blob: c4192965c8479e36c87b8f44d56b95492261faeb [file] [log] [blame]
// Copyright (c) 2018, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/compiler/assembler/disassembler_kbc.h"
#include "platform/assert.h"
#include "vm/compiler/frontend/bytecode_reader.h"
#include "vm/constants_kbc.h"
#include "vm/cpu.h"
#include "vm/instructions.h"
namespace dart {
static const char* kOpcodeNames[] = {
#define BYTECODE_NAME(name, encoding, kind, op1, op2, op3) #name,
KERNEL_BYTECODES_LIST(BYTECODE_NAME)
#undef BYTECODE_NAME
};
static const size_t kOpcodeCount =
sizeof(kOpcodeNames) / sizeof(kOpcodeNames[0]);
static_assert(kOpcodeCount <= 256, "Opcode should fit into a byte");
typedef void (*BytecodeFormatter)(char* buffer,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr);
typedef void (*Fmt)(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value);
template <typename ValueType>
void FormatOperand(char** buf,
intptr_t* size,
const char* fmt,
ValueType value) {
intptr_t written = Utils::SNPrint(*buf, *size, fmt, value);
if (written < *size) {
*buf += written;
*size += written;
} else {
*size = -1;
}
}
static void Fmt___(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value) {}
static void Fmttgt(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value) {
FormatOperand(buf, size, "-> %" Px, instr + value);
}
static void Fmtlit(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value) {
FormatOperand(buf, size, "k%d", value);
}
static void Fmtreg(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value) {
FormatOperand(buf, size, "r%d", value);
}
static void Fmtxeg(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value) {
if (value < 0) {
FormatOperand(buf, size, "FP[%d]", value);
} else {
Fmtreg(buf, size, instr, value);
}
}
static void Fmtnum(char** buf,
intptr_t* size,
const KBCInstr* instr,
int32_t value) {
FormatOperand(buf, size, "#%d", value);
}
static void Apply(char** buf,
intptr_t* size,
const KBCInstr* instr,
Fmt fmt,
int32_t value,
const char* suffix) {
if (*size <= 0) {
return;
}
fmt(buf, size, instr, value);
if (*size > 0) {
FormatOperand(buf, size, "%s", suffix);
}
}
static void Format0(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {}
static void FormatA(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t a = KernelBytecode::DecodeA(instr);
Apply(&buf, &size, instr, op1, a, "");
}
static void FormatD(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t bc = KernelBytecode::DecodeD(instr);
Apply(&buf, &size, instr, op1, bc, "");
}
static void FormatX(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t bc = KernelBytecode::DecodeX(instr);
Apply(&buf, &size, instr, op1, bc, "");
}
static void FormatT(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t x = KernelBytecode::DecodeT(instr);
Apply(&buf, &size, instr, op1, x, "");
}
static void FormatA_E(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t a = KernelBytecode::DecodeA(instr);
const int32_t e = KernelBytecode::DecodeE(instr);
Apply(&buf, &size, instr, op1, a, ", ");
Apply(&buf, &size, instr, op2, e, "");
}
static void FormatA_Y(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t a = KernelBytecode::DecodeA(instr);
const int32_t y = KernelBytecode::DecodeY(instr);
Apply(&buf, &size, instr, op1, a, ", ");
Apply(&buf, &size, instr, op2, y, "");
}
static void FormatD_F(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t d = KernelBytecode::DecodeD(instr);
const int32_t f = KernelBytecode::DecodeF(instr);
Apply(&buf, &size, instr, op1, d, ", ");
Apply(&buf, &size, instr, op2, f, "");
}
static void FormatA_B_C(char* buf,
intptr_t size,
KernelBytecode::Opcode opcode,
const KBCInstr* instr,
Fmt op1,
Fmt op2,
Fmt op3) {
const int32_t a = KernelBytecode::DecodeA(instr);
const int32_t b = KernelBytecode::DecodeB(instr);
const int32_t c = KernelBytecode::DecodeC(instr);
Apply(&buf, &size, instr, op1, a, ", ");
Apply(&buf, &size, instr, op2, b, ", ");
Apply(&buf, &size, instr, op3, c, "");
}
#define BYTECODE_FORMATTER(name, encoding, kind, op1, op2, op3) \
static void Format##name(char* buf, intptr_t size, \
KernelBytecode::Opcode opcode, \
const KBCInstr* instr) { \
Format##encoding(buf, size, opcode, instr, Fmt##op1, Fmt##op2, Fmt##op3); \
}
KERNEL_BYTECODES_LIST(BYTECODE_FORMATTER)
#undef BYTECODE_FORMATTER
static const BytecodeFormatter kFormatters[] = {
#define BYTECODE_FORMATTER(name, encoding, kind, op1, op2, op3) &Format##name,
KERNEL_BYTECODES_LIST(BYTECODE_FORMATTER)
#undef BYTECODE_FORMATTER
};
static intptr_t GetConstantPoolIndex(const KBCInstr* instr) {
switch (KernelBytecode::DecodeOpcode(instr)) {
case KernelBytecode::kLoadConstant:
case KernelBytecode::kLoadConstant_Wide:
case KernelBytecode::kInstantiateTypeArgumentsTOS:
case KernelBytecode::kInstantiateTypeArgumentsTOS_Wide:
case KernelBytecode::kAssertAssignable:
case KernelBytecode::kAssertAssignable_Wide:
return KernelBytecode::DecodeE(instr);
case KernelBytecode::kPushConstant:
case KernelBytecode::kPushConstant_Wide:
case KernelBytecode::kStoreStaticTOS:
case KernelBytecode::kStoreStaticTOS_Wide:
case KernelBytecode::kPushStatic:
case KernelBytecode::kPushStatic_Wide:
case KernelBytecode::kAllocate:
case KernelBytecode::kAllocate_Wide:
case KernelBytecode::kAllocateClosure:
case KernelBytecode::kAllocateClosure_Wide:
case KernelBytecode::kInstantiateType:
case KernelBytecode::kInstantiateType_Wide:
case KernelBytecode::kDirectCall:
case KernelBytecode::kDirectCall_Wide:
case KernelBytecode::kInterfaceCall:
case KernelBytecode::kInterfaceCall_Wide:
case KernelBytecode::kUncheckedInterfaceCall:
case KernelBytecode::kUncheckedInterfaceCall_Wide:
case KernelBytecode::kDynamicCall:
case KernelBytecode::kDynamicCall_Wide:
return KernelBytecode::DecodeD(instr);
default:
return -1;
}
}
static bool GetLoadedObjectAt(uword pc,
const ObjectPool& object_pool,
Object* obj) {
const KBCInstr* instr = reinterpret_cast<const KBCInstr*>(pc);
const intptr_t index = GetConstantPoolIndex(instr);
if (index >= 0) {
if (object_pool.TypeAt(index) == ObjectPool::EntryType::kTaggedObject) {
*obj = object_pool.ObjectAt(index);
return true;
}
}
return false;
}
void KernelBytecodeDisassembler::DecodeInstruction(char* hex_buffer,
intptr_t hex_size,
char* human_buffer,
intptr_t human_size,
int* out_instr_size,
const Bytecode& bytecode,
Object** object,
uword pc) {
const KBCInstr* instr = reinterpret_cast<const KBCInstr*>(pc);
const KernelBytecode::Opcode opcode = KernelBytecode::DecodeOpcode(instr);
const intptr_t instr_size = KernelBytecode::kInstructionSize[opcode];
size_t name_size =
Utils::SNPrint(human_buffer, human_size, "%-10s\t", kOpcodeNames[opcode]);
human_buffer += name_size;
human_size -= name_size;
kFormatters[opcode](human_buffer, human_size, opcode, instr);
const intptr_t kCharactersPerByte = 3;
if (hex_size > instr_size * kCharactersPerByte) {
for (intptr_t i = 0; i < instr_size; ++i) {
Utils::SNPrint(hex_buffer + (i * kCharactersPerByte),
hex_size - (i * kCharactersPerByte), " %02x", instr[i]);
}
}
if (out_instr_size) {
*out_instr_size = instr_size;
}
*object = NULL;
if (!bytecode.IsNull()) {
*object = &Object::Handle();
const ObjectPool& pool = ObjectPool::Handle(bytecode.object_pool());
if (!GetLoadedObjectAt(pc, pool, *object)) {
*object = NULL;
}
}
}
void KernelBytecodeDisassembler::Disassemble(uword start,
uword end,
DisassemblyFormatter* formatter,
const Bytecode& bytecode) {
#if !defined(PRODUCT)
ASSERT(formatter != NULL);
char hex_buffer[kHexadecimalBufferSize]; // Instruction in hexadecimal form.
char human_buffer[kUserReadableBufferSize]; // Human-readable instruction.
uword pc = start;
GrowableArray<const Function*> inlined_functions;
GrowableArray<TokenPosition> token_positions;
while (pc < end) {
int instruction_length;
Object* object;
DecodeInstruction(hex_buffer, sizeof(hex_buffer), human_buffer,
sizeof(human_buffer), &instruction_length, bytecode,
&object, pc);
formatter->ConsumeInstruction(hex_buffer, sizeof(hex_buffer), human_buffer,
sizeof(human_buffer), object, pc);
pc += instruction_length;
}
#else
UNREACHABLE();
#endif
}
void KernelBytecodeDisassembler::Disassemble(const Function& function) {
#if !defined(PRODUCT)
ASSERT(function.HasBytecode());
const char* function_fullname = function.ToFullyQualifiedCString();
Zone* zone = Thread::Current()->zone();
const Bytecode& bytecode = Bytecode::Handle(zone, function.bytecode());
THR_Print("Bytecode for function '%s' {\n", function_fullname);
uword start = bytecode.PayloadStart();
DisassembleToStdout stdout_formatter;
LogBlock lb;
Disassemble(start, start + bytecode.Size(), &stdout_formatter, bytecode);
THR_Print("}\n");
const ObjectPool& object_pool =
ObjectPool::Handle(zone, bytecode.object_pool());
object_pool.DebugPrint();
THR_Print("PC Descriptors for function '%s' {\n", function_fullname);
PcDescriptors::PrintHeaderString();
const PcDescriptors& descriptors =
PcDescriptors::Handle(zone, bytecode.pc_descriptors());
THR_Print("%s}\n", descriptors.ToCString());
if (bytecode.HasSourcePositions()) {
THR_Print("Source positions for function '%s' {\n", function_fullname);
// 4 bits per hex digit + 2 for "0x".
const int addr_width = (kBitsPerWord / 4) + 2;
// "*" in a printf format specifier tells it to read the field width from
// the printf argument list.
THR_Print("%-*s\ttok-ix\n", addr_width, "pc");
kernel::BytecodeSourcePositionsIterator iter(zone, bytecode);
while (iter.MoveNext()) {
THR_Print("%#-*" Px "\t%s\n", addr_width,
bytecode.PayloadStart() + iter.PcOffset(),
iter.TokenPos().ToCString());
}
THR_Print("}\n");
}
THR_Print("Exception Handlers for function '%s' {\n", function_fullname);
const ExceptionHandlers& handlers =
ExceptionHandlers::Handle(zone, bytecode.exception_handlers());
THR_Print("%s}\n", handlers.ToCString());
if (FLAG_print_variable_descriptors) {
THR_Print("Local variable descriptors for function '%s' {\n",
function_fullname);
const auto& var_descriptors =
LocalVarDescriptors::Handle(zone, bytecode.GetLocalVarDescriptors());
THR_Print("%s}\n", var_descriptors.ToCString());
}
#else
UNREACHABLE();
#endif
}
} // namespace dart
#endif // !defined(DART_PRECOMPILED_RUNTIME)