blob: ff9ef0e568b924cc0a6e0c28f06b47d1f8619f08 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM64.
#if defined(TARGET_ARCH_ARM64) && !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/compiler/intrinsifier.h"
#include "vm/compiler/assembler/assembler.h"
#include "vm/compiler/backend/flow_graph_compiler.h"
#include "vm/dart_entry.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/regexp_assembler.h"
#include "vm/symbols.h"
#include "vm/timeline.h"
namespace dart {
// When entering intrinsics code:
// R4: Arguments descriptor
// LR: Return address
// The R4 register can be destroyed only if there is no slow-path, i.e.
// if the intrinsified method always executes a return.
// The FP register should not be modified, because it is used by the profiler.
// The PP and THR registers (see constants_arm64.h) must be preserved.
#define __ assembler->
intptr_t Intrinsifier::ParameterSlotFromSp() {
return -1;
}
static bool IsABIPreservedRegister(Register reg) {
return ((1 << reg) & kAbiPreservedCpuRegs) != 0;
}
void Intrinsifier::IntrinsicCallPrologue(Assembler* assembler) {
ASSERT(IsABIPreservedRegister(CODE_REG));
ASSERT(!IsABIPreservedRegister(ARGS_DESC_REG));
ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP));
ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP2));
ASSERT(CALLEE_SAVED_TEMP != CODE_REG);
ASSERT(CALLEE_SAVED_TEMP != ARGS_DESC_REG);
ASSERT(CALLEE_SAVED_TEMP2 != CODE_REG);
ASSERT(CALLEE_SAVED_TEMP2 != ARGS_DESC_REG);
assembler->Comment("IntrinsicCallPrologue");
assembler->mov(CALLEE_SAVED_TEMP, LR);
assembler->mov(CALLEE_SAVED_TEMP2, ARGS_DESC_REG);
}
void Intrinsifier::IntrinsicCallEpilogue(Assembler* assembler) {
assembler->Comment("IntrinsicCallEpilogue");
assembler->mov(LR, CALLEE_SAVED_TEMP);
assembler->mov(ARGS_DESC_REG, CALLEE_SAVED_TEMP2);
}
// Intrinsify only for Smi index.
void Intrinsifier::ObjectArraySetIndexedUnchecked(Assembler* assembler) {
Label fall_through;
__ ldr(R1, Address(SP, 1 * kWordSize)); // Index.
__ BranchIfNotSmi(R1, &fall_through);
__ ldr(R0, Address(SP, 2 * kWordSize)); // Array.
// Range check.
__ ldr(R3, FieldAddress(R0, Array::length_offset())); // Array length.
__ cmp(R1, Operand(R3));
// Runtime throws exception.
__ b(&fall_through, CS);
// Note that R1 is Smi, i.e, times 2.
ASSERT(kSmiTagShift == 1);
__ ldr(R2, Address(SP, 0 * kWordSize)); // Value.
__ add(R1, R0, Operand(R1, LSL, 2)); // R1 is Smi.
__ StoreIntoObject(R0, FieldAddress(R1, Array::data_offset()), R2);
// Caller is responsible for preserving the value if necessary.
__ ret();
__ Bind(&fall_through);
}
// Allocate a GrowableObjectArray using the backing array specified.
// On stack: type argument (+1), data (+0).
void Intrinsifier::GrowableArray_Allocate(Assembler* assembler) {
// The newly allocated object is returned in R0.
const intptr_t kTypeArgumentsOffset = 1 * kWordSize;
const intptr_t kArrayOffset = 0 * kWordSize;
Label fall_through;
// Try allocating in new space.
const Class& cls = Class::Handle(
Isolate::Current()->object_store()->growable_object_array_class());
__ TryAllocate(cls, &fall_through, R0, R1);
// Store backing array object in growable array object.
__ ldr(R1, Address(SP, kArrayOffset)); // Data argument.
// R0 is new, no barrier needed.
__ StoreIntoObjectNoBarrier(
R0, FieldAddress(R0, GrowableObjectArray::data_offset()), R1);
// R0: new growable array object start as a tagged pointer.
// Store the type argument field in the growable array object.
__ ldr(R1, Address(SP, kTypeArgumentsOffset)); // Type argument.
__ StoreIntoObjectNoBarrier(
R0, FieldAddress(R0, GrowableObjectArray::type_arguments_offset()), R1);
// Set the length field in the growable array object to 0.
__ LoadImmediate(R1, 0);
__ str(R1, FieldAddress(R0, GrowableObjectArray::length_offset()));
__ ret(); // Returns the newly allocated object in R0.
__ Bind(&fall_through);
}
// Add an element to growable array if it doesn't need to grow, otherwise
// call into regular code.
// On stack: growable array (+1), value (+0).
void Intrinsifier::GrowableArray_add(Assembler* assembler) {
// In checked mode we need to type-check the incoming argument.
if (Isolate::Current()->argument_type_checks()) {
return;
}
Label fall_through;
// R0: Array.
__ ldr(R0, Address(SP, 1 * kWordSize));
// R1: length.
__ ldr(R1, FieldAddress(R0, GrowableObjectArray::length_offset()));
// R2: data.
__ ldr(R2, FieldAddress(R0, GrowableObjectArray::data_offset()));
// R3: capacity.
__ ldr(R3, FieldAddress(R2, Array::length_offset()));
// Compare length with capacity.
__ cmp(R1, Operand(R3));
__ b(&fall_through, EQ); // Must grow data.
const int64_t value_one = reinterpret_cast<int64_t>(Smi::New(1));
// len = len + 1;
__ add(R3, R1, Operand(value_one));
__ str(R3, FieldAddress(R0, GrowableObjectArray::length_offset()));
__ ldr(R0, Address(SP, 0 * kWordSize)); // Value.
ASSERT(kSmiTagShift == 1);
__ add(R1, R2, Operand(R1, LSL, 2));
__ StoreIntoObject(R2, FieldAddress(R1, Array::data_offset()), R0);
__ LoadObject(R0, Object::null_object());
__ ret();
__ Bind(&fall_through);
}
static int GetScaleFactor(intptr_t size) {
switch (size) {
case 1:
return 0;
case 2:
return 1;
case 4:
return 2;
case 8:
return 3;
case 16:
return 4;
}
UNREACHABLE();
return -1;
}
#define TYPED_ARRAY_ALLOCATION(type_name, cid, max_len, scale_shift) \
Label fall_through; \
const intptr_t kArrayLengthStackOffset = 0 * kWordSize; \
NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, R2, &fall_through)); \
__ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
/* Check that length is a positive Smi. */ \
/* R2: requested array length argument. */ \
__ BranchIfNotSmi(R2, &fall_through); \
__ CompareRegisters(R2, ZR); \
__ b(&fall_through, LT); \
__ SmiUntag(R2); \
/* Check for maximum allowed length. */ \
/* R2: untagged array length. */ \
__ CompareImmediate(R2, max_len); \
__ b(&fall_through, GT); \
__ LslImmediate(R2, R2, scale_shift); \
const intptr_t fixed_size_plus_alignment_padding = \
sizeof(Raw##type_name) + kObjectAlignment - 1; \
__ AddImmediate(R2, fixed_size_plus_alignment_padding); \
__ andi(R2, R2, Immediate(~(kObjectAlignment - 1))); \
NOT_IN_PRODUCT(Heap::Space space = Heap::kNew); \
__ ldr(R0, Address(THR, Thread::top_offset())); \
\
/* R2: allocation size. */ \
__ adds(R1, R0, Operand(R2)); \
__ b(&fall_through, CS); /* Fail on unsigned overflow. */ \
\
/* Check if the allocation fits into the remaining space. */ \
/* R0: potential new object start. */ \
/* R1: potential next object start. */ \
/* R2: allocation size. */ \
__ ldr(R6, Address(THR, Thread::end_offset())); \
__ cmp(R1, Operand(R6)); \
__ b(&fall_through, CS); \
\
/* Successfully allocated the object(s), now update top to point to */ \
/* next object start and initialize the object. */ \
__ str(R1, Address(THR, Thread::top_offset())); \
__ AddImmediate(R0, kHeapObjectTag); \
NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, R2, space)); \
/* Initialize the tags. */ \
/* R0: new object start as a tagged pointer. */ \
/* R1: new object end address. */ \
/* R2: allocation size. */ \
{ \
__ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag); \
__ LslImmediate(R2, R2, RawObject::kSizeTagPos - kObjectAlignmentLog2); \
__ csel(R2, ZR, R2, HI); \
\
/* Get the class index and insert it into the tags. */ \
__ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid)); \
__ orr(R2, R2, Operand(TMP)); \
__ str(R2, FieldAddress(R0, type_name::tags_offset())); /* Tags. */ \
} \
/* Set the length field. */ \
/* R0: new object start as a tagged pointer. */ \
/* R1: new object end address. */ \
__ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
__ StoreIntoObjectNoBarrier( \
R0, FieldAddress(R0, type_name::length_offset()), R2); \
/* Initialize all array elements to 0. */ \
/* R0: new object start as a tagged pointer. */ \
/* R1: new object end address. */ \
/* R2: iterator which initially points to the start of the variable */ \
/* R3: scratch register. */ \
/* data area to be initialized. */ \
__ mov(R3, ZR); \
__ AddImmediate(R2, R0, sizeof(Raw##type_name) - 1); \
Label init_loop, done; \
__ Bind(&init_loop); \
__ cmp(R2, Operand(R1)); \
__ b(&done, CS); \
__ str(R3, Address(R2, 0)); \
__ add(R2, R2, Operand(kWordSize)); \
__ b(&init_loop); \
__ Bind(&done); \
\
__ ret(); \
__ Bind(&fall_through);
#define TYPED_DATA_ALLOCATOR(clazz) \
void Intrinsifier::TypedData_##clazz##_factory(Assembler* assembler) { \
intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \
intptr_t max_len = TypedData::MaxNewSpaceElements(kTypedData##clazz##Cid); \
int shift = GetScaleFactor(size); \
TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \
}
CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR)
#undef TYPED_DATA_ALLOCATOR
// Loads args from stack into R0 and R1
// Tests if they are smis, jumps to label not_smi if not.
static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) {
__ ldr(R0, Address(SP, +0 * kWordSize));
__ ldr(R1, Address(SP, +1 * kWordSize));
__ orr(TMP, R0, Operand(R1));
__ BranchIfNotSmi(TMP, not_smi);
}
void Intrinsifier::Integer_addFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
__ adds(R0, R0, Operand(R1)); // Adds.
__ b(&fall_through, VS); // Fall-through on overflow.
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_add(Assembler* assembler) {
Integer_addFromInteger(assembler);
}
void Intrinsifier::Integer_subFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ subs(R0, R0, Operand(R1)); // Subtract.
__ b(&fall_through, VS); // Fall-through on overflow.
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_sub(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ subs(R0, R1, Operand(R0)); // Subtract.
__ b(&fall_through, VS); // Fall-through on overflow.
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_mulFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // checks two smis
__ SmiUntag(R0); // Untags R6. We only want result shifted by one.
__ mul(TMP, R0, R1);
__ smulh(TMP2, R0, R1);
// TMP: result bits 64..127.
__ cmp(TMP2, Operand(TMP, ASR, 63));
__ b(&fall_through, NE);
__ mov(R0, TMP);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_mul(Assembler* assembler) {
Integer_mulFromInteger(assembler);
}
// Optimizations:
// - result is 0 if:
// - left is 0
// - left equals right
// - result is left if
// - left > 0 && left < right
// R1: Tagged left (dividend).
// R0: Tagged right (divisor).
// Returns:
// R1: Untagged fallthrough result (remainder to be adjusted), or
// R0: Tagged return result (remainder).
static void EmitRemainderOperation(Assembler* assembler) {
Label return_zero, modulo;
const Register left = R1;
const Register right = R0;
const Register result = R1;
const Register tmp = R2;
ASSERT(left == result);
// Check for quick zero results.
__ CompareRegisters(left, ZR);
__ b(&return_zero, EQ);
__ CompareRegisters(left, right);
__ b(&return_zero, EQ);
// Check if result should be left.
__ CompareRegisters(left, ZR);
__ b(&modulo, LT);
// left is positive.
__ CompareRegisters(left, right);
// left is less than right, result is left.
__ b(&modulo, GT);
__ mov(R0, left);
__ ret();
__ Bind(&return_zero);
__ mov(R0, ZR);
__ ret();
__ Bind(&modulo);
// result <- left - right * (left / right)
__ SmiUntag(left);
__ SmiUntag(right);
__ sdiv(tmp, left, right);
__ msub(result, right, tmp, left); // result <- left - right * tmp
}
// Implementation:
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
void Intrinsifier::Integer_moduloFromInteger(Assembler* assembler) {
// Check to see if we have integer division
Label neg_remainder, fall_through;
__ ldr(R1, Address(SP, +0 * kWordSize));
__ ldr(R0, Address(SP, +1 * kWordSize));
__ orr(TMP, R0, Operand(R1));
__ BranchIfNotSmi(TMP, &fall_through);
// R1: Tagged left (dividend).
// R0: Tagged right (divisor).
// Check if modulo by zero -> exception thrown in main function.
__ CompareRegisters(R0, ZR);
__ b(&fall_through, EQ);
EmitRemainderOperation(assembler);
// Untagged right in R0. Untagged remainder result in R1.
__ CompareRegisters(R1, ZR);
__ b(&neg_remainder, LT);
__ SmiTag(R0, R1); // Tag and move result to R0.
__ ret();
__ Bind(&neg_remainder);
// Result is negative, adjust it.
__ CompareRegisters(R0, ZR);
__ sub(TMP, R1, Operand(R0));
__ add(TMP2, R1, Operand(R0));
__ csel(R0, TMP2, TMP, GE);
__ SmiTag(R0);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_truncDivide(Assembler* assembler) {
// Check to see if we have integer division
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ CompareRegisters(R0, ZR);
__ b(&fall_through, EQ); // If b is 0, fall through.
__ SmiUntag(R0);
__ SmiUntag(R1);
__ sdiv(R0, R1, R0);
// Check the corner case of dividing the 'MIN_SMI' with -1, in which case we
// cannot tag the result.
__ CompareImmediate(R0, 0x4000000000000000);
__ b(&fall_through, EQ);
__ SmiTag(R0); // Not equal. Okay to tag and return.
__ ret(); // Return.
__ Bind(&fall_through);
}
void Intrinsifier::Integer_negate(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, +0 * kWordSize)); // Grab first argument.
__ BranchIfNotSmi(R0, &fall_through);
__ negs(R0, R0);
__ b(&fall_through, VS);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitAndFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
__ and_(R0, R0, Operand(R1));
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitAnd(Assembler* assembler) {
Integer_bitAndFromInteger(assembler);
}
void Intrinsifier::Integer_bitOrFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
__ orr(R0, R0, Operand(R1));
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitOr(Assembler* assembler) {
Integer_bitOrFromInteger(assembler);
}
void Intrinsifier::Integer_bitXorFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
__ eor(R0, R0, Operand(R1));
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitXor(Assembler* assembler) {
Integer_bitXorFromInteger(assembler);
}
void Intrinsifier::Integer_shl(Assembler* assembler) {
ASSERT(kSmiTagShift == 1);
ASSERT(kSmiTag == 0);
const Register right = R0;
const Register left = R1;
const Register temp = R2;
const Register result = R0;
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ CompareImmediate(right, reinterpret_cast<int64_t>(Smi::New(Smi::kBits)));
__ b(&fall_through, CS);
// Left is not a constant.
// Check if count too large for handling it inlined.
__ SmiUntag(TMP, right); // SmiUntag right into TMP.
// Overflow test (preserve left, right, and TMP);
__ lslv(temp, left, TMP);
__ asrv(TMP2, temp, TMP);
__ CompareRegisters(left, TMP2);
__ b(&fall_through, NE); // Overflow.
// Shift for result now we know there is no overflow.
__ lslv(result, left, TMP);
__ ret();
__ Bind(&fall_through);
}
static void CompareIntegers(Assembler* assembler, Condition true_condition) {
Label fall_through, true_label;
TestBothArgumentsSmis(assembler, &fall_through);
// R0 contains the right argument, R1 the left.
__ CompareRegisters(R1, R0);
__ LoadObject(R0, Bool::False());
__ LoadObject(TMP, Bool::True());
__ csel(R0, TMP, R0, true_condition);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_greaterThanFromInt(Assembler* assembler) {
CompareIntegers(assembler, LT);
}
void Intrinsifier::Integer_lessThan(Assembler* assembler) {
Integer_greaterThanFromInt(assembler);
}
void Intrinsifier::Integer_greaterThan(Assembler* assembler) {
CompareIntegers(assembler, GT);
}
void Intrinsifier::Integer_lessEqualThan(Assembler* assembler) {
CompareIntegers(assembler, LE);
}
void Intrinsifier::Integer_greaterEqualThan(Assembler* assembler) {
CompareIntegers(assembler, GE);
}
// This is called for Smi and Mint receivers. The right argument
// can be Smi, Mint or double.
void Intrinsifier::Integer_equalToInteger(Assembler* assembler) {
Label fall_through, true_label, check_for_mint;
// For integer receiver '===' check first.
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R1, Address(SP, 1 * kWordSize));
__ cmp(R0, Operand(R1));
__ b(&true_label, EQ);
__ orr(R2, R0, Operand(R1));
__ BranchIfNotSmi(R2, &check_for_mint);
// If R0 or R1 is not a smi do Mint checks.
// Both arguments are smi, '===' is good enough.
__ LoadObject(R0, Bool::False());
__ ret();
__ Bind(&true_label);
__ LoadObject(R0, Bool::True());
__ ret();
// At least one of the arguments was not Smi.
Label receiver_not_smi;
__ Bind(&check_for_mint);
__ BranchIfNotSmi(R1, &receiver_not_smi); // Check receiver.
// Left (receiver) is Smi, return false if right is not Double.
// Note that an instance of Mint never contains a value that can be
// represented by Smi.
__ CompareClassId(R0, kDoubleCid);
__ b(&fall_through, EQ);
__ LoadObject(R0, Bool::False()); // Smi == Mint -> false.
__ ret();
__ Bind(&receiver_not_smi);
// R1: receiver.
__ CompareClassId(R1, kMintCid);
__ b(&fall_through, NE);
// Receiver is Mint, return false if right is Smi.
__ BranchIfNotSmi(R0, &fall_through);
__ LoadObject(R0, Bool::False());
__ ret();
// TODO(srdjan): Implement Mint == Mint comparison.
__ Bind(&fall_through);
}
void Intrinsifier::Integer_equal(Assembler* assembler) {
Integer_equalToInteger(assembler);
}
void Intrinsifier::Integer_sar(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
// Shift amount in R0. Value to shift in R1.
// Fall through if shift amount is negative.
__ SmiUntag(R0);
__ CompareRegisters(R0, ZR);
__ b(&fall_through, LT);
// If shift amount is bigger than 63, set to 63.
__ LoadImmediate(TMP, 0x3F);
__ CompareRegisters(R0, TMP);
__ csel(R0, TMP, R0, GT);
__ SmiUntag(R1);
__ asrv(R0, R1, R0);
__ SmiTag(R0);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Smi_bitNegate(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ mvn(R0, R0);
__ andi(R0, R0, Immediate(~kSmiTagMask)); // Remove inverted smi-tag.
__ ret();
}
void Intrinsifier::Smi_bitLength(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ SmiUntag(R0);
// XOR with sign bit to complement bits if value is negative.
__ eor(R0, R0, Operand(R0, ASR, 63));
__ clz(R0, R0);
__ LoadImmediate(R1, 64);
__ sub(R0, R1, Operand(R0));
__ SmiTag(R0);
__ ret();
}
void Intrinsifier::Smi_bitAndFromSmi(Assembler* assembler) {
Integer_bitAndFromInteger(assembler);
}
void Intrinsifier::Bigint_lsh(Assembler* assembler) {
// static void _lsh(Uint32List x_digits, int x_used, int n,
// Uint32List r_digits)
// R2 = x_used, R3 = x_digits, x_used > 0, x_used is Smi.
__ ldp(R2, R3, Address(SP, 2 * kWordSize, Address::PairOffset));
__ add(R2, R2, Operand(2)); // x_used > 0, Smi. R2 = x_used + 1, round up.
__ AsrImmediate(R2, R2, 2); // R2 = num of digit pairs to read.
// R4 = r_digits, R5 = n, n is Smi, n % _DIGIT_BITS != 0.
__ ldp(R4, R5, Address(SP, 0 * kWordSize, Address::PairOffset));
__ SmiUntag(R5);
// R0 = n ~/ (2*_DIGIT_BITS)
__ AsrImmediate(R0, R5, 6);
// R6 = &x_digits[0]
__ add(R6, R3, Operand(TypedData::data_offset() - kHeapObjectTag));
// R7 = &x_digits[2*R2]
__ add(R7, R6, Operand(R2, LSL, 3));
// R8 = &r_digits[2*1]
__ add(R8, R4,
Operand(TypedData::data_offset() - kHeapObjectTag +
2 * kBytesPerBigIntDigit));
// R8 = &r_digits[2*(R2 + n ~/ (2*_DIGIT_BITS) + 1)]
__ add(R0, R0, Operand(R2));
__ add(R8, R8, Operand(R0, LSL, 3));
// R3 = n % (2 * _DIGIT_BITS)
__ AndImmediate(R3, R5, 63);
// R2 = 64 - R3
__ LoadImmediate(R2, 64);
__ sub(R2, R2, Operand(R3));
__ mov(R1, ZR);
Label loop;
__ Bind(&loop);
__ ldr(R0, Address(R7, -2 * kBytesPerBigIntDigit, Address::PreIndex));
__ lsrv(R4, R0, R2);
__ orr(R1, R1, Operand(R4));
__ str(R1, Address(R8, -2 * kBytesPerBigIntDigit, Address::PreIndex));
__ lslv(R1, R0, R3);
__ cmp(R7, Operand(R6));
__ b(&loop, NE);
__ str(R1, Address(R8, -2 * kBytesPerBigIntDigit, Address::PreIndex));
// Returning Object::null() is not required, since this method is private.
__ ret();
}
void Intrinsifier::Bigint_rsh(Assembler* assembler) {
// static void _lsh(Uint32List x_digits, int x_used, int n,
// Uint32List r_digits)
// R2 = x_used, R3 = x_digits, x_used > 0, x_used is Smi.
__ ldp(R2, R3, Address(SP, 2 * kWordSize, Address::PairOffset));
__ add(R2, R2, Operand(2)); // x_used > 0, Smi. R2 = x_used + 1, round up.
__ AsrImmediate(R2, R2, 2); // R2 = num of digit pairs to read.
// R4 = r_digits, R5 = n, n is Smi, n % _DIGIT_BITS != 0.
__ ldp(R4, R5, Address(SP, 0 * kWordSize, Address::PairOffset));
__ SmiUntag(R5);
// R0 = n ~/ (2*_DIGIT_BITS)
__ AsrImmediate(R0, R5, 6);
// R8 = &r_digits[0]
__ add(R8, R4, Operand(TypedData::data_offset() - kHeapObjectTag));
// R7 = &x_digits[2*(n ~/ (2*_DIGIT_BITS))]
__ add(R7, R3, Operand(TypedData::data_offset() - kHeapObjectTag));
__ add(R7, R7, Operand(R0, LSL, 3));
// R6 = &r_digits[2*(R2 - n ~/ (2*_DIGIT_BITS) - 1)]
__ add(R0, R0, Operand(1));
__ sub(R0, R2, Operand(R0));
__ add(R6, R8, Operand(R0, LSL, 3));
// R3 = n % (2*_DIGIT_BITS)
__ AndImmediate(R3, R5, 63);
// R2 = 64 - R3
__ LoadImmediate(R2, 64);
__ sub(R2, R2, Operand(R3));
// R1 = x_digits[n ~/ (2*_DIGIT_BITS)] >> (n % (2*_DIGIT_BITS))
__ ldr(R1, Address(R7, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ lsrv(R1, R1, R3);
Label loop_entry;
__ b(&loop_entry);
Label loop;
__ Bind(&loop);
__ ldr(R0, Address(R7, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ lslv(R4, R0, R2);
__ orr(R1, R1, Operand(R4));
__ str(R1, Address(R8, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ lsrv(R1, R0, R3);
__ Bind(&loop_entry);
__ cmp(R8, Operand(R6));
__ b(&loop, NE);
__ str(R1, Address(R8, 0));
// Returning Object::null() is not required, since this method is private.
__ ret();
}
void Intrinsifier::Bigint_absAdd(Assembler* assembler) {
// static void _absAdd(Uint32List digits, int used,
// Uint32List a_digits, int a_used,
// Uint32List r_digits)
// R2 = used, R3 = digits
__ ldp(R2, R3, Address(SP, 3 * kWordSize, Address::PairOffset));
__ add(R2, R2, Operand(2)); // used > 0, Smi. R2 = used + 1, round up.
__ add(R2, ZR, Operand(R2, ASR, 2)); // R2 = num of digit pairs to process.
// R3 = &digits[0]
__ add(R3, R3, Operand(TypedData::data_offset() - kHeapObjectTag));
// R4 = a_used, R5 = a_digits
__ ldp(R4, R5, Address(SP, 1 * kWordSize, Address::PairOffset));
__ add(R4, R4, Operand(2)); // a_used > 0, Smi. R4 = a_used + 1, round up.
__ add(R4, ZR, Operand(R4, ASR, 2)); // R4 = num of digit pairs to process.
// R5 = &a_digits[0]
__ add(R5, R5, Operand(TypedData::data_offset() - kHeapObjectTag));
// R6 = r_digits
__ ldr(R6, Address(SP, 0 * kWordSize));
// R6 = &r_digits[0]
__ add(R6, R6, Operand(TypedData::data_offset() - kHeapObjectTag));
// R7 = &digits[a_used rounded up to even number].
__ add(R7, R3, Operand(R4, LSL, 3));
// R8 = &digits[a_used rounded up to even number].
__ add(R8, R3, Operand(R2, LSL, 3));
__ adds(R0, R0, Operand(0)); // carry flag = 0
Label add_loop;
__ Bind(&add_loop);
// Loop (a_used+1)/2 times, a_used > 0.
__ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ ldr(R1, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ adcs(R0, R0, R1);
__ sub(R9, R3, Operand(R7)); // Does not affect carry flag.
__ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ cbnz(&add_loop, R9); // Does not affect carry flag.
Label last_carry;
__ sub(R9, R3, Operand(R8)); // Does not affect carry flag.
__ cbz(&last_carry, R9); // If used - a_used == 0.
Label carry_loop;
__ Bind(&carry_loop);
// Loop (used+1)/2 - (a_used+1)/2 times, used - a_used > 0.
__ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ adcs(R0, R0, ZR);
__ sub(R9, R3, Operand(R8)); // Does not affect carry flag.
__ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ cbnz(&carry_loop, R9);
__ Bind(&last_carry);
Label done;
__ b(&done, CC);
__ LoadImmediate(R0, 1);
__ str(R0, Address(R6, 0));
__ Bind(&done);
// Returning Object::null() is not required, since this method is private.
__ ret();
}
void Intrinsifier::Bigint_absSub(Assembler* assembler) {
// static void _absSub(Uint32List digits, int used,
// Uint32List a_digits, int a_used,
// Uint32List r_digits)
// R2 = used, R3 = digits
__ ldp(R2, R3, Address(SP, 3 * kWordSize, Address::PairOffset));
__ add(R2, R2, Operand(2)); // used > 0, Smi. R2 = used + 1, round up.
__ add(R2, ZR, Operand(R2, ASR, 2)); // R2 = num of digit pairs to process.
// R3 = &digits[0]
__ add(R3, R3, Operand(TypedData::data_offset() - kHeapObjectTag));
// R4 = a_used, R5 = a_digits
__ ldp(R4, R5, Address(SP, 1 * kWordSize, Address::PairOffset));
__ add(R4, R4, Operand(2)); // a_used > 0, Smi. R4 = a_used + 1, round up.
__ add(R4, ZR, Operand(R4, ASR, 2)); // R4 = num of digit pairs to process.
// R5 = &a_digits[0]
__ add(R5, R5, Operand(TypedData::data_offset() - kHeapObjectTag));
// R6 = r_digits
__ ldr(R6, Address(SP, 0 * kWordSize));
// R6 = &r_digits[0]
__ add(R6, R6, Operand(TypedData::data_offset() - kHeapObjectTag));
// R7 = &digits[a_used rounded up to even number].
__ add(R7, R3, Operand(R4, LSL, 3));
// R8 = &digits[a_used rounded up to even number].
__ add(R8, R3, Operand(R2, LSL, 3));
__ subs(R0, R0, Operand(0)); // carry flag = 1
Label sub_loop;
__ Bind(&sub_loop);
// Loop (a_used+1)/2 times, a_used > 0.
__ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ ldr(R1, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ sbcs(R0, R0, R1);
__ sub(R9, R3, Operand(R7)); // Does not affect carry flag.
__ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ cbnz(&sub_loop, R9); // Does not affect carry flag.
Label done;
__ sub(R9, R3, Operand(R8)); // Does not affect carry flag.
__ cbz(&done, R9); // If used - a_used == 0.
Label carry_loop;
__ Bind(&carry_loop);
// Loop (used+1)/2 - (a_used+1)/2 times, used - a_used > 0.
__ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ sbcs(R0, R0, ZR);
__ sub(R9, R3, Operand(R8)); // Does not affect carry flag.
__ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ cbnz(&carry_loop, R9);
__ Bind(&done);
// Returning Object::null() is not required, since this method is private.
__ ret();
}
void Intrinsifier::Bigint_mulAdd(Assembler* assembler) {
// Pseudo code:
// static int _mulAdd(Uint32List x_digits, int xi,
// Uint32List m_digits, int i,
// Uint32List a_digits, int j, int n) {
// uint64_t x = x_digits[xi >> 1 .. (xi >> 1) + 1]; // xi is Smi and even.
// if (x == 0 || n == 0) {
// return 2;
// }
// uint64_t* mip = &m_digits[i >> 1]; // i is Smi and even.
// uint64_t* ajp = &a_digits[j >> 1]; // j is Smi and even.
// uint64_t c = 0;
// SmiUntag(n); // n is Smi and even.
// n = (n + 1)/2; // Number of pairs to process.
// do {
// uint64_t mi = *mip++;
// uint64_t aj = *ajp;
// uint128_t t = x*mi + aj + c; // 64-bit * 64-bit -> 128-bit.
// *ajp++ = low64(t);
// c = high64(t);
// } while (--n > 0);
// while (c != 0) {
// uint128_t t = *ajp + c;
// *ajp++ = low64(t);
// c = high64(t); // c == 0 or 1.
// }
// return 2;
// }
Label done;
// R3 = x, no_op if x == 0
// R0 = xi as Smi, R1 = x_digits.
__ ldp(R0, R1, Address(SP, 5 * kWordSize, Address::PairOffset));
__ add(R1, R1, Operand(R0, LSL, 1));
__ ldr(R3, FieldAddress(R1, TypedData::data_offset()));
__ tst(R3, Operand(R3));
__ b(&done, EQ);
// R6 = (SmiUntag(n) + 1)/2, no_op if n == 0
__ ldr(R6, Address(SP, 0 * kWordSize));
__ add(R6, R6, Operand(2));
__ adds(R6, ZR, Operand(R6, ASR, 2)); // SmiUntag(R6) and set cc.
__ b(&done, EQ);
// R4 = mip = &m_digits[i >> 1]
// R0 = i as Smi, R1 = m_digits.
__ ldp(R0, R1, Address(SP, 3 * kWordSize, Address::PairOffset));
__ add(R1, R1, Operand(R0, LSL, 1));
__ add(R4, R1, Operand(TypedData::data_offset() - kHeapObjectTag));
// R5 = ajp = &a_digits[j >> 1]
// R0 = j as Smi, R1 = a_digits.
__ ldp(R0, R1, Address(SP, 1 * kWordSize, Address::PairOffset));
__ add(R1, R1, Operand(R0, LSL, 1));
__ add(R5, R1, Operand(TypedData::data_offset() - kHeapObjectTag));
// R1 = c = 0
__ mov(R1, ZR);
Label muladd_loop;
__ Bind(&muladd_loop);
// x: R3
// mip: R4
// ajp: R5
// c: R1
// n: R6
// t: R7:R8 (not live at loop entry)
// uint64_t mi = *mip++
__ ldr(R2, Address(R4, 2 * kBytesPerBigIntDigit, Address::PostIndex));
// uint64_t aj = *ajp
__ ldr(R0, Address(R5, 0));
// uint128_t t = x*mi + aj + c
__ mul(R7, R2, R3); // R7 = low64(R2*R3).
__ umulh(R8, R2, R3); // R8 = high64(R2*R3), t = R8:R7 = x*mi.
__ adds(R7, R7, Operand(R0));
__ adc(R8, R8, ZR); // t += aj.
__ adds(R0, R7, Operand(R1)); // t += c, R0 = low64(t).
__ adc(R1, R8, ZR); // c = R1 = high64(t).
// *ajp++ = low64(t) = R0
__ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex));
// while (--n > 0)
__ subs(R6, R6, Operand(1)); // --n
__ b(&muladd_loop, NE);
__ tst(R1, Operand(R1));
__ b(&done, EQ);
// *ajp++ += c
__ ldr(R0, Address(R5, 0));
__ adds(R0, R0, Operand(R1));
__ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ b(&done, CC);
Label propagate_carry_loop;
__ Bind(&propagate_carry_loop);
__ ldr(R0, Address(R5, 0));
__ adds(R0, R0, Operand(1));
__ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ b(&propagate_carry_loop, CS);
__ Bind(&done);
__ LoadImmediate(R0, Smi::RawValue(2)); // Two digits processed.
__ ret();
}
void Intrinsifier::Bigint_sqrAdd(Assembler* assembler) {
// Pseudo code:
// static int _sqrAdd(Uint32List x_digits, int i,
// Uint32List a_digits, int used) {
// uint64_t* xip = &x_digits[i >> 1]; // i is Smi and even.
// uint64_t x = *xip++;
// if (x == 0) return 2;
// uint64_t* ajp = &a_digits[i]; // j == 2*i, i is Smi.
// uint64_t aj = *ajp;
// uint128_t t = x*x + aj;
// *ajp++ = low64(t);
// uint128_t c = high64(t);
// int n = ((used - i + 2) >> 2) - 1; // used and i are Smi. n: num pairs.
// while (--n >= 0) {
// uint64_t xi = *xip++;
// uint64_t aj = *ajp;
// uint192_t t = 2*x*xi + aj + c; // 2-bit * 64-bit * 64-bit -> 129-bit.
// *ajp++ = low64(t);
// c = high128(t); // 65-bit.
// }
// uint64_t aj = *ajp;
// uint128_t t = aj + c; // 64-bit + 65-bit -> 66-bit.
// *ajp++ = low64(t);
// *ajp = high64(t);
// return 2;
// }
// R4 = xip = &x_digits[i >> 1]
// R2 = i as Smi, R3 = x_digits
__ ldp(R2, R3, Address(SP, 2 * kWordSize, Address::PairOffset));
__ add(R3, R3, Operand(R2, LSL, 1));
__ add(R4, R3, Operand(TypedData::data_offset() - kHeapObjectTag));
// R3 = x = *xip++, return if x == 0
Label x_zero;
__ ldr(R3, Address(R4, 2 * kBytesPerBigIntDigit, Address::PostIndex));
__ tst(R3, Operand(R3));
__ b(&x_zero, EQ);
// R5 = ajp = &a_digits[i]
__ ldr(R1, Address(SP, 1 * kWordSize)); // a_digits
__ add(R1, R1, Operand(R2, LSL, 2)); // j == 2*i, i is Smi.
__ add(R5, R1, Operand(TypedData::data_offset() - kHeapObjectTag));
// R6:R1 = t = x*x + *ajp
__ ldr(R0, Address(R5, 0));
__ mul(R1, R3, R3); // R1 = low64(R3*R3).
__ umulh(R6, R3, R3); // R6 = high64(R3*R3).
__ adds(R1, R1, Operand(R0)); // R6:R1 += *ajp.
__ adc(R6, R6, ZR); // R6 = low64(c) = high64(t).
__ mov(R7, ZR); // R7 = high64(c) = 0.
// *ajp++ = low64(t) = R1
__ str(R1, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex));
// int n = (used - i + 1)/2 - 1
__ ldr(R0, Address(SP, 0 * kWordSize)); // used is Smi
__ sub(R8, R0, Operand(R2));
__ add(R8, R8, Operand(2));
__ movn(R0, Immediate(1), 0); // R0 = ~1 = -2.
__ adds(R8, R0, Operand(R8, ASR, 2)); // while (--n >= 0)
Label loop, done;
__ b(&done, MI);
__ Bind(&loop);
// x: R3
// xip: R4
// ajp: R5
// c: R7:R6
// t: R2:R1:R0 (not live at loop entry)
// n: R8
// uint64_t xi = *xip++
__ ldr(R2, Address(R4, 2 * kBytesPerBigIntDigit, Address::PostIndex));
// uint192_t t = R2:R1:R0 = 2*x*xi + aj + c
__ mul(R0, R2, R3); // R0 = low64(R2*R3) = low64(x*xi).
__ umulh(R1, R2, R3); // R1 = high64(R2*R3) = high64(x*xi).
__ adds(R0, R0, Operand(R0));
__ adcs(R1, R1, R1);
__ adc(R2, ZR, ZR); // R2:R1:R0 = R1:R0 + R1:R0 = 2*x*xi.
__ adds(R0, R0, Operand(R6));
__ adcs(R1, R1, R7);
__ adc(R2, R2, ZR); // R2:R1:R0 += c.
__ ldr(R7, Address(R5, 0)); // R7 = aj = *ajp.
__ adds(R0, R0, Operand(R7));
__ adcs(R6, R1, ZR);
__ adc(R7, R2, ZR); // R7:R6:R0 = 2*x*xi + aj + c.
// *ajp++ = low64(t) = R0
__ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex));
// while (--n >= 0)
__ subs(R8, R8, Operand(1)); // --n
__ b(&loop, PL);
__ Bind(&done);
// uint64_t aj = *ajp
__ ldr(R0, Address(R5, 0));
// uint128_t t = aj + c
__ adds(R6, R6, Operand(R0));
__ adc(R7, R7, ZR);
// *ajp = low64(t) = R6
// *(ajp + 1) = high64(t) = R7
__ stp(R6, R7, Address(R5, 0, Address::PairOffset));
__ Bind(&x_zero);
__ LoadImmediate(R0, Smi::RawValue(2)); // Two digits processed.
__ ret();
}
void Intrinsifier::Bigint_estimateQuotientDigit(Assembler* assembler) {
// There is no 128-bit by 64-bit division instruction on arm64, so we use two
// 64-bit by 32-bit divisions and two 64-bit by 64-bit multiplications to
// adjust the two 32-bit digits of the estimated quotient.
//
// Pseudo code:
// static int _estQuotientDigit(Uint32List args, Uint32List digits, int i) {
// uint64_t yt = args[_YT_LO .. _YT]; // _YT_LO == 0, _YT == 1.
// uint64_t* dp = &digits[(i >> 1) - 1]; // i is Smi.
// uint64_t dh = dp[0]; // dh == digits[(i >> 1) - 1 .. i >> 1].
// uint64_t qd;
// if (dh == yt) {
// qd = (DIGIT_MASK << 32) | DIGIT_MASK;
// } else {
// dl = dp[-1]; // dl == digits[(i >> 1) - 3 .. (i >> 1) - 2].
// // We cannot calculate qd = dh:dl / yt, so ...
// uint64_t yth = yt >> 32;
// uint64_t qh = dh / yth;
// uint128_t ph:pl = yt*qh;
// uint64_t tl = (dh << 32)|(dl >> 32);
// uint64_t th = dh >> 32;
// while ((ph > th) || ((ph == th) && (pl > tl))) {
// if (pl < yt) --ph;
// pl -= yt;
// --qh;
// }
// qd = qh << 32;
// tl = (pl << 32);
// th = (ph << 32)|(pl >> 32);
// if (tl > dl) ++th;
// dl -= tl;
// dh -= th;
// uint64_t ql = ((dh << 32)|(dl >> 32)) / yth;
// ph:pl = yt*ql;
// while ((ph > dh) || ((ph == dh) && (pl > dl))) {
// if (pl < yt) --ph;
// pl -= yt;
// --ql;
// }
// qd |= ql;
// }
// args[_QD .. _QD_HI] = qd; // _QD == 2, _QD_HI == 3.
// return 2;
// }
// R4 = args
__ ldr(R4, Address(SP, 2 * kWordSize)); // args
// R3 = yt = args[0..1]
__ ldr(R3, FieldAddress(R4, TypedData::data_offset()));
// R2 = dh = digits[(i >> 1) - 1 .. i >> 1]
// R0 = i as Smi, R1 = digits
__ ldp(R0, R1, Address(SP, 0 * kWordSize, Address::PairOffset));
__ add(R1, R1, Operand(R0, LSL, 1));
__ ldr(R2, FieldAddress(R1, TypedData::data_offset() - kBytesPerBigIntDigit));
// R0 = qd = (DIGIT_MASK << 32) | DIGIT_MASK = -1
__ movn(R0, Immediate(0), 0);
// Return qd if dh == yt
Label return_qd;
__ cmp(R2, Operand(R3));
__ b(&return_qd, EQ);
// R1 = dl = digits[(i >> 1) - 3 .. (i >> 1) - 2]
__ ldr(R1,
FieldAddress(R1, TypedData::data_offset() - 3 * kBytesPerBigIntDigit));
// R5 = yth = yt >> 32
__ orr(R5, ZR, Operand(R3, LSR, 32));
// R6 = qh = dh / yth
__ udiv(R6, R2, R5);
// R8:R7 = ph:pl = yt*qh
__ mul(R7, R3, R6);
__ umulh(R8, R3, R6);
// R9 = tl = (dh << 32)|(dl >> 32)
__ orr(R9, ZR, Operand(R2, LSL, 32));
__ orr(R9, R9, Operand(R1, LSR, 32));
// R10 = th = dh >> 32
__ orr(R10, ZR, Operand(R2, LSR, 32));
// while ((ph > th) || ((ph == th) && (pl > tl)))
Label qh_adj_loop, qh_adj, qh_ok;
__ Bind(&qh_adj_loop);
__ cmp(R8, Operand(R10));
__ b(&qh_adj, HI);
__ b(&qh_ok, NE);
__ cmp(R7, Operand(R9));
__ b(&qh_ok, LS);
__ Bind(&qh_adj);
// if (pl < yt) --ph
__ sub(TMP, R8, Operand(1)); // TMP = ph - 1
__ cmp(R7, Operand(R3));
__ csel(R8, TMP, R8, CC); // R8 = R7 < R3 ? TMP : R8
// pl -= yt
__ sub(R7, R7, Operand(R3));
// --qh
__ sub(R6, R6, Operand(1));
// Continue while loop.
__ b(&qh_adj_loop);
__ Bind(&qh_ok);
// R0 = qd = qh << 32
__ orr(R0, ZR, Operand(R6, LSL, 32));
// tl = (pl << 32)
__ orr(R9, ZR, Operand(R7, LSL, 32));
// th = (ph << 32)|(pl >> 32);
__ orr(R10, ZR, Operand(R8, LSL, 32));
__ orr(R10, R10, Operand(R7, LSR, 32));
// if (tl > dl) ++th
__ add(TMP, R10, Operand(1)); // TMP = th + 1
__ cmp(R9, Operand(R1));
__ csel(R10, TMP, R10, HI); // R10 = R9 > R1 ? TMP : R10
// dl -= tl
__ sub(R1, R1, Operand(R9));
// dh -= th
__ sub(R2, R2, Operand(R10));
// R6 = ql = ((dh << 32)|(dl >> 32)) / yth
__ orr(R6, ZR, Operand(R2, LSL, 32));
__ orr(R6, R6, Operand(R1, LSR, 32));
__ udiv(R6, R6, R5);
// R8:R7 = ph:pl = yt*ql
__ mul(R7, R3, R6);
__ umulh(R8, R3, R6);
// while ((ph > dh) || ((ph == dh) && (pl > dl))) {
Label ql_adj_loop, ql_adj, ql_ok;
__ Bind(&ql_adj_loop);
__ cmp(R8, Operand(R2));
__ b(&ql_adj, HI);
__ b(&ql_ok, NE);
__ cmp(R7, Operand(R1));
__ b(&ql_ok, LS);
__ Bind(&ql_adj);
// if (pl < yt) --ph
__ sub(TMP, R8, Operand(1)); // TMP = ph - 1
__ cmp(R7, Operand(R3));
__ csel(R8, TMP, R8, CC); // R8 = R7 < R3 ? TMP : R8
// pl -= yt
__ sub(R7, R7, Operand(R3));
// --ql
__ sub(R6, R6, Operand(1));
// Continue while loop.
__ b(&ql_adj_loop);
__ Bind(&ql_ok);
// qd |= ql;
__ orr(R0, R0, Operand(R6));
__ Bind(&return_qd);
// args[2..3] = qd
__ str(R0,
FieldAddress(R4, TypedData::data_offset() + 2 * kBytesPerBigIntDigit));
__ LoadImmediate(R0, Smi::RawValue(2)); // Two digits processed.
__ ret();
}
void Intrinsifier::Montgomery_mulMod(Assembler* assembler) {
// Pseudo code:
// static int _mulMod(Uint32List args, Uint32List digits, int i) {
// uint64_t rho = args[_RHO .. _RHO_HI]; // _RHO == 2, _RHO_HI == 3.
// uint64_t d = digits[i >> 1 .. (i >> 1) + 1]; // i is Smi and even.
// uint128_t t = rho*d;
// args[_MU .. _MU_HI] = t mod DIGIT_BASE^2; // _MU == 4, _MU_HI == 5.
// return 2;
// }
// R4 = args
__ ldr(R4, Address(SP, 2 * kWordSize)); // args
// R3 = rho = args[2..3]
__ ldr(R3,
FieldAddress(R4, TypedData::data_offset() + 2 * kBytesPerBigIntDigit));
// R2 = digits[i >> 1 .. (i >> 1) + 1]
// R0 = i as Smi, R1 = digits
__ ldp(R0, R1, Address(SP, 0 * kWordSize, Address::PairOffset));
__ add(R1, R1, Operand(R0, LSL, 1));
__ ldr(R2, FieldAddress(R1, TypedData::data_offset()));
// R0 = rho*d mod DIGIT_BASE
__ mul(R0, R2, R3); // R0 = low64(R2*R3).
// args[4 .. 5] = R0
__ str(R0,
FieldAddress(R4, TypedData::data_offset() + 4 * kBytesPerBigIntDigit));
__ LoadImmediate(R0, Smi::RawValue(2)); // Two digits processed.
__ ret();
}
// Check if the last argument is a double, jump to label 'is_smi' if smi
// (easy to convert to double), otherwise jump to label 'not_double_smi',
// Returns the last argument in R0.
static void TestLastArgumentIsDouble(Assembler* assembler,
Label* is_smi,
Label* not_double_smi) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ BranchIfSmi(R0, is_smi);
__ CompareClassId(R0, kDoubleCid);
__ b(not_double_smi, NE);
// Fall through with Double in R0.
}
// Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown
// type. Return true or false object in the register R0. Any NaN argument
// returns false. Any non-double arg1 causes control flow to fall through to the
// slow case (compiled method body).
static void CompareDoubles(Assembler* assembler, Condition true_condition) {
Label fall_through, is_smi, double_op, not_nan;
TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
// Both arguments are double, right operand is in R0.
__ LoadDFieldFromOffset(V1, R0, Double::value_offset());
__ Bind(&double_op);
__ ldr(R0, Address(SP, 1 * kWordSize)); // Left argument.
__ LoadDFieldFromOffset(V0, R0, Double::value_offset());
__ fcmpd(V0, V1);
__ LoadObject(R0, Bool::False());
// Return false if D0 or D1 was NaN before checking true condition.
__ b(&not_nan, VC);
__ ret();
__ Bind(&not_nan);
__ LoadObject(TMP, Bool::True());
__ csel(R0, TMP, R0, true_condition);
__ ret();
__ Bind(&is_smi); // Convert R0 to a double.
__ SmiUntag(R0);
__ scvtfdx(V1, R0);
__ b(&double_op); // Then do the comparison.
__ Bind(&fall_through);
}
void Intrinsifier::Double_greaterThan(Assembler* assembler) {
CompareDoubles(assembler, HI);
}
void Intrinsifier::Double_greaterEqualThan(Assembler* assembler) {
CompareDoubles(assembler, CS);
}
void Intrinsifier::Double_lessThan(Assembler* assembler) {
CompareDoubles(assembler, CC);
}
void Intrinsifier::Double_equal(Assembler* assembler) {
CompareDoubles(assembler, EQ);
}
void Intrinsifier::Double_lessEqualThan(Assembler* assembler) {
CompareDoubles(assembler, LS);
}
// Expects left argument to be double (receiver). Right argument is unknown.
// Both arguments are on stack.
static void DoubleArithmeticOperations(Assembler* assembler, Token::Kind kind) {
Label fall_through, is_smi, double_op;
TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
// Both arguments are double, right operand is in R0.
__ LoadDFieldFromOffset(V1, R0, Double::value_offset());
__ Bind(&double_op);
__ ldr(R0, Address(SP, 1 * kWordSize)); // Left argument.
__ LoadDFieldFromOffset(V0, R0, Double::value_offset());
switch (kind) {
case Token::kADD:
__ faddd(V0, V0, V1);
break;
case Token::kSUB:
__ fsubd(V0, V0, V1);
break;
case Token::kMUL:
__ fmuld(V0, V0, V1);
break;
case Token::kDIV:
__ fdivd(V0, V0, V1);
break;
default:
UNREACHABLE();
}
const Class& double_class =
Class::Handle(Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, R0, R1);
__ StoreDFieldToOffset(V0, R0, Double::value_offset());
__ ret();
__ Bind(&is_smi); // Convert R0 to a double.
__ SmiUntag(R0);
__ scvtfdx(V1, R0);
__ b(&double_op);
__ Bind(&fall_through);
}
void Intrinsifier::Double_add(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kADD);
}
void Intrinsifier::Double_mul(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kMUL);
}
void Intrinsifier::Double_sub(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kSUB);
}
void Intrinsifier::Double_div(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kDIV);
}
// Left is double, right is integer (Mint or Smi)
void Intrinsifier::Double_mulFromInteger(Assembler* assembler) {
Label fall_through;
// Only smis allowed.
__ ldr(R0, Address(SP, 0 * kWordSize));
__ BranchIfNotSmi(R0, &fall_through);
// Is Smi.
__ SmiUntag(R0);
__ scvtfdx(V1, R0);
__ ldr(R0, Address(SP, 1 * kWordSize));
__ LoadDFieldFromOffset(V0, R0, Double::value_offset());
__ fmuld(V0, V0, V1);
const Class& double_class =
Class::Handle(Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, R0, R1);
__ StoreDFieldToOffset(V0, R0, Double::value_offset());
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::DoubleFromInteger(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ BranchIfNotSmi(R0, &fall_through);
// Is Smi.
__ SmiUntag(R0);
__ scvtfdx(V0, R0);
const Class& double_class =
Class::Handle(Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, R0, R1);
__ StoreDFieldToOffset(V0, R0, Double::value_offset());
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Double_getIsNaN(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ LoadDFieldFromOffset(V0, R0, Double::value_offset());
__ fcmpd(V0, V0);
__ LoadObject(TMP, Bool::False());
__ LoadObject(R0, Bool::True());
__ csel(R0, TMP, R0, VC);
__ ret();
}
void Intrinsifier::Double_getIsInfinite(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ LoadFieldFromOffset(R0, R0, Double::value_offset());
// Mask off the sign.
__ AndImmediate(R0, R0, 0x7FFFFFFFFFFFFFFFLL);
// Compare with +infinity.
__ CompareImmediate(R0, 0x7FF0000000000000LL);
__ LoadObject(R0, Bool::False());
__ LoadObject(TMP, Bool::True());
__ csel(R0, TMP, R0, EQ);
__ ret();
}
void Intrinsifier::Double_getIsNegative(Assembler* assembler) {
const Register false_reg = R0;
const Register true_reg = R2;
Label is_false, is_true, is_zero;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ LoadDFieldFromOffset(V0, R0, Double::value_offset());
__ fcmpdz(V0);
__ LoadObject(true_reg, Bool::True());
__ LoadObject(false_reg, Bool::False());
__ b(&is_false, VS); // NaN -> false.
__ b(&is_zero, EQ); // Check for negative zero.
__ b(&is_false, CS); // >= 0 -> false.
__ Bind(&is_true);
__ mov(R0, true_reg);
__ Bind(&is_false);
__ ret();
__ Bind(&is_zero);
// Check for negative zero by looking at the sign bit.
__ fmovrd(R1, V0);
__ LsrImmediate(R1, R1, 63);
__ tsti(R1, Immediate(1));
__ csel(R0, true_reg, false_reg, NE); // Sign bit set.
__ ret();
}
void Intrinsifier::DoubleToInteger(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ LoadDFieldFromOffset(V0, R0, Double::value_offset());
// Explicit NaN check, since ARM gives an FPU exception if you try to
// convert NaN to an int.
__ fcmpd(V0, V0);
__ b(&fall_through, VS);
__ fcvtzds(R0, V0);
// Overflow is signaled with minint.
// Check for overflow and that it fits into Smi.
__ CompareImmediate(R0, 0xC000000000000000);
__ b(&fall_through, MI);
__ SmiTag(R0);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Double_hashCode(Assembler* assembler) {
// TODO(dartbug.com/31174): Convert this to a graph intrinsic.
// Load double value and check that it isn't NaN, since ARM gives an
// FPU exception if you try to convert NaN to an int.
Label double_hash;
__ ldr(R1, Address(SP, 0 * kWordSize));
__ LoadDFieldFromOffset(V0, R1, Double::value_offset());
__ fcmpd(V0, V0);
__ b(&double_hash, VS);
// Convert double value to signed 64-bit int in R0 and back to a
// double value in V1.
__ fcvtzds(R0, V0);
__ scvtfdx(V1, R0);
// Tag the int as a Smi, making sure that it fits; this checks for
// overflow in the conversion from double to int. Conversion
// overflow is signalled by fcvt through clamping R0 to either
// INT64_MAX or INT64_MIN (saturation).
Label fall_through;
ASSERT(kSmiTag == 0 && kSmiTagShift == 1);
__ adds(R0, R0, Operand(R0));
__ b(&fall_through, VS);
// Compare the two double values. If they are equal, we return the
// Smi tagged result immediately as the hash code.
__ fcmpd(V0, V1);
__ b(&double_hash, NE);
__ ret();
// Convert the double bits to a hash code that fits in a Smi.
__ Bind(&double_hash);
__ fmovrd(R0, V0);
__ eor(R0, R0, Operand(R0, LSR, 32));
__ AndImmediate(R0, R0, kSmiMax);
__ SmiTag(R0);
__ ret();
// Fall into the native C++ implementation.
__ Bind(&fall_through);
}
void Intrinsifier::MathSqrt(Assembler* assembler) {
Label fall_through, is_smi, double_op;
TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
// Argument is double and is in R0.
__ LoadDFieldFromOffset(V1, R0, Double::value_offset());
__ Bind(&double_op);
__ fsqrtd(V0, V1);
const Class& double_class =
Class::Handle(Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, R0, R1);
__ StoreDFieldToOffset(V0, R0, Double::value_offset());
__ ret();
__ Bind(&is_smi);
__ SmiUntag(R0);
__ scvtfdx(V1, R0);
__ b(&double_op);
__ Bind(&fall_through);
}
// var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64;
// _state[kSTATE_LO] = state & _MASK_32;
// _state[kSTATE_HI] = state >> 32;
void Intrinsifier::Random_nextState(Assembler* assembler) {
const Library& math_lib = Library::Handle(Library::MathLibrary());
ASSERT(!math_lib.IsNull());
const Class& random_class =
Class::Handle(math_lib.LookupClassAllowPrivate(Symbols::_Random()));
ASSERT(!random_class.IsNull());
const Field& state_field = Field::ZoneHandle(
random_class.LookupInstanceFieldAllowPrivate(Symbols::_state()));
ASSERT(!state_field.IsNull());
const int64_t a_int_value = Intrinsifier::kRandomAValue;
// Receiver.
__ ldr(R0, Address(SP, 0 * kWordSize));
// Field '_state'.
__ ldr(R1, FieldAddress(R0, state_field.Offset()));
// Addresses of _state[0].
const int64_t disp =
Instance::DataOffsetFor(kTypedDataUint32ArrayCid) - kHeapObjectTag;
__ LoadImmediate(R0, a_int_value);
__ LoadFromOffset(R2, R1, disp);
__ LsrImmediate(R3, R2, 32);
__ andi(R2, R2, Immediate(0xffffffff));
__ mul(R2, R0, R2);
__ add(R2, R2, Operand(R3));
__ StoreToOffset(R2, R1, disp);
ASSERT(Smi::RawValue(0) == 0);
__ eor(R0, R0, Operand(R0));
__ ret();
}
void Intrinsifier::ObjectEquals(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R1, Address(SP, 1 * kWordSize));
__ cmp(R0, Operand(R1));
__ LoadObject(R0, Bool::False());
__ LoadObject(TMP, Bool::True());
__ csel(R0, TMP, R0, EQ);
__ ret();
}
static void RangeCheck(Assembler* assembler,
Register val,
Register tmp,
intptr_t low,
intptr_t high,
Condition cc,
Label* target) {
__ AddImmediate(tmp, val, -low);
__ CompareImmediate(tmp, high - low);
__ b(target, cc);
}
const Condition kIfNotInRange = HI;
const Condition kIfInRange = LS;
static void JumpIfInteger(Assembler* assembler,
Register cid,
Register tmp,
Label* target) {
RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfInRange, target);
}
static void JumpIfNotInteger(Assembler* assembler,
Register cid,
Register tmp,
Label* target) {
RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfNotInRange, target);
}
static void JumpIfString(Assembler* assembler,
Register cid,
Register tmp,
Label* target) {
RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid,
kIfInRange, target);
}
static void JumpIfNotString(Assembler* assembler,
Register cid,
Register tmp,
Label* target) {
RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid,
kIfNotInRange, target);
}
// Return type quickly for simple types (not parameterized and not signature).
void Intrinsifier::ObjectRuntimeType(Assembler* assembler) {
Label fall_through, use_canonical_type, not_double, not_integer;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ LoadClassIdMayBeSmi(R1, R0);
__ CompareImmediate(R1, kClosureCid);
__ b(&fall_through, EQ); // Instance is a closure.
__ CompareImmediate(R1, kNumPredefinedCids);
__ b(&use_canonical_type, HI);
__ CompareImmediate(R1, kDoubleCid);
__ b(&not_double, NE);
__ LoadIsolate(R0);
__ LoadFromOffset(R0, R0, Isolate::object_store_offset());
__ LoadFromOffset(R0, R0, ObjectStore::double_type_offset());
__ ret();
__ Bind(&not_double);
JumpIfNotInteger(assembler, R1, R0, &not_integer);
__ LoadIsolate(R0);
__ LoadFromOffset(R0, R0, Isolate::object_store_offset());
__ LoadFromOffset(R0, R0, ObjectStore::int_type_offset());
__ ret();
__ Bind(&not_integer);
JumpIfNotString(assembler, R1, R0, &use_canonical_type);
__ LoadIsolate(R0);
__ LoadFromOffset(R0, R0, Isolate::object_store_offset());
__ LoadFromOffset(R0, R0, ObjectStore::string_type_offset());
__ ret();
__ Bind(&use_canonical_type);
__ LoadClassById(R2, R1); // Overwrites R1.
__ ldr(R3, FieldAddress(R2, Class::num_type_arguments_offset()), kHalfword);
__ CompareImmediate(R3, 0);
__ b(&fall_through, NE);
__ ldr(R0, FieldAddress(R2, Class::canonical_type_offset()));
__ CompareObject(R0, Object::null_object());
__ b(&fall_through, EQ);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler) {
Label fall_through, different_cids, equal, not_equal, not_integer;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ LoadClassIdMayBeSmi(R1, R0);
// Check if left hand size is a closure. Closures are handled in the runtime.
__ CompareImmediate(R1, kClosureCid);
__ b(&fall_through, EQ);
__ ldr(R0, Address(SP, 1 * kWordSize));
__ LoadClassIdMayBeSmi(R2, R0);
// Check whether class ids match. If class ids don't match objects can still
// have the same runtime type (e.g. multiple string implementation classes
// map to a single String type).
__ cmp(R1, Operand(R2));
__ b(&different_cids, NE);
// Objects have the same class and neither is a closure.
// Check if there are no type arguments. In this case we can return true.
// Otherwise fall through into the runtime to handle comparison.
__ LoadClassById(R3, R1); // Overwrites R1.
__ ldr(R3, FieldAddress(R3, Class::num_type_arguments_offset()), kHalfword);
__ CompareImmediate(R3, 0);
__ b(&fall_through, NE);
__ Bind(&equal);
__ LoadObject(R0, Bool::True());
__ ret();
// Class ids are different. Check if we are comparing runtime types of
// two strings (with different representations) or two integers.
__ Bind(&different_cids);
__ CompareImmediate(R1, kNumPredefinedCids);
__ b(&not_equal, HI);
// Check if both are integers.
JumpIfNotInteger(assembler, R1, R0, &not_integer);
JumpIfInteger(assembler, R2, R0, &equal);
__ b(&not_equal);
__ Bind(&not_integer);
// Check if both are strings.
JumpIfNotString(assembler, R1, R0, &not_equal);
JumpIfString(assembler, R2, R0, &equal);
// Neither strings nor integers and have different class ids.
__ Bind(&not_equal);
__ LoadObject(R0, Bool::False());
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::String_getHashCode(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R0, String::hash_offset()), kUnsignedWord);
__ adds(R0, R0, Operand(R0)); // Smi tag the hash code, setting Z flag.
__ b(&fall_through, EQ);
__ ret();
// Hash not yet computed.
__ Bind(&fall_through);
}
void Intrinsifier::Type_getHashCode(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R0, Type::hash_offset()));
__ cbz(&fall_through, R0);
__ ret();
// Hash not yet computed.
__ Bind(&fall_through);
}
void Intrinsifier::Object_getHash(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R0, String::hash_offset()), kUnsignedWord);
__ SmiTag(R0);
__ ret();
}
void Intrinsifier::Object_setHash(Assembler* assembler) {
__ ldr(R0, Address(SP, 1 * kWordSize)); // Object.
__ ldr(R1, Address(SP, 0 * kWordSize)); // Value.
__ SmiUntag(R1);
__ str(R1, FieldAddress(R0, String::hash_offset()), kUnsignedWord);
__ ret();
}
void GenerateSubstringMatchesSpecialization(Assembler* assembler,
intptr_t receiver_cid,
intptr_t other_cid,
Label* return_true,
Label* return_false) {
__ SmiUntag(R1);
__ ldr(R8, FieldAddress(R0, String::length_offset())); // this.length
__ SmiUntag(R8);
__ ldr(R9, FieldAddress(R2, String::length_offset())); // other.length
__ SmiUntag(R9);
// if (other.length == 0) return true;
__ cmp(R9, Operand(0));
__ b(return_true, EQ);
// if (start < 0) return false;
__ cmp(R1, Operand(0));
__ b(return_false, LT);
// if (start + other.length > this.length) return false;
__ add(R3, R1, Operand(R9));
__ cmp(R3, Operand(R8));
__ b(return_false, GT);
if (receiver_cid == kOneByteStringCid) {
__ AddImmediate(R0, OneByteString::data_offset() - kHeapObjectTag);
__ add(R0, R0, Operand(R1));
} else {
ASSERT(receiver_cid == kTwoByteStringCid);
__ AddImmediate(R0, TwoByteString::data_offset() - kHeapObjectTag);
__ add(R0, R0, Operand(R1));
__ add(R0, R0, Operand(R1));
}
if (other_cid == kOneByteStringCid) {
__ AddImmediate(R2, OneByteString::data_offset() - kHeapObjectTag);
} else {
ASSERT(other_cid == kTwoByteStringCid);
__ AddImmediate(R2, TwoByteString::data_offset() - kHeapObjectTag);
}
// i = 0
__ LoadImmediate(R3, 0);
// do
Label loop;
__ Bind(&loop);
// this.codeUnitAt(i + start)
__ ldr(R10, Address(R0, 0),
receiver_cid == kOneByteStringCid ? kUnsignedByte : kUnsignedHalfword);
// other.codeUnitAt(i)
__ ldr(R11, Address(R2, 0),
other_cid == kOneByteStringCid ? kUnsignedByte : kUnsignedHalfword);
__ cmp(R10, Operand(R11));
__ b(return_false, NE);
// i++, while (i < len)
__ add(R3, R3, Operand(1));
__ add(R0, R0, Operand(receiver_cid == kOneByteStringCid ? 1 : 2));
__ add(R2, R2, Operand(other_cid == kOneByteStringCid ? 1 : 2));
__ cmp(R3, Operand(R9));
__ b(&loop, LT);
__ b(return_true);
}
// bool _substringMatches(int start, String other)
// This intrinsic handles a OneByteString or TwoByteString receiver with a
// OneByteString other.
void Intrinsifier::StringBaseSubstringMatches(Assembler* assembler) {
Label fall_through, return_true, return_false, try_two_byte;
__ ldr(R0, Address(SP, 2 * kWordSize)); // this
__ ldr(R1, Address(SP, 1 * kWordSize)); // start
__ ldr(R2, Address(SP, 0 * kWordSize)); // other
__ BranchIfNotSmi(R1, &fall_through);
__ CompareClassId(R2, kOneByteStringCid);
__ b(&fall_through, NE);
__ CompareClassId(R0, kOneByteStringCid);
__ b(&fall_through, NE);
GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid,
kOneByteStringCid, &return_true,
&return_false);
__ Bind(&try_two_byte);
__ CompareClassId(R0, kTwoByteStringCid);
__ b(&fall_through, NE);
GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid,
kOneByteStringCid, &return_true,
&return_false);
__ Bind(&return_true);
__ LoadObject(R0, Bool::True());
__ ret();
__ Bind(&return_false);
__ LoadObject(R0, Bool::False());
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::StringBaseCharAt(Assembler* assembler) {
Label fall_through, try_two_byte_string;
__ ldr(R1, Address(SP, 0 * kWordSize)); // Index.
__ ldr(R0, Address(SP, 1 * kWordSize)); // String.
__ BranchIfNotSmi(R1, &fall_through); // Index is not a Smi.
// Range check.
__ ldr(R2, FieldAddress(R0, String::length_offset()));
__ cmp(R1, Operand(R2));
__ b(&fall_through, CS); // Runtime throws exception.
__ CompareClassId(R0, kOneByteStringCid);
__ b(&try_two_byte_string, NE);
__ SmiUntag(R1);
__ AddImmediate(R0, OneByteString::data_offset() - kHeapObjectTag);
__ ldr(R1, Address(R0, R1), kUnsignedByte);
__ CompareImmediate(R1, Symbols::kNumberOfOneCharCodeSymbols);
__ b(&fall_through, GE);
__ ldr(R0, Address(THR, Thread::predefined_symbols_address_offset()));
__ AddImmediate(R0, Symbols::kNullCharCodeSymbolOffset * kWordSize);
__ ldr(R0, Address(R0, R1, UXTX, Address::Scaled));
__ ret();
__ Bind(&try_two_byte_string);
__ CompareClassId(R0, kTwoByteStringCid);
__ b(&fall_through, NE);
ASSERT(kSmiTagShift == 1);
__ AddImmediate(R0, TwoByteString::data_offset() - kHeapObjectTag);
__ ldr(R1, Address(R0, R1), kUnsignedHalfword);
__ CompareImmediate(R1, Symbols::kNumberOfOneCharCodeSymbols);
__ b(&fall_through, GE);
__ ldr(R0, Address(THR, Thread::predefined_symbols_address_offset()));
__ AddImmediate(R0, Symbols::kNullCharCodeSymbolOffset * kWordSize);
__ ldr(R0, Address(R0, R1, UXTX, Address::Scaled));
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::StringBaseIsEmpty(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R0, String::length_offset()));
__ cmp(R0, Operand(Smi::RawValue(0)));
__ LoadObject(R0, Bool::True());
__ LoadObject(TMP, Bool::False());
__ csel(R0, TMP, R0, NE);
__ ret();
}
void Intrinsifier::OneByteString_getHashCode(Assembler* assembler) {
Label compute_hash;
__ ldr(R1, Address(SP, 0 * kWordSize)); // OneByteString object.
__ ldr(R0, FieldAddress(R1, String::hash_offset()), kUnsignedWord);
__ adds(R0, R0, Operand(R0)); // Smi tag the hash code, setting Z flag.
__ b(&compute_hash, EQ);
__ ret(); // Return if already computed.
__ Bind(&compute_hash);
__ ldr(R2, FieldAddress(R1, String::length_offset()));
__ SmiUntag(R2);
Label done;
// If the string is empty, set the hash to 1, and return.
__ CompareRegisters(R2, ZR);
__ b(&done, EQ);
__ mov(R3, ZR);
__ AddImmediate(R6, R1, OneByteString::data_offset() - kHeapObjectTag);
// R1: Instance of OneByteString.
// R2: String length, untagged integer.
// R3: Loop counter, untagged integer.
// R6: String data.
// R0: Hash code, untagged integer.
Label loop;
// Add to hash code: (hash_ is uint32)
// hash_ += ch;
// hash_ += hash_ << 10;
// hash_ ^= hash_ >> 6;
// Get one characters (ch).
__ Bind(&loop);
__ ldr(R7, Address(R6, R3), kUnsignedByte);
// R7: ch.
__ add(R3, R3, Operand(1));
__ addw(R0, R0, Operand(R7));
__ addw(R0, R0, Operand(R0, LSL, 10));
__ eorw(R0, R0, Operand(R0, LSR, 6));
__ cmp(R3, Operand(R2));
__ b(&loop, NE);
// Finalize.
// hash_ += hash_ << 3;
// hash_ ^= hash_ >> 11;
// hash_ += hash_ << 15;
__ addw(R0, R0, Operand(R0, LSL, 3));
__ eorw(R0, R0, Operand(R0, LSR, 11));
__ addw(R0, R0, Operand(R0, LSL, 15));
// hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1);
__ AndImmediate(R0, R0, (static_cast<intptr_t>(1) << String::kHashBits) - 1);
__ CompareRegisters(R0, ZR);
// return hash_ == 0 ? 1 : hash_;
__ Bind(&done);
__ csinc(R0, R0, ZR, NE); // R0 <- (R0 != 0) ? R0 : (ZR + 1).
__ str(R0, FieldAddress(R1, String::hash_offset()), kUnsignedWord);
__ SmiTag(R0);
__ ret();
}
// Allocates one-byte string of length 'end - start'. The content is not
// initialized.
// 'length-reg' (R2) contains tagged length.
// Returns new string as tagged pointer in R0.
static void TryAllocateOnebyteString(Assembler* assembler,
Label* ok,
Label* failure) {
const Register length_reg = R2;
Label fail;
NOT_IN_PRODUCT(__ MaybeTraceAllocation(kOneByteStringCid, R0, failure));
__ mov(R6, length_reg); // Save the length register.
// TODO(koda): Protect against negative length and overflow here.
__ adds(length_reg, ZR, Operand(length_reg, ASR, kSmiTagSize)); // Smi untag.
// If the length is 0 then we have to make the allocated size a bit bigger,
// otherwise the string takes up less space than an ExternalOneByteString,
// and cannot be externalized. TODO(erikcorry): We should probably just
// return a static zero length string here instead.
// length <- (length != 0) ? length : (ZR + 1).
__ csinc(length_reg, length_reg, ZR, NE);
const intptr_t fixed_size_plus_alignment_padding =
sizeof(RawString) + kObjectAlignment - 1;
__ AddImmediate(length_reg, fixed_size_plus_alignment_padding);
__ andi(length_reg, length_reg, Immediate(~(kObjectAlignment - 1)));
const intptr_t cid = kOneByteStringCid;
NOT_IN_PRODUCT(Heap::Space space = Heap::kNew);
__ ldr(R0, Address(THR, Thread::top_offset()));
// length_reg: allocation size.
__ adds(R1, R0, Operand(length_reg));
__ b(&fail, CS); // Fail on unsigned overflow.
// Check if the allocation fits into the remaining space.
// R0: potential new object start.
// R1: potential next object start.
// R2: allocation size.
__ ldr(R7, Address(THR, Thread::end_offset()));
__ cmp(R1, Operand(R7));
__ b(&fail, CS);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ str(R1, Address(THR, Thread::top_offset()));
__ AddImmediate(R0, kHeapObjectTag);
NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, R2, space));
// Initialize the tags.
// R0: new object start as a tagged pointer.
// R1: new object end address.
// R2: allocation size.
{
const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2;
__ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag);
__ LslImmediate(R2, R2, shift);
__ csel(R2, R2, ZR, LS);
// Get the class index and insert it into the tags.
// R2: size and bit tags.
// This also clears the hash, which is in the high word of the tags.
__ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid));
__ orr(R2, R2, Operand(TMP));
__ str(R2, FieldAddress(R0, String::tags_offset())); // Store tags.
}
// Set the length field using the saved length (R6).
__ StoreIntoObjectNoBarrier(R0, FieldAddress(R0, String::length_offset()),
R6);
__ b(ok);
__ Bind(&fail);
__ b(failure);
}
// Arg0: OneByteString (receiver).
// Arg1: Start index as Smi.
// Arg2: End index as Smi.
// The indexes must be valid.
void Intrinsifier::OneByteString_substringUnchecked(Assembler* assembler) {
const intptr_t kStringOffset = 2 * kWordSize;
const intptr_t kStartIndexOffset = 1 * kWordSize;
const intptr_t kEndIndexOffset = 0 * kWordSize;
Label fall_through, ok;
__ ldr(R2, Address(SP, kEndIndexOffset));
__ ldr(TMP, Address(SP, kStartIndexOffset));
__ orr(R3, R2, Operand(TMP));
__ BranchIfNotSmi(R3, &fall_through); // 'start', 'end' not Smi.
__ sub(R2, R2, Operand(TMP));
TryAllocateOnebyteString(assembler, &ok, &fall_through);
__ Bind(&ok);
// R0: new string as tagged pointer.
// Copy string.
__ ldr(R3, Address(SP, kStringOffset));
__ ldr(R1, Address(SP, kStartIndexOffset));
__ SmiUntag(R1);
__ add(R3, R3, Operand(R1));
// Calculate start address and untag (- 1).
__ AddImmediate(R3, OneByteString::data_offset() - 1);
// R3: Start address to copy from (untagged).
// R1: Untagged start index.
__ ldr(R2, Address(SP, kEndIndexOffset));
__ SmiUntag(R2);
__ sub(R2, R2, Operand(R1));
// R3: Start address to copy from (untagged).
// R2: Untagged number of bytes to copy.
// R0: Tagged result string.
// R6: Pointer into R3.
// R7: Pointer into R0.
// R1: Scratch register.
Label loop, done;
__ cmp(R2, Operand(0));
__ b(&done, LE);
__ mov(R6, R3);
__ mov(R7, R0);
__ Bind(&loop);
__ ldr(R1, Address(R6), kUnsignedByte);
__ AddImmediate(R6, 1);
__ sub(R2, R2, Operand(1));
__ cmp(R2, Operand(0));
__ str(R1, FieldAddress(R7, OneByteString::data_offset()), kUnsignedByte);
__ AddImmediate(R7, 1);
__ b(&loop, GT);
__ Bind(&done);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::OneByteStringSetAt(Assembler* assembler) {
__ ldr(R2, Address(SP, 0 * kWordSize)); // Value.
__ ldr(R1, Address(SP, 1 * kWordSize)); // Index.
__ ldr(R0, Address(SP, 2 * kWordSize)); // OneByteString.
__ SmiUntag(R1);
__ SmiUntag(R2);
__ AddImmediate(R3, R0, OneByteString::data_offset() - kHeapObjectTag);
__ str(R2, Address(R3, R1), kUnsignedByte);
__ ret();
}
void Intrinsifier::OneByteString_allocate(Assembler* assembler) {
Label fall_through, ok;
__ ldr(R2, Address(SP, 0 * kWordSize)); // Length.
TryAllocateOnebyteString(assembler, &ok, &fall_through);
__ Bind(&ok);
__ ret();
__ Bind(&fall_through);
}
// TODO(srdjan): Add combinations (one-byte/two-byte/external strings).
static void StringEquality(Assembler* assembler, intptr_t string_cid) {
Label fall_through, is_true, is_false, loop;
__ ldr(R0, Address(SP, 1 * kWordSize)); // This.
__ ldr(R1, Address(SP, 0 * kWordSize)); // Other.
// Are identical?
__ cmp(R0, Operand(R1));
__ b(&is_true, EQ);
// Is other OneByteString?
__ BranchIfSmi(R1, &fall_through);
__ CompareClassId(R1, string_cid);
__ b(&fall_through, NE);
// Have same length?
__ ldr(R2, FieldAddress(R0, String::length_offset()));
__ ldr(R3, FieldAddress(R1, String::length_offset()));
__ cmp(R2, Operand(R3));
__ b(&is_false, NE);
// Check contents, no fall-through possible.
// TODO(zra): try out other sequences.
ASSERT((string_cid == kOneByteStringCid) ||
(string_cid == kTwoByteStringCid));
const intptr_t offset = (string_cid == kOneByteStringCid)
? OneByteString::data_offset()
: TwoByteString::data_offset();
__ AddImmediate(R0, offset - kHeapObjectTag);
__ AddImmediate(R1, offset - kHeapObjectTag);
__ SmiUntag(R2);
__ Bind(&loop);
__ AddImmediate(R2, -1);
__ CompareRegisters(R2, ZR);
__ b(&is_true, LT);
if (string_cid == kOneByteStringCid) {
__ ldr(R3, Address(R0), kUnsignedByte);
__ ldr(R4, Address(R1), kUnsignedByte);
__ AddImmediate(R0, 1);
__ AddImmediate(R1, 1);
} else if (string_cid == kTwoByteStringCid) {
__ ldr(R3, Address(R0), kUnsignedHalfword);
__ ldr(R4, Address(R1), kUnsignedHalfword);
__ AddImmediate(R0, 2);
__ AddImmediate(R1, 2);
} else {
UNIMPLEMENTED();
}
__ cmp(R3, Operand(R4));
__ b(&is_false, NE);
__ b(&loop);
__ Bind(&is_true);
__ LoadObject(R0, Bool::True());
__ ret();
__ Bind(&is_false);
__ LoadObject(R0, Bool::False());
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::OneByteString_equality(Assembler* assembler) {
StringEquality(assembler, kOneByteStringCid);
}
void Intrinsifier::TwoByteString_equality(Assembler* assembler) {
StringEquality(assembler, kTwoByteStringCid);
}
void Intrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler,
bool sticky) {
if (FLAG_interpret_irregexp) return;
static const intptr_t kRegExpParamOffset = 2 * kWordSize;
static const intptr_t kStringParamOffset = 1 * kWordSize;
// start_index smi is located at offset 0.
// Incoming registers:
// R0: Function. (Will be reloaded with the specialized matcher function.)
// R4: Arguments descriptor. (Will be preserved.)
// R5: Unknown. (Must be GC safe on tail call.)
// Load the specialized function pointer into R0. Leverage the fact the
// string CIDs as well as stored function pointers are in sequence.
__ ldr(R2, Address(SP, kRegExpParamOffset));
__ ldr(R1, Address(SP, kStringParamOffset));
__ LoadClassId(R1, R1);
__ AddImmediate(R1, -kOneByteStringCid);
__ add(R1, R2, Operand(R1, LSL, kWordSizeLog2));
__ ldr(R0,
FieldAddress(R1, RegExp::function_offset(kOneByteStringCid, sticky)));
// Registers are now set up for the lazy compile stub. It expects the function
// in R0, the argument descriptor in R4, and IC-Data in R5.
__ eor(R5, R5, Operand(R5));
// Tail-call the function.
__ ldr(CODE_REG, FieldAddress(R0, Function::code_offset()));
__ ldr(R1, FieldAddress(R0, Function::entry_point_offset()));
__ br(R1);
}
// On stack: user tag (+0).
void Intrinsifier::UserTag_makeCurrent(Assembler* assembler) {
// R1: Isolate.
__ LoadIsolate(R1);
// R0: Current user tag.
__ ldr(R0, Address(R1, Isolate::current_tag_offset()));
// R2: UserTag.
__ ldr(R2, Address(SP, +0 * kWordSize));
// Set Isolate::current_tag_.
__ str(R2, Address(R1, Isolate::current_tag_offset()));
// R2: UserTag's tag.
__ ldr(R2, FieldAddress(R2, UserTag::tag_offset()));
// Set Isolate::user_tag_.
__ str(R2, Address(R1, Isolate::user_tag_offset()));
__ ret();
}
void Intrinsifier::UserTag_defaultTag(Assembler* assembler) {
__ LoadIsolate(R0);
__ ldr(R0, Address(R0, Isolate::default_tag_offset()));
__ ret();
}
void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) {
__ LoadIsolate(R0);
__ ldr(R0, Address(R0, Isolate::current_tag_offset()));
__ ret();
}
void Intrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler) {
if (!FLAG_support_timeline) {
__ LoadObject(R0, Bool::False());
__ ret();
return;
}
// Load TimelineStream*.
__ ldr(R0, Address(THR, Thread::dart_stream_offset()));
// Load uintptr_t from TimelineStream*.
__ ldr(R0, Address(R0, TimelineStream::enabled_offset()));
__ cmp(R0, Operand(0));
__ LoadObject(R0, Bool::False());
__ LoadObject(TMP, Bool::True());
__ csel(R0, TMP, R0, NE);
__ ret();
}
void Intrinsifier::ClearAsyncThreadStackTrace(Assembler* assembler) {
__ LoadObject(R0, Object::null_object());
__ str(R0, Address(THR, Thread::async_stack_trace_offset()));
__ ret();
}
void Intrinsifier::SetAsyncThreadStackTrace(Assembler* assembler) {
__ ldr(R0, Address(THR, Thread::async_stack_trace_offset()));
__ LoadObject(R0, Object::null_object());
__ ret();
}
} // namespace dart
#endif // defined(TARGET_ARCH_ARM64) && !defined(DART_PRECOMPILED_RUNTIME)