blob: e95f2da9d94a5dcf304fc6a319da581344c3b4d1 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'dart:collection';
import 'package:analyzer/dart/ast/ast.dart';
import 'package:analyzer/dart/ast/standard_resolution_map.dart';
import 'package:analyzer/dart/ast/token.dart';
import 'package:analyzer/dart/ast/visitor.dart';
import 'package:analyzer/dart/element/element.dart';
import 'package:analyzer/dart/element/type.dart';
import 'package:analyzer/src/dart/ast/ast.dart';
import 'package:analyzer/src/dart/element/element.dart';
import 'package:analyzer/src/dart/element/member.dart' show ConstructorMember;
import 'package:analyzer/src/dart/element/type.dart';
import 'package:analyzer/src/generated/resolver.dart';
import 'package:analyzer/src/generated/utilities_dart.dart';
import 'package:analyzer/src/task/strong/checker.dart'
show getExpressionType, getReadType;
/**
* Instances of the class `StaticTypeAnalyzer` perform two type-related tasks. First, they
* compute the static type of every expression. Second, they look for any static type errors or
* warnings that might need to be generated. The requirements for the type analyzer are:
* <ol>
* * Every element that refers to types should be fully populated.
* * Every node representing an expression should be resolved to the Type of the expression.
* </ol>
*/
class StaticTypeAnalyzer extends SimpleAstVisitor<Object> {
/**
* The resolver driving the resolution and type analysis.
*/
final ResolverVisitor _resolver;
/**
* The object providing access to the types defined by the language.
*/
TypeProvider _typeProvider;
/**
* The type system in use for static type analysis.
*/
TypeSystem _typeSystem;
/**
* The type representing the type 'dynamic'.
*/
DartType _dynamicType;
/**
* The type representing the class containing the nodes being analyzed,
* or `null` if the nodes are not within a class.
*/
InterfaceType thisType;
/**
* The object keeping track of which elements have had their types promoted.
*/
TypePromotionManager _promoteManager;
/**
* Initialize a newly created type analyzer.
*
* @param resolver the resolver driving this participant
*/
StaticTypeAnalyzer(this._resolver) {
_typeProvider = _resolver.typeProvider;
_typeSystem = _resolver.typeSystem;
_dynamicType = _typeProvider.dynamicType;
_promoteManager = _resolver.promoteManager;
}
/**
* Given a constructor name [node] and a type [type], record an inferred type
* for the constructor if in strong mode. This is used to fill in any
* inferred type parameters found by the resolver.
*/
void inferConstructorName(ConstructorName node, InterfaceType type) {
node.type.type = type;
if (type != _typeSystem.instantiateToBounds(type.element.type)) {
_resolver.inferenceContext.recordInference(node.parent, type);
}
}
/**
* Given a formal parameter list and a function type use the function type
* to infer types for any of the parameters which have implicit (missing)
* types. Only infers types in strong mode. Returns true if inference
* has occurred.
*/
bool inferFormalParameterList(
FormalParameterList node, DartType functionType) {
bool inferred = false;
if (node != null && functionType is FunctionType) {
var ts = _typeSystem as StrongTypeSystemImpl;
void inferType(ParameterElementImpl p, DartType inferredType) {
// Check that there is no declared type, and that we have not already
// inferred a type in some fashion.
if (p.hasImplicitType && (p.type == null || p.type.isDynamic)) {
inferredType = ts.upperBoundForType(inferredType);
if (inferredType.isDartCoreNull) {
inferredType = _typeProvider.objectType;
}
if (!inferredType.isDynamic) {
p.type = inferredType;
inferred = true;
}
}
}
List<ParameterElement> parameters = node.parameterElements;
{
Iterator<ParameterElement> positional =
parameters.where((p) => !p.isNamed).iterator;
Iterator<ParameterElement> fnPositional =
functionType.parameters.where((p) => !p.isNamed).iterator;
while (positional.moveNext() && fnPositional.moveNext()) {
inferType(positional.current, fnPositional.current.type);
}
}
{
Map<String, DartType> namedParameterTypes =
functionType.namedParameterTypes;
Iterable<ParameterElement> named = parameters.where((p) => p.isNamed);
for (ParameterElementImpl p in named) {
if (!namedParameterTypes.containsKey(p.name)) {
continue;
}
inferType(p, namedParameterTypes[p.name]);
}
}
}
return inferred;
}
DartType inferListType(ListLiteral node, {bool downwards: false}) {
DartType contextType = InferenceContext.getContext(node);
var ts = _typeSystem as StrongTypeSystemImpl;
List<DartType> elementTypes;
List<ParameterElement> parameters;
if (downwards) {
if (contextType == null) {
return null;
}
elementTypes = [];
parameters = [];
} else {
// Also use upwards information to infer the type.
elementTypes = node.elements
.map((e) => e.staticType)
.where((t) => t != null)
.toList();
var listTypeParam = _typeProvider.listType.typeParameters[0].type;
var syntheticParamElement = new ParameterElementImpl.synthetic(
'element', listTypeParam, ParameterKind.POSITIONAL);
parameters = new List.filled(elementTypes.length, syntheticParamElement);
}
DartType inferred = ts.inferGenericFunctionOrType<InterfaceType>(
_typeProvider.listType, parameters, elementTypes, contextType,
downwards: downwards,
errorReporter: _resolver.errorReporter,
errorNode: node);
return inferred;
}
ParameterizedType inferMapType(MapLiteral node, {bool downwards: false}) {
DartType contextType = InferenceContext.getContext(node);
List<DartType> elementTypes;
List<ParameterElement> parameters;
if (downwards) {
if (contextType == null) {
return null;
}
elementTypes = [];
parameters = [];
} else {
var keyTypes =
node.entries.map((e) => e.key.staticType).where((t) => t != null);
var valueTypes =
node.entries.map((e) => e.value.staticType).where((t) => t != null);
var keyTypeParam = _typeProvider.mapType.typeParameters[0].type;
var valueTypeParam = _typeProvider.mapType.typeParameters[1].type;
var syntheticKeyParameter = new ParameterElementImpl.synthetic(
'key', keyTypeParam, ParameterKind.POSITIONAL);
var syntheticValueParameter = new ParameterElementImpl.synthetic(
'value', valueTypeParam, ParameterKind.POSITIONAL);
parameters = new List.filled(keyTypes.length, syntheticKeyParameter,
growable: true)
..addAll(new List.filled(valueTypes.length, syntheticValueParameter));
elementTypes = new List<DartType>.from(keyTypes)..addAll(valueTypes);
}
// Use both downwards and upwards information to infer the type.
var ts = _typeSystem as StrongTypeSystemImpl;
ParameterizedType inferred = ts.inferGenericFunctionOrType(
_typeProvider.mapType, parameters, elementTypes, contextType,
downwards: downwards,
errorReporter: _resolver.errorReporter,
errorNode: node);
return inferred;
}
/**
* The Dart Language Specification, 12.5: <blockquote>The static type of a string literal is
* `String`.</blockquote>
*/
@override
Object visitAdjacentStrings(AdjacentStrings node) {
_recordStaticType(node, _typeProvider.stringType);
return null;
}
/**
* The Dart Language Specification, 12.32: <blockquote>... the cast expression <i>e as T</i> ...
*
* It is a static warning if <i>T</i> does not denote a type available in the current lexical
* scope.
*
* The static type of a cast expression <i>e as T</i> is <i>T</i>.</blockquote>
*/
@override
Object visitAsExpression(AsExpression node) {
_recordStaticType(node, _getType(node.type));
return null;
}
/**
* The Dart Language Specification, 12.18: <blockquote>... an assignment <i>a</i> of the form <i>v
* = e</i> ...
*
* It is a static type warning if the static type of <i>e</i> may not be assigned to the static
* type of <i>v</i>.
*
* The static type of the expression <i>v = e</i> is the static type of <i>e</i>.
*
* ... an assignment of the form <i>C.v = e</i> ...
*
* It is a static type warning if the static type of <i>e</i> may not be assigned to the static
* type of <i>C.v</i>.
*
* The static type of the expression <i>C.v = e</i> is the static type of <i>e</i>.
*
* ... an assignment of the form <i>e<sub>1</sub>.v = e<sub>2</sub></i> ...
*
* Let <i>T</i> be the static type of <i>e<sub>1</sub></i>. It is a static type warning if
* <i>T</i> does not have an accessible instance setter named <i>v=</i>. It is a static type
* warning if the static type of <i>e<sub>2</sub></i> may not be assigned to <i>T</i>.
*
* The static type of the expression <i>e<sub>1</sub>.v = e<sub>2</sub></i> is the static type of
* <i>e<sub>2</sub></i>.
*
* ... an assignment of the form <i>e<sub>1</sub>[e<sub>2</sub>] = e<sub>3</sub></i> ...
*
* The static type of the expression <i>e<sub>1</sub>[e<sub>2</sub>] = e<sub>3</sub></i> is the
* static type of <i>e<sub>3</sub></i>.
*
* A compound assignment of the form <i>v op= e</i> is equivalent to <i>v = v op e</i>. A compound
* assignment of the form <i>C.v op= e</i> is equivalent to <i>C.v = C.v op e</i>. A compound
* assignment of the form <i>e<sub>1</sub>.v op= e<sub>2</sub></i> is equivalent to <i>((x) => x.v
* = x.v op e<sub>2</sub>)(e<sub>1</sub>)</i> where <i>x</i> is a variable that is not used in
* <i>e<sub>2</sub></i>. A compound assignment of the form <i>e<sub>1</sub>[e<sub>2</sub>] op=
* e<sub>3</sub></i> is equivalent to <i>((a, i) => a[i] = a[i] op e<sub>3</sub>)(e<sub>1</sub>,
* e<sub>2</sub>)</i> where <i>a</i> and <i>i</i> are a variables that are not used in
* <i>e<sub>3</sub></i>.</blockquote>
*/
@override
Object visitAssignmentExpression(AssignmentExpression node) {
TokenType operator = node.operator.type;
if (operator == TokenType.EQ) {
Expression rightHandSide = node.rightHandSide;
DartType staticType = _getStaticType(rightHandSide);
_recordStaticType(node, staticType);
} else if (operator == TokenType.QUESTION_QUESTION_EQ) {
// The static type of a compound assignment using ??= is the least upper
// bound of the static types of the LHS and RHS.
_analyzeLeastUpperBound(node, node.leftHandSide, node.rightHandSide,
read: true);
return null;
} else if (operator == TokenType.AMPERSAND_AMPERSAND_EQ ||
operator == TokenType.BAR_BAR_EQ) {
_recordStaticType(node, _typeProvider.boolType);
} else {
ExecutableElement staticMethodElement = node.staticElement;
DartType staticType = _computeStaticReturnType(staticMethodElement);
staticType = _typeSystem.refineBinaryExpressionType(
_getStaticType(node.leftHandSide, read: true),
operator,
node.rightHandSide.staticType,
staticType);
_recordStaticType(node, staticType);
}
return null;
}
/**
* The Dart Language Specification, 16.29 (Await Expressions):
*
* The static type of [the expression "await e"] is flatten(T) where T is
* the static type of e.
*/
@override
Object visitAwaitExpression(AwaitExpression node) {
// Await the Future. This results in whatever type is (ultimately) returned.
DartType awaitType(DartType awaitedType) {
if (awaitedType == null) {
return null;
}
if (awaitedType.isDartAsyncFutureOr) {
return awaitType((awaitedType as InterfaceType).typeArguments[0]);
}
return awaitedType.flattenFutures(_typeSystem);
}
_recordStaticType(node, awaitType(_getStaticType(node.expression)));
return null;
}
/**
* The Dart Language Specification, 12.20: <blockquote>The static type of a logical boolean
* expression is `bool`.</blockquote>
*
* The Dart Language Specification, 12.21:<blockquote>A bitwise expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A bitwise expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*
* The Dart Language Specification, 12.22: <blockquote>The static type of an equality expression
* is `bool`.</blockquote>
*
* The Dart Language Specification, 12.23: <blockquote>A relational expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A relational expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*
* The Dart Language Specification, 12.24: <blockquote>A shift expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A shift expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*
* The Dart Language Specification, 12.25: <blockquote>An additive expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. An additive expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*
* The Dart Language Specification, 12.26: <blockquote>A multiplicative expression of the form
* <i>e<sub>1</sub> op e<sub>2</sub></i> is equivalent to the method invocation
* <i>e<sub>1</sub>.op(e<sub>2</sub>)</i>. A multiplicative expression of the form <i>super op
* e<sub>2</sub></i> is equivalent to the method invocation
* <i>super.op(e<sub>2</sub>)</i>.</blockquote>
*/
@override
Object visitBinaryExpression(BinaryExpression node) {
if (node.operator.type == TokenType.QUESTION_QUESTION) {
// Evaluation of an if-null expression e of the form e1 ?? e2 is
// equivalent to the evaluation of the expression
// ((x) => x == null ? e2 : x)(e1). The static type of e is the least
// upper bound of the static type of e1 and the static type of e2.
_analyzeLeastUpperBound(node, node.leftOperand, node.rightOperand);
return null;
}
ExecutableElement staticMethodElement = node.staticElement;
DartType staticType = _computeStaticReturnType(staticMethodElement);
staticType = _typeSystem.refineBinaryExpressionType(
node.leftOperand.staticType,
node.operator.type,
node.rightOperand.staticType,
staticType);
_recordStaticType(node, staticType);
return null;
}
/**
* The Dart Language Specification, 12.4: <blockquote>The static type of a boolean literal is
* bool.</blockquote>
*/
@override
Object visitBooleanLiteral(BooleanLiteral node) {
_recordStaticType(node, _typeProvider.boolType);
return null;
}
/**
* The Dart Language Specification, 12.15.2: <blockquote>A cascaded method invocation expression
* of the form <i>e..suffix</i> is equivalent to the expression <i>(t) {t.suffix; return
* t;}(e)</i>.</blockquote>
*/
@override
Object visitCascadeExpression(CascadeExpression node) {
_recordStaticType(node, _getStaticType(node.target));
return null;
}
/**
* The Dart Language Specification, 12.19: <blockquote> ... a conditional expression <i>c</i> of
* the form <i>e<sub>1</sub> ? e<sub>2</sub> : e<sub>3</sub></i> ...
*
* It is a static type warning if the type of e<sub>1</sub> may not be assigned to `bool`.
*
* The static type of <i>c</i> is the least upper bound of the static type of <i>e<sub>2</sub></i>
* and the static type of <i>e<sub>3</sub></i>.</blockquote>
*/
@override
Object visitConditionalExpression(ConditionalExpression node) {
_analyzeLeastUpperBound(node, node.thenExpression, node.elseExpression);
return null;
}
@override
Object visitDeclaredIdentifier(DeclaredIdentifier node) {
super.visitDeclaredIdentifier(node);
_inferForEachLoopVariableType(node);
return null;
}
/**
* The Dart Language Specification, 12.3: <blockquote>The static type of a literal double is
* double.</blockquote>
*/
@override
Object visitDoubleLiteral(DoubleLiteral node) {
_recordStaticType(node, _typeProvider.doubleType);
return null;
}
@override
Object visitFunctionDeclaration(FunctionDeclaration node) {
FunctionExpression function = node.functionExpression;
ExecutableElementImpl functionElement =
node.declaredElement as ExecutableElementImpl;
if (node.parent is FunctionDeclarationStatement) {
// TypeResolverVisitor sets the return type for top-level functions, so
// we only need to handle local functions.
if (node.returnType == null) {
_inferLocalFunctionReturnType(node.functionExpression);
return null;
}
functionElement.returnType =
_computeStaticReturnTypeOfFunctionDeclaration(node);
}
_recordStaticType(function, functionElement.type);
return null;
}
/**
* The Dart Language Specification, 12.9: <blockquote>The static type of a function literal of the
* form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;, T<sub>n</sub> a<sub>n</sub>, [T<sub>n+1</sub>
* x<sub>n+1</sub> = d1, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub> = dk]) => e</i> is
* <i>(T<sub>1</sub>, &hellip;, Tn, [T<sub>n+1</sub> x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub>
* x<sub>n+k</sub>]) &rarr; T<sub>0</sub></i>, where <i>T<sub>0</sub></i> is the static type of
* <i>e</i>. In any case where <i>T<sub>i</sub>, 1 &lt;= i &lt;= n</i>, is not specified, it is
* considered to have been specified as dynamic.
*
* The static type of a function literal of the form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;,
* T<sub>n</sub> a<sub>n</sub>, {T<sub>n+1</sub> x<sub>n+1</sub> : d1, &hellip;, T<sub>n+k</sub>
* x<sub>n+k</sub> : dk}) => e</i> is <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, {T<sub>n+1</sub>
* x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub>}) &rarr; T<sub>0</sub></i>, where
* <i>T<sub>0</sub></i> is the static type of <i>e</i>. In any case where <i>T<sub>i</sub>, 1
* &lt;= i &lt;= n</i>, is not specified, it is considered to have been specified as dynamic.
*
* The static type of a function literal of the form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;,
* T<sub>n</sub> a<sub>n</sub>, [T<sub>n+1</sub> x<sub>n+1</sub> = d1, &hellip;, T<sub>n+k</sub>
* x<sub>n+k</sub> = dk]) {s}</i> is <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, [T<sub>n+1</sub>
* x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub>]) &rarr; dynamic</i>. In any case
* where <i>T<sub>i</sub>, 1 &lt;= i &lt;= n</i>, is not specified, it is considered to have been
* specified as dynamic.
*
* The static type of a function literal of the form <i>(T<sub>1</sub> a<sub>1</sub>, &hellip;,
* T<sub>n</sub> a<sub>n</sub>, {T<sub>n+1</sub> x<sub>n+1</sub> : d1, &hellip;, T<sub>n+k</sub>
* x<sub>n+k</sub> : dk}) {s}</i> is <i>(T<sub>1</sub>, &hellip;, T<sub>n</sub>, {T<sub>n+1</sub>
* x<sub>n+1</sub>, &hellip;, T<sub>n+k</sub> x<sub>n+k</sub>}) &rarr; dynamic</i>. In any case
* where <i>T<sub>i</sub>, 1 &lt;= i &lt;= n</i>, is not specified, it is considered to have been
* specified as dynamic.</blockquote>
*/
@override
Object visitFunctionExpression(FunctionExpression node) {
if (node.parent is FunctionDeclaration) {
// The function type will be resolved and set when we visit the parent
// node.
return null;
}
_inferLocalFunctionReturnType(node);
return null;
}
/**
* The Dart Language Specification, 12.14.4: <blockquote>A function expression invocation <i>i</i>
* has the form <i>e<sub>f</sub>(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>:
* a<sub>n+1</sub>, &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>, where <i>e<sub>f</sub></i> is
* an expression.
*
* It is a static type warning if the static type <i>F</i> of <i>e<sub>f</sub></i> may not be
* assigned to a function type.
*
* If <i>F</i> is not a function type, the static type of <i>i</i> is dynamic. Otherwise the
* static type of <i>i</i> is the declared return type of <i>F</i>.</blockquote>
*/
@override
Object visitFunctionExpressionInvocation(FunctionExpressionInvocation node) {
_inferGenericInvocationExpression(node);
DartType staticType = _computeInvokeReturnType(node.staticInvokeType);
_recordStaticType(node, staticType);
return null;
}
/**
* The Dart Language Specification, 12.29: <blockquote>An assignable expression of the form
* <i>e<sub>1</sub>[e<sub>2</sub>]</i> is evaluated as a method invocation of the operator method
* <i>[]</i> on <i>e<sub>1</sub></i> with argument <i>e<sub>2</sub></i>.</blockquote>
*/
@override
Object visitIndexExpression(IndexExpression node) {
if (node.inSetterContext()) {
ExecutableElement staticMethodElement = node.staticElement;
DartType staticType = _computeArgumentType(staticMethodElement);
_recordStaticType(node, staticType);
} else {
ExecutableElement staticMethodElement = node.staticElement;
DartType staticType = _computeStaticReturnType(staticMethodElement);
_recordStaticType(node, staticType);
}
return null;
}
/**
* The Dart Language Specification, 12.11.1: <blockquote>The static type of a new expression of
* either the form <i>new T.id(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> or the form <i>new
* T(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> is <i>T</i>.</blockquote>
*
* The Dart Language Specification, 12.11.2: <blockquote>The static type of a constant object
* expression of either the form <i>const T.id(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> or the
* form <i>const T(a<sub>1</sub>, &hellip;, a<sub>n</sub>)</i> is <i>T</i>. </blockquote>
*/
@override
Object visitInstanceCreationExpression(InstanceCreationExpression node) {
_inferInstanceCreationExpression(node);
_recordStaticType(node, node.constructorName.type.type);
return null;
}
/**
* <blockquote>
* An integer literal has static type \code{int}, unless the surrounding
* static context type is a type which \code{int} is not assignable to, and
* \code{double} is. In that case the static type of the integer literal is
* \code{double}.
* <blockquote>
*
* and
*
* <blockquote>
* If $e$ is an expression of the form \code{-$l$} where $l$ is an integer
* literal (\ref{numbers}) with numeric integer value $i$, then the static
* type of $e$ is the same as the static type of an integer literal with the
* same contexttype
* </blockquote>
*/
@override
Object visitIntegerLiteral(IntegerLiteral node) {
// Check the parent context for negated integer literals.
var context = InferenceContext.getContext(
(node as IntegerLiteralImpl).immediatelyNegated ? node.parent : node);
if (context == null ||
_typeSystem.isAssignableTo(_typeProvider.intType, context) ||
!_typeSystem.isAssignableTo(_typeProvider.doubleType, context)) {
_recordStaticType(node, _typeProvider.intType);
} else {
_recordStaticType(node, _typeProvider.doubleType);
}
return null;
}
/**
* The Dart Language Specification, 12.31: <blockquote>It is a static warning if <i>T</i> does not
* denote a type available in the current lexical scope.
*
* The static type of an is-expression is `bool`.</blockquote>
*/
@override
Object visitIsExpression(IsExpression node) {
_recordStaticType(node, _typeProvider.boolType);
return null;
}
/**
* The Dart Language Specification, 12.6: <blockquote>The static type of a list literal of the
* form <i><b>const</b> &lt;E&gt;[e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> or the form
* <i>&lt;E&gt;[e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> is `List&lt;E&gt;`. The static
* type a list literal of the form <i><b>const</b> [e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> or
* the form <i>[e<sub>1</sub>, &hellip;, e<sub>n</sub>]</i> is `List&lt;dynamic&gt;`
* .</blockquote>
*/
@override
Object visitListLiteral(ListLiteral node) {
TypeArgumentList typeArguments = node.typeArguments;
// If we have explicit arguments, use them
if (typeArguments != null) {
DartType staticType = _dynamicType;
NodeList<TypeAnnotation> arguments = typeArguments.arguments;
if (arguments != null && arguments.length == 1) {
DartType argumentType = _getType(arguments[0]);
if (argumentType != null) {
staticType = argumentType;
}
}
_recordStaticType(
node, _typeProvider.listType.instantiate(<DartType>[staticType]));
return null;
}
DartType listDynamicType =
_typeProvider.listType.instantiate(<DartType>[_dynamicType]);
// If there are no type arguments, try to infer some arguments.
DartType inferred = inferListType(node);
if (inferred != listDynamicType) {
// TODO(jmesserly): this results in an "inferred" message even when we
// in fact had an error above, because it will still attempt to return
// a type. Perhaps we should record inference from TypeSystem if
// everything was successful?
_resolver.inferenceContext.recordInference(node, inferred);
_recordStaticType(node, inferred);
return null;
}
// If we have no type arguments and couldn't infer any, use dynamic.
_recordStaticType(node, listDynamicType);
return null;
}
/**
* The Dart Language Specification, 12.7: <blockquote>The static type of a map literal of the form
* <i><b>const</b> &lt;K, V&gt; {k<sub>1</sub>:e<sub>1</sub>, &hellip;,
* k<sub>n</sub>:e<sub>n</sub>}</i> or the form <i>&lt;K, V&gt; {k<sub>1</sub>:e<sub>1</sub>,
* &hellip;, k<sub>n</sub>:e<sub>n</sub>}</i> is `Map&lt;K, V&gt;`. The static type a map
* literal of the form <i><b>const</b> {k<sub>1</sub>:e<sub>1</sub>, &hellip;,
* k<sub>n</sub>:e<sub>n</sub>}</i> or the form <i>{k<sub>1</sub>:e<sub>1</sub>, &hellip;,
* k<sub>n</sub>:e<sub>n</sub>}</i> is `Map&lt;dynamic, dynamic&gt;`.
*
* It is a compile-time error if the first type argument to a map literal is not
* <i>String</i>.</blockquote>
*/
@override
Object visitMapLiteral(MapLiteral node) {
TypeArgumentList typeArguments = node.typeArguments;
DartType mapDynamicType = _typeProvider.mapType
.instantiate(<DartType>[_dynamicType, _dynamicType]);
// If we have type arguments, use them
if (typeArguments != null) {
DartType staticKeyType = _dynamicType;
DartType staticValueType = _dynamicType;
NodeList<TypeAnnotation> arguments = typeArguments.arguments;
if (arguments != null && arguments.length == 2) {
DartType entryKeyType = _getType(arguments[0]);
if (entryKeyType != null) {
staticKeyType = entryKeyType;
}
DartType entryValueType = _getType(arguments[1]);
if (entryValueType != null) {
staticValueType = entryValueType;
}
}
_recordStaticType(
node,
_typeProvider.mapType
.instantiate(<DartType>[staticKeyType, staticValueType]));
return null;
}
// If we have no explicit type arguments, try to infer type arguments.
ParameterizedType inferred = inferMapType(node);
if (inferred != mapDynamicType) {
// TODO(jmesserly): this results in an "inferred" message even when we
// in fact had an error above, because it will still attempt to return
// a type. Perhaps we should record inference from TypeSystem if
// everything was successful?
_resolver.inferenceContext.recordInference(node, inferred);
_recordStaticType(node, inferred);
return null;
}
// If no type arguments and no inference, use dynamic
_recordStaticType(node, mapDynamicType);
return null;
}
/**
* The Dart Language Specification, 12.15.1: <blockquote>An ordinary method invocation <i>i</i>
* has the form <i>o.m(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>: a<sub>n+1</sub>,
* &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>.
*
* Let <i>T</i> be the static type of <i>o</i>. It is a static type warning if <i>T</i> does not
* have an accessible instance member named <i>m</i>. If <i>T.m</i> exists, it is a static warning
* if the type <i>F</i> of <i>T.m</i> may not be assigned to a function type.
*
* If <i>T.m</i> does not exist, or if <i>F</i> is not a function type, the static type of
* <i>i</i> is dynamic. Otherwise the static type of <i>i</i> is the declared return type of
* <i>F</i>.</blockquote>
*
* The Dart Language Specification, 11.15.3: <blockquote>A static method invocation <i>i</i> has
* the form <i>C.m(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>: a<sub>n+1</sub>,
* &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>.
*
* It is a static type warning if the type <i>F</i> of <i>C.m</i> may not be assigned to a
* function type.
*
* If <i>F</i> is not a function type, or if <i>C.m</i> does not exist, the static type of i is
* dynamic. Otherwise the static type of <i>i</i> is the declared return type of
* <i>F</i>.</blockquote>
*
* The Dart Language Specification, 11.15.4: <blockquote>A super method invocation <i>i</i> has
* the form <i>super.m(a<sub>1</sub>, &hellip;, a<sub>n</sub>, x<sub>n+1</sub>: a<sub>n+1</sub>,
* &hellip;, x<sub>n+k</sub>: a<sub>n+k</sub>)</i>.
*
* It is a static type warning if <i>S</i> does not have an accessible instance member named m. If
* <i>S.m</i> exists, it is a static warning if the type <i>F</i> of <i>S.m</i> may not be
* assigned to a function type.
*
* If <i>S.m</i> does not exist, or if <i>F</i> is not a function type, the static type of
* <i>i</i> is dynamic. Otherwise the static type of <i>i</i> is the declared return type of
* <i>F</i>.</blockquote>
*/
@override
Object visitMethodInvocation(MethodInvocation node) {
_inferGenericInvocationExpression(node);
// Record static return type of the static element.
bool inferredStaticType = _inferMethodInvocationObject(node) ||
_inferMethodInvocationInlineJS(node);
if (!inferredStaticType) {
DartType staticStaticType =
_computeInvokeReturnType(node.staticInvokeType);
_recordStaticType(node, staticStaticType);
}
return null;
}
@override
Object visitNamedExpression(NamedExpression node) {
Expression expression = node.expression;
_recordStaticType(node, _getStaticType(expression));
return null;
}
/**
* The Dart Language Specification, 12.2: <blockquote>The static type of `null` is bottom.
* </blockquote>
*/
@override
Object visitNullLiteral(NullLiteral node) {
_recordStaticType(node, _typeProvider.nullType);
return null;
}
@override
Object visitParenthesizedExpression(ParenthesizedExpression node) {
Expression expression = node.expression;
_recordStaticType(node, _getStaticType(expression));
return null;
}
/**
* The Dart Language Specification, 12.28: <blockquote>A postfix expression of the form
* <i>v++</i>, where <i>v</i> is an identifier, is equivalent to <i>(){var r = v; v = r + 1;
* return r}()</i>.
*
* A postfix expression of the form <i>C.v++</i> is equivalent to <i>(){var r = C.v; C.v = r + 1;
* return r}()</i>.
*
* A postfix expression of the form <i>e1.v++</i> is equivalent to <i>(x){var r = x.v; x.v = r +
* 1; return r}(e1)</i>.
*
* A postfix expression of the form <i>e1[e2]++</i> is equivalent to <i>(a, i){var r = a[i]; a[i]
* = r + 1; return r}(e1, e2)</i>
*
* A postfix expression of the form <i>v--</i>, where <i>v</i> is an identifier, is equivalent to
* <i>(){var r = v; v = r - 1; return r}()</i>.
*
* A postfix expression of the form <i>C.v--</i> is equivalent to <i>(){var r = C.v; C.v = r - 1;
* return r}()</i>.
*
* A postfix expression of the form <i>e1.v--</i> is equivalent to <i>(x){var r = x.v; x.v = r -
* 1; return r}(e1)</i>.
*
* A postfix expression of the form <i>e1[e2]--</i> is equivalent to <i>(a, i){var r = a[i]; a[i]
* = r - 1; return r}(e1, e2)</i></blockquote>
*/
@override
Object visitPostfixExpression(PostfixExpression node) {
Expression operand = node.operand;
DartType staticType = _getStaticType(operand, read: true);
TokenType operator = node.operator.type;
if (operator == TokenType.MINUS_MINUS || operator == TokenType.PLUS_PLUS) {
DartType intType = _typeProvider.intType;
if (identical(staticType, intType)) {
staticType = intType;
}
}
_recordStaticType(node, staticType);
return null;
}
/**
* See [visitSimpleIdentifier].
*/
@override
Object visitPrefixedIdentifier(PrefixedIdentifier node) {
SimpleIdentifier prefixedIdentifier = node.identifier;
Element staticElement = prefixedIdentifier.staticElement;
DartType staticType = _dynamicType;
if (staticElement is ClassElement) {
if (_isNotTypeLiteral(node)) {
staticType = staticElement.type;
} else {
staticType = _typeProvider.typeType;
}
} else if (staticElement is FunctionTypeAliasElement) {
if (_isNotTypeLiteral(node)) {
staticType = staticElement.type;
} else {
staticType = _typeProvider.typeType;
}
} else if (staticElement is MethodElement) {
staticType = staticElement.type;
} else if (staticElement is PropertyAccessorElement) {
staticType = _getTypeOfProperty(staticElement);
} else if (staticElement is ExecutableElement) {
staticType = staticElement.type;
} else if (staticElement is TypeParameterElement) {
staticType = staticElement.type;
} else if (staticElement is VariableElement) {
staticType = staticElement.type;
}
staticType = _inferGenericInstantiationFromContext(node, staticType);
if (!_inferObjectAccess(node, staticType, prefixedIdentifier)) {
_recordStaticType(prefixedIdentifier, staticType);
_recordStaticType(node, staticType);
}
return null;
}
/**
* The Dart Language Specification, 12.27: <blockquote>A unary expression <i>u</i> of the form
* <i>op e</i> is equivalent to a method invocation <i>expression e.op()</i>. An expression of the
* form <i>op super</i> is equivalent to the method invocation <i>super.op()<i>.</blockquote>
*/
@override
Object visitPrefixExpression(PrefixExpression node) {
TokenType operator = node.operator.type;
if (operator == TokenType.BANG) {
_recordStaticType(node, _typeProvider.boolType);
} else {
// The other cases are equivalent to invoking a method.
ExecutableElement staticMethodElement = node.staticElement;
DartType staticType = _computeStaticReturnType(staticMethodElement);
if (operator == TokenType.MINUS_MINUS ||
operator == TokenType.PLUS_PLUS) {
DartType intType = _typeProvider.intType;
if (identical(_getStaticType(node.operand, read: true), intType)) {
staticType = intType;
}
}
_recordStaticType(node, staticType);
}
return null;
}
/**
* The Dart Language Specification, 12.13: <blockquote> Property extraction allows for a member of
* an object to be concisely extracted from the object. If <i>o</i> is an object, and if <i>m</i>
* is the name of a method member of <i>o</i>, then
* * <i>o.m</i> is defined to be equivalent to: <i>(r<sub>1</sub>, &hellip;, r<sub>n</sub>,
* {p<sub>1</sub> : d<sub>1</sub>, &hellip;, p<sub>k</sub> : d<sub>k</sub>}){return
* o.m(r<sub>1</sub>, &hellip;, r<sub>n</sub>, p<sub>1</sub>: p<sub>1</sub>, &hellip;,
* p<sub>k</sub>: p<sub>k</sub>);}</i> if <i>m</i> has required parameters <i>r<sub>1</sub>,
* &hellip;, r<sub>n</sub></i>, and named parameters <i>p<sub>1</sub> &hellip; p<sub>k</sub></i>
* with defaults <i>d<sub>1</sub>, &hellip;, d<sub>k</sub></i>.
* * <i>(r<sub>1</sub>, &hellip;, r<sub>n</sub>, [p<sub>1</sub> = d<sub>1</sub>, &hellip;,
* p<sub>k</sub> = d<sub>k</sub>]){return o.m(r<sub>1</sub>, &hellip;, r<sub>n</sub>,
* p<sub>1</sub>, &hellip;, p<sub>k</sub>);}</i> if <i>m</i> has required parameters
* <i>r<sub>1</sub>, &hellip;, r<sub>n</sub></i>, and optional positional parameters
* <i>p<sub>1</sub> &hellip; p<sub>k</sub></i> with defaults <i>d<sub>1</sub>, &hellip;,
* d<sub>k</sub></i>.
* Otherwise, if <i>m</i> is the name of a getter member of <i>o</i> (declared implicitly or
* explicitly) then <i>o.m</i> evaluates to the result of invoking the getter. </blockquote>
*
* The Dart Language Specification, 12.17: <blockquote> ... a getter invocation <i>i</i> of the
* form <i>e.m</i> ...
*
* Let <i>T</i> be the static type of <i>e</i>. It is a static type warning if <i>T</i> does not
* have a getter named <i>m</i>.
*
* The static type of <i>i</i> is the declared return type of <i>T.m</i>, if <i>T.m</i> exists;
* otherwise the static type of <i>i</i> is dynamic.
*
* ... a getter invocation <i>i</i> of the form <i>C.m</i> ...
*
* It is a static warning if there is no class <i>C</i> in the enclosing lexical scope of
* <i>i</i>, or if <i>C</i> does not declare, implicitly or explicitly, a getter named <i>m</i>.
*
* The static type of <i>i</i> is the declared return type of <i>C.m</i> if it exists or dynamic
* otherwise.
*
* ... a top-level getter invocation <i>i</i> of the form <i>m</i>, where <i>m</i> is an
* identifier ...
*
* The static type of <i>i</i> is the declared return type of <i>m</i>.</blockquote>
*/
@override
Object visitPropertyAccess(PropertyAccess node) {
SimpleIdentifier propertyName = node.propertyName;
Element staticElement = propertyName.staticElement;
DartType staticType = _dynamicType;
if (staticElement is MethodElement) {
staticType = staticElement.type;
} else if (staticElement is PropertyAccessorElement) {
staticType = _getTypeOfProperty(staticElement);
} else {
// TODO(brianwilkerson) Report this internal error.
}
staticType = _inferGenericInstantiationFromContext(node, staticType);
if (!_inferObjectAccess(node, staticType, propertyName)) {
_recordStaticType(propertyName, staticType);
_recordStaticType(node, staticType);
}
return null;
}
/**
* The Dart Language Specification, 12.9: <blockquote>The static type of a rethrow expression is
* bottom.</blockquote>
*/
@override
Object visitRethrowExpression(RethrowExpression node) {
_recordStaticType(node, _typeProvider.bottomType);
return null;
}
/**
* The Dart Language Specification, 12.30: <blockquote>Evaluation of an identifier expression
* <i>e</i> of the form <i>id</i> proceeds as follows:
*
* Let <i>d</i> be the innermost declaration in the enclosing lexical scope whose name is
* <i>id</i>. If no such declaration exists in the lexical scope, let <i>d</i> be the declaration
* of the inherited member named <i>id</i> if it exists.
* * If <i>d</i> is a class or type alias <i>T</i>, the value of <i>e</i> is the unique instance
* of class `Type` reifying <i>T</i>.
* * If <i>d</i> is a type parameter <i>T</i>, then the value of <i>e</i> is the value of the
* actual type argument corresponding to <i>T</i> that was passed to the generative constructor
* that created the current binding of this. We are assured that this is well defined, because if
* we were in a static member the reference to <i>T</i> would be a compile-time error.
* * If <i>d</i> is a library variable then:
* * If <i>d</i> is of one of the forms <i>var v = e<sub>i</sub>;</i>, <i>T v =
* e<sub>i</sub>;</i>, <i>final v = e<sub>i</sub>;</i>, <i>final T v = e<sub>i</sub>;</i>, and no
* value has yet been stored into <i>v</i> then the initializer expression <i>e<sub>i</sub></i> is
* evaluated. If, during the evaluation of <i>e<sub>i</sub></i>, the getter for <i>v</i> is
* referenced, a CyclicInitializationError is thrown. If the evaluation succeeded yielding an
* object <i>o</i>, let <i>r = o</i>, otherwise let <i>r = null</i>. In any case, <i>r</i> is
* stored into <i>v</i>. The value of <i>e</i> is <i>r</i>.
* * If <i>d</i> is of one of the forms <i>const v = e;</i> or <i>const T v = e;</i> the result
* of the getter is the value of the compile time constant <i>e</i>. Otherwise
* * <i>e</i> evaluates to the current binding of <i>id</i>.
* * If <i>d</i> is a local variable or formal parameter then <i>e</i> evaluates to the current
* binding of <i>id</i>.
* * If <i>d</i> is a static method, top level function or local function then <i>e</i>
* evaluates to the function defined by <i>d</i>.
* * If <i>d</i> is the declaration of a static variable or static getter declared in class
* <i>C</i>, then <i>e</i> is equivalent to the getter invocation <i>C.id</i>.
* * If <i>d</i> is the declaration of a top level getter, then <i>e</i> is equivalent to the
* getter invocation <i>id</i>.
* * Otherwise, if <i>e</i> occurs inside a top level or static function (be it function,
* method, getter, or setter) or variable initializer, evaluation of e causes a NoSuchMethodError
* to be thrown.
* * Otherwise <i>e</i> is equivalent to the property extraction <i>this.id</i>.
* </blockquote>
*/
@override
Object visitSimpleIdentifier(SimpleIdentifier node) {
Element element = node.staticElement;
DartType staticType = _dynamicType;
if (element is ClassElement) {
if (_isNotTypeLiteral(node)) {
staticType = element.type;
} else {
staticType = _typeProvider.typeType;
}
} else if (element is FunctionTypeAliasElement) {
if (_isNotTypeLiteral(node)) {
staticType = element.type;
} else {
staticType = _typeProvider.typeType;
}
} else if (element is MethodElement) {
staticType = element.type;
} else if (element is PropertyAccessorElement) {
staticType = _getTypeOfProperty(element);
} else if (element is ExecutableElement) {
staticType = element.type;
} else if (element is TypeParameterElement) {
staticType = _typeProvider.typeType;
} else if (element is VariableElement) {
VariableElement variable = element;
staticType = _promoteManager.getStaticType(variable);
} else if (element is PrefixElement) {
var parent = node.parent;
if (parent is PrefixedIdentifier && parent.prefix == node ||
parent is MethodInvocation && parent.target == node) {
return null;
}
staticType = _typeProvider.dynamicType;
} else if (element is DynamicElementImpl) {
staticType = _typeProvider.typeType;
} else {
staticType = _dynamicType;
}
staticType = _inferGenericInstantiationFromContext(node, staticType);
_recordStaticType(node, staticType);
return null;
}
/**
* The Dart Language Specification, 12.5: <blockquote>The static type of a string literal is
* `String`.</blockquote>
*/
@override
Object visitSimpleStringLiteral(SimpleStringLiteral node) {
_recordStaticType(node, _typeProvider.stringType);
return null;
}
/**
* The Dart Language Specification, 12.5: <blockquote>The static type of a string literal is
* `String`.</blockquote>
*/
@override
Object visitStringInterpolation(StringInterpolation node) {
_recordStaticType(node, _typeProvider.stringType);
return null;
}
@override
Object visitSuperExpression(SuperExpression node) {
if (thisType == null) {
// TODO(brianwilkerson) Report this error if it hasn't already been
// reported.
_recordStaticType(node, _dynamicType);
} else {
_recordStaticType(node, thisType);
}
return null;
}
@override
Object visitSymbolLiteral(SymbolLiteral node) {
_recordStaticType(node, _typeProvider.symbolType);
return null;
}
/**
* The Dart Language Specification, 12.10: <blockquote>The static type of `this` is the
* interface of the immediately enclosing class.</blockquote>
*/
@override
Object visitThisExpression(ThisExpression node) {
if (thisType == null) {
// TODO(brianwilkerson) Report this error if it hasn't already been
// reported.
_recordStaticType(node, _dynamicType);
} else {
_recordStaticType(node, thisType);
}
return null;
}
/**
* The Dart Language Specification, 12.8: <blockquote>The static type of a throw expression is
* bottom.</blockquote>
*/
@override
Object visitThrowExpression(ThrowExpression node) {
_recordStaticType(node, _typeProvider.bottomType);
return null;
}
@override
Object visitVariableDeclaration(VariableDeclaration node) {
Expression initializer = node.initializer;
_inferLocalVariableType(node, initializer);
if (initializer != null) {
DartType rightType = initializer.staticType;
SimpleIdentifier name = node.name;
VariableElement element = name.staticElement as VariableElement;
if (element != null) {
_resolver.overrideVariable(element, rightType, true);
}
}
return null;
}
/**
* Set the static type of [node] to be the least upper bound of the static
* types of subexpressions [expr1] and [expr2].
*/
void _analyzeLeastUpperBound(
Expression node, Expression expr1, Expression expr2,
{bool read: false}) {
DartType staticType1 = _getExpressionType(expr1, read: read);
DartType staticType2 = _getExpressionType(expr2, read: read);
if (staticType1 == null) {
// TODO(brianwilkerson) Determine whether this can still happen.
staticType1 = _dynamicType;
}
if (staticType2 == null) {
// TODO(brianwilkerson) Determine whether this can still happen.
staticType2 = _dynamicType;
}
DartType staticType =
_typeSystem.getLeastUpperBound(staticType1, staticType2) ??
_dynamicType;
_recordStaticType(node, staticType);
}
/**
* Record that the static type of the given node is the type of the second argument to the method
* represented by the given element.
*
* @param element the element representing the method invoked by the given node
*/
DartType _computeArgumentType(ExecutableElement element) {
if (element != null) {
List<ParameterElement> parameters = element.parameters;
if (parameters != null && parameters.length == 2) {
return parameters[1].type;
}
}
return _dynamicType;
}
/**
* Compute the return type of the method or function represented by the given
* type that is being invoked.
*/
DartType _computeInvokeReturnType(DartType type) {
if (type is InterfaceType) {
MethodElement callMethod = type.lookUpMethod(
FunctionElement.CALL_METHOD_NAME, _resolver.definingLibrary);
return callMethod?.type?.returnType ?? _dynamicType;
} else if (type is FunctionType) {
return type.returnType ?? _dynamicType;
}
return _dynamicType;
}
/**
* Given a function body and its return type, compute the return type of
* the entire function, taking into account whether the function body
* is `sync*`, `async` or `async*`.
*
* See also [FunctionBody.isAsynchronous], [FunctionBody.isGenerator].
*/
DartType _computeReturnTypeOfFunction(FunctionBody body, DartType type) {
if (body.isGenerator) {
InterfaceType genericType = body.isAsynchronous
? _typeProvider.streamType
: _typeProvider.iterableType;
return genericType.instantiate(<DartType>[type]);
} else if (body.isAsynchronous) {
if (type.isDartAsyncFutureOr) {
type = (type as InterfaceType).typeArguments[0];
}
return _typeProvider.futureType
.instantiate(<DartType>[type.flattenFutures(_typeSystem)]);
} else {
return type;
}
}
/**
* Compute the static return type of the method or function represented by the given element.
*
* @param element the element representing the method or function invoked by the given node
* @return the static return type that was computed
*/
DartType _computeStaticReturnType(Element element) {
if (element is PropertyAccessorElement) {
//
// This is a function invocation expression disguised as something else.
// We are invoking a getter and then invoking the returned function.
//
FunctionType propertyType = element.type;
if (propertyType != null) {
return _computeInvokeReturnType(propertyType.returnType);
}
} else if (element is ExecutableElement) {
return _computeInvokeReturnType(element.type);
} else if (element is VariableElement) {
DartType variableType = _promoteManager.getStaticType(element);
return _computeInvokeReturnType(variableType);
}
return _dynamicType;
}
/**
* Given a function declaration, compute the return static type of the function. The return type
* of functions with a block body is `dynamicType`, with an expression body it is the type
* of the expression.
*
* @param node the function expression whose static return type is to be computed
* @return the static return type that was computed
*/
DartType _computeStaticReturnTypeOfFunctionDeclaration(
FunctionDeclaration node) {
TypeAnnotation returnType = node.returnType;
if (returnType == null) {
return _dynamicType;
}
return returnType.type;
}
DartType _findIteratedType(DartType type, DartType targetType) {
// TODO(vsm): Use leafp's matchType here?
// Set by _find if match is found
DartType result;
// Elements we've already visited on a given inheritance path.
HashSet<ClassElement> visitedClasses;
type = type.resolveToBound(_typeProvider.objectType);
bool _find(InterfaceType type) {
ClassElement element = type.element;
if (type == _typeProvider.objectType || element == null) {
return false;
}
if (element == targetType.element) {
List<DartType> typeArguments = type.typeArguments;
assert(typeArguments.length == 1);
result = typeArguments[0];
return true;
}
if (visitedClasses == null) {
visitedClasses = new HashSet<ClassElement>();
}
// Already visited this class along this path
if (!visitedClasses.add(element)) {
return false;
}
try {
return _find(type.superclass) ||
type.interfaces.any(_find) ||
type.mixins.any(_find);
} finally {
visitedClasses.remove(element);
}
}
if (type is InterfaceType) {
_find(type);
}
return result;
}
/**
* If the given element name can be mapped to the name of a class defined within the given
* library, return the type specified by the argument.
*
* @param library the library in which the specified type would be defined
* @param elementName the name of the element for which a type is being sought
* @param nameMap an optional map used to map the element name to a type name
* @return the type specified by the first argument in the argument list
*/
DartType _getElementNameAsType(
LibraryElement library, String elementName, Map<String, String> nameMap) {
if (elementName != null) {
if (nameMap != null) {
elementName = nameMap[elementName.toLowerCase()];
}
ClassElement returnType = library.getType(elementName);
if (returnType != null) {
if (returnType.typeParameters.isNotEmpty) {
// Caller can't deal with unbound type parameters, so substitute
// `dynamic`.
return returnType.type.instantiate(
returnType.typeParameters.map((_) => _dynamicType).toList());
}
return returnType.type;
}
}
return null;
}
/**
* Gets the definite type of expression, which can be used in cases where
* the most precise type is desired, for example computing the least upper
* bound.
*
* See [getExpressionType] for more information. Without strong mode, this is
* equivalent to [_getStaticType].
*/
DartType _getExpressionType(Expression expr, {bool read: false}) =>
getExpressionType(expr, _typeSystem, _typeProvider, read: read);
/**
* If the given argument list contains at least one argument, and if the argument is a simple
* string literal, return the String value of the argument.
*
* @param argumentList the list of arguments from which a string value is to be extracted
* @return the string specified by the first argument in the argument list
*/
String _getFirstArgumentAsString(ArgumentList argumentList) {
NodeList<Expression> arguments = argumentList.arguments;
if (arguments.length > 0) {
Expression argument = arguments[0];
if (argument is SimpleStringLiteral) {
return argument.value;
}
}
return null;
}
/**
* Return the static type of the given [expression].
*/
DartType _getStaticType(Expression expression, {bool read: false}) {
DartType type;
if (read) {
type = getReadType(expression);
} else {
type = expression.staticType;
}
if (type == null) {
// TODO(brianwilkerson) Determine the conditions for which the static type
// is null.
return _dynamicType;
}
return type;
}
/**
* Return the type represented by the given type [annotation].
*/
DartType _getType(TypeAnnotation annotation) {
DartType type = annotation.type;
if (type == null) {
//TODO(brianwilkerson) Determine the conditions for which the type is
// null.
return _dynamicType;
}
return type;
}
/**
* Return the type that should be recorded for a node that resolved to the given accessor.
*
* @param accessor the accessor that the node resolved to
* @return the type that should be recorded for a node that resolved to the given accessor
*/
DartType _getTypeOfProperty(PropertyAccessorElement accessor) {
FunctionType functionType = accessor.type;
if (functionType == null) {
// TODO(brianwilkerson) Report this internal error. This happens when we
// are analyzing a reference to a property before we have analyzed the
// declaration of the property or when the property does not have a
// defined type.
return _dynamicType;
}
if (accessor.isSetter) {
List<DartType> parameterTypes = functionType.normalParameterTypes;
if (parameterTypes != null && parameterTypes.length > 0) {
return parameterTypes[0];
}
PropertyAccessorElement getter = accessor.variable.getter;
if (getter != null) {
functionType = getter.type;
if (functionType != null) {
return functionType.returnType;
}
}
return _dynamicType;
}
return functionType.returnType;
}
/**
* Given a declared identifier from a foreach loop, attempt to infer
* a type for it if one is not already present. Inference is based
* on the type of the iterator or stream over which the foreach loop
* is defined.
*/
void _inferForEachLoopVariableType(DeclaredIdentifier loopVariable) {
if (loopVariable != null &&
loopVariable.type == null &&
loopVariable.parent is ForEachStatement) {
ForEachStatement loop = loopVariable.parent;
if (loop.iterable != null) {
Expression expr = loop.iterable;
LocalVariableElementImpl element = loopVariable.declaredElement;
DartType exprType = expr.staticType;
DartType targetType = (loop.awaitKeyword == null)
? _typeProvider.iterableType
: _typeProvider.streamType;
DartType iteratedType = _findIteratedType(exprType, targetType);
if (element != null && iteratedType != null) {
element.type = iteratedType;
loopVariable.identifier.staticType = iteratedType;
}
}
}
}
/**
* Given an uninstantiated generic function type, try to infer the
* instantiated generic function type from the surrounding context.
*/
DartType _inferGenericInstantiationFromContext(AstNode node, DartType type) {
TypeSystem ts = _typeSystem;
var context = InferenceContext.getContext(node);
if (context is FunctionType &&
type is FunctionType &&
ts is StrongTypeSystemImpl) {
return ts.inferFunctionTypeInstantiation(context, type,
errorReporter: _resolver.errorReporter, errorNode: node);
}
return type;
}
/**
* Given a possibly generic invocation like `o.m(args)` or `(f)(args)` try to
* infer the instantiated generic function type.
*
* This takes into account both the context type, as well as information from
* the argument types.
*/
void _inferGenericInvocationExpression(InvocationExpression node) {
ArgumentList arguments = node.argumentList;
var type = node.function.staticType;
var freshType =
type is FunctionType ? new FunctionTypeImpl.fresh(type) : type;
FunctionType inferred = _inferGenericInvoke(
node, freshType, node.typeArguments, arguments, node.function);
if (inferred != null && inferred != node.staticInvokeType) {
// Fix up the parameter elements based on inferred method.
arguments.correspondingStaticParameters =
ResolverVisitor.resolveArgumentsToParameters(
arguments, inferred.parameters, null);
node.staticInvokeType = inferred;
}
}
/**
* Given a possibly generic invocation or instance creation, such as
* `o.m(args)` or `(f)(args)` or `new T(args)` try to infer the instantiated
* generic function type.
*
* This takes into account both the context type, as well as information from
* the argument types.
*/
FunctionType _inferGenericInvoke(
Expression node,
DartType fnType,
TypeArgumentList typeArguments,
ArgumentList argumentList,
AstNode errorNode) {
TypeSystem ts = _typeSystem;
if (typeArguments == null &&
fnType is FunctionType &&
fnType.typeFormals.isNotEmpty &&
ts is StrongTypeSystemImpl) {
// Get the parameters that correspond to the uninstantiated generic.
List<ParameterElement> rawParameters =
ResolverVisitor.resolveArgumentsToParameters(
argumentList, fnType.parameters, null);
List<ParameterElement> params = <ParameterElement>[];
List<DartType> argTypes = <DartType>[];
for (int i = 0, length = rawParameters.length; i < length; i++) {
ParameterElement parameter = rawParameters[i];
if (parameter != null) {
params.add(parameter);
argTypes.add(argumentList.arguments[i].staticType);
}
}
return ts.inferGenericFunctionOrType(
fnType, params, argTypes, InferenceContext.getContext(node),
errorReporter: _resolver.errorReporter, errorNode: errorNode);
}
return null;
}
/**
* Given an instance creation of a possibly generic type, infer the type
* arguments using the current context type as well as the argument types.
*/
void _inferInstanceCreationExpression(InstanceCreationExpression node) {
ConstructorName constructor = node.constructorName;
ConstructorElement originalElement = constructor.staticElement;
// If the constructor is generic, we'll have a ConstructorMember that
// substitutes in type arguments (possibly `dynamic`) from earlier in
// resolution.
//
// Otherwise we'll have a ConstructorElement, and we can skip inference
// because there's nothing to infer in a non-generic type.
if (originalElement is! ConstructorMember) {
return;
}
// TODO(leafp): Currently, we may re-infer types here, since we
// sometimes resolve multiple times. We should really check that we
// have not already inferred something. However, the obvious ways to
// check this don't work, since we may have been instantiated
// to bounds in an earlier phase, and we *do* want to do inference
// in that case.
// Get back to the uninstantiated generic constructor.
// TODO(jmesserly): should we store this earlier in resolution?
// Or look it up, instead of jumping backwards through the Member?
var rawElement = (originalElement as ConstructorMember).baseElement;
FunctionType constructorType = constructorToGenericFunctionType(rawElement);
ArgumentList arguments = node.argumentList;
FunctionType inferred = _inferGenericInvoke(node, constructorType,
constructor.type.typeArguments, arguments, node.constructorName);
if (inferred != null && inferred != originalElement.type) {
// Fix up the parameter elements based on inferred method.
arguments.correspondingStaticParameters =
ResolverVisitor.resolveArgumentsToParameters(
arguments, inferred.parameters, null);
inferConstructorName(constructor, inferred.returnType);
// Update the static element as well. This is used in some cases, such as
// computing constant values. It is stored in two places.
constructor.staticElement =
ConstructorMember.from(rawElement, inferred.returnType);
node.staticElement = constructor.staticElement;
}
}
/**
* Infers the return type of a local function, either a lambda or
* (in strong mode) a local function declaration.
*/
void _inferLocalFunctionReturnType(FunctionExpression node) {
ExecutableElementImpl functionElement =
node.declaredElement as ExecutableElementImpl;
FunctionBody body = node.body;
DartType computedType = InferenceContext.getContext(body) ?? _dynamicType;
computedType = _computeReturnTypeOfFunction(body, computedType);
functionElement.returnType = computedType;
_recordStaticType(node, functionElement.type);
_resolver.inferenceContext.recordInference(node, functionElement.type);
}
/**
* Given a local variable declaration and its initializer, attempt to infer
* a type for the local variable declaration based on the initializer.
* Inference is only done if an explicit type is not present, and if
* inferring a type improves the type.
*/
void _inferLocalVariableType(
VariableDeclaration node, Expression initializer) {
if (initializer != null) {
AstNode parent = node.parent;
if (parent is VariableDeclarationList && parent.type == null) {
DartType type = resolutionMap.staticTypeForExpression(initializer);
if (type != null && !type.isBottom && !type.isDartCoreNull) {
VariableElement element = node.declaredElement;
if (element is LocalVariableElementImpl) {
element.type = initializer.staticType;
node.name.staticType = initializer.staticType;
}
}
}
}
}
/**
* Given a method invocation [node], attempt to infer a better
* type for the result if it is an inline JS invocation
*/
// TODO(jmesserly): we should remove this, and infer type from context, rather
// than try to understand the dart2js type grammar.
// (At the very least, we should lookup type name in the correct scope.)
bool _inferMethodInvocationInlineJS(MethodInvocation node) {
Element e = node.methodName.staticElement;
if (e is FunctionElement &&
e.library.source.uri.toString() == 'dart:_foreign_helper' &&
e.name == 'JS') {
String typeStr = _getFirstArgumentAsString(node.argumentList);
DartType returnType = null;
if (typeStr == '-dynamic') {
returnType = _typeProvider.bottomType;
} else {
var components = typeStr.split('|');
if (components.remove('Null')) {
typeStr = components.join('|');
}
returnType = _getElementNameAsType(
_typeProvider.objectType.element.library, typeStr, null);
}
if (returnType != null) {
_recordStaticType(node, returnType);
return true;
}
}
return false;
}
/**
* Given a method invocation [node], attempt to infer a better
* type for the result if the target is dynamic and the method
* being called is one of the object methods.
*/
// TODO(jmesserly): we should move this logic to ElementResolver.
// If we do it here, we won't have correct parameter elements set on the
// node's argumentList. (This likely affects only explicit calls to
// `Object.noSuchMethod`.)
bool _inferMethodInvocationObject(MethodInvocation node) {
// If we have a call like `toString()` or `libraryPrefix.toString()` don't
// infer it.
Expression target = node.realTarget;
if (target == null ||
target is SimpleIdentifier && target.staticElement is PrefixElement) {
return false;
}
// Object methods called on dynamic targets can have their types improved.
String name = node.methodName.name;
MethodElement inferredElement =
_typeProvider.objectType.element.getMethod(name);
if (inferredElement == null || inferredElement.isStatic) {
return false;
}
DartType inferredType = inferredElement.type;
DartType nodeType = node.staticInvokeType;
if (nodeType != null &&
nodeType.isDynamic &&
inferredType is FunctionType &&
inferredType.parameters.isEmpty &&
node.argumentList.arguments.isEmpty &&
_typeProvider.nonSubtypableTypes.contains(inferredType.returnType)) {
node.staticInvokeType = inferredType;
_recordStaticType(node, inferredType.returnType);
return true;
}
return false;
}
/**
* Given a property access [node] with static type [nodeType],
* and [id] is the property name being accessed, infer a type for the
* access itself and its constituent components if the access is to one of the
* methods or getters of the built in 'Object' type, and if the result type is
* a sealed type. Returns true if inference succeeded.
*/
bool _inferObjectAccess(
Expression node, DartType nodeType, SimpleIdentifier id) {
// If we have an access like `libraryPrefix.hashCode` don't infer it.
if (node is PrefixedIdentifier &&
node.prefix.staticElement is PrefixElement) {
return false;
}
// Search for Object accesses.
String name = id.name;
PropertyAccessorElement inferredElement =
_typeProvider.objectType.element.getGetter(name);
if (inferredElement == null || inferredElement.isStatic) {
return false;
}
DartType inferredType = inferredElement.type.returnType;
if (nodeType != null &&
nodeType.isDynamic &&
inferredType != null &&
_typeProvider.nonSubtypableTypes.contains(inferredType)) {
_recordStaticType(id, inferredType);
_recordStaticType(node, inferredType);
return true;
}
return false;
}
/**
* Return `true` if the given [node] is not a type literal.
*/
bool _isNotTypeLiteral(Identifier node) {
AstNode parent = node.parent;
return parent is TypeName ||
(parent is PrefixedIdentifier &&
(parent.parent is TypeName || identical(parent.prefix, node))) ||
(parent is PropertyAccess &&
identical(parent.target, node) &&
parent.operator.type == TokenType.PERIOD) ||
(parent is MethodInvocation &&
identical(node, parent.target) &&
parent.operator.type == TokenType.PERIOD);
}
/**
* Record that the static type of the given node is the given type.
*
* @param expression the node whose type is to be recorded
* @param type the static type of the node
*/
void _recordStaticType(Expression expression, DartType type) {
if (type == null) {
expression.staticType = _dynamicType;
} else {
expression.staticType = type;
}
}
/**
* Given a constructor for a generic type, returns the equivalent generic
* function type that we could use to forward to the constructor, or for a
* non-generic type simply returns the constructor type.
*
* For example given the type `class C<T> { C(T arg); }`, the generic function
* type is `<T>(T) -> C<T>`.
*/
static FunctionType constructorToGenericFunctionType(
ConstructorElement constructor) {
// TODO(jmesserly): it may be worth making this available from the
// constructor. It's nice if our inference code can operate uniformly on
// function types.
ClassElement cls = constructor.enclosingElement;
FunctionType type = constructor.type;
if (cls.typeParameters.isEmpty) {
return type;
}
// Create a synthetic function type using the class type parameters,
// and then rename it with fresh variables.
var name = cls.name;
if (constructor.name != null) {
name += '.' + constructor.name;
}
var function = new FunctionElementImpl(name, -1);
function.enclosingElement = cls.enclosingElement;
function.isSynthetic = true;
function.returnType = type.returnType;
function.shareTypeParameters(cls.typeParameters);
function.shareParameters(type.parameters);
function.type = new FunctionTypeImpl(function);
return new FunctionTypeImpl.fresh(function.type);
}
}