| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #ifndef RUNTIME_PLATFORM_GLOBALS_H_ |
| #define RUNTIME_PLATFORM_GLOBALS_H_ |
| |
| #if __cplusplus >= 201703L // C++17 |
| #define FALL_THROUGH [[fallthrough]] // NOLINT |
| #elif defined(__GNUC__) && __GNUC__ >= 7 |
| #define FALL_THROUGH __attribute__((fallthrough)); |
| #elif defined(__clang__) |
| #define FALL_THROUGH [[clang::fallthrough]] // NOLINT |
| #else |
| #define FALL_THROUGH ((void)0) |
| #endif |
| |
| // __STDC_FORMAT_MACROS has to be defined before including <inttypes.h> to |
| // enable platform independent printf format specifiers. |
| #ifndef __STDC_FORMAT_MACROS |
| #define __STDC_FORMAT_MACROS |
| #endif |
| |
| #if defined(_WIN32) |
| // Cut down on the amount of stuff that gets included via windows.h. |
| #if !defined(WIN32_LEAN_AND_MEAN) |
| #define WIN32_LEAN_AND_MEAN |
| #endif |
| |
| #if !defined(NOMINMAX) |
| #define NOMINMAX |
| #endif |
| |
| #if !defined(NOKERNEL) |
| #define NOKERNEL |
| #endif |
| |
| #if !defined(NOSERVICE) |
| #define NOSERVICE |
| #endif |
| |
| #if !defined(NOSOUND) |
| #define NOSOUND |
| #endif |
| |
| #if !defined(NOMCX) |
| #define NOMCX |
| #endif |
| |
| #if !defined(UNICODE) |
| #define _UNICODE |
| #define UNICODE |
| #endif |
| |
| #include <Rpc.h> |
| #include <VersionHelpers.h> |
| #include <intrin.h> |
| #include <shellapi.h> |
| #include <windows.h> |
| #include <winsock2.h> |
| #endif // defined(_WIN32) |
| |
| #if !defined(_WIN32) |
| #include <arpa/inet.h> |
| #include <inttypes.h> |
| #include <stdint.h> |
| #include <unistd.h> |
| #endif // !defined(_WIN32) |
| |
| #include <float.h> |
| #include <limits.h> |
| #include <stdarg.h> |
| #include <stddef.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/types.h> |
| |
| #if defined(_WIN32) |
| #include "platform/c99_support_win.h" |
| #include "platform/floating_point_win.h" |
| #include "platform/inttypes_support_win.h" |
| #endif // defined(_WIN32) |
| |
| #include "platform/math.h" |
| |
| #if !defined(_WIN32) |
| #include "platform/floating_point.h" |
| #endif // !defined(_WIN32) |
| |
| // Target OS detection. |
| // for more information on predefined macros: |
| // - http://msdn.microsoft.com/en-us/library/b0084kay.aspx |
| // - with gcc, run: "echo | gcc -E -dM -" |
| #if defined(__ANDROID__) |
| |
| // Check for Android first, to determine its difference from Linux. |
| #define HOST_OS_ANDROID 1 |
| |
| #elif defined(__linux__) || defined(__FreeBSD__) |
| |
| // Generic Linux. |
| #define HOST_OS_LINUX 1 |
| |
| #elif defined(__APPLE__) |
| |
| // Define the flavor of Mac OS we are running on. |
| #include <TargetConditionals.h> |
| // TODO(iposva): Rename HOST_OS_MACOS to HOST_OS_MAC to inherit |
| // the value defined in TargetConditionals.h |
| #define HOST_OS_MACOS 1 |
| #if TARGET_OS_IPHONE |
| #define HOST_OS_IOS 1 |
| #endif |
| |
| #elif defined(_WIN32) |
| |
| // Windows, both 32- and 64-bit, regardless of the check for _WIN32. |
| #define HOST_OS_WINDOWS 1 |
| |
| #elif defined(__Fuchsia__) |
| #define HOST_OS_FUCHSIA |
| |
| #elif !defined(HOST_OS_FUCHSIA) |
| #error Automatic target os detection failed. |
| #endif |
| |
| #if defined(DEBUG) |
| #define DEBUG_ONLY(code) code |
| #else // defined(DEBUG) |
| #define DEBUG_ONLY(code) |
| #endif // defined(DEBUG) |
| |
| namespace dart { |
| |
| struct simd128_value_t { |
| union { |
| int32_t int_storage[4]; |
| float float_storage[4]; |
| double double_storage[2]; |
| }; |
| simd128_value_t& readFrom(const float* v) { |
| float_storage[0] = v[0]; |
| float_storage[1] = v[1]; |
| float_storage[2] = v[2]; |
| float_storage[3] = v[3]; |
| return *this; |
| } |
| simd128_value_t& readFrom(const int32_t* v) { |
| int_storage[0] = v[0]; |
| int_storage[1] = v[1]; |
| int_storage[2] = v[2]; |
| int_storage[3] = v[3]; |
| return *this; |
| } |
| simd128_value_t& readFrom(const double* v) { |
| double_storage[0] = v[0]; |
| double_storage[1] = v[1]; |
| return *this; |
| } |
| simd128_value_t& readFrom(const simd128_value_t* v) { |
| *this = *v; |
| return *this; |
| } |
| void writeTo(float* v) { |
| v[0] = float_storage[0]; |
| v[1] = float_storage[1]; |
| v[2] = float_storage[2]; |
| v[3] = float_storage[3]; |
| } |
| void writeTo(int32_t* v) { |
| v[0] = int_storage[0]; |
| v[1] = int_storage[1]; |
| v[2] = int_storage[2]; |
| v[3] = int_storage[3]; |
| } |
| void writeTo(double* v) { |
| v[0] = double_storage[0]; |
| v[1] = double_storage[1]; |
| } |
| void writeTo(simd128_value_t* v) { *v = *this; } |
| }; |
| |
| // Processor architecture detection. For more info on what's defined, see: |
| // http://msdn.microsoft.com/en-us/library/b0084kay.aspx |
| // http://www.agner.org/optimize/calling_conventions.pdf |
| // or with gcc, run: "echo | gcc -E -dM -" |
| #if defined(_M_X64) || defined(__x86_64__) |
| #define HOST_ARCH_X64 1 |
| #define ARCH_IS_64_BIT 1 |
| #define kFpuRegisterSize 16 |
| typedef simd128_value_t fpu_register_t; |
| #elif defined(_M_IX86) || defined(__i386__) |
| #define HOST_ARCH_IA32 1 |
| #define ARCH_IS_32_BIT 1 |
| #define kFpuRegisterSize 16 |
| typedef simd128_value_t fpu_register_t; |
| #elif defined(__ARMEL__) |
| #define HOST_ARCH_ARM 1 |
| #define ARCH_IS_32_BIT 1 |
| #define kFpuRegisterSize 16 |
| // Mark the fact that we have defined simd_value_t. |
| #define SIMD_VALUE_T_ |
| typedef struct { |
| union { |
| uint32_t u; |
| float f; |
| } data_[4]; |
| } simd_value_t; |
| typedef simd_value_t fpu_register_t; |
| #define simd_value_safe_load(addr) (*reinterpret_cast<simd_value_t*>(addr)) |
| #define simd_value_safe_store(addr, value) \ |
| do { \ |
| reinterpret_cast<simd_value_t*>(addr)->data_[0] = value.data_[0]; \ |
| reinterpret_cast<simd_value_t*>(addr)->data_[1] = value.data_[1]; \ |
| reinterpret_cast<simd_value_t*>(addr)->data_[2] = value.data_[2]; \ |
| reinterpret_cast<simd_value_t*>(addr)->data_[3] = value.data_[3]; \ |
| } while (0) |
| |
| #elif defined(__aarch64__) |
| #define HOST_ARCH_ARM64 1 |
| #define ARCH_IS_64_BIT 1 |
| #define kFpuRegisterSize 16 |
| typedef simd128_value_t fpu_register_t; |
| #else |
| #error Architecture was not detected as supported by Dart. |
| #endif |
| |
| // DART_FORCE_INLINE strongly hints to the compiler that a function should |
| // be inlined. Your function is not guaranteed to be inlined but this is |
| // stronger than just using "inline". |
| // See: http://msdn.microsoft.com/en-us/library/z8y1yy88.aspx for an |
| // explanation of some the cases when a function can never be inlined. |
| #ifdef _MSC_VER |
| #define DART_FORCE_INLINE __forceinline |
| #elif __GNUC__ |
| #define DART_FORCE_INLINE inline __attribute__((always_inline)) |
| #else |
| #error Automatic compiler detection failed. |
| #endif |
| |
| // DART_NOINLINE tells compiler to never inline a particular function. |
| #ifdef _MSC_VER |
| #define DART_NOINLINE __declspec(noinline) |
| #elif __GNUC__ |
| #define DART_NOINLINE __attribute__((noinline)) |
| #else |
| #error Automatic compiler detection failed. |
| #endif |
| |
| #ifdef _MSC_VER |
| #elif __GNUC__ |
| #define DART_HAS_COMPUTED_GOTO 1 |
| #else |
| #error Automatic compiler detection failed. |
| #endif |
| |
| // LIKELY/UNLIKELY give the compiler branch preditions that may affect block |
| // scheduling. |
| #ifdef __GNUC__ |
| #define LIKELY(cond) __builtin_expect((cond), 1) |
| #define UNLIKELY(cond) __builtin_expect((cond), 0) |
| #else |
| #define LIKELY(cond) cond |
| #define UNLIKELY(cond) cond |
| #endif |
| |
| // DART_UNUSED indicates to the compiler that a variable or typedef is expected |
| // to be unused and disables the related warning. |
| #ifdef __GNUC__ |
| #define DART_UNUSED __attribute__((unused)) |
| #else |
| #define DART_UNUSED |
| #endif |
| |
| // DART_USED indicates to the compiler that a global variable or typedef is used |
| // disables e.g. the gcc warning "unused-variable" |
| #ifdef __GNUC__ |
| #define DART_USED __attribute__((used)) |
| #else |
| #define DART_USED |
| #endif |
| |
| // DART_NORETURN indicates to the compiler that a function does not return. |
| // It should be used on functions that unconditionally call functions like |
| // exit(), which end the program. We use it to avoid compiler warnings in |
| // callers of DART_NORETURN functions. |
| #ifdef _MSC_VER |
| #define DART_NORETURN __declspec(noreturn) |
| #elif __GNUC__ |
| #define DART_NORETURN __attribute__((noreturn)) |
| #else |
| #error Automatic compiler detection failed. |
| #endif |
| |
| #ifdef _MSC_VER |
| #define DART_PRETTY_FUNCTION __FUNCSIG__ |
| #elif __GNUC__ |
| #define DART_PRETTY_FUNCTION __PRETTY_FUNCTION__ |
| #else |
| #error Automatic compiler detection failed. |
| #endif |
| |
| #if !defined(TARGET_ARCH_ARM) && !defined(TARGET_ARCH_X64) && \ |
| !defined(TARGET_ARCH_IA32) && !defined(TARGET_ARCH_ARM64) && \ |
| !defined(TARGET_ARCH_DBC) |
| // No target architecture specified pick the one matching the host architecture. |
| #if defined(HOST_ARCH_ARM) |
| #define TARGET_ARCH_ARM 1 |
| #elif defined(HOST_ARCH_X64) |
| #define TARGET_ARCH_X64 1 |
| #elif defined(HOST_ARCH_IA32) |
| #define TARGET_ARCH_IA32 1 |
| #elif defined(HOST_ARCH_ARM64) |
| #define TARGET_ARCH_ARM64 1 |
| #else |
| #error Automatic target architecture detection failed. |
| #endif |
| #endif |
| |
| // Verify that host and target architectures match, we cannot |
| // have a 64 bit Dart VM generating 32 bit code or vice-versa. |
| #if defined(TARGET_ARCH_X64) || defined(TARGET_ARCH_ARM64) |
| #if !defined(ARCH_IS_64_BIT) |
| #error Mismatched Host/Target architectures. |
| #endif |
| #elif defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_ARM) |
| #if !defined(ARCH_IS_32_BIT) |
| #error Mismatched Host/Target architectures. |
| #endif |
| #endif |
| |
| // Determine whether we will be using the simulator. |
| #if defined(TARGET_ARCH_IA32) |
| // No simulator used. |
| #elif defined(TARGET_ARCH_X64) |
| // No simulator used. |
| #elif defined(TARGET_ARCH_ARM) |
| #if !defined(HOST_ARCH_ARM) |
| #define USING_SIMULATOR 1 |
| #endif |
| |
| #elif defined(TARGET_ARCH_ARM64) |
| #if !defined(HOST_ARCH_ARM64) |
| #define USING_SIMULATOR 1 |
| #endif |
| |
| #elif defined(TARGET_ARCH_DBC) |
| #define USING_SIMULATOR 1 |
| |
| #else |
| #error Unknown architecture. |
| #endif |
| |
| // Determine whether HOST_ARCH equals TARGET_ARCH. |
| #if defined(HOST_ARCH_ARM) && defined(TARGET_ARCH_ARM) |
| #define HOST_ARCH_EQUALS_TARGET_ARCH 1 |
| #elif defined(HOST_ARCH_ARM64) && defined(TARGET_ARCH_ARM64) |
| #define HOST_ARCH_EQUALS_TARGET_ARCH 1 |
| #elif defined(HOST_ARCH_IA32) && defined(TARGET_ARCH_IA32) |
| #define HOST_ARCH_EQUALS_TARGET_ARCH 1 |
| #elif defined(HOST_ARCH_X64) && defined(TARGET_ARCH_X64) |
| #define HOST_ARCH_EQUALS_TARGET_ARCH 1 |
| #else |
| // HOST_ARCH != TARGET_ARCH. |
| #endif |
| |
| #if !defined(TARGET_OS_ANDROID) && !defined(TARGET_OS_FUCHSIA) && \ |
| !defined(TARGET_OS_MACOS_IOS) && !defined(TARGET_OS_LINUX) && \ |
| !defined(TARGET_OS_MACOS) && !defined(TARGET_OS_WINDOWS) |
| // No target OS specified; pick the one matching the host OS. |
| #if defined(HOST_OS_ANDROID) |
| #define TARGET_OS_ANDROID 1 |
| #elif defined(HOST_OS_FUCHSIA) |
| #define TARGET_OS_FUCHSIA 1 |
| #elif defined(HOST_OS_IOS) |
| #define TARGET_OS_MACOS 1 |
| #define TARGET_OS_MACOS_IOS 1 |
| #elif defined(HOST_OS_LINUX) |
| #define TARGET_OS_LINUX 1 |
| #elif defined(HOST_OS_MACOS) |
| #define TARGET_OS_MACOS 1 |
| #elif defined(HOST_OS_WINDOWS) |
| #define TARGET_OS_WINDOWS 1 |
| #else |
| #error Automatic target OS detection failed. |
| #endif |
| #endif |
| |
| // Determine whether dual mapping of code pages is supported. |
| // We test dual mapping on linux x64 and deploy it on fuchsia. |
| #if !defined(DART_PRECOMPILED_RUNTIME) && \ |
| (defined(TARGET_OS_LINUX) && defined(TARGET_ARCH_X64) || \ |
| defined(TARGET_OS_FUCHSIA)) |
| #define DUAL_MAPPING_SUPPORTED 1 |
| #endif |
| |
| // Disable background threads by default on armv5te. The relevant |
| // implementations are uniprocessors. |
| #if !defined(TARGET_ARCH_ARM_5TE) |
| #define ARCH_IS_MULTI_CORE 1 |
| #endif |
| |
| // Short form printf format specifiers |
| #define Pd PRIdPTR |
| #define Pu PRIuPTR |
| #define Px PRIxPTR |
| #define PX PRIXPTR |
| #define Pd32 PRId32 |
| #define Pu32 PRIu32 |
| #define Px32 PRIx32 |
| #define PX32 PRIX32 |
| #define Pd64 PRId64 |
| #define Pu64 PRIu64 |
| #define Px64 PRIx64 |
| #define PX64 PRIX64 |
| |
| // Zero-padded pointer |
| #if defined(ARCH_IS_32_BIT) |
| #define Pp "08" PRIxPTR |
| #else |
| #define Pp "016" PRIxPTR |
| #endif |
| |
| // Suffixes for 64-bit integer literals. |
| #ifdef _MSC_VER |
| #define DART_INT64_C(x) x##I64 |
| #define DART_UINT64_C(x) x##UI64 |
| #else |
| #define DART_INT64_C(x) x##LL |
| #define DART_UINT64_C(x) x##ULL |
| #endif |
| |
| // Replace calls to strtoll with _strtoi64 on Windows. |
| #ifdef _MSC_VER |
| #define strtoll _strtoi64 |
| #endif |
| |
| // The following macro works on both 32 and 64-bit platforms. |
| // Usage: instead of writing 0x1234567890123456ULL |
| // write DART_2PART_UINT64_C(0x12345678,90123456); |
| #define DART_2PART_UINT64_C(a, b) \ |
| (((static_cast<uint64_t>(a) << 32) + 0x##b##u)) |
| |
| // Integer constants. |
| const int8_t kMinInt8 = 0x80; |
| const int8_t kMaxInt8 = 0x7F; |
| const uint8_t kMaxUint8 = 0xFF; |
| const int16_t kMinInt16 = 0x8000; |
| const int16_t kMaxInt16 = 0x7FFF; |
| const uint16_t kMaxUint16 = 0xFFFF; |
| const int32_t kMinInt32 = 0x80000000; |
| const int32_t kMaxInt32 = 0x7FFFFFFF; |
| const uint32_t kMaxUint32 = 0xFFFFFFFF; |
| const int64_t kMinInt64 = DART_INT64_C(0x8000000000000000); |
| const int64_t kMaxInt64 = DART_INT64_C(0x7FFFFFFFFFFFFFFF); |
| const uint64_t kMaxUint64 = DART_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF); |
| const int64_t kSignBitDouble = DART_INT64_C(0x8000000000000000); |
| |
| // Types for native machine words. Guaranteed to be able to hold pointers and |
| // integers. |
| typedef intptr_t word; |
| typedef uintptr_t uword; |
| |
| // Size of a class id. |
| typedef uint16_t classid_t; |
| |
| // Byte sizes. |
| const int kWordSize = sizeof(word); |
| const int kDoubleSize = sizeof(double); // NOLINT |
| const int kFloatSize = sizeof(float); // NOLINT |
| const int kQuadSize = 4 * kFloatSize; |
| const int kSimd128Size = sizeof(simd128_value_t); // NOLINT |
| const int kInt64Size = sizeof(int64_t); // NOLINT |
| const int kInt32Size = sizeof(int32_t); // NOLINT |
| const int kInt16Size = sizeof(int16_t); // NOLINT |
| #ifdef ARCH_IS_32_BIT |
| const int kWordSizeLog2 = 2; |
| const uword kUwordMax = kMaxUint32; |
| #else |
| const int kWordSizeLog2 = 3; |
| const uword kUwordMax = kMaxUint64; |
| #endif |
| |
| // Bit sizes. |
| const int kBitsPerByte = 8; |
| const int kBitsPerByteLog2 = 3; |
| const int kBitsPerInt32 = kInt32Size * kBitsPerByte; |
| const int kBitsPerInt64 = kInt64Size * kBitsPerByte; |
| const int kBitsPerWord = kWordSize * kBitsPerByte; |
| const int kBitsPerWordLog2 = kWordSizeLog2 + kBitsPerByteLog2; |
| |
| // System-wide named constants. |
| const intptr_t KB = 1024; |
| const intptr_t KBLog2 = 10; |
| const intptr_t MB = KB * KB; |
| const intptr_t MBLog2 = KBLog2 + KBLog2; |
| const intptr_t GB = MB * KB; |
| const intptr_t GBLog2 = MBLog2 + KBLog2; |
| |
| const intptr_t KBInWords = KB >> kWordSizeLog2; |
| const intptr_t KBInWordsLog2 = KBLog2 - kWordSizeLog2; |
| const intptr_t MBInWords = KB * KBInWords; |
| const intptr_t MBInWordsLog2 = KBLog2 + KBInWordsLog2; |
| const intptr_t GBInWords = MB * KBInWords; |
| const intptr_t GBInWordsLog2 = MBLog2 + KBInWordsLog2; |
| |
| // Helpers to round memory sizes to human readable values. |
| inline intptr_t RoundWordsToKB(intptr_t size_in_words) { |
| return (size_in_words + (KBInWords >> 1)) >> KBInWordsLog2; |
| } |
| inline intptr_t RoundWordsToMB(intptr_t size_in_words) { |
| return (size_in_words + (MBInWords >> 1)) >> MBInWordsLog2; |
| } |
| inline intptr_t RoundWordsToGB(intptr_t size_in_words) { |
| return (size_in_words + (GBInWords >> 1)) >> GBInWordsLog2; |
| } |
| |
| const intptr_t kIntptrOne = 1; |
| const intptr_t kIntptrMin = (kIntptrOne << (kBitsPerWord - 1)); |
| const intptr_t kIntptrMax = ~kIntptrMin; |
| |
| // Time constants. |
| const int kMillisecondsPerSecond = 1000; |
| const int kMicrosecondsPerMillisecond = 1000; |
| const int kMicrosecondsPerSecond = |
| (kMicrosecondsPerMillisecond * kMillisecondsPerSecond); |
| const int kNanosecondsPerMicrosecond = 1000; |
| const int kNanosecondsPerMillisecond = |
| (kNanosecondsPerMicrosecond * kMicrosecondsPerMillisecond); |
| const int kNanosecondsPerSecond = |
| (kNanosecondsPerMicrosecond * kMicrosecondsPerSecond); |
| |
| // Helpers to scale micro second times to human understandable values. |
| inline double MicrosecondsToSeconds(int64_t micros) { |
| return static_cast<double>(micros) / kMicrosecondsPerSecond; |
| } |
| inline double MicrosecondsToMilliseconds(int64_t micros) { |
| return static_cast<double>(micros) / kMicrosecondsPerMillisecond; |
| } |
| |
| // A macro to disallow the copy constructor and operator= functions. |
| // This should be used in the private: declarations for a class. |
| #if !defined(DISALLOW_COPY_AND_ASSIGN) |
| #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ |
| private: \ |
| TypeName(const TypeName&) = delete; \ |
| void operator=(const TypeName&) = delete |
| #endif // !defined(DISALLOW_COPY_AND_ASSIGN) |
| |
| // A macro to disallow all the implicit constructors, namely the default |
| // constructor, copy constructor and operator= functions. This should be |
| // used in the private: declarations for a class that wants to prevent |
| // anyone from instantiating it. This is especially useful for classes |
| // containing only static methods. |
| #if !defined(DISALLOW_IMPLICIT_CONSTRUCTORS) |
| #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ |
| private: \ |
| TypeName() = delete; \ |
| DISALLOW_COPY_AND_ASSIGN(TypeName) |
| #endif // !defined(DISALLOW_IMPLICIT_CONSTRUCTORS) |
| |
| // Macro to disallow allocation in the C++ heap. This should be used |
| // in the private section for a class. Don't use UNREACHABLE here to |
| // avoid circular dependencies between platform/globals.h and |
| // platform/assert.h. |
| #if !defined(DISALLOW_ALLOCATION) |
| #define DISALLOW_ALLOCATION() \ |
| public: \ |
| void operator delete(void* pointer) { \ |
| fprintf(stderr, "unreachable code\n"); \ |
| abort(); \ |
| } \ |
| \ |
| private: \ |
| void* operator new(size_t size); |
| #endif // !defined(DISALLOW_ALLOCATION) |
| |
| // The USE(x) template is used to silence C++ compiler warnings issued |
| // for unused variables. |
| template <typename T> |
| static inline void USE(T) {} |
| |
| // Use implicit_cast as a safe version of static_cast or const_cast |
| // for upcasting in the type hierarchy (i.e. casting a pointer to Foo |
| // to a pointer to SuperclassOfFoo or casting a pointer to Foo to |
| // a const pointer to Foo). |
| // When you use implicit_cast, the compiler checks that the cast is safe. |
| // Such explicit implicit_casts are necessary in surprisingly many |
| // situations where C++ demands an exact type match instead of an |
| // argument type convertible to a target type. |
| // |
| // The From type can be inferred, so the preferred syntax for using |
| // implicit_cast is the same as for static_cast etc.: |
| // |
| // implicit_cast<ToType>(expr) |
| // |
| // implicit_cast would have been part of the C++ standard library, |
| // but the proposal was submitted too late. It will probably make |
| // its way into the language in the future. |
| template <typename To, typename From> |
| inline To implicit_cast(From const& f) { |
| return f; |
| } |
| |
| // Use like this: down_cast<T*>(foo); |
| template <typename To, typename From> // use like this: down_cast<T*>(foo); |
| inline To down_cast(From* f) { // so we only accept pointers |
| // Ensures that To is a sub-type of From *. This test is here only |
| // for compile-time type checking, and has no overhead in an |
| // optimized build at run-time, as it will be optimized away completely. |
| if (false) { |
| implicit_cast<From, To>(0); |
| } |
| return static_cast<To>(f); |
| } |
| |
| // The type-based aliasing rule allows the compiler to assume that |
| // pointers of different types (for some definition of different) |
| // never alias each other. Thus the following code does not work: |
| // |
| // float f = foo(); |
| // int fbits = *(int*)(&f); |
| // |
| // The compiler 'knows' that the int pointer can't refer to f since |
| // the types don't match, so the compiler may cache f in a register, |
| // leaving random data in fbits. Using C++ style casts makes no |
| // difference, however a pointer to char data is assumed to alias any |
| // other pointer. This is the 'memcpy exception'. |
| // |
| // The bit_cast function uses the memcpy exception to move the bits |
| // from a variable of one type to a variable of another type. Of |
| // course the end result is likely to be implementation dependent. |
| // Most compilers (gcc-4.2 and MSVC 2005) will completely optimize |
| // bit_cast away. |
| // |
| // There is an additional use for bit_cast. Recent gccs will warn when |
| // they see casts that may result in breakage due to the type-based |
| // aliasing rule. If you have checked that there is no breakage you |
| // can use bit_cast to cast one pointer type to another. This confuses |
| // gcc enough that it can no longer see that you have cast one pointer |
| // type to another thus avoiding the warning. |
| template <class D, class S> |
| inline D bit_cast(const S& source) { |
| // Compile time assertion: sizeof(D) == sizeof(S). A compile error |
| // here means your D and S have different sizes. |
| DART_UNUSED typedef char VerifySizesAreEqual[sizeof(D) == sizeof(S) ? 1 : -1]; |
| |
| D destination; |
| // This use of memcpy is safe: source and destination cannot overlap. |
| memcpy(&destination, &source, sizeof(destination)); |
| return destination; |
| } |
| |
| // Similar to bit_cast, but allows copying from types of unrelated |
| // sizes. This method was introduced to enable the strict aliasing |
| // optimizations of GCC 4.4. Basically, GCC mindlessly relies on |
| // obscure details in the C++ standard that make reinterpret_cast |
| // virtually useless. |
| template <class D, class S> |
| inline D bit_copy(const S& source) { |
| D destination; |
| // This use of memcpy is safe: source and destination cannot overlap. |
| memcpy(&destination, reinterpret_cast<const void*>(&source), |
| sizeof(destination)); |
| return destination; |
| } |
| |
| #if defined(HOST_ARCH_ARM) || defined(HOST_ARCH_ARM64) |
| // Similar to bit_copy and bit_cast, but does take the type from the argument. |
| template <typename T> |
| static inline T ReadUnaligned(const T* ptr) { |
| T value; |
| memcpy(reinterpret_cast<void*>(&value), reinterpret_cast<const void*>(ptr), |
| sizeof(value)); |
| return value; |
| } |
| |
| // Similar to bit_copy and bit_cast, but does take the type from the argument. |
| template <typename T> |
| static inline void StoreUnaligned(T* ptr, T value) { |
| memcpy(reinterpret_cast<void*>(ptr), reinterpret_cast<const void*>(&value), |
| sizeof(value)); |
| } |
| #else // !(HOST_ARCH_ARM || HOST_ARCH_ARM64) |
| // Similar to bit_copy and bit_cast, but does take the type from the argument. |
| template <typename T> |
| static inline T ReadUnaligned(const T* ptr) { |
| return *ptr; |
| } |
| |
| // Similar to bit_copy and bit_cast, but does take the type from the argument. |
| template <typename T> |
| static inline void StoreUnaligned(T* ptr, T value) { |
| *ptr = value; |
| } |
| #endif // !(HOST_ARCH_ARM || HOST_ARCH_ARM64) |
| |
| // On Windows the reentrent version of strtok is called |
| // strtok_s. Unify on the posix name strtok_r. |
| #if defined(HOST_OS_WINDOWS) |
| #define snprintf _sprintf_p |
| #define strtok_r strtok_s |
| #endif |
| |
| #if !defined(HOST_OS_WINDOWS) |
| #if defined(TEMP_FAILURE_RETRY) |
| // TEMP_FAILURE_RETRY is defined in unistd.h on some platforms. We should |
| // not use that version, but instead the one in signal_blocker.h, to ensure |
| // we disable signal interrupts. |
| #undef TEMP_FAILURE_RETRY |
| #endif // defined(TEMP_FAILURE_RETRY) |
| #endif // !defined(HOST_OS_WINDOWS) |
| |
| #if __GNUC__ |
| // Tell the compiler to do printf format string checking if the |
| // compiler supports it; see the 'format' attribute in |
| // <http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Function-Attributes.html>. |
| // |
| // N.B.: As the GCC manual states, "[s]ince non-static C++ methods |
| // have an implicit 'this' argument, the arguments of such methods |
| // should be counted from two, not one." |
| #define PRINTF_ATTRIBUTE(string_index, first_to_check) \ |
| __attribute__((__format__(__printf__, string_index, first_to_check))) |
| #else |
| #define PRINTF_ATTRIBUTE(string_index, first_to_check) |
| #endif |
| |
| #if defined(_WIN32) |
| #define STDIN_FILENO 0 |
| #define STDOUT_FILENO 1 |
| #define STDERR_FILENO 2 |
| #endif |
| |
| } // namespace dart |
| |
| #endif // RUNTIME_PLATFORM_GLOBALS_H_ |