blob: 505b787d0ab429f9d64d1612d13ce5eb12013c87 [file] [log] [blame]
// Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/thread.h"
#include "vm/dart_api_state.h"
#include "vm/growable_array.h"
#include "vm/isolate.h"
#include "vm/json_stream.h"
#include "vm/lockers.h"
#include "vm/log.h"
#include "vm/message_handler.h"
#include "vm/native_entry.h"
#include "vm/object.h"
#include "vm/os_thread.h"
#include "vm/profiler.h"
#include "vm/runtime_entry.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#include "vm/thread_interrupter.h"
#include "vm/thread_registry.h"
#include "vm/timeline.h"
#include "vm/zone.h"
namespace dart {
DECLARE_FLAG(bool, trace_service);
DECLARE_FLAG(bool, trace_service_verbose);
Thread::~Thread() {
// We should cleanly exit any isolate before destruction.
ASSERT(isolate_ == NULL);
ASSERT(store_buffer_block_ == NULL);
ASSERT(marking_stack_block_ == NULL);
#if !defined(DART_PRECOMPILED_RUNTIME)
delete interpreter_;
interpreter_ = nullptr;
#endif
// There should be no top api scopes at this point.
ASSERT(api_top_scope() == NULL);
// Delete the resusable api scope if there is one.
if (api_reusable_scope_) {
delete api_reusable_scope_;
api_reusable_scope_ = NULL;
}
delete thread_lock_;
thread_lock_ = NULL;
}
#if defined(DEBUG)
#define REUSABLE_HANDLE_SCOPE_INIT(object) \
reusable_##object##_handle_scope_active_(false),
#else
#define REUSABLE_HANDLE_SCOPE_INIT(object)
#endif // defined(DEBUG)
#define REUSABLE_HANDLE_INITIALIZERS(object) object##_handle_(NULL),
Thread::Thread(Isolate* isolate)
: BaseThread(false),
stack_limit_(0),
stack_overflow_flags_(0),
write_barrier_mask_(RawObject::kGenerationalBarrierMask),
isolate_(NULL),
heap_(NULL),
top_(0),
end_(0),
top_exit_frame_info_(0),
store_buffer_block_(NULL),
marking_stack_block_(NULL),
vm_tag_(0),
async_stack_trace_(StackTrace::null()),
unboxed_int64_runtime_arg_(0),
task_kind_(kUnknownTask),
dart_stream_(NULL),
os_thread_(NULL),
thread_lock_(new Monitor()),
zone_(NULL),
current_zone_capacity_(0),
zone_high_watermark_(0),
api_reusable_scope_(NULL),
api_top_scope_(NULL),
top_resource_(NULL),
long_jump_base_(NULL),
no_callback_scope_depth_(0),
#if defined(DEBUG)
top_handle_scope_(NULL),
no_handle_scope_depth_(0),
no_safepoint_scope_depth_(0),
#endif
reusable_handles_(),
saved_stack_limit_(0),
defer_oob_messages_count_(0),
deferred_interrupts_mask_(0),
deferred_interrupts_(0),
stack_overflow_count_(0),
bump_allocate_(false),
hierarchy_info_(NULL),
type_usage_info_(NULL),
pending_functions_(GrowableObjectArray::null()),
active_exception_(Object::null()),
active_stacktrace_(Object::null()),
resume_pc_(0),
sticky_error_(Error::null()),
REUSABLE_HANDLE_LIST(REUSABLE_HANDLE_INITIALIZERS)
REUSABLE_HANDLE_LIST(REUSABLE_HANDLE_SCOPE_INIT) safepoint_state_(0),
execution_state_(kThreadInNative),
#if defined(USING_SAFE_STACK)
saved_safestack_limit_(0),
#endif
#if !defined(DART_PRECOMPILED_RUNTIME)
interpreter_(nullptr),
#endif
next_(NULL) {
#if !defined(PRODUCT)
dart_stream_ = Timeline::GetDartStream();
ASSERT(dart_stream_ != NULL);
#endif
#define DEFAULT_INIT(type_name, member_name, init_expr, default_init_value) \
member_name = default_init_value;
CACHED_CONSTANTS_LIST(DEFAULT_INIT)
#undef DEFAULT_INIT
#if defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_ARM64) || \
defined(TARGET_ARCH_X64)
for (intptr_t i = 0; i < kNumberOfDartAvailableCpuRegs; ++i) {
write_barrier_wrappers_entry_points_[i] = 0;
}
#endif
#define DEFAULT_INIT(name) name##_entry_point_ = 0;
RUNTIME_ENTRY_LIST(DEFAULT_INIT)
#undef DEFAULT_INIT
#define DEFAULT_INIT(returntype, name, ...) name##_entry_point_ = 0;
LEAF_RUNTIME_ENTRY_LIST(DEFAULT_INIT)
#undef DEFAULT_INIT
// We cannot initialize the VM constants here for the vm isolate thread
// due to boot strapping issues.
if ((Dart::vm_isolate() != NULL) && (isolate != Dart::vm_isolate())) {
InitVMConstants();
}
// This thread should not yet own any zones. If it does, we need to make sure
// we've accounted for any memory it has already allocated.
if (zone_ == NULL) {
ASSERT(current_zone_capacity_ == 0);
} else {
Zone* current = zone_;
uintptr_t total_zone_capacity = 0;
while (current != NULL) {
total_zone_capacity += current->CapacityInBytes();
current = current->previous();
}
ASSERT(current_zone_capacity_ == total_zone_capacity);
}
}
static const double double_nan_constant = NAN;
static const struct ALIGN16 {
uint64_t a;
uint64_t b;
} double_negate_constant = {0x8000000000000000LL, 0x8000000000000000LL};
static const struct ALIGN16 {
uint64_t a;
uint64_t b;
} double_abs_constant = {0x7FFFFFFFFFFFFFFFLL, 0x7FFFFFFFFFFFFFFFLL};
static const struct ALIGN16 {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} float_not_constant = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF};
static const struct ALIGN16 {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} float_negate_constant = {0x80000000, 0x80000000, 0x80000000, 0x80000000};
static const struct ALIGN16 {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} float_absolute_constant = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
static const struct ALIGN16 {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} float_zerow_constant = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000};
void Thread::InitVMConstants() {
#define ASSERT_VM_HEAP(type_name, member_name, init_expr, default_init_value) \
ASSERT((init_expr)->IsOldObject());
CACHED_VM_OBJECTS_LIST(ASSERT_VM_HEAP)
#undef ASSERT_VM_HEAP
#define INIT_VALUE(type_name, member_name, init_expr, default_init_value) \
ASSERT(member_name == default_init_value); \
member_name = (init_expr);
CACHED_CONSTANTS_LIST(INIT_VALUE)
#undef INIT_VALUE
#if defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_ARM64) || \
defined(TARGET_ARCH_X64)
for (intptr_t i = 0; i < kNumberOfDartAvailableCpuRegs; ++i) {
write_barrier_wrappers_entry_points_[i] =
StubCode::WriteBarrierWrappers_entry()->EntryPoint() +
i * kStoreBufferWrapperSize;
}
#endif
#define INIT_VALUE(name) \
ASSERT(name##_entry_point_ == 0); \
name##_entry_point_ = k##name##RuntimeEntry.GetEntryPoint();
RUNTIME_ENTRY_LIST(INIT_VALUE)
#undef INIT_VALUE
#define INIT_VALUE(returntype, name, ...) \
ASSERT(name##_entry_point_ == 0); \
name##_entry_point_ = k##name##RuntimeEntry.GetEntryPoint();
LEAF_RUNTIME_ENTRY_LIST(INIT_VALUE)
#undef INIT_VALUE
// Setup the thread specific reusable handles.
#define REUSABLE_HANDLE_ALLOCATION(object) \
this->object##_handle_ = this->AllocateReusableHandle<object>();
REUSABLE_HANDLE_LIST(REUSABLE_HANDLE_ALLOCATION)
#undef REUSABLE_HANDLE_ALLOCATION
}
#ifndef PRODUCT
// Collect information about each individual zone associated with this thread.
void Thread::PrintJSON(JSONStream* stream) const {
JSONObject jsobj(stream);
jsobj.AddProperty("type", "_Thread");
jsobj.AddPropertyF("id", "threads/%" Pd "",
OSThread::ThreadIdToIntPtr(os_thread()->trace_id()));
jsobj.AddProperty("kind", TaskKindToCString(task_kind()));
jsobj.AddPropertyF("_zoneHighWatermark", "%" Pu "", zone_high_watermark_);
jsobj.AddPropertyF("_zoneCapacity", "%" Pu "", current_zone_capacity_);
}
#endif
RawGrowableObjectArray* Thread::pending_functions() {
if (pending_functions_ == GrowableObjectArray::null()) {
pending_functions_ = GrowableObjectArray::New(Heap::kOld);
}
return pending_functions_;
}
void Thread::clear_pending_functions() {
pending_functions_ = GrowableObjectArray::null();
}
void Thread::set_active_exception(const Object& value) {
active_exception_ = value.raw();
}
void Thread::set_active_stacktrace(const Object& value) {
active_stacktrace_ = value.raw();
}
RawError* Thread::sticky_error() const {
return sticky_error_;
}
void Thread::set_sticky_error(const Error& value) {
ASSERT(!value.IsNull());
sticky_error_ = value.raw();
}
void Thread::clear_sticky_error() {
sticky_error_ = Error::null();
}
RawError* Thread::get_and_clear_sticky_error() {
NoSafepointScope nss;
RawError* return_value = sticky_error_;
sticky_error_ = Error::null();
return return_value;
}
const char* Thread::TaskKindToCString(TaskKind kind) {
switch (kind) {
case kUnknownTask:
return "kUnknownTask";
case kMutatorTask:
return "kMutatorTask";
case kCompilerTask:
return "kCompilerTask";
case kSweeperTask:
return "kSweeperTask";
case kMarkerTask:
return "kMarkerTask";
default:
UNREACHABLE();
return "";
}
}
RawStackTrace* Thread::async_stack_trace() const {
return async_stack_trace_;
}
void Thread::set_async_stack_trace(const StackTrace& stack_trace) {
ASSERT(!stack_trace.IsNull());
async_stack_trace_ = stack_trace.raw();
}
void Thread::set_raw_async_stack_trace(RawStackTrace* raw_stack_trace) {
async_stack_trace_ = raw_stack_trace;
}
void Thread::clear_async_stack_trace() {
async_stack_trace_ = StackTrace::null();
}
bool Thread::EnterIsolate(Isolate* isolate) {
const bool kIsMutatorThread = true;
Thread* thread = isolate->ScheduleThread(kIsMutatorThread);
if (thread != NULL) {
ASSERT(thread->store_buffer_block_ == NULL);
thread->task_kind_ = kMutatorTask;
thread->StoreBufferAcquire();
if (isolate->marking_stack() != NULL) {
// Concurrent mark in progress. Enable barrier for this thread.
thread->MarkingStackAcquire();
}
return true;
}
return false;
}
void Thread::ExitIsolate() {
Thread* thread = Thread::Current();
ASSERT(thread != NULL && thread->IsMutatorThread());
DEBUG_ASSERT(!thread->IsAnyReusableHandleScopeActive());
thread->task_kind_ = kUnknownTask;
Isolate* isolate = thread->isolate();
ASSERT(isolate != NULL);
ASSERT(thread->execution_state() == Thread::kThreadInVM);
// Clear since GC will not visit the thread once it is unscheduled.
thread->ClearReusableHandles();
if (thread->is_marking()) {
thread->MarkingStackRelease();
}
thread->StoreBufferRelease();
if (isolate->is_runnable()) {
thread->set_vm_tag(VMTag::kIdleTagId);
} else {
thread->set_vm_tag(VMTag::kLoadWaitTagId);
}
const bool kIsMutatorThread = true;
isolate->UnscheduleThread(thread, kIsMutatorThread);
}
bool Thread::EnterIsolateAsHelper(Isolate* isolate,
TaskKind kind,
bool bypass_safepoint) {
ASSERT(kind != kMutatorTask);
const bool kIsNotMutatorThread = false;
Thread* thread =
isolate->ScheduleThread(kIsNotMutatorThread, bypass_safepoint);
if (thread != NULL) {
ASSERT(thread->store_buffer_block_ == NULL);
// TODO(koda): Use StoreBufferAcquire once we properly flush
// before Scavenge.
thread->store_buffer_block_ =
thread->isolate()->store_buffer()->PopEmptyBlock();
if (isolate->marking_stack() != NULL) {
// Concurrent mark in progress. Enable barrier for this thread.
thread->MarkingStackAcquire();
}
// This thread should not be the main mutator.
thread->task_kind_ = kind;
ASSERT(!thread->IsMutatorThread());
return true;
}
return false;
}
void Thread::ExitIsolateAsHelper(bool bypass_safepoint) {
Thread* thread = Thread::Current();
ASSERT(thread != NULL);
ASSERT(!thread->IsMutatorThread());
ASSERT(thread->execution_state() == Thread::kThreadInVM);
thread->task_kind_ = kUnknownTask;
// Clear since GC will not visit the thread once it is unscheduled.
thread->ClearReusableHandles();
if (thread->is_marking()) {
thread->MarkingStackRelease();
}
thread->StoreBufferRelease();
Isolate* isolate = thread->isolate();
ASSERT(isolate != NULL);
const bool kIsNotMutatorThread = false;
isolate->UnscheduleThread(thread, kIsNotMutatorThread, bypass_safepoint);
}
void Thread::ReleaseStoreBuffer() {
ASSERT(IsAtSafepoint());
// Prevent scheduling another GC by ignoring the threshold.
ASSERT(store_buffer_block_ != NULL);
StoreBufferRelease(StoreBuffer::kIgnoreThreshold);
// Make sure to get an *empty* block; the isolate needs all entries
// at GC time.
// TODO(koda): Replace with an epilogue (PrepareAfterGC) that acquires.
store_buffer_block_ = isolate()->store_buffer()->PopEmptyBlock();
}
void Thread::SetStackLimit(uword limit) {
// The thread setting the stack limit is not necessarily the thread which
// the stack limit is being set on.
MonitorLocker ml(thread_lock_);
if (stack_limit_ == saved_stack_limit_) {
// No interrupt pending, set stack_limit_ too.
stack_limit_ = limit;
}
saved_stack_limit_ = limit;
}
void Thread::ClearStackLimit() {
SetStackLimit(~static_cast<uword>(0));
}
void Thread::ScheduleInterrupts(uword interrupt_bits) {
MonitorLocker ml(thread_lock_);
ScheduleInterruptsLocked(interrupt_bits);
}
void Thread::ScheduleInterruptsLocked(uword interrupt_bits) {
ASSERT(thread_lock_->IsOwnedByCurrentThread());
ASSERT((interrupt_bits & ~kInterruptsMask) == 0); // Must fit in mask.
// Check to see if any of the requested interrupts should be deferred.
uword defer_bits = interrupt_bits & deferred_interrupts_mask_;
if (defer_bits != 0) {
deferred_interrupts_ |= defer_bits;
interrupt_bits &= ~deferred_interrupts_mask_;
if (interrupt_bits == 0) {
return;
}
}
if (stack_limit_ == saved_stack_limit_) {
stack_limit_ = kInterruptStackLimit & ~kInterruptsMask;
}
stack_limit_ |= interrupt_bits;
}
uword Thread::GetAndClearInterrupts() {
MonitorLocker ml(thread_lock_);
if (stack_limit_ == saved_stack_limit_) {
return 0; // No interrupt was requested.
}
uword interrupt_bits = stack_limit_ & kInterruptsMask;
stack_limit_ = saved_stack_limit_;
return interrupt_bits;
}
bool Thread::ZoneIsOwnedByThread(Zone* zone) const {
ASSERT(zone != NULL);
Zone* current = zone_;
while (current != NULL) {
if (current == zone) {
return true;
}
current = current->previous();
}
return false;
}
void Thread::DeferOOBMessageInterrupts() {
MonitorLocker ml(thread_lock_);
defer_oob_messages_count_++;
if (defer_oob_messages_count_ > 1) {
// OOB message interrupts are already deferred.
return;
}
ASSERT(deferred_interrupts_mask_ == 0);
deferred_interrupts_mask_ = kMessageInterrupt;
if (stack_limit_ != saved_stack_limit_) {
// Defer any interrupts which are currently pending.
deferred_interrupts_ = stack_limit_ & deferred_interrupts_mask_;
// Clear deferrable interrupts, if present.
stack_limit_ &= ~deferred_interrupts_mask_;
if ((stack_limit_ & kInterruptsMask) == 0) {
// No other pending interrupts. Restore normal stack limit.
stack_limit_ = saved_stack_limit_;
}
}
if (FLAG_trace_service && FLAG_trace_service_verbose) {
OS::PrintErr("[+%" Pd64 "ms] Isolate %s deferring OOB interrupts\n",
Dart::UptimeMillis(), isolate()->name());
}
}
void Thread::RestoreOOBMessageInterrupts() {
MonitorLocker ml(thread_lock_);
defer_oob_messages_count_--;
if (defer_oob_messages_count_ > 0) {
return;
}
ASSERT(defer_oob_messages_count_ == 0);
ASSERT(deferred_interrupts_mask_ == kMessageInterrupt);
deferred_interrupts_mask_ = 0;
if (deferred_interrupts_ != 0) {
if (stack_limit_ == saved_stack_limit_) {
stack_limit_ = kInterruptStackLimit & ~kInterruptsMask;
}
stack_limit_ |= deferred_interrupts_;
deferred_interrupts_ = 0;
}
if (FLAG_trace_service && FLAG_trace_service_verbose) {
OS::PrintErr("[+%" Pd64 "ms] Isolate %s restoring OOB interrupts\n",
Dart::UptimeMillis(), isolate()->name());
}
}
RawError* Thread::HandleInterrupts() {
uword interrupt_bits = GetAndClearInterrupts();
if ((interrupt_bits & kVMInterrupt) != 0) {
if (isolate()->store_buffer()->Overflowed()) {
if (FLAG_verbose_gc) {
OS::PrintErr("Scavenge scheduled by store buffer overflow.\n");
}
heap()->CollectGarbage(Heap::kNew);
}
heap()->CheckFinishConcurrentMarking(this);
}
if ((interrupt_bits & kMessageInterrupt) != 0) {
MessageHandler::MessageStatus status =
isolate()->message_handler()->HandleOOBMessages();
if (status != MessageHandler::kOK) {
// False result from HandleOOBMessages signals that the isolate should
// be terminating.
if (FLAG_trace_isolates) {
OS::PrintErr(
"[!] Terminating isolate due to OOB message:\n"
"\tisolate: %s\n",
isolate()->name());
}
Thread* thread = Thread::Current();
const Error& error = Error::Handle(thread->sticky_error());
ASSERT(!error.IsNull() && error.IsUnwindError());
thread->clear_sticky_error();
return error.raw();
}
}
return Error::null();
}
uword Thread::GetAndClearStackOverflowFlags() {
uword stack_overflow_flags = stack_overflow_flags_;
stack_overflow_flags_ = 0;
return stack_overflow_flags;
}
void Thread::StoreBufferBlockProcess(StoreBuffer::ThresholdPolicy policy) {
StoreBufferRelease(policy);
StoreBufferAcquire();
}
void Thread::StoreBufferAddObject(RawObject* obj) {
store_buffer_block_->Push(obj);
if (store_buffer_block_->IsFull()) {
StoreBufferBlockProcess(StoreBuffer::kCheckThreshold);
}
}
void Thread::StoreBufferAddObjectGC(RawObject* obj) {
store_buffer_block_->Push(obj);
if (store_buffer_block_->IsFull()) {
StoreBufferBlockProcess(StoreBuffer::kIgnoreThreshold);
}
}
void Thread::StoreBufferRelease(StoreBuffer::ThresholdPolicy policy) {
StoreBufferBlock* block = store_buffer_block_;
store_buffer_block_ = NULL;
isolate()->store_buffer()->PushBlock(block, policy);
}
void Thread::StoreBufferAcquire() {
store_buffer_block_ = isolate()->store_buffer()->PopNonFullBlock();
}
void Thread::MarkingStackBlockProcess() {
MarkingStackRelease();
MarkingStackAcquire();
}
void Thread::MarkingStackAddObject(RawObject* obj) {
marking_stack_block_->Push(obj);
if (marking_stack_block_->IsFull()) {
MarkingStackBlockProcess();
}
}
void Thread::MarkingStackRelease() {
MarkingStackBlock* block = marking_stack_block_;
marking_stack_block_ = NULL;
write_barrier_mask_ = RawObject::kGenerationalBarrierMask;
isolate()->marking_stack()->PushBlock(block);
}
void Thread::MarkingStackAcquire() {
marking_stack_block_ = isolate()->marking_stack()->PopEmptyBlock();
write_barrier_mask_ =
RawObject::kGenerationalBarrierMask | RawObject::kIncrementalBarrierMask;
}
bool Thread::IsMutatorThread() const {
return ((isolate_ != NULL) && (isolate_->mutator_thread() == this));
}
bool Thread::CanCollectGarbage() const {
// We grow the heap instead of triggering a garbage collection when a
// thread is at a safepoint in the following situations :
// - background compiler thread finalizing and installing code
// - disassembly of the generated code is done after compilation
// So essentially we state that garbage collection is possible only
// when we are not at a safepoint.
return !IsAtSafepoint();
}
bool Thread::IsExecutingDartCode() const {
return (top_exit_frame_info() == 0) && (vm_tag() == VMTag::kDartTagId);
}
bool Thread::HasExitedDartCode() const {
return (top_exit_frame_info() != 0) && (vm_tag() != VMTag::kDartTagId);
}
template <class C>
C* Thread::AllocateReusableHandle() {
C* handle = reinterpret_cast<C*>(reusable_handles_.AllocateScopedHandle());
C::initializeHandle(handle, C::null());
return handle;
}
void Thread::ClearReusableHandles() {
#define CLEAR_REUSABLE_HANDLE(object) *object##_handle_ = object::null();
REUSABLE_HANDLE_LIST(CLEAR_REUSABLE_HANDLE)
#undef CLEAR_REUSABLE_HANDLE
}
void Thread::VisitObjectPointers(ObjectPointerVisitor* visitor,
ValidationPolicy validation_policy) {
ASSERT(visitor != NULL);
if (zone_ != NULL) {
zone_->VisitObjectPointers(visitor);
}
// Visit objects in thread specific handles area.
reusable_handles_.VisitObjectPointers(visitor);
visitor->VisitPointer(reinterpret_cast<RawObject**>(&pending_functions_));
visitor->VisitPointer(reinterpret_cast<RawObject**>(&active_exception_));
visitor->VisitPointer(reinterpret_cast<RawObject**>(&active_stacktrace_));
visitor->VisitPointer(reinterpret_cast<RawObject**>(&sticky_error_));
visitor->VisitPointer(reinterpret_cast<RawObject**>(&async_stack_trace_));
#if !defined(DART_PRECOMPILED_RUNTIME)
if (interpreter() != NULL) {
interpreter()->VisitObjectPointers(visitor);
}
#endif
// Visit the api local scope as it has all the api local handles.
ApiLocalScope* scope = api_top_scope_;
while (scope != NULL) {
scope->local_handles()->VisitObjectPointers(visitor);
scope = scope->previous();
}
// The MarkTask, which calls this method, can run on a different thread. We
// therefore assume the mutator is at a safepoint and we can iterate it's
// stack.
// TODO(vm-team): It would be beneficial to be able to ask the mutator thread
// whether it is in fact blocked at the moment (at a "safepoint") so we can
// safely iterate it's stack.
//
// Unfortunately we cannot use `this->IsAtSafepoint()` here because that will
// return `false` even though the mutator thread is waiting for mark tasks
// (which iterate it's stack) to finish.
const StackFrameIterator::CrossThreadPolicy cross_thread_policy =
StackFrameIterator::kAllowCrossThreadIteration;
// Iterate over all the stack frames and visit objects on the stack.
StackFrameIterator frames_iterator(top_exit_frame_info(), validation_policy,
this, cross_thread_policy);
StackFrame* frame = frames_iterator.NextFrame();
while (frame != NULL) {
frame->VisitObjectPointers(visitor);
frame = frames_iterator.NextFrame();
}
}
bool Thread::CanLoadFromThread(const Object& object) {
// In order to allow us to use assembler helper routines with non-[Code]
// objects *before* stubs are initialized, we only loop ver the stubs if the
// [object] is in fact a [Code] object.
if (object.IsCode()) {
#define CHECK_OBJECT(type_name, member_name, expr, default_init_value) \
if (object.raw() == expr) { \
return true; \
}
CACHED_VM_STUBS_LIST(CHECK_OBJECT)
#undef CHECK_OBJECT
}
// For non [Code] objects we check if the object equals to any of the cached
// non-stub entries.
#define CHECK_OBJECT(type_name, member_name, expr, default_init_value) \
if (object.raw() == expr) { \
return true; \
}
CACHED_NON_VM_STUB_LIST(CHECK_OBJECT)
#undef CHECK_OBJECT
return false;
}
intptr_t Thread::OffsetFromThread(const Object& object) {
// In order to allow us to use assembler helper routines with non-[Code]
// objects *before* stubs are initialized, we only loop ver the stubs if the
// [object] is in fact a [Code] object.
if (object.IsCode()) {
#define COMPUTE_OFFSET(type_name, member_name, expr, default_init_value) \
ASSERT((expr)->IsVMHeapObject()); \
if (object.raw() == expr) { \
return Thread::member_name##offset(); \
}
CACHED_VM_STUBS_LIST(COMPUTE_OFFSET)
#undef COMPUTE_OFFSET
}
// For non [Code] objects we check if the object equals to any of the cached
// non-stub entries.
#define COMPUTE_OFFSET(type_name, member_name, expr, default_init_value) \
ASSERT((expr)->IsVMHeapObject()); \
if (object.raw() == expr) { \
return Thread::member_name##offset(); \
}
CACHED_NON_VM_STUB_LIST(COMPUTE_OFFSET)
#undef COMPUTE_OFFSET
UNREACHABLE();
return -1;
}
bool Thread::ObjectAtOffset(intptr_t offset, Object* object) {
if (Isolate::Current() == Dart::vm_isolate()) {
// --disassemble-stubs runs before all the references through
// thread have targets
return false;
}
#define COMPUTE_OFFSET(type_name, member_name, expr, default_init_value) \
if (Thread::member_name##offset() == offset) { \
*object = expr; \
return true; \
}
CACHED_VM_OBJECTS_LIST(COMPUTE_OFFSET)
#undef COMPUTE_OFFSET
return false;
}
intptr_t Thread::OffsetFromThread(const RuntimeEntry* runtime_entry) {
#define COMPUTE_OFFSET(name) \
if (runtime_entry->function() == k##name##RuntimeEntry.function()) { \
return Thread::name##_entry_point_offset(); \
}
RUNTIME_ENTRY_LIST(COMPUTE_OFFSET)
#undef COMPUTE_OFFSET
#define COMPUTE_OFFSET(returntype, name, ...) \
if (runtime_entry->function() == k##name##RuntimeEntry.function()) { \
return Thread::name##_entry_point_offset(); \
}
LEAF_RUNTIME_ENTRY_LIST(COMPUTE_OFFSET)
#undef COMPUTE_OFFSET
UNREACHABLE();
return -1;
}
bool Thread::IsValidHandle(Dart_Handle object) const {
return IsValidLocalHandle(object) || IsValidZoneHandle(object) ||
IsValidScopedHandle(object);
}
bool Thread::IsValidLocalHandle(Dart_Handle object) const {
ApiLocalScope* scope = api_top_scope_;
while (scope != NULL) {
if (scope->local_handles()->IsValidHandle(object)) {
return true;
}
scope = scope->previous();
}
return false;
}
intptr_t Thread::CountLocalHandles() const {
intptr_t total = 0;
ApiLocalScope* scope = api_top_scope_;
while (scope != NULL) {
total += scope->local_handles()->CountHandles();
scope = scope->previous();
}
return total;
}
bool Thread::IsValidZoneHandle(Dart_Handle object) const {
Zone* zone = zone_;
while (zone != NULL) {
if (zone->handles()->IsValidZoneHandle(reinterpret_cast<uword>(object))) {
return true;
}
zone = zone->previous();
}
return false;
}
intptr_t Thread::CountZoneHandles() const {
intptr_t count = 0;
Zone* zone = zone_;
while (zone != NULL) {
count += zone->handles()->CountZoneHandles();
zone = zone->previous();
}
ASSERT(count >= 0);
return count;
}
bool Thread::IsValidScopedHandle(Dart_Handle object) const {
Zone* zone = zone_;
while (zone != NULL) {
if (zone->handles()->IsValidScopedHandle(reinterpret_cast<uword>(object))) {
return true;
}
zone = zone->previous();
}
return false;
}
intptr_t Thread::CountScopedHandles() const {
intptr_t count = 0;
Zone* zone = zone_;
while (zone != NULL) {
count += zone->handles()->CountScopedHandles();
zone = zone->previous();
}
ASSERT(count >= 0);
return count;
}
int Thread::ZoneSizeInBytes() const {
int total = 0;
ApiLocalScope* scope = api_top_scope_;
while (scope != NULL) {
total += scope->zone()->SizeInBytes();
scope = scope->previous();
}
return total;
}
void Thread::UnwindScopes(uword stack_marker) {
// Unwind all scopes using the same stack_marker, i.e. all scopes allocated
// under the same top_exit_frame_info.
ApiLocalScope* scope = api_top_scope_;
while (scope != NULL && scope->stack_marker() != 0 &&
scope->stack_marker() == stack_marker) {
api_top_scope_ = scope->previous();
delete scope;
scope = api_top_scope_;
}
}
void Thread::EnterSafepointUsingLock() {
isolate()->safepoint_handler()->EnterSafepointUsingLock(this);
}
void Thread::ExitSafepointUsingLock() {
isolate()->safepoint_handler()->ExitSafepointUsingLock(this);
}
void Thread::BlockForSafepoint() {
isolate()->safepoint_handler()->BlockForSafepoint(this);
}
DisableThreadInterruptsScope::DisableThreadInterruptsScope(Thread* thread)
: StackResource(thread) {
if (thread != NULL) {
OSThread* os_thread = thread->os_thread();
ASSERT(os_thread != NULL);
os_thread->DisableThreadInterrupts();
}
}
DisableThreadInterruptsScope::~DisableThreadInterruptsScope() {
if (thread() != NULL) {
OSThread* os_thread = thread()->os_thread();
ASSERT(os_thread != NULL);
os_thread->EnableThreadInterrupts();
}
}
} // namespace dart