list[0] = x;
_list[1] = y;
_list[2] = z;
_list[3] = w;
double _x = _list[mask & 0x3];
double _y = _list[(mask >> 2) & 0x3];
_list[0] = other.x;
_list[1] = other.y;
_list[2] = other.z;
_list[3] = other.w;
double _z = _list[(mask >> 4) & 0x3];
double _w = _list[(mask >> 6) & 0x3];
return new NativeFloat32x4._truncated(_x, _y, _z, _w);
}
/// Copy [this] and replace the [x] lane.
Float32x4 withX(double newX) {
return new NativeFloat32x4._truncated(_truncate(newX), y, z, w);
}
/// Copy [this] and replace the [y] lane.
Float32x4 withY(double newY) {
return new NativeFloat32x4._truncated(x, _truncate(newY), z, w);
}
/// Copy [this] and replace the [z] lane.
Float32x4 withZ(double newZ) {
return new NativeFloat32x4._truncated(x, y, _truncate(newZ), w);
}
/// Copy [this] and replace the [w] lane.
Float32x4 withW(double newW) {
return new NativeFloat32x4._truncated(x, y, z, _truncate(newW));
}
/// Returns the lane-wise minimum value in [this] or [other].
Float32x4 min(Float32x4 other) {
double _x = x < other.x ? x : other.x;
double _y = y < other.y ? y : other.y;
double _z = z < other.z ? z : other.z;
double _w = w < other.w ? w : other.w;
return new NativeFloat32x4._truncated(_x, _y, _z, _w);
}
/// Returns the lane-wise maximum value in [this] or [other].
Float32x4 max(Float32x4 other) {
double _x = x > other.x ? x : other.x;
double _y = y > other.y ? y : other.y;
double _z = z > other.z ? z : other.z;
double _w = w > other.w ? w : other.w;
return new NativeFloat32x4._truncated(_x, _y, _z, _w);
}
/// Returns the square root of [this].
Float32x4 sqrt() {
double _x = Math.sqrt(x);
double _y = Math.sqrt(y);
double _z = Math.sqrt(z);
double _w = Math.sqrt(w);
return new NativeFloat32x4._doubles(_x, _y, _z, _w);
}
/// Returns the reciprocal of [this].
Float32x4 reciprocal() {
double _x = 1.0 / x;
double _y = 1.0 / y;
double _z = 1.0 / z;
double _w = 1.0 / w;
return new NativeFloat32x4._doubles(_x, _y, _z, _w);
}
/// Returns the square root of the reciprocal of [this].
Float32x4 reciprocalSqrt() {
double _x = Math.sqrt(1.0 / x);
double _y = Math.sqrt(1.0 / y);
double _z = Math.sqrt(1.0 / z);
double _w = Math.sqrt(1.0 / w);
return new NativeFloat32x4._doubles(_x, _y, _z, _w);
}
}
/// Interface of Dart Int32x4 and operations.
/// Int32x4 stores 4 32-bit bit-masks in "lanes".
/// The lanes are "x", "y", "z", and "w" respectively.
class NativeInt32x4 implements Int32x4 {
final int x;
final int y;
final int z;
final int w;
static final _list = new NativeInt32List(4);
static _truncate(x) {
_list[0] = x;
return _list[0];
}
NativeInt32x4(int x, int y, int z, int w)
: this.x = _truncate(x),
this.y = _truncate(y),
this.z = _truncate(z),
this.w = _truncate(w) {
if (x != this.x && x is! int) throw new ArgumentError(x);
if (y != this.y && y is! int) throw new ArgumentError(y);
if (z != this.z && z is! int) throw new ArgumentError(z);
if (w != this.w && w is! int) throw new ArgumentError(w);
}
NativeInt32x4.bool(bool x, bool y, bool z, bool w)
: this.x = x ? -1 : 0,
this.y = y ? -1 : 0,
this.z = z ? -1 : 0,
this.w = w ? -1 : 0;
/// Returns a bit-wise copy of [f] as a Int32x4.
factory NativeInt32x4.fromFloat32x4Bits(Float32x4 f) {
NativeFloat32List floatList = NativeFloat32x4._list;
floatList[0] = f.x;
floatList[1] = f.y;
floatList[2] = f.z;
floatList[3] = f.w;
NativeInt32List view = floatList.buffer.asInt32List();
return new NativeInt32x4._truncated(view[0], view[1], view[2], view[3]);
}
NativeInt32x4._truncated(this.x, this.y, this.z, this.w);
String toString() => '[$x, $y, $z, $w]';
/// The bit-wise or operator.
Int32x4 operator |(Int32x4 other) {
// Dart2js uses unsigned results for bit-operations.
// We use "JS" to fall back to the signed versions.
return new NativeInt32x4._truncated(
JS('int', '# | #', x, other.x),
JS('int', '# | #', y, other.y),
JS('int', '# | #', z, other.z),
JS('int', '# | #', w, other.w));
}
/// The bit-wise and operator.
Int32x4 operator &(Int32x4 other) {
// Dart2js uses unsigned results for bit-operations.
// We use "JS" to fall back to the signed versions.
return new NativeInt32x4._truncated(
JS('int', '# & #', x, other.x),
JS('int', '# & #', y, other.y),
JS('int', '# & #', z, other.z),
JS('int', '# & #', w, other.w));
}
/// The bit-wise xor operator.
Int32x4 operator ^(Int32x4 other) {
// Dart2js uses unsigned results for bit-operations.
// We use "JS" to fall back to the signed versions.
return new NativeInt32x4._truncated(
JS('int', '# ^ #', x, other.x),
JS('int', '# ^ #', y, other.y),
JS('int', '# ^ #', z, other.z),
JS('int', '# ^ #', w, other.w));
}
Int32x4 operator +(Int32x4 other) {
// Avoid going through the typed array by "| 0" the result.
return new NativeInt32x4._truncated(
JS('int', '(# + #) | 0', x, other.x),
JS('int', '(# + #) | 0', y, other.y),
JS('int', '(# + #) | 0', z, other.z),
JS('int', '(# + #) | 0', w, other.w));
}
Int32x4 operator -(Int32x4 other) {
// Avoid going through the typed array by "| 0" the result.
return new NativeInt32x4._truncated(
JS('int', '(# - #) | 0', x, other.x),
JS('int', '(# - #) | 0', y, other.y),
JS('int', '(# - #) | 0', z, other.z),
JS('int', '(# - #) | 0', w, other.w));
}
Int32x4 operator -() {
// Avoid going through the typed array by "| 0" the result.
return new NativeInt32x4._truncated(
JS('int', '(-#) | 0', x),
JS('int', '(-#) | 0', y),
JS('int', '(-#) | 0', z),
JS('int', '(-#) | 0', w));
}
/// Extract the top bit from each lane return them in the first 4 bits.
int get signMask {
int mx = (x & 0x80000000) >> 31;
int my = (y & 0x80000000) >> 31;
int mz = (z & 0x80000000) >> 31;
int mw = (w & 0x80000000) >> 31;
return mx | my << 1 | mz << 2 | mw << 3;
}
/// Shuffle the lane values. [mask] must be one of the 256 shuffle constants.
Int32x4 shuffle(int mask) {
if ((mask < 0) || (mask > 255)) {
throw new RangeError.range(mask, 0, 255, 'mask');
}
_list[0] = x;
_list[1] = y;
_list[2] = z;
_list[3] = w;
int _x = _list[mask & 0x3];
int _y = _list[(mask >> 2) & 0x3];
int _z = _list[(mask >> 4) & 0x3];
int _w = _list[(mask >> 6) & 0x3];
return new NativeInt32x4._truncated(_x, _y, _z, _w);
}
/// Shuffle the lane values in [this] and [other]. The returned
/// Int32x4 will have XY lanes from [this] and ZW lanes from [other].
/// Uses the same [mask] as [shuffle].
Int32x4 shuffleMix(Int32x4 other, int mask) {
if ((mask < 0) || (mask > 255)) {
throw new RangeError.range(mask, 0, 255, 'mask');
}
_list[0] = x;
_list[1] = y;
_list[2] = z;
_list[3] = w;
int _x = _list[mask & 0x3];
int _y = _list[(mask >> 2) & 0x3];
_list[0] = other.x;
_list[1] = other.y;
_list[2] = other.z;
_list[3] = other.w;
int _z = _list[(mask >> 4) & 0x3];
int _w = _list[(mask >> 6) & 0x3];
return new NativeInt32x4._truncated(_x, _y, _z, _w);
}
/// Returns a new [Int32x4] copied from [this] with a new x value.
Int32x4 withX(int x) {
int _x = _truncate(x);
return new NativeInt32x4._truncated(_x, y, z, w);
}
/// Returns a new [Int32x4] copied from [this] with a new y value.
Int32x4 withY(int y) {
int _y = _truncate(y);
return new NativeInt32x4._truncated(x, _y, z, w);
}
/// Returns a new [Int32x4] copied from [this] with a new z value.
Int32x4 withZ(int z) {
int _z = _truncate(z);
return new NativeInt32x4._truncated(x, y, _z, w);
}
/// Returns a new [Int32x4] copied from [this] with a new w value.
Int32x4 withW(int w) {
int _w = _truncate(w);
return new NativeInt32x4._truncated(x, y, z, _w);
}
/// Extracted x value. Returns `false` for 0, `true` for any other value.
bool get flagX => x != 0;
/// Extracted y value. Returns `false` for 0, `true` for any other value.
bool get flagY => y != 0;
/// Extracted z value. Returns `false` for 0, `true` for any other value.
bool get flagZ => z != 0;
/// Extracted w value. Returns `false` for 0, `true` for any other value.
bool get flagW => w != 0;
/// Returns a new [Int32x4] copied from [this] with a new x value.
Int32x4 withFlagX(bool flagX) {
int _x = flagX ? -1 : 0;
return new NativeInt32x4._truncated(_x, y, z, w);
}
/// Returns a new [Int32x4] copied from [this] with a new y value.
Int32x4 withFlagY(bool flagY) {
int _y = flagY ? -1 : 0;
return new NativeInt32x4._truncated(x, _y, z, w);
}
/// Returns a new [Int32x4] copied from [this] with a new z value.
Int32x4 withFlagZ(bool flagZ) {
int _z = flagZ ? -1 : 0;
return new NativeInt32x4._truncated(x, y, _z, w);
}
/// Returns a new [Int32x4] copied from [this] with a new w value.
Int32x4 withFlagW(bool flagW) {
int _w = flagW ? -1 : 0;
return new NativeInt32x4._truncated(x, y, z, _w);
}
/// Merge [trueValue] and [falseValue] based on [this]' bit mask:
/// Select bit from [trueValue] when bit in [this] is on.
/// Select bit from [falseValue] when bit in [this] is off.
Float32x4 select(Float32x4 trueValue, Float32x4 falseValue) {
var floatList = NativeFloat32x4._list;
var intView = NativeFloat32x4._uint32view;
floatList[0] = trueValue.x;
floatList[1] = trueValue.y;
floatList[2] = trueValue.z;
floatList[3] = trueValue.w;
int stx = intView[0];
int sty = intView[1];
int stz = intView[2];
int stw = intView[3];
floatList[0] = falseValue.x;
floatList[1] = falseValue.y;
floatList[2] = falseValue.z;
floatList[3] = falseValue.w;
int sfx = intView[0];
int sfy = intView[1];
int sfz = intView[2];
int sfw = intView[3];
int _x = (x & stx) | (~x & sfx);
int _y = (y & sty) | (~y & sfy);
int _z = (z & stz) | (~z & sfz);
int _w = (w & stw) | (~w & sfw);
intView[0] = _x;
intView[1] = _y;
intView[2] = _z;
intView[3] = _w;
return new NativeFloat32x4._truncated(
floatList[0], floatList[1], floatList[2], floatList[3]);
}
}
class NativeFloat64x2 implements Float64x2 {
final double x;
final double y;
static NativeFloat64List _list = new NativeFloat64List(2);
static NativeUint32List _uint32View = _list.buffer.asUint32List();
NativeFloat64x2(this.x, this.y) {
if (x is! num) throw new ArgumentError(x);
if (y is! num) throw new ArgumentError(y);
}
NativeFloat64x2.splat(double v) : this(v, v);
NativeFloat64x2.zero() : this.splat(0.0);
NativeFloat64x2.fromFloat32x4(Float32x4 v) : this(v.x, v.y);
/// Arguments [x] and [y] must be doubles.
NativeFloat64x2._doubles(this.x, this.y);
String toString() => '[$x, $y]';
/// Addition operator.
Float64x2 operator +(Float64x2 other) {
return new NativeFloat64x2._doubles(x + other.x, y + other.y);
}
/// Negate operator.
Float64x2 operator -() {
return new NativeFloat64x2._doubles(-x, -y);
}
/// Subtraction operator.
Float64x2 operator -(Float64x2 other) {
return new NativeFloat64x2._doubles(x - other.x, y - other.y);
}
/// Multiplication operator.
Float64x2 operator *(Float64x2 other) {
return new NativeFloat64x2._doubles(x * other.x, y * other.y);
}
/// Division operator.
Float64x2 operator /(Float64x2 other) {
return new NativeFloat64x2._doubles(x / other.x, y / other.y);
}
/// Returns a copy of [this] each lane being scaled by [s].
Float64x2 scale(double s) {
return new NativeFloat64x2._doubles(x * s, y * s);
}
/// Returns the absolute value of this [Float64x2].
Float64x2 abs() {
return new NativeFloat64x2._doubles(x.abs(), y.abs());
}
/// Clamps [this] to be in the range [lowerLimit]-[upperLimit].
Float64x2 clamp(Float64x2 lowerLimit, Float64x2 upperLimit) {
double _lx = lowerLimit.x;
double _ly = lowerLimit.y;
double _ux = upperLimit.x;
double _uy = upperLimit.y;
double _x = x;
double _y = y;
// MAX(MIN(self, upper), lower).
_x = _x > _ux ? _ux : _x;
_y = _y > _uy ? _uy : _y;
_x = _x < _lx ? _lx : _x;
_y = _y < _ly ? _ly : _y;
return new NativeFloat64x2._doubles(_x, _y);
}
/// Extract the sign bits from each lane return them in the first 2 bits.
int get signMask {
var view = _uint32View;
_list[0] = x;
_list[1] = y;
var mx = (view[1] & 0x80000000) >> 31;
var my = (view[3] & 0x80000000) >> 31;
return mx | my << 1;
}
/// Returns a new [Float64x2] copied from [this] with a new x value.
Float64x2 withX(double x) {
if (x is! num) throw new ArgumentError(x);
return new NativeFloat64x2._doubles(x, y);
}
/// Returns a new [Float64x2] copied from [this] with a new y value.
Float64x2 withY(double y) {
if (y is! num) throw new ArgumentError(y);
return new NativeFloat64x2._doubles(x, y);
}
/// Returns the lane-wise minimum value in [this] or [other].
Float64x2 min(Float64x2 other) {
return new NativeFloat64x2._doubles(
x < other.x ? x : other.x, y < other.y ? y : other.y);
}
/// Returns the lane-wise maximum value in [this] or [other].
Float64x2 max(Float64x2 other) {
return new NativeFloat64x2._doubles(
x > other.x ? x : other.x, y > other.y ? y : other.y);
}
/// Returns the lane-wise square root of [this].
Float64x2 sqrt() {
return new NativeFloat64x2._doubles(Math.sqrt(x), Math.sqrt(y));
}
}
/// Checks that the value is a Uint32. If not, it's not valid as an array
/// index or offset. Also ensures that the value is non-negative.
bool _isInvalidArrayIndex(int index) {
return (JS('bool', '(# >>> 0 !== #)', index, index));
}
/// Checks that [index] is a valid index into [list] which has length [length].
///
/// That is, [index] is an integer in the range `0..length - 1`.
void _checkValidIndex(int index, List list, int length) {
if (_isInvalidArrayIndex(index) || JS('int', '#', index) >= length) {
throw diagnoseIndexError(list, index);
}
}
/// Checks that [start] and [end] form a range of a list of length [length].
///
/// That is: `start` and `end` are integers with `0 <= start <= end <= length`.
/// If `end` is `null` in which case it is considered to be `length`
///
/// Returns the actual value of `end`, which is `length` if `end` is `null`, and
/// the original value of `end` otherwise.
int _checkValidRange(int start, int end, int length) {
if (_isInvalidArrayIndex(start) || // Ensures start is non-negative int.
((end == null)
? start > length
: (_isInvalidArrayIndex(end) || start > end || end > length))) {
throw diagnoseRangeError(start, end, length);
}
if (end == null) return length;
return end;
}