blob: 13ea00196ee3f38f3771f61bed652d0e103a800c [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef RUNTIME_VM_COMPILER_ASSEMBLER_ASSEMBLER_ARM_H_
#define RUNTIME_VM_COMPILER_ASSEMBLER_ASSEMBLER_ARM_H_
#ifndef RUNTIME_VM_COMPILER_ASSEMBLER_ASSEMBLER_H_
#error Do not include assembler_arm.h directly; use assembler.h instead.
#endif
#include <functional>
#include "platform/assert.h"
#include "platform/utils.h"
#include "vm/code_entry_kind.h"
#include "vm/compiler/runtime_api.h"
#include "vm/constants.h"
#include "vm/cpu.h"
#include "vm/hash_map.h"
#include "vm/simulator.h"
namespace dart {
// Forward declarations.
class FlowGraphCompiler;
class RegisterSet;
class RuntimeEntry;
// TODO(vegorov) these enumerations are temporarily moved out of compiler
// namespace to make refactoring easier.
enum OperandSize {
kByte,
kUnsignedByte,
kHalfword,
kUnsignedHalfword,
kWord,
kUnsignedWord,
kWordPair,
kSWord,
kDWord,
kRegList,
};
// Load/store multiple addressing mode.
enum BlockAddressMode {
// bit encoding P U W
DA = (0 | 0 | 0) << 21, // decrement after
IA = (0 | 4 | 0) << 21, // increment after
DB = (8 | 0 | 0) << 21, // decrement before
IB = (8 | 4 | 0) << 21, // increment before
DA_W = (0 | 0 | 1) << 21, // decrement after with writeback to base
IA_W = (0 | 4 | 1) << 21, // increment after with writeback to base
DB_W = (8 | 0 | 1) << 21, // decrement before with writeback to base
IB_W = (8 | 4 | 1) << 21 // increment before with writeback to base
};
namespace compiler {
// Instruction encoding bits.
enum {
H = 1 << 5, // halfword (or byte)
L = 1 << 20, // load (or store)
S = 1 << 20, // set condition code (or leave unchanged)
W = 1 << 21, // writeback base register (or leave unchanged)
A = 1 << 21, // accumulate in multiply instruction (or not)
B = 1 << 22, // unsigned byte (or word)
D = 1 << 22, // high/lo bit of start of s/d register range
N = 1 << 22, // long (or short)
U = 1 << 23, // positive (or negative) offset/index
P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing)
I = 1 << 25, // immediate shifter operand (or not)
B0 = 1,
B1 = 1 << 1,
B2 = 1 << 2,
B3 = 1 << 3,
B4 = 1 << 4,
B5 = 1 << 5,
B6 = 1 << 6,
B7 = 1 << 7,
B8 = 1 << 8,
B9 = 1 << 9,
B10 = 1 << 10,
B11 = 1 << 11,
B12 = 1 << 12,
B16 = 1 << 16,
B17 = 1 << 17,
B18 = 1 << 18,
B19 = 1 << 19,
B20 = 1 << 20,
B21 = 1 << 21,
B22 = 1 << 22,
B23 = 1 << 23,
B24 = 1 << 24,
B25 = 1 << 25,
B26 = 1 << 26,
B27 = 1 << 27,
};
class ArmEncode : public AllStatic {
public:
static inline uint32_t Rd(Register rd) {
ASSERT(rd < 16);
return static_cast<uint32_t>(rd) << kRdShift;
}
static inline uint32_t Rm(Register rm) {
ASSERT(rm < 16);
return static_cast<uint32_t>(rm) << kRmShift;
}
static inline uint32_t Rn(Register rn) {
ASSERT(rn < 16);
return static_cast<uint32_t>(rn) << kRnShift;
}
static inline uint32_t Rs(Register rs) {
ASSERT(rs < 16);
return static_cast<uint32_t>(rs) << kRsShift;
}
};
// Encodes Addressing Mode 1 - Data-processing operands.
class Operand : public ValueObject {
public:
// Data-processing operands - Uninitialized.
Operand() : type_(-1), encoding_(-1) {}
// Data-processing operands - Copy constructor.
Operand(const Operand& other)
: ValueObject(), type_(other.type_), encoding_(other.encoding_) {}
// Data-processing operands - Assignment operator.
Operand& operator=(const Operand& other) {
type_ = other.type_;
encoding_ = other.encoding_;
return *this;
}
// Data-processing operands - Immediate.
explicit Operand(uint32_t immediate) {
ASSERT(immediate < (1 << kImmed8Bits));
type_ = 1;
encoding_ = immediate;
}
// Data-processing operands - Rotated immediate.
Operand(uint32_t rotate, uint32_t immed8) {
ASSERT((rotate < (1 << kRotateBits)) && (immed8 < (1 << kImmed8Bits)));
type_ = 1;
encoding_ = (rotate << kRotateShift) | (immed8 << kImmed8Shift);
}
// Data-processing operands - Register.
explicit Operand(Register rm) {
type_ = 0;
encoding_ = static_cast<uint32_t>(rm);
}
// Data-processing operands - Logical shift/rotate by immediate.
Operand(Register rm, Shift shift, uint32_t shift_imm) {
ASSERT(shift_imm < (1 << kShiftImmBits));
type_ = 0;
encoding_ = shift_imm << kShiftImmShift |
static_cast<uint32_t>(shift) << kShiftShift |
static_cast<uint32_t>(rm);
}
// Data-processing operands - Logical shift/rotate by register.
Operand(Register rm, Shift shift, Register rs) {
type_ = 0;
encoding_ = static_cast<uint32_t>(rs) << kShiftRegisterShift |
static_cast<uint32_t>(shift) << kShiftShift | (1 << 4) |
static_cast<uint32_t>(rm);
}
static bool CanHold(uint32_t immediate, Operand* o) {
// Avoid the more expensive test for frequent small immediate values.
if (immediate < (1 << kImmed8Bits)) {
o->type_ = 1;
o->encoding_ = (0 << kRotateShift) | (immediate << kImmed8Shift);
return true;
}
// Note that immediate must be unsigned for the test to work correctly.
for (int rot = 0; rot < 16; rot++) {
uint32_t imm8 = (immediate << 2 * rot) | (immediate >> (32 - 2 * rot));
if (imm8 < (1 << kImmed8Bits)) {
o->type_ = 1;
o->encoding_ = (rot << kRotateShift) | (imm8 << kImmed8Shift);
return true;
}
}
return false;
}
private:
bool is_valid() const { return (type_ == 0) || (type_ == 1); }
uint32_t type() const {
ASSERT(is_valid());
return type_;
}
uint32_t encoding() const {
ASSERT(is_valid());
return encoding_;
}
uint32_t type_; // Encodes the type field (bits 27-25) in the instruction.
uint32_t encoding_;
friend class Assembler;
friend class Address;
};
class Address : public ValueObject {
public:
enum OffsetKind {
Immediate,
IndexRegister,
ScaledIndexRegister,
};
// Memory operand addressing mode
enum Mode {
kModeMask = (8 | 4 | 1) << 21,
// bit encoding P U W
Offset = (8 | 4 | 0) << 21, // offset (w/o writeback to base)
PreIndex = (8 | 4 | 1) << 21, // pre-indexed addressing with writeback
PostIndex = (0 | 4 | 0) << 21, // post-indexed addressing with writeback
NegOffset = (8 | 0 | 0) << 21, // negative offset (w/o writeback to base)
NegPreIndex = (8 | 0 | 1) << 21, // negative pre-indexed with writeback
NegPostIndex = (0 | 0 | 0) << 21 // negative post-indexed with writeback
};
Address(const Address& other)
: ValueObject(), encoding_(other.encoding_), kind_(other.kind_) {}
Address& operator=(const Address& other) {
encoding_ = other.encoding_;
kind_ = other.kind_;
return *this;
}
bool Equals(const Address& other) const {
return (encoding_ == other.encoding_) && (kind_ == other.kind_);
}
explicit Address(Register rn, int32_t offset = 0, Mode am = Offset) {
ASSERT(Utils::IsAbsoluteUint(12, offset));
kind_ = Immediate;
if (offset < 0) {
encoding_ = (am ^ (1 << kUShift)) | -offset; // Flip U to adjust sign.
} else {
encoding_ = am | offset;
}
encoding_ |= ArmEncode::Rn(rn);
}
// There is no register offset mode unless Mode is Offset, in which case the
// shifted register case below should be used.
Address(Register rn, Register r, Mode am);
Address(Register rn,
Register rm,
Shift shift = LSL,
uint32_t shift_imm = 0,
Mode am = Offset) {
Operand o(rm, shift, shift_imm);
if ((shift == LSL) && (shift_imm == 0)) {
kind_ = IndexRegister;
} else {
kind_ = ScaledIndexRegister;
}
encoding_ = o.encoding() | am | ArmEncode::Rn(rn);
}
// There is no shifted register mode with a register shift.
Address(Register rn, Register rm, Shift shift, Register r, Mode am = Offset);
static OperandSize OperandSizeFor(intptr_t cid);
static bool CanHoldLoadOffset(OperandSize size,
int32_t offset,
int32_t* offset_mask);
static bool CanHoldStoreOffset(OperandSize size,
int32_t offset,
int32_t* offset_mask);
static bool CanHoldImmediateOffset(bool is_load,
intptr_t cid,
int64_t offset);
private:
Register rn() const {
return Instr::At(reinterpret_cast<uword>(&encoding_))->RnField();
}
Register rm() const {
return ((kind() == IndexRegister) || (kind() == ScaledIndexRegister))
? Instr::At(reinterpret_cast<uword>(&encoding_))->RmField()
: kNoRegister;
}
Mode mode() const { return static_cast<Mode>(encoding() & kModeMask); }
bool has_writeback() const {
return (mode() == PreIndex) || (mode() == PostIndex) ||
(mode() == NegPreIndex) || (mode() == NegPostIndex);
}
static bool has_writeback(BlockAddressMode am) {
switch (am) {
case DA:
case IA:
case DB:
case IB:
return false;
case DA_W:
case IA_W:
case DB_W:
case IB_W:
return true;
}
}
uint32_t encoding() const { return encoding_; }
// Encoding for addressing mode 3.
uint32_t encoding3() const;
// Encoding for vfp load/store addressing.
uint32_t vencoding() const;
OffsetKind kind() const { return kind_; }
uint32_t encoding_;
OffsetKind kind_;
friend class Assembler;
};
class FieldAddress : public Address {
public:
FieldAddress(Register base, int32_t disp)
: Address(base, disp - kHeapObjectTag) {}
// This addressing mode does not exist.
FieldAddress(Register base, Register r);
FieldAddress(const FieldAddress& other) : Address(other) {}
FieldAddress& operator=(const FieldAddress& other) {
Address::operator=(other);
return *this;
}
};
class Assembler : public AssemblerBase {
public:
explicit Assembler(ObjectPoolBuilder* object_pool_builder,
bool use_far_branches = false);
~Assembler() {}
void PushRegister(Register r) { Push(r); }
void PopRegister(Register r) { Pop(r); }
void Bind(Label* label);
void Jump(Label* label) { b(label); }
void LoadField(Register dst, FieldAddress address) { ldr(dst, address); }
void CompareWithFieldValue(Register value, FieldAddress address) {
ldr(TMP, address);
cmp(value, Operand(TMP));
}
// Misc. functionality
bool use_far_branches() const {
return FLAG_use_far_branches || use_far_branches_;
}
#if defined(TESTING) || defined(DEBUG)
// Used in unit tests and to ensure predictable verification code size in
// FlowGraphCompiler::EmitEdgeCounter.
void set_use_far_branches(bool b) { use_far_branches_ = b; }
#endif // TESTING || DEBUG
// Debugging and bringup support.
void Breakpoint() { bkpt(0); }
void Stop(const char* message) override;
static void InitializeMemoryWithBreakpoints(uword data, intptr_t length);
// Data-processing instructions.
void and_(Register rd, Register rn, Operand o, Condition cond = AL);
void eor(Register rd, Register rn, Operand o, Condition cond = AL);
void sub(Register rd, Register rn, Operand o, Condition cond = AL);
void subs(Register rd, Register rn, Operand o, Condition cond = AL);
void rsb(Register rd, Register rn, Operand o, Condition cond = AL);
void rsbs(Register rd, Register rn, Operand o, Condition cond = AL);
void add(Register rd, Register rn, Operand o, Condition cond = AL);
void adds(Register rd, Register rn, Operand o, Condition cond = AL);
void adc(Register rd, Register rn, Operand o, Condition cond = AL);
void adcs(Register rd, Register rn, Operand o, Condition cond = AL);
void sbc(Register rd, Register rn, Operand o, Condition cond = AL);
void sbcs(Register rd, Register rn, Operand o, Condition cond = AL);
void rsc(Register rd, Register rn, Operand o, Condition cond = AL);
void tst(Register rn, Operand o, Condition cond = AL);
void teq(Register rn, Operand o, Condition cond = AL);
void cmp(Register rn, Operand o, Condition cond = AL);
void cmn(Register rn, Operand o, Condition cond = AL);
void orr(Register rd, Register rn, Operand o, Condition cond = AL);
void orrs(Register rd, Register rn, Operand o, Condition cond = AL);
void mov(Register rd, Operand o, Condition cond = AL);
void movs(Register rd, Operand o, Condition cond = AL);
void bic(Register rd, Register rn, Operand o, Condition cond = AL);
void bics(Register rd, Register rn, Operand o, Condition cond = AL);
void mvn(Register rd, Operand o, Condition cond = AL);
void mvns(Register rd, Operand o, Condition cond = AL);
// Miscellaneous data-processing instructions.
void clz(Register rd, Register rm, Condition cond = AL);
// Multiply instructions.
void mul(Register rd, Register rn, Register rm, Condition cond = AL);
void muls(Register rd, Register rn, Register rm, Condition cond = AL);
void mla(Register rd,
Register rn,
Register rm,
Register ra,
Condition cond = AL);
void mls(Register rd,
Register rn,
Register rm,
Register ra,
Condition cond = AL);
void smull(Register rd_lo,
Register rd_hi,
Register rn,
Register rm,
Condition cond = AL);
void umull(Register rd_lo,
Register rd_hi,
Register rn,
Register rm,
Condition cond = AL);
void smlal(Register rd_lo,
Register rd_hi,
Register rn,
Register rm,
Condition cond = AL);
void umlal(Register rd_lo,
Register rd_hi,
Register rn,
Register rm,
Condition cond = AL);
// Emulation of this instruction uses IP and the condition codes. Therefore,
// none of the registers can be IP, and the instruction can only be used
// unconditionally.
void umaal(Register rd_lo, Register rd_hi, Register rn, Register rm);
// Division instructions.
void sdiv(Register rd, Register rn, Register rm, Condition cond = AL);
void udiv(Register rd, Register rn, Register rm, Condition cond = AL);
// Load/store instructions.
void ldr(Register rd, Address ad, Condition cond = AL);
void str(Register rd, Address ad, Condition cond = AL);
void ldrb(Register rd, Address ad, Condition cond = AL);
void strb(Register rd, Address ad, Condition cond = AL);
void ldrh(Register rd, Address ad, Condition cond = AL);
void strh(Register rd, Address ad, Condition cond = AL);
void ldrsb(Register rd, Address ad, Condition cond = AL);
void ldrsh(Register rd, Address ad, Condition cond = AL);
// ldrd and strd actually support the full range of addressing modes, but
// we don't use them, and we need to split them up into two instructions for
// ARMv5TE, so we only support the base + offset mode.
// rd must be an even register and rd2 must be rd + 1.
void ldrd(Register rd,
Register rd2,
Register rn,
int32_t offset,
Condition cond = AL);
void strd(Register rd,
Register rd2,
Register rn,
int32_t offset,
Condition cond = AL);
void ldm(BlockAddressMode am,
Register base,
RegList regs,
Condition cond = AL);
void stm(BlockAddressMode am,
Register base,
RegList regs,
Condition cond = AL);
void ldrex(Register rd, Register rn, Condition cond = AL);
void strex(Register rd, Register rt, Register rn, Condition cond = AL);
// Emit code to transition between generated and native modes.
//
// These require that CSP and SP are equal and aligned and require two scratch
// registers (in addition to TMP).
void TransitionGeneratedToNative(Register destination_address,
Register exit_frame_fp,
Register scratch0,
Register scratch1);
void TransitionNativeToGenerated(Register scratch0, Register scratch1);
// Miscellaneous instructions.
void clrex();
void nop(Condition cond = AL);
// Note that gdb sets breakpoints using the undefined instruction 0xe7f001f0.
void bkpt(uint16_t imm16);
static int32_t BkptEncoding(uint16_t imm16) {
// bkpt requires that the cond field is AL.
return (AL << kConditionShift) | B24 | B21 | ((imm16 >> 4) << 8) | B6 | B5 |
B4 | (imm16 & 0xf);
}
static uword GetBreakInstructionFiller() { return BkptEncoding(0); }
// Floating point instructions (VFPv3-D16 and VFPv3-D32 profiles).
void vmovsr(SRegister sn, Register rt, Condition cond = AL);
void vmovrs(Register rt, SRegister sn, Condition cond = AL);
void vmovsrr(SRegister sm, Register rt, Register rt2, Condition cond = AL);
void vmovrrs(Register rt, Register rt2, SRegister sm, Condition cond = AL);
void vmovdrr(DRegister dm, Register rt, Register rt2, Condition cond = AL);
void vmovrrd(Register rt, Register rt2, DRegister dm, Condition cond = AL);
void vmovdr(DRegister dd, int i, Register rt, Condition cond = AL);
void vmovs(SRegister sd, SRegister sm, Condition cond = AL);
void vmovd(DRegister dd, DRegister dm, Condition cond = AL);
void vmovq(QRegister qd, QRegister qm);
// Returns false if the immediate cannot be encoded.
bool vmovs(SRegister sd, float s_imm, Condition cond = AL);
bool vmovd(DRegister dd, double d_imm, Condition cond = AL);
void vldrs(SRegister sd, Address ad, Condition cond = AL);
void vstrs(SRegister sd, Address ad, Condition cond = AL);
void vldrd(DRegister dd, Address ad, Condition cond = AL);
void vstrd(DRegister dd, Address ad, Condition cond = AL);
void vldms(BlockAddressMode am,
Register base,
SRegister first,
SRegister last,
Condition cond = AL);
void vstms(BlockAddressMode am,
Register base,
SRegister first,
SRegister last,
Condition cond = AL);
void vldmd(BlockAddressMode am,
Register base,
DRegister first,
intptr_t count,
Condition cond = AL);
void vstmd(BlockAddressMode am,
Register base,
DRegister first,
intptr_t count,
Condition cond = AL);
void vadds(SRegister sd, SRegister sn, SRegister sm, Condition cond = AL);
void vaddd(DRegister dd, DRegister dn, DRegister dm, Condition cond = AL);
void vaddqi(OperandSize sz, QRegister qd, QRegister qn, QRegister qm);
void vaddqs(QRegister qd, QRegister qn, QRegister qm);
void vsubs(SRegister sd, SRegister sn, SRegister sm, Condition cond = AL);
void vsubd(DRegister dd, DRegister dn, DRegister dm, Condition cond = AL);
void vsubqi(OperandSize sz, QRegister qd, QRegister qn, QRegister qm);
void vsubqs(QRegister qd, QRegister qn, QRegister qm);
void vmuls(SRegister sd, SRegister sn, SRegister sm, Condition cond = AL);
void vmuld(DRegister dd, DRegister dn, DRegister dm, Condition cond = AL);
void vmulqi(OperandSize sz, QRegister qd, QRegister qn, QRegister qm);
void vmulqs(QRegister qd, QRegister qn, QRegister qm);
void vshlqi(OperandSize sz, QRegister qd, QRegister qm, QRegister qn);
void vshlqu(OperandSize sz, QRegister qd, QRegister qm, QRegister qn);
void vmlas(SRegister sd, SRegister sn, SRegister sm, Condition cond = AL);
void vmlad(DRegister dd, DRegister dn, DRegister dm, Condition cond = AL);
void vmlss(SRegister sd, SRegister sn, SRegister sm, Condition cond = AL);
void vmlsd(DRegister dd, DRegister dn, DRegister dm, Condition cond = AL);
void vdivs(SRegister sd, SRegister sn, SRegister sm, Condition cond = AL);
void vdivd(DRegister dd, DRegister dn, DRegister dm, Condition cond = AL);
void vminqs(QRegister qd, QRegister qn, QRegister qm);
void vmaxqs(QRegister qd, QRegister qn, QRegister qm);
void vrecpeqs(QRegister qd, QRegister qm);
void vrecpsqs(QRegister qd, QRegister qn, QRegister qm);
void vrsqrteqs(QRegister qd, QRegister qm);
void vrsqrtsqs(QRegister qd, QRegister qn, QRegister qm);
void veorq(QRegister qd, QRegister qn, QRegister qm);
void vorrq(QRegister qd, QRegister qn, QRegister qm);
void vornq(QRegister qd, QRegister qn, QRegister qm);
void vandq(QRegister qd, QRegister qn, QRegister qm);
void vmvnq(QRegister qd, QRegister qm);
void vceqqi(OperandSize sz, QRegister qd, QRegister qn, QRegister qm);
void vceqqs(QRegister qd, QRegister qn, QRegister qm);
void vcgeqi(OperandSize sz, QRegister qd, QRegister qn, QRegister qm);
void vcugeqi(OperandSize sz, QRegister qd, QRegister qn, QRegister qm);
void vcgeqs(QRegister qd, QRegister qn, QRegister qm);
void vcgtqi(OperandSize sz, QRegister qd, QRegister qn, QRegister qm);
void vcugtqi(OperandSize sz, QRegister qd, QRegister qn, QRegister qm);
void vcgtqs(QRegister qd, QRegister qn, QRegister qm);
void vabss(SRegister sd, SRegister sm, Condition cond = AL);
void vabsd(DRegister dd, DRegister dm, Condition cond = AL);
void vabsqs(QRegister qd, QRegister qm);
void vnegs(SRegister sd, SRegister sm, Condition cond = AL);
void vnegd(DRegister dd, DRegister dm, Condition cond = AL);
void vnegqs(QRegister qd, QRegister qm);
void vsqrts(SRegister sd, SRegister sm, Condition cond = AL);
void vsqrtd(DRegister dd, DRegister dm, Condition cond = AL);
void vcvtsd(SRegister sd, DRegister dm, Condition cond = AL);
void vcvtds(DRegister dd, SRegister sm, Condition cond = AL);
void vcvtis(SRegister sd, SRegister sm, Condition cond = AL);
void vcvtid(SRegister sd, DRegister dm, Condition cond = AL);
void vcvtsi(SRegister sd, SRegister sm, Condition cond = AL);
void vcvtdi(DRegister dd, SRegister sm, Condition cond = AL);
void vcvtus(SRegister sd, SRegister sm, Condition cond = AL);
void vcvtud(SRegister sd, DRegister dm, Condition cond = AL);
void vcvtsu(SRegister sd, SRegister sm, Condition cond = AL);
void vcvtdu(DRegister dd, SRegister sm, Condition cond = AL);
void vcmps(SRegister sd, SRegister sm, Condition cond = AL);
void vcmpd(DRegister dd, DRegister dm, Condition cond = AL);
void vcmpsz(SRegister sd, Condition cond = AL);
void vcmpdz(DRegister dd, Condition cond = AL);
void vmrs(Register rd, Condition cond = AL);
void vmstat(Condition cond = AL);
// Duplicates the operand of size sz at index idx from dm to all elements of
// qd. This is a special case of vtbl.
void vdup(OperandSize sz, QRegister qd, DRegister dm, int idx);
// Each byte of dm is an index into the table of bytes formed by concatenating
// a list of 'length' registers starting with dn. The result is placed in dd.
void vtbl(DRegister dd, DRegister dn, int length, DRegister dm);
// The words of qd and qm are interleaved with the low words of the result
// in qd and the high words in qm.
void vzipqw(QRegister qd, QRegister qm);
// Branch instructions.
void b(Label* label, Condition cond = AL);
void bl(Label* label, Condition cond = AL);
void bx(Register rm, Condition cond = AL);
void blx(Register rm, Condition cond = AL);
void Branch(const Code& code,
ObjectPoolBuilderEntry::Patchability patchable =
ObjectPoolBuilderEntry::kNotPatchable,
Register pp = PP,
Condition cond = AL);
void Branch(const Address& address, Condition cond = AL);
void BranchLink(const Code& code,
ObjectPoolBuilderEntry::Patchability patchable =
ObjectPoolBuilderEntry::kNotPatchable,
CodeEntryKind entry_kind = CodeEntryKind::kNormal);
void BranchLinkToRuntime();
void CallNullErrorShared(bool save_fpu_registers);
// Branch and link to an entry address. Call sequence can be patched.
void BranchLinkPatchable(const Code& code,
CodeEntryKind entry_kind = CodeEntryKind::kNormal);
// Emit a call that shares its object pool entries with other calls
// that have the same equivalence marker.
void BranchLinkWithEquivalence(
const Code& code,
const Object& equivalence,
CodeEntryKind entry_kind = CodeEntryKind::kNormal);
// Branch and link to [base + offset]. Call sequence is never patched.
void BranchLinkOffset(Register base, int32_t offset);
// Add signed immediate value to rd. May clobber IP.
void AddImmediate(Register rd, int32_t value, Condition cond = AL) {
AddImmediate(rd, rd, value, cond);
}
// Add signed immediate value. May clobber IP.
void AddImmediate(Register rd,
Register rn,
int32_t value,
Condition cond = AL);
void AddImmediateSetFlags(Register rd,
Register rn,
int32_t value,
Condition cond = AL);
void SubImmediateSetFlags(Register rd,
Register rn,
int32_t value,
Condition cond = AL);
void AndImmediate(Register rd, Register rs, int32_t imm, Condition cond = AL);
// Test rn and immediate. May clobber IP.
void TestImmediate(Register rn, int32_t imm, Condition cond = AL);
// Compare rn with signed immediate value. May clobber IP.
void CompareImmediate(Register rn, int32_t value, Condition cond = AL);
// Signed integer division of left by right. Checks to see if integer
// division is supported. If not, uses the FPU for division with
// temporary registers tmpl and tmpr. tmpl and tmpr must be different
// registers.
void IntegerDivide(Register result,
Register left,
Register right,
DRegister tmpl,
DRegister tmpr);
// Load and Store.
// These three do not clobber IP.
void LoadPatchableImmediate(Register rd, int32_t value, Condition cond = AL);
void LoadDecodableImmediate(Register rd, int32_t value, Condition cond = AL);
void LoadImmediate(Register rd, int32_t value, Condition cond = AL);
// These two may clobber IP.
void LoadSImmediate(SRegister sd, float value, Condition cond = AL);
void LoadDImmediate(DRegister dd,
double value,
Register scratch,
Condition cond = AL);
void MarkExceptionHandler(Label* label);
void Drop(intptr_t stack_elements);
void RestoreCodePointer();
void LoadPoolPointer(Register reg = PP);
void LoadIsolate(Register rd);
// Load word from pool from the given offset using encoding that
// InstructionPattern::DecodeLoadWordFromPool can decode.
void LoadWordFromPoolOffset(Register rd,
int32_t offset,
Register pp,
Condition cond);
void LoadObject(Register rd, const Object& object, Condition cond = AL);
void LoadUniqueObject(Register rd, const Object& object, Condition cond = AL);
void LoadNativeEntry(Register dst,
const ExternalLabel* label,
ObjectPoolBuilderEntry::Patchability patchable,
Condition cond = AL);
void PushObject(const Object& object);
void PushImmediate(int32_t immediate) {
LoadImmediate(TMP, immediate);
Push(TMP);
}
void CompareObject(Register rn, const Object& object);
enum CanBeSmi {
kValueIsNotSmi,
kValueCanBeSmi,
};
// Store into a heap object and apply the generational and incremental write
// barriers. All stores into heap objects must pass through this function or,
// if the value can be proven either Smi or old-and-premarked, its NoBarrier
// variants.
// Preserves object and value registers.
void StoreIntoObject(Register object, // Object we are storing into.
const Address& dest, // Where we are storing into.
Register value, // Value we are storing.
CanBeSmi can_value_be_smi = kValueCanBeSmi,
bool lr_reserved = false);
void StoreIntoArray(Register object,
Register slot,
Register value,
CanBeSmi can_value_be_smi = kValueCanBeSmi,
bool lr_reserved = false);
void StoreIntoObjectOffset(Register object,
int32_t offset,
Register value,
CanBeSmi can_value_be_smi = kValueCanBeSmi,
bool lr_reserved = false);
void StoreIntoObjectNoBarrier(Register object,
const Address& dest,
Register value);
void StoreIntoObjectNoBarrier(Register object,
const Address& dest,
const Object& value);
void StoreIntoObjectNoBarrierOffset(Register object,
int32_t offset,
Register value);
void StoreIntoObjectNoBarrierOffset(Register object,
int32_t offset,
const Object& value);
// Stores a non-tagged value into a heap object.
void StoreInternalPointer(Register object,
const Address& dest,
Register value);
// Store value_even, value_odd, value_even, ... into the words in the address
// range [begin, end), assumed to be uninitialized fields in object (tagged).
// The stores must not need a generational store barrier (e.g., smi/null),
// and (value_even, value_odd) must be a valid register pair.
// Destroys register 'begin'.
void InitializeFieldsNoBarrier(Register object,
Register begin,
Register end,
Register value_even,
Register value_odd);
// Like above, for the range [base+begin_offset, base+end_offset), unrolled.
void InitializeFieldsNoBarrierUnrolled(Register object,
Register base,
intptr_t begin_offset,
intptr_t end_offset,
Register value_even,
Register value_odd);
// Stores a Smi value into a heap object field that always contains a Smi.
void StoreIntoSmiField(const Address& dest, Register value);
void LoadClassId(Register result, Register object, Condition cond = AL);
void LoadClassById(Register result, Register class_id);
void CompareClassId(Register object, intptr_t class_id, Register scratch);
void LoadClassIdMayBeSmi(Register result, Register object);
void LoadTaggedClassIdMayBeSmi(Register result, Register object);
intptr_t FindImmediate(int32_t imm);
bool CanLoadFromObjectPool(const Object& object) const;
void LoadFromOffset(OperandSize type,
Register reg,
Register base,
int32_t offset,
Condition cond = AL);
void LoadFieldFromOffset(OperandSize type,
Register reg,
Register base,
int32_t offset,
Condition cond = AL) {
LoadFromOffset(type, reg, base, offset - kHeapObjectTag, cond);
}
void StoreToOffset(OperandSize type,
Register reg,
Register base,
int32_t offset,
Condition cond = AL);
void StoreFieldToOffset(OperandSize type,
Register reg,
Register base,
int32_t offset,
Condition cond = AL) {
StoreToOffset(type, reg, base, offset - kHeapObjectTag, cond);
}
void LoadSFromOffset(SRegister reg,
Register base,
int32_t offset,
Condition cond = AL);
void StoreSToOffset(SRegister reg,
Register base,
int32_t offset,
Condition cond = AL);
void LoadDFromOffset(DRegister reg,
Register base,
int32_t offset,
Condition cond = AL);
void StoreDToOffset(DRegister reg,
Register base,
int32_t offset,
Condition cond = AL);
void LoadMultipleDFromOffset(DRegister first,
intptr_t count,
Register base,
int32_t offset);
void StoreMultipleDToOffset(DRegister first,
intptr_t count,
Register base,
int32_t offset);
void CopyDoubleField(Register dst,
Register src,
Register tmp1,
Register tmp2,
DRegister dtmp);
void CopyFloat32x4Field(Register dst,
Register src,
Register tmp1,
Register tmp2,
DRegister dtmp);
void CopyFloat64x2Field(Register dst,
Register src,
Register tmp1,
Register tmp2,
DRegister dtmp);
void Push(Register rd, Condition cond = AL);
void Pop(Register rd, Condition cond = AL);
void PushList(RegList regs, Condition cond = AL);
void PopList(RegList regs, Condition cond = AL);
void PushRegisters(const RegisterSet& regs);
void PopRegisters(const RegisterSet& regs);
// Push all registers which are callee-saved according to the ARM ABI.
void PushNativeCalleeSavedRegisters();
// Pop all registers which are callee-saved according to the ARM ABI.
void PopNativeCalleeSavedRegisters();
void CompareRegisters(Register rn, Register rm) { cmp(rn, Operand(rm)); }
void BranchIf(Condition condition, Label* label) { b(label, condition); }
void MoveRegister(Register rd, Register rm, Condition cond = AL);
// Convenience shift instructions. Use mov instruction with shifter operand
// for variants setting the status flags.
void Lsl(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond = AL);
void Lsl(Register rd, Register rm, Register rs, Condition cond = AL);
void Lsr(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond = AL);
void Lsr(Register rd, Register rm, Register rs, Condition cond = AL);
void Asr(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond = AL);
void Asr(Register rd, Register rm, Register rs, Condition cond = AL);
void Asrs(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond = AL);
void Ror(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond = AL);
void Ror(Register rd, Register rm, Register rs, Condition cond = AL);
void Rrx(Register rd, Register rm, Condition cond = AL);
// Fill rd with the sign of rm.
void SignFill(Register rd, Register rm, Condition cond = AL);
void Vreciprocalqs(QRegister qd, QRegister qm);
void VreciprocalSqrtqs(QRegister qd, QRegister qm);
// If qm must be preserved, then provide a (non-QTMP) temporary.
void Vsqrtqs(QRegister qd, QRegister qm, QRegister temp);
void Vdivqs(QRegister qd, QRegister qn, QRegister qm);
void SmiTag(Register reg, Condition cond = AL) {
Lsl(reg, reg, Operand(kSmiTagSize), cond);
}
void SmiTag(Register dst, Register src, Condition cond = AL) {
Lsl(dst, src, Operand(kSmiTagSize), cond);
}
void SmiUntag(Register reg, Condition cond = AL) {
Asr(reg, reg, Operand(kSmiTagSize), cond);
}
void SmiUntag(Register dst, Register src, Condition cond = AL) {
Asr(dst, src, Operand(kSmiTagSize), cond);
}
// Untag the value in the register assuming it is a smi.
// Untagging shifts tag bit into the carry flag - if carry is clear
// assumption was correct. In this case jump to the is_smi label.
// Otherwise fall-through.
void SmiUntag(Register dst, Register src, Label* is_smi) {
ASSERT(kSmiTagSize == 1);
Asrs(dst, src, Operand(kSmiTagSize));
b(is_smi, CC);
}
void BranchIfNotSmi(Register reg, Label* label) {
tst(reg, Operand(kSmiTagMask));
b(label, NE);
}
void BranchIfSmi(Register reg, Label* label) {
tst(reg, Operand(kSmiTagMask));
b(label, EQ);
}
void CheckCodePointer();
// Function frame setup and tear down.
void EnterFrame(RegList regs, intptr_t frame_space);
void LeaveFrame(RegList regs, bool allow_pop_pc = false);
void Ret();
void ReserveAlignedFrameSpace(intptr_t frame_space);
// In debug mode, this generates code to check that:
// FP + kExitLinkSlotFromEntryFp == SP
// or triggers breakpoint otherwise.
//
// Requires a scratch register in addition to the assembler temporary.
void EmitEntryFrameVerification(Register scratch);
// Create a frame for calling into runtime that preserves all volatile
// registers. Frame's SP is guaranteed to be correctly aligned and
// frame_space bytes are reserved under it.
void EnterCallRuntimeFrame(intptr_t frame_space);
void LeaveCallRuntimeFrame();
void CallRuntime(const RuntimeEntry& entry, intptr_t argument_count);
// Set up a Dart frame on entry with a frame pointer and PC information to
// enable easy access to the RawInstruction object of code corresponding
// to this frame.
void EnterDartFrame(intptr_t frame_size, bool load_pool_pointer = true);
void LeaveDartFrame();
// Leaves the frame and returns.
//
// The difference to "LeaveDartFrame(); Ret();" is that we return using
//
// ldmia sp!, {fp, pc}
//
// instead of
//
// ldmia sp!, {fp, lr}
// blx lr
//
// This means that our return must go to ARM mode (and not thumb).
void LeaveDartFrameAndReturn();
// Set up a Dart frame for a function compiled for on-stack replacement.
// The frame layout is a normal Dart frame, but the frame is partially set
// up on entry (it is the frame of the unoptimized code).
void EnterOsrFrame(intptr_t extra_size);
// Set up a stub frame so that the stack traversal code can easily identify
// a stub frame.
void EnterStubFrame();
void LeaveStubFrame();
void MonomorphicCheckedEntryJIT();
void MonomorphicCheckedEntryAOT();
void BranchOnMonomorphicCheckedEntryJIT(Label* label);
// The register into which the allocation stats table is loaded with
// LoadAllocationStatsAddress should be passed to MaybeTraceAllocation and
// IncrementAllocationStats(WithSize) as stats_addr_reg to update the
// allocation stats. These are separate assembler macros so we can
// avoid a dependent load too nearby the load of the table address.
void LoadAllocationStatsAddress(Register dest, intptr_t cid);
void IncrementAllocationStats(Register stats_addr, intptr_t cid);
void IncrementAllocationStatsWithSize(Register stats_addr_reg,
Register size_reg);
Address ElementAddressForIntIndex(bool is_load,
bool is_external,
intptr_t cid,
intptr_t index_scale,
Register array,
intptr_t index,
Register temp);
void LoadElementAddressForIntIndex(Register address,
bool is_load,
bool is_external,
intptr_t cid,
intptr_t index_scale,
Register array,
intptr_t index);
Address ElementAddressForRegIndex(bool is_load,
bool is_external,
intptr_t cid,
intptr_t index_scale,
Register array,
Register index);
void LoadElementAddressForRegIndex(Register address,
bool is_load,
bool is_external,
intptr_t cid,
intptr_t index_scale,
Register array,
Register index);
void LoadHalfWordUnaligned(Register dst, Register addr, Register tmp);
void LoadHalfWordUnsignedUnaligned(Register dst, Register addr, Register tmp);
void StoreHalfWordUnaligned(Register src, Register addr, Register tmp);
void LoadWordUnaligned(Register dst, Register addr, Register tmp);
void StoreWordUnaligned(Register src, Register addr, Register tmp);
// If allocation tracing is enabled, will jump to |trace| label,
// which will allocate in the runtime where tracing occurs.
void MaybeTraceAllocation(Register stats_addr_reg, Label* trace);
// Inlined allocation of an instance of class 'cls', code has no runtime
// calls. Jump to 'failure' if the instance cannot be allocated here.
// Allocated instance is returned in 'instance_reg'.
// Only the tags field of the object is initialized.
void TryAllocate(const Class& cls,
Label* failure,
Register instance_reg,
Register temp_reg);
void TryAllocateArray(intptr_t cid,
intptr_t instance_size,
Label* failure,
Register instance,
Register end_address,
Register temp1,
Register temp2);
// This emits an PC-relative call of the form "blr <offset>". The offset
// is not yet known and needs therefore relocation to the right place before
// the code can be used.
//
// The neccessary information for the "linker" (i.e. the relocation
// information) is stored in [RawCode::static_calls_target_table_]: an entry
// of the form
//
// (Code::kPcRelativeCall & pc_offset, <target-code>, <target-function>)
//
// will be used during relocation to fix the offset.
//
// The provided [offset_into_target] will be added to calculate the final
// destination. It can be used e.g. for calling into the middle of a
// function.
void GenerateUnRelocatedPcRelativeCall(Condition cond = AL,
intptr_t offset_into_target = 0);
// Emit data (e.g encoded instruction or immediate) in instruction stream.
void Emit(int32_t value);
// On some other platforms, we draw a distinction between safe and unsafe
// smis.
static bool IsSafe(const Object& object) { return true; }
static bool IsSafeSmi(const Object& object) { return target::IsSmi(object); }
bool constant_pool_allowed() const { return constant_pool_allowed_; }
void set_constant_pool_allowed(bool b) { constant_pool_allowed_ = b; }
// Whether we can branch to a target which is [distance] bytes away from the
// beginning of the branch instruction.
//
// Use this function for testing whether [distance] can be encoded using the
// 24-bit offets in the branch instructions, which are multiples of 4.
static bool CanEncodeBranchDistance(int32_t distance) {
ASSERT(Utils::IsAligned(distance, 4));
// The distance is off by 8 due to the way the ARM CPUs read PC.
distance -= Instr::kPCReadOffset;
distance >>= 2;
return Utils::IsInt(24, distance);
}
static int32_t EncodeBranchOffset(int32_t offset, int32_t inst);
static int32_t DecodeBranchOffset(int32_t inst);
private:
bool use_far_branches_;
// If you are thinking of using one or both of these instructions directly,
// instead LoadImmediate should probably be used.
void movw(Register rd, uint16_t imm16, Condition cond = AL);
void movt(Register rd, uint16_t imm16, Condition cond = AL);
void BindARMv6(Label* label);
void BindARMv7(Label* label);
void BranchLink(const ExternalLabel* label);
bool constant_pool_allowed_;
void LoadObjectHelper(Register rd,
const Object& object,
Condition cond,
bool is_unique,
Register pp);
void EmitType01(Condition cond,
int type,
Opcode opcode,
int set_cc,
Register rn,
Register rd,
Operand o);
void EmitType5(Condition cond, int32_t offset, bool link);
void EmitMemOp(Condition cond, bool load, bool byte, Register rd, Address ad);
void EmitMemOpAddressMode3(Condition cond,
int32_t mode,
Register rd,
Address ad);
void EmitMultiMemOp(Condition cond,
BlockAddressMode am,
bool load,
Register base,
RegList regs);
void EmitShiftImmediate(Condition cond,
Shift opcode,
Register rd,
Register rm,
Operand o);
void EmitShiftRegister(Condition cond,
Shift opcode,
Register rd,
Register rm,
Operand o);
void EmitMulOp(Condition cond,
int32_t opcode,
Register rd,
Register rn,
Register rm,
Register rs);
void EmitDivOp(Condition cond,
int32_t opcode,
Register rd,
Register rn,
Register rm);
void EmitMultiVSMemOp(Condition cond,
BlockAddressMode am,
bool load,
Register base,
SRegister start,
uint32_t count);
void EmitMultiVDMemOp(Condition cond,
BlockAddressMode am,
bool load,
Register base,
DRegister start,
int32_t count);
void EmitVFPsss(Condition cond,
int32_t opcode,
SRegister sd,
SRegister sn,
SRegister sm);
void EmitVFPddd(Condition cond,
int32_t opcode,
DRegister dd,
DRegister dn,
DRegister dm);
void EmitVFPsd(Condition cond, int32_t opcode, SRegister sd, DRegister dm);
void EmitVFPds(Condition cond, int32_t opcode, DRegister dd, SRegister sm);
void EmitSIMDqqq(int32_t opcode,
OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm);
void EmitSIMDddd(int32_t opcode,
OperandSize sz,
DRegister dd,
DRegister dn,
DRegister dm);
void EmitFarBranch(Condition cond, int32_t offset, bool link);
void EmitBranch(Condition cond, Label* label, bool link);
void BailoutIfInvalidBranchOffset(int32_t offset);
int32_t EncodeTstOffset(int32_t offset, int32_t inst);
int32_t DecodeTstOffset(int32_t inst);
enum BarrierFilterMode {
// Filter falls through into the barrier update code. Target label
// is a "after-store" label.
kJumpToNoUpdate,
// Filter falls through to the "after-store" code. Target label
// is barrier update code label.
kJumpToBarrier,
// Filter falls through into the conditional barrier update code and does
// not jump. Target label is unused. The barrier should run if the NE
// condition is set.
kNoJump
};
void StoreIntoObjectFilter(Register object,
Register value,
Label* label,
CanBeSmi can_be_smi,
BarrierFilterMode barrier_filter_mode);
void EnterSafepointSlowly();
void ExitSafepointSlowly();
friend class dart::FlowGraphCompiler;
std::function<void(Condition, Register)>
generate_invoke_write_barrier_wrapper_;
std::function<void(Condition)> generate_invoke_array_write_barrier_;
DISALLOW_ALLOCATION();
DISALLOW_COPY_AND_ASSIGN(Assembler);
};
} // namespace compiler
// TODO(vegorov) temporary export commonly used classes into dart namespace
// to ease migration.
using compiler::Address;
using compiler::FieldAddress;
using compiler::Operand;
} // namespace dart
#endif // RUNTIME_VM_COMPILER_ASSEMBLER_ASSEMBLER_ARM_H_