blob: 6301d4de359f88dd0af1cda2bfd086b5a893b20d [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef RUNTIME_VM_REGEXP_AST_H_
#define RUNTIME_VM_REGEXP_AST_H_
#include "platform/globals.h"
#include "platform/utils.h"
#include "vm/allocation.h"
#include "vm/regexp.h"
namespace dart {
class RegExpAlternative;
class RegExpAssertion;
class RegExpAtom;
class RegExpBackReference;
class RegExpCapture;
class RegExpCharacterClass;
class RegExpCompiler;
class RegExpDisjunction;
class RegExpEmpty;
class RegExpLookaround;
class RegExpQuantifier;
class RegExpText;
class RegExpVisitor : public ValueObject {
public:
virtual ~RegExpVisitor() {}
#define MAKE_CASE(Name) \
virtual void* Visit##Name(RegExp##Name*, void* data) = 0;
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
#undef MAKE_CASE
};
class RegExpTree : public ZoneAllocated {
public:
static const intptr_t kInfinity = kMaxInt32;
virtual ~RegExpTree() {}
virtual void* Accept(RegExpVisitor* visitor, void* data) = 0;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) = 0;
virtual bool IsTextElement() const { return false; }
virtual bool IsAnchoredAtStart() const { return false; }
virtual bool IsAnchoredAtEnd() const { return false; }
virtual intptr_t min_match() const = 0;
virtual intptr_t max_match() const = 0;
// Returns the interval of registers used for captures within this
// expression.
virtual Interval CaptureRegisters() const { return Interval::Empty(); }
virtual void AppendToText(RegExpText* text);
void Print();
#define MAKE_ASTYPE(Name) \
virtual RegExp##Name* As##Name(); \
virtual bool Is##Name() const;
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ASTYPE)
#undef MAKE_ASTYPE
};
class RegExpDisjunction : public RegExpTree {
public:
explicit RegExpDisjunction(ZoneGrowableArray<RegExpTree*>* alternatives);
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success);
virtual RegExpDisjunction* AsDisjunction();
virtual Interval CaptureRegisters() const;
virtual bool IsDisjunction() const;
virtual bool IsAnchoredAtStart() const;
virtual bool IsAnchoredAtEnd() const;
virtual intptr_t min_match() const { return min_match_; }
virtual intptr_t max_match() const { return max_match_; }
ZoneGrowableArray<RegExpTree*>* alternatives() const { return alternatives_; }
private:
ZoneGrowableArray<RegExpTree*>* alternatives_;
intptr_t min_match_;
intptr_t max_match_;
};
class RegExpAlternative : public RegExpTree {
public:
explicit RegExpAlternative(ZoneGrowableArray<RegExpTree*>* nodes);
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success);
virtual RegExpAlternative* AsAlternative();
virtual Interval CaptureRegisters() const;
virtual bool IsAlternative() const;
virtual bool IsAnchoredAtStart() const;
virtual bool IsAnchoredAtEnd() const;
virtual intptr_t min_match() const { return min_match_; }
virtual intptr_t max_match() const { return max_match_; }
ZoneGrowableArray<RegExpTree*>* nodes() const { return nodes_; }
private:
ZoneGrowableArray<RegExpTree*>* nodes_;
intptr_t min_match_;
intptr_t max_match_;
};
class RegExpAssertion : public RegExpTree {
public:
enum AssertionType {
START_OF_LINE,
START_OF_INPUT,
END_OF_LINE,
END_OF_INPUT,
BOUNDARY,
NON_BOUNDARY
};
RegExpAssertion(AssertionType type, RegExpFlags flags)
: assertion_type_(type), flags_(flags) {}
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success);
virtual RegExpAssertion* AsAssertion();
virtual bool IsAssertion() const;
virtual bool IsAnchoredAtStart() const;
virtual bool IsAnchoredAtEnd() const;
virtual intptr_t min_match() const { return 0; }
virtual intptr_t max_match() const { return 0; }
AssertionType assertion_type() const { return assertion_type_; }
private:
AssertionType assertion_type_;
RegExpFlags flags_;
};
class CharacterSet : public ValueObject {
public:
explicit CharacterSet(uint16_t standard_set_type)
: ranges_(NULL), standard_set_type_(standard_set_type) {}
explicit CharacterSet(ZoneGrowableArray<CharacterRange>* ranges)
: ranges_(ranges), standard_set_type_(0) {}
CharacterSet(const CharacterSet& that)
: ValueObject(),
ranges_(that.ranges_),
standard_set_type_(that.standard_set_type_) {}
ZoneGrowableArray<CharacterRange>* ranges();
uint16_t standard_set_type() const { return standard_set_type_; }
void set_standard_set_type(uint16_t special_set_type) {
standard_set_type_ = special_set_type;
}
bool is_standard() { return standard_set_type_ != 0; }
void Canonicalize();
private:
ZoneGrowableArray<CharacterRange>* ranges_;
// If non-zero, the value represents a standard set (e.g., all whitespace
// characters) without having to expand the ranges.
uint16_t standard_set_type_;
};
class RegExpCharacterClass : public RegExpTree {
public:
enum Flag {
// The character class is negated and should match everything but the
// specified ranges.
NEGATED = 1 << 0,
// The character class contains part of a split surrogate and should not
// be unicode-desugared.
CONTAINS_SPLIT_SURROGATE = 1 << 1,
};
using CharacterClassFlags = intptr_t;
static inline CharacterClassFlags DefaultFlags() { return 0; }
RegExpCharacterClass(
ZoneGrowableArray<CharacterRange>* ranges,
RegExpFlags flags,
CharacterClassFlags character_class_flags = DefaultFlags())
: set_(ranges),
flags_(flags),
character_class_flags_(character_class_flags) {
// Convert the empty set of ranges to the negated Everything() range.
if (ranges->is_empty()) {
ranges->Add(CharacterRange::Everything());
character_class_flags_ ^= NEGATED;
}
}
RegExpCharacterClass(uint16_t type, RegExpFlags flags)
: set_(type), flags_(flags), character_class_flags_(0) {}
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success);
virtual RegExpCharacterClass* AsCharacterClass();
virtual bool IsCharacterClass() const;
virtual bool IsTextElement() const { return true; }
virtual intptr_t min_match() const { return 1; }
// The character class may match two code units for unicode regexps.
virtual intptr_t max_match() const { return 2; }
virtual void AppendToText(RegExpText* text);
CharacterSet character_set() const { return set_; }
// TODO(lrn): Remove need for complex version if is_standard that
// recognizes a mangled standard set and just do { return set_.is_special(); }
bool is_standard();
// Returns a value representing the standard character set if is_standard()
// returns true.
// Currently used values are:
// s : unicode whitespace
// S : unicode non-whitespace
// w : ASCII word character (digit, letter, underscore)
// W : non-ASCII word character
// d : ASCII digit
// D : non-ASCII digit
// . : non-unicode non-newline
// * : All characters
uint16_t standard_type() const { return set_.standard_set_type(); }
ZoneGrowableArray<CharacterRange>* ranges() { return set_.ranges(); }
bool is_negated() const { return (character_class_flags_ & NEGATED) != 0; }
RegExpFlags flags() const { return flags_; }
bool contains_split_surrogate() const {
return (character_class_flags_ & CONTAINS_SPLIT_SURROGATE) != 0;
}
private:
CharacterSet set_;
RegExpFlags flags_;
CharacterClassFlags character_class_flags_;
};
class RegExpAtom : public RegExpTree {
public:
RegExpAtom(ZoneGrowableArray<uint16_t>* data, RegExpFlags flags)
: data_(data), flags_(flags) {}
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success);
virtual RegExpAtom* AsAtom();
virtual bool IsAtom() const;
virtual bool IsTextElement() const { return true; }
virtual intptr_t min_match() const { return data_->length(); }
virtual intptr_t max_match() const { return data_->length(); }
virtual void AppendToText(RegExpText* text);
ZoneGrowableArray<uint16_t>* data() const { return data_; }
intptr_t length() const { return data_->length(); }
RegExpFlags flags() const { return flags_; }
bool ignore_case() const { return flags_.IgnoreCase(); }
private:
ZoneGrowableArray<uint16_t>* data_;
const RegExpFlags flags_;
};
class RegExpText : public RegExpTree {
public:
RegExpText() : elements_(2), length_(0) {}
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success);
virtual RegExpText* AsText();
virtual bool IsText() const;
virtual bool IsTextElement() const { return true; }
virtual intptr_t min_match() const { return length_; }
virtual intptr_t max_match() const { return length_; }
virtual void AppendToText(RegExpText* text);
void AddElement(TextElement elm) {
elements_.Add(elm);
length_ += elm.length();
}
GrowableArray<TextElement>* elements() { return &elements_; }
private:
GrowableArray<TextElement> elements_;
intptr_t length_;
};
class RegExpQuantifier : public RegExpTree {
public:
enum QuantifierType { GREEDY, NON_GREEDY, POSSESSIVE };
RegExpQuantifier(intptr_t min,
intptr_t max,
QuantifierType type,
RegExpTree* body)
: body_(body),
min_(min),
max_(max),
min_match_(min * body->min_match()),
quantifier_type_(type) {
if (max > 0 && body->max_match() > kInfinity / max) {
max_match_ = kInfinity;
} else {
max_match_ = max * body->max_match();
}
}
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success);
static RegExpNode* ToNode(intptr_t min,
intptr_t max,
bool is_greedy,
RegExpTree* body,
RegExpCompiler* compiler,
RegExpNode* on_success,
bool not_at_start = false);
virtual RegExpQuantifier* AsQuantifier();
virtual Interval CaptureRegisters() const;
virtual bool IsQuantifier() const;
virtual intptr_t min_match() const { return min_match_; }
virtual intptr_t max_match() const { return max_match_; }
intptr_t min() const { return min_; }
intptr_t max() const { return max_; }
bool is_possessive() const { return quantifier_type_ == POSSESSIVE; }
bool is_non_greedy() const { return quantifier_type_ == NON_GREEDY; }
bool is_greedy() const { return quantifier_type_ == GREEDY; }
RegExpTree* body() const { return body_; }
private:
RegExpTree* body_;
intptr_t min_;
intptr_t max_;
intptr_t min_match_;
intptr_t max_match_;
QuantifierType quantifier_type_;
};
class RegExpCapture : public RegExpTree {
public:
explicit RegExpCapture(intptr_t index)
: body_(nullptr), index_(index), name_(nullptr) {}
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success);
static RegExpNode* ToNode(RegExpTree* body,
intptr_t index,
RegExpCompiler* compiler,
RegExpNode* on_success);
virtual RegExpCapture* AsCapture();
virtual bool IsAnchoredAtStart() const;
virtual bool IsAnchoredAtEnd() const;
virtual Interval CaptureRegisters() const;
virtual bool IsCapture() const;
virtual intptr_t min_match() const { return body_->min_match(); }
virtual intptr_t max_match() const { return body_->max_match(); }
RegExpTree* body() const { return body_; }
// When a backreference is parsed before the corresponding capture group,
// which can happen because of lookbehind, we create the capture object when
// we create the backreference, and fill in the body later when the actual
// capture group is parsed.
void set_body(RegExpTree* body) { body_ = body; }
intptr_t index() const { return index_; }
const ZoneGrowableArray<uint16_t>* name() { return name_; }
void set_name(const ZoneGrowableArray<uint16_t>* name) { name_ = name; }
static intptr_t StartRegister(intptr_t index) { return index * 2; }
static intptr_t EndRegister(intptr_t index) { return index * 2 + 1; }
private:
RegExpTree* body_;
intptr_t index_;
const ZoneGrowableArray<uint16_t>* name_;
};
class RegExpLookaround : public RegExpTree {
public:
enum Type { LOOKAHEAD, LOOKBEHIND };
RegExpLookaround(RegExpTree* body,
bool is_positive,
intptr_t capture_count,
intptr_t capture_from,
Type type)
: body_(body),
is_positive_(is_positive),
capture_count_(capture_count),
capture_from_(capture_from),
type_(type) {}
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success);
virtual RegExpLookaround* AsLookaround();
virtual Interval CaptureRegisters() const;
virtual bool IsLookaround() const;
virtual bool IsAnchoredAtStart() const;
virtual intptr_t min_match() const { return 0; }
virtual intptr_t max_match() const { return 0; }
RegExpTree* body() const { return body_; }
bool is_positive() const { return is_positive_; }
intptr_t capture_count() const { return capture_count_; }
intptr_t capture_from() const { return capture_from_; }
Type type() const { return type_; }
// The RegExpLookaround::Builder class abstracts out the process of building
// the compiling a RegExpLookaround object by splitting it into two phases,
// represented by the provided methods.
class Builder : public ValueObject {
public:
Builder(bool is_positive,
RegExpNode* on_success,
intptr_t stack_pointer_register,
intptr_t position_register,
intptr_t capture_register_count = 0,
intptr_t capture_register_start = 0);
RegExpNode* on_match_success() { return on_match_success_; }
RegExpNode* ForMatch(RegExpNode* match);
private:
bool is_positive_;
RegExpNode* on_match_success_;
RegExpNode* on_success_;
intptr_t stack_pointer_register_;
intptr_t position_register_;
};
private:
RegExpTree* body_;
bool is_positive_;
intptr_t capture_count_;
intptr_t capture_from_;
Type type_;
};
class RegExpBackReference : public RegExpTree {
public:
explicit RegExpBackReference(RegExpFlags flags)
: capture_(nullptr), name_(nullptr), flags_(flags) {}
RegExpBackReference(RegExpCapture* capture, RegExpFlags flags)
: capture_(capture), name_(nullptr), flags_(flags) {}
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success);
virtual RegExpBackReference* AsBackReference();
virtual bool IsBackReference() const;
virtual intptr_t min_match() const { return 0; }
// The back reference may be recursive, e.g. /(\2)(\1)/. To avoid infinite
// recursion, we give up and just assume arbitrary length, which matches v8's
// behavior.
virtual intptr_t max_match() const { return kInfinity; }
intptr_t index() const { return capture_->index(); }
RegExpCapture* capture() const { return capture_; }
void set_capture(RegExpCapture* capture) { capture_ = capture; }
const ZoneGrowableArray<uint16_t>* name() { return name_; }
void set_name(const ZoneGrowableArray<uint16_t>* name) { name_ = name; }
private:
RegExpCapture* capture_;
const ZoneGrowableArray<uint16_t>* name_;
RegExpFlags flags_;
};
class RegExpEmpty : public RegExpTree {
public:
RegExpEmpty() {}
virtual void* Accept(RegExpVisitor* visitor, void* data);
virtual RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success);
virtual RegExpEmpty* AsEmpty();
virtual bool IsEmpty() const;
virtual intptr_t min_match() const { return 0; }
virtual intptr_t max_match() const { return 0; }
static RegExpEmpty* GetInstance() {
static RegExpEmpty* instance = ::new RegExpEmpty();
return instance;
}
};
} // namespace dart
#endif // RUNTIME_VM_REGEXP_AST_H_