| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "platform/utils.h" |
| |
| #include "platform/allocation.h" |
| #include "platform/globals.h" |
| |
| #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) || \ |
| defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) |
| #include <dlfcn.h> |
| #endif |
| |
| namespace dart { |
| |
| uint64_t Utils::ReverseBits64(uint64_t x) { |
| x = ((x >> 32) & 0x00000000ffffffff) | (x << 32); |
| x = ((x >> 16) & 0x0000ffff0000ffff) | ((x & 0x0000ffff0000ffff) << 16); |
| x = ((x >> 8) & 0x00ff00ff00ff00ff) | ((x & 0x00ff00ff00ff00ff) << 8); |
| x = ((x >> 4) & 0x0f0f0f0f0f0f0f0f) | ((x & 0x0f0f0f0f0f0f0f0f) << 4); |
| x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2); |
| x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1); |
| return x; |
| } |
| |
| uint32_t Utils::ReverseBits32(uint32_t x) { |
| x = ((x >> 16) & 0x0000ffff) | ((x & 0x0000ffff) << 16); |
| x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); |
| x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); |
| x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); |
| x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); |
| return x; |
| } |
| |
| // Implementation according to H.S.Warren's "Hacker's Delight" |
| // (Addison Wesley, 2002) Chapter 10 and T.Grablund, P.L.Montgomery's |
| // "Division by Invariant Integers Using Multiplication" (PLDI 1994). |
| void Utils::CalculateMagicAndShiftForDivRem(int64_t divisor, |
| int64_t* magic, |
| int64_t* shift) { |
| ASSERT(divisor <= -2 || divisor >= 2); |
| /* The magic number M and shift S can be calculated in the following way: |
| * Let nc be the most positive value of numerator(n) such that nc = kd - 1, |
| * where divisor(d) >= 2. |
| * Let nc be the most negative value of numerator(n) such that nc = kd + 1, |
| * where divisor(d) <= -2. |
| * Thus nc can be calculated like: |
| * nc = exp + exp % d - 1, where d >= 2 and exp = 2^63. |
| * nc = -exp + (exp + 1) % d, where d >= 2 and exp = 2^63. |
| * |
| * So the shift p is the smallest p satisfying |
| * 2^p > nc * (d - 2^p % d), where d >= 2 |
| * 2^p > nc * (d + 2^p % d), where d <= -2. |
| * |
| * The magic number M is calculated by |
| * M = (2^p + d - 2^p % d) / d, where d >= 2 |
| * M = (2^p - d - 2^p % d) / d, where d <= -2. |
| */ |
| int64_t p = 63; |
| const uint64_t exp = 1LL << 63; |
| |
| // Initialize the computations. |
| uint64_t abs_d = (divisor >= 0) ? divisor : -static_cast<uint64_t>(divisor); |
| uint64_t sign_bit = static_cast<uint64_t>(divisor) >> 63; |
| uint64_t tmp = exp + sign_bit; |
| uint64_t abs_nc = tmp - 1 - (tmp % abs_d); |
| uint64_t quotient1 = exp / abs_nc; |
| uint64_t remainder1 = exp % abs_nc; |
| uint64_t quotient2 = exp / abs_d; |
| uint64_t remainder2 = exp % abs_d; |
| |
| // To avoid handling both positive and negative divisor, |
| // "Hacker's Delight" introduces a method to handle these |
| // two cases together to avoid duplication. |
| uint64_t delta; |
| do { |
| p++; |
| quotient1 = 2 * quotient1; |
| remainder1 = 2 * remainder1; |
| if (remainder1 >= abs_nc) { |
| quotient1++; |
| remainder1 = remainder1 - abs_nc; |
| } |
| quotient2 = 2 * quotient2; |
| remainder2 = 2 * remainder2; |
| if (remainder2 >= abs_d) { |
| quotient2++; |
| remainder2 = remainder2 - abs_d; |
| } |
| delta = abs_d - remainder2; |
| } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0)); |
| |
| *magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1); |
| *shift = p - 64; |
| } |
| |
| // This implementation is based on the public domain MurmurHash |
| // version 2.0. The constants M and R have been determined |
| // to work well experimentally. |
| static constexpr uint32_t kStringHashM = 0x5bd1e995; |
| static constexpr int kStringHashR = 24; |
| |
| // hash and part must be lvalues. |
| #define MIX(hash, part) \ |
| { \ |
| (part) *= kStringHashM; \ |
| (part) ^= (part) >> kStringHashR; \ |
| (part) *= kStringHashM; \ |
| (hash) *= kStringHashM; \ |
| (hash) ^= (part); \ |
| } |
| |
| uint32_t Utils::StringHash(const void* data, int length) { |
| int size = length; |
| uint32_t hash = size; |
| |
| auto cursor = reinterpret_cast<const uint8_t*>(data); |
| |
| if (size >= kInt32Size) { |
| const intptr_t misalignment = |
| reinterpret_cast<intptr_t>(cursor) % kInt32Size; |
| if (misalignment > 0) { |
| // Stores 4-byte values starting from the start of the string to mimic |
| // the algorithm on aligned data. |
| uint32_t data_window = 0; |
| |
| // Shift sizes for adjusting the data window when adding the next aligned |
| // piece of data. |
| const uint32_t sr = misalignment * kBitsPerByte; |
| const uint32_t sl = kBitsPerInt32 - sr; |
| |
| const intptr_t pre_alignment_length = kInt32Size - misalignment; |
| switch (pre_alignment_length) { |
| case 3: |
| data_window |= cursor[2] << 16; |
| FALL_THROUGH; |
| case 2: |
| data_window |= cursor[1] << 8; |
| FALL_THROUGH; |
| case 1: |
| data_window |= cursor[0]; |
| } |
| cursor += pre_alignment_length; |
| size -= pre_alignment_length; |
| |
| // Mix four bytes at a time now that we're at an aligned spot. |
| for (; size >= kInt32Size; cursor += kInt32Size, size -= kInt32Size) { |
| uint32_t aligned_part = *reinterpret_cast<const uint32_t*>(cursor); |
| data_window |= (aligned_part << sl); |
| MIX(hash, data_window); |
| data_window = aligned_part >> sr; |
| } |
| |
| if (size >= misalignment) { |
| // There's one more full window in the data. We'll let the normal tail |
| // code handle any partial window. |
| switch (misalignment) { |
| case 3: |
| data_window |= cursor[2] << (16 + sl); |
| FALL_THROUGH; |
| case 2: |
| data_window |= cursor[1] << (8 + sl); |
| FALL_THROUGH; |
| case 1: |
| data_window |= cursor[0] << sl; |
| } |
| MIX(hash, data_window); |
| cursor += misalignment; |
| size -= misalignment; |
| } else { |
| // This is a partial window, so just xor and multiply by M. |
| switch (size) { |
| case 2: |
| data_window |= cursor[1] << (8 + sl); |
| FALL_THROUGH; |
| case 1: |
| data_window |= cursor[0] << sl; |
| } |
| hash ^= data_window; |
| hash *= kStringHashM; |
| cursor += size; |
| size = 0; |
| } |
| } else { |
| // Mix four bytes at a time into the hash. |
| for (; size >= kInt32Size; size -= kInt32Size, cursor += kInt32Size) { |
| uint32_t part = *reinterpret_cast<const uint32_t*>(cursor); |
| MIX(hash, part); |
| } |
| } |
| } |
| |
| // Handle the last few bytes of the string if any. |
| switch (size) { |
| case 3: |
| hash ^= cursor[2] << 16; |
| FALL_THROUGH; |
| case 2: |
| hash ^= cursor[1] << 8; |
| FALL_THROUGH; |
| case 1: |
| hash ^= cursor[0]; |
| hash *= kStringHashM; |
| } |
| |
| // Do a few final mixes of the hash to ensure the last few bytes are |
| // well-incorporated. |
| hash ^= hash >> 13; |
| hash *= kStringHashM; |
| hash ^= hash >> 15; |
| return hash; |
| } |
| |
| #undef MIX |
| |
| uint32_t Utils::WordHash(intptr_t key) { |
| // TODO(iposva): Need to check hash spreading. |
| // This example is from http://www.concentric.net/~Ttwang/tech/inthash.htm |
| // via. http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm |
| uword a = static_cast<uword>(key); |
| a = (a + 0x7ed55d16) + (a << 12); |
| a = (a ^ 0xc761c23c) ^ (a >> 19); |
| a = (a + 0x165667b1) + (a << 5); |
| a = (a + 0xd3a2646c) ^ (a << 9); |
| a = (a + 0xfd7046c5) + (a << 3); |
| a = (a ^ 0xb55a4f09) ^ (a >> 16); |
| return static_cast<uint32_t>(a); |
| } |
| |
| char* Utils::SCreate(const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| char* buffer = VSCreate(format, args); |
| va_end(args); |
| return buffer; |
| } |
| |
| char* Utils::VSCreate(const char* format, va_list args) { |
| // Measure. |
| va_list measure_args; |
| va_copy(measure_args, args); |
| intptr_t len = VSNPrint(nullptr, 0, format, measure_args); |
| va_end(measure_args); |
| |
| char* buffer = reinterpret_cast<char*>(malloc(len + 1)); |
| ASSERT(buffer != nullptr); |
| |
| // Print. |
| va_list print_args; |
| va_copy(print_args, args); |
| VSNPrint(buffer, len + 1, format, print_args); |
| va_end(print_args); |
| return buffer; |
| } |
| |
| static void GetLastErrorAsString(char** error) { |
| if (error == nullptr) return; // Nothing to do. |
| |
| #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) || \ |
| defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) |
| const char* status = dlerror(); |
| *error = status != nullptr ? strdup(status) : nullptr; |
| #elif defined(DART_HOST_OS_WINDOWS) |
| const int status = GetLastError(); |
| if (status != 0) { |
| char* description = nullptr; |
| int length = FormatMessageA( |
| FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | |
| FORMAT_MESSAGE_IGNORE_INSERTS, |
| nullptr, status, MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), |
| reinterpret_cast<char*>(&description), 0, nullptr); |
| if (length == 0) { |
| // Seems like there is no message for this error code. |
| *error = Utils::SCreate("error code %i", status); |
| } else { |
| *error = Utils::SCreate("%s (error code: %i)", description, status); |
| } |
| |
| LocalFree(description); |
| } else { |
| *error = nullptr; |
| } |
| #else |
| *error = Utils::StrDup("loading dynamic libraries is not supported"); |
| #endif |
| } |
| |
| void* Utils::LoadDynamicLibrary(const char* library_path, char** error) { |
| void* handle = nullptr; |
| |
| #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) || \ |
| defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) |
| handle = dlopen(library_path, RTLD_LAZY); |
| #elif defined(DART_HOST_OS_WINDOWS) |
| SetLastError(0); // Clear any errors. |
| |
| if (library_path == nullptr) { |
| handle = GetModuleHandle(nullptr); |
| } else { |
| // Convert to wchar_t string. |
| const int name_len = MultiByteToWideChar( |
| CP_UTF8, /*dwFlags=*/0, library_path, /*cbMultiByte=*/-1, nullptr, 0); |
| if (name_len != 0) { |
| std::unique_ptr<wchar_t[]> name(new wchar_t[name_len]); |
| const int written_len = |
| MultiByteToWideChar(CP_UTF8, /*dwFlags=*/0, library_path, |
| /*cbMultiByte=*/-1, name.get(), name_len); |
| RELEASE_ASSERT(written_len == name_len); |
| handle = LoadLibraryW(name.get()); |
| } |
| } |
| #endif |
| |
| if (handle == nullptr) { |
| GetLastErrorAsString(error); |
| } |
| |
| return handle; |
| } |
| |
| void* Utils::ResolveSymbolInDynamicLibrary(void* library_handle, |
| const char* symbol, |
| char** error) { |
| void* result = nullptr; |
| |
| #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) || \ |
| defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) |
| dlerror(); // Clear any errors. |
| result = dlsym(library_handle, symbol); |
| // Note: nullptr might be a valid return from dlsym. Must call dlerror |
| // to differentiate. |
| GetLastErrorAsString(error); |
| return result; |
| #elif defined(DART_HOST_OS_WINDOWS) |
| SetLastError(0); |
| result = reinterpret_cast<void*>( |
| GetProcAddress(reinterpret_cast<HMODULE>(library_handle), symbol)); |
| #endif |
| |
| if (result == nullptr) { |
| GetLastErrorAsString(error); |
| } |
| |
| return result; |
| } |
| |
| void Utils::UnloadDynamicLibrary(void* library_handle, char** error) { |
| bool ok = false; |
| |
| #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) || \ |
| defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) |
| ok = dlclose(library_handle) == 0; |
| #elif defined(DART_HOST_OS_WINDOWS) |
| SetLastError(0); // Clear any errors. |
| |
| ok = FreeLibrary(reinterpret_cast<HMODULE>(library_handle)); |
| #endif |
| |
| if (!ok) { |
| GetLastErrorAsString(error); |
| } |
| } |
| |
| } // namespace dart |