blob: 3cc7a2bdec56e358cbb04a510218be39fc71e606 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include <limits>
#include <memory>
#include "include/dart_api.h"
#include "bin/builtin.h"
#include "bin/vmservice_impl.h"
#include "platform/globals.h"
#include "vm/class_finalizer.h"
#include "vm/closure_functions_cache.h"
#include "vm/code_descriptors.h"
#include "vm/compiler/assembler/assembler.h"
#include "vm/compiler/compiler_state.h"
#include "vm/compiler/runtime_api.h"
#include "vm/dart_api_impl.h"
#include "vm/dart_entry.h"
#include "vm/debugger.h"
#include "vm/debugger_api_impl_test.h"
#include "vm/flags.h"
#include "vm/isolate.h"
#include "vm/malloc_hooks.h"
#include "vm/message_handler.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/resolver.h"
#include "vm/simulator.h"
#include "vm/symbols.h"
#include "vm/tagged_pointer.h"
#include "vm/unit_test.h"
namespace dart {
#define Z (thread->zone())
DECLARE_FLAG(bool, dual_map_code);
DECLARE_FLAG(bool, write_protect_code);
static ClassPtr CreateDummyClass(const String& class_name,
const Script& script) {
const Class& cls = Class::Handle(Class::New(
Library::Handle(), class_name, script, TokenPosition::kNoSource));
cls.set_is_synthesized_class_unsafe(); // Dummy class for testing.
cls.set_is_declaration_loaded_unsafe();
return cls.ptr();
}
ISOLATE_UNIT_TEST_CASE(Class) {
// Allocate the class first.
const String& class_name = String::Handle(Symbols::New(thread, "MyClass"));
const Script& script = Script::Handle();
const Class& cls = Class::Handle(CreateDummyClass(class_name, script));
// Class has no fields and no functions yet.
EXPECT_EQ(Array::Handle(cls.fields()).Length(), 0);
EXPECT_EQ(Array::Handle(cls.current_functions()).Length(), 0);
// Setup the interfaces in the class.
// Normally the class finalizer is resolving super types and interfaces
// before finalizing the types in a class. A side-effect of this is setting
// the is_implemented() bit on a class. We do that manually here.
const Array& interfaces = Array::Handle(Array::New(2));
Class& interface = Class::Handle();
String& interface_name = String::Handle();
interface_name = Symbols::New(thread, "Harley");
interface = CreateDummyClass(interface_name, script);
interfaces.SetAt(0, Type::Handle(Type::NewNonParameterizedType(interface)));
interface.set_is_implemented_unsafe();
interface_name = Symbols::New(thread, "Norton");
interface = CreateDummyClass(interface_name, script);
interfaces.SetAt(1, Type::Handle(Type::NewNonParameterizedType(interface)));
interface.set_is_implemented_unsafe();
cls.set_interfaces(interfaces);
// Finalization of types happens before the fields and functions have been
// parsed.
ClassFinalizer::FinalizeTypesInClass(cls);
// Create and populate the function arrays.
const Array& functions = Array::Handle(Array::New(6));
FunctionType& signature = FunctionType::Handle();
Function& function = Function::Handle();
String& function_name = String::Handle();
function_name = Symbols::New(thread, "foo");
signature = FunctionType::New();
function = Function::New(signature, function_name,
UntaggedFunction::kRegularFunction, false, false,
false, false, false, cls, TokenPosition::kMinSource);
functions.SetAt(0, function);
function_name = Symbols::New(thread, "bar");
signature = FunctionType::New();
function = Function::New(signature, function_name,
UntaggedFunction::kRegularFunction, false, false,
false, false, false, cls, TokenPosition::kMinSource);
const int kNumFixedParameters = 2;
const int kNumOptionalParameters = 3;
const bool kAreOptionalPositional = true;
signature.set_num_fixed_parameters(kNumFixedParameters);
signature.SetNumOptionalParameters(kNumOptionalParameters,
kAreOptionalPositional);
functions.SetAt(1, function);
function_name = Symbols::New(thread, "baz");
signature = FunctionType::New();
function = Function::New(signature, function_name,
UntaggedFunction::kRegularFunction, false, false,
false, false, false, cls, TokenPosition::kMinSource);
functions.SetAt(2, function);
function_name = Symbols::New(thread, "Foo");
signature = FunctionType::New();
function = Function::New(signature, function_name,
UntaggedFunction::kRegularFunction, true, false,
false, false, false, cls, TokenPosition::kMinSource);
functions.SetAt(3, function);
function_name = Symbols::New(thread, "Bar");
signature = FunctionType::New();
function = Function::New(signature, function_name,
UntaggedFunction::kRegularFunction, true, false,
false, false, false, cls, TokenPosition::kMinSource);
functions.SetAt(4, function);
function_name = Symbols::New(thread, "BaZ");
signature = FunctionType::New();
function = Function::New(signature, function_name,
UntaggedFunction::kRegularFunction, true, false,
false, false, false, cls, TokenPosition::kMinSource);
functions.SetAt(5, function);
// Setup the functions in the class.
{
SafepointWriteRwLocker ml(thread, thread->isolate_group()->program_lock());
cls.SetFunctions(functions);
// The class can now be finalized.
cls.Finalize();
}
function_name = String::New("Foo");
function = Resolver::ResolveDynamicFunction(Z, cls, function_name);
EXPECT(function.IsNull());
function = cls.LookupStaticFunction(function_name);
EXPECT(!function.IsNull());
EXPECT(function_name.Equals(String::Handle(function.name())));
EXPECT_EQ(cls.ptr(), function.Owner());
EXPECT(function.is_static());
function_name = String::New("baz");
function = Resolver::ResolveDynamicFunction(Z, cls, function_name);
EXPECT(!function.IsNull());
EXPECT(function_name.Equals(String::Handle(function.name())));
EXPECT_EQ(cls.ptr(), function.Owner());
EXPECT(!function.is_static());
function = cls.LookupStaticFunction(function_name);
EXPECT(function.IsNull());
function_name = String::New("foo");
function = Resolver::ResolveDynamicFunction(Z, cls, function_name);
EXPECT(!function.IsNull());
EXPECT_EQ(0, function.num_fixed_parameters());
EXPECT(!function.HasOptionalParameters());
function_name = String::New("bar");
function = Resolver::ResolveDynamicFunction(Z, cls, function_name);
EXPECT(!function.IsNull());
EXPECT_EQ(kNumFixedParameters, function.num_fixed_parameters());
EXPECT_EQ(kNumOptionalParameters, function.NumOptionalParameters());
}
ISOLATE_UNIT_TEST_CASE(SixtyThousandDartClasses) {
auto zone = thread->zone();
auto isolate_group = thread->isolate_group();
auto class_table = isolate_group->class_table();
const intptr_t start_cid = class_table->NumCids();
const intptr_t num_classes = std::numeric_limits<uint16_t>::max() - start_cid;
const Script& script = Script::Handle(zone);
String& name = String::Handle(zone);
Class& cls = Class::Handle(zone);
Field& field = Field::Handle(zone);
Array& fields = Array::Handle(zone);
Instance& instance = Instance::Handle(zone);
Instance& instance2 = Instance::Handle(zone);
const auto& instances =
GrowableObjectArray::Handle(zone, GrowableObjectArray::New());
// Create many top-level classes - they should not consume 16-bit range.
{
SafepointWriteRwLocker ml(thread, thread->isolate_group()->program_lock());
for (intptr_t i = 0; i < (1 << 16); ++i) {
cls = CreateDummyClass(Symbols::TopLevel(), script);
cls.Finalize();
EXPECT(cls.id() > std::numeric_limits<uint16_t>::max());
}
}
// Create many concrete classes - they should occupy the entire 16-bit space.
for (intptr_t i = 0; i < num_classes; ++i) {
name = Symbols::New(thread, OS::SCreate(zone, "MyClass%" Pd "", i));
cls = CreateDummyClass(name, script);
EXPECT_EQ(start_cid + i, cls.id());
const intptr_t num_fields = (i % 10);
fields = Array::New(num_fields);
for (intptr_t f = 0; f < num_fields; ++f) {
name =
Symbols::New(thread, OS::SCreate(zone, "myField_%" Pd "_%" Pd, i, f));
field = Field::New(name, false, false, false, true, false, cls,
Object::dynamic_type(), TokenPosition::kMinSource,
TokenPosition::kMinSource);
fields.SetAt(f, field);
}
cls.set_interfaces(Array::empty_array());
{
SafepointWriteRwLocker ml(thread,
thread->isolate_group()->program_lock());
cls.SetFunctions(Array::empty_array());
cls.SetFields(fields);
cls.Finalize();
}
instance = Instance::New(cls);
for (intptr_t f = 0; f < num_fields; ++f) {
field ^= fields.At(f);
name = Symbols::New(thread,
OS::SCreate(zone, "myFieldValue_%" Pd "_%" Pd, i, f));
instance.SetField(field, name);
}
instances.Add(instance);
}
EXPECT_EQ((1 << 16) - 1, class_table->NumCids());
// Ensure GC runs and can recognize all those new instances.
isolate_group->heap()->CollectAllGarbage();
// Ensure the instances are what we expect.
for (intptr_t i = 0; i < num_classes; ++i) {
instance ^= instances.At(i);
cls = instance.clazz();
fields = cls.fields();
name = cls.Name();
EXPECT(strstr(name.ToCString(), OS::SCreate(zone, "MyClass%" Pd "", i)) !=
0);
EXPECT_EQ((i % 10), fields.Length());
for (intptr_t f = 0; f < fields.Length(); ++f) {
field ^= fields.At(f);
instance2 ^= instance.GetField(field);
EXPECT(strstr(instance2.ToCString(),
OS::SCreate(zone, "myFieldValue_%" Pd "_%" Pd, i, f)) != 0);
}
}
}
ISOLATE_UNIT_TEST_CASE(TypeArguments) {
const Type& type1 = Type::Handle(Type::Double());
const Type& type2 = Type::Handle(Type::StringType());
const TypeArguments& type_arguments1 =
TypeArguments::Handle(TypeArguments::New(2));
type_arguments1.SetTypeAt(0, type1);
type_arguments1.SetTypeAt(1, type2);
const TypeArguments& type_arguments2 =
TypeArguments::Handle(TypeArguments::New(2));
type_arguments2.SetTypeAt(0, type1);
type_arguments2.SetTypeAt(1, type2);
EXPECT_NE(type_arguments1.ptr(), type_arguments2.ptr());
OS::PrintErr("1: %s\n", type_arguments1.ToCString());
OS::PrintErr("2: %s\n", type_arguments2.ToCString());
EXPECT(type_arguments1.Equals(type_arguments2));
TypeArguments& type_arguments3 = TypeArguments::Handle();
type_arguments1.Canonicalize(thread, nullptr);
type_arguments3 ^= type_arguments2.Canonicalize(thread, nullptr);
EXPECT_EQ(type_arguments1.ptr(), type_arguments3.ptr());
}
TEST_CASE(Class_EndTokenPos) {
const char* kScript =
"\n"
"class A {\n"
" /**\n"
" * Description of foo().\n"
" */\n"
" foo(a) { return '''\"}'''; }\n"
" // }\n"
" var bar = '\\'}';\n"
"}\n";
Dart_Handle lib_h = TestCase::LoadTestScript(kScript, NULL);
EXPECT_VALID(lib_h);
TransitionNativeToVM transition(thread);
Library& lib = Library::Handle();
lib ^= Api::UnwrapHandle(lib_h);
EXPECT(!lib.IsNull());
const Class& cls =
Class::Handle(lib.LookupClass(String::Handle(String::New("A"))));
EXPECT(!cls.IsNull());
const Error& error = Error::Handle(cls.EnsureIsFinalized(thread));
EXPECT(error.IsNull());
const TokenPosition end_token_pos = cls.end_token_pos();
const Script& scr = Script::Handle(cls.script());
intptr_t line;
intptr_t col;
EXPECT(scr.GetTokenLocation(end_token_pos, &line, &col));
EXPECT_EQ(9, line);
EXPECT_EQ(1, col);
}
ISOLATE_UNIT_TEST_CASE(InstanceClass) {
// Allocate the class first.
String& class_name = String::Handle(Symbols::New(thread, "EmptyClass"));
Script& script = Script::Handle();
const Class& empty_class =
Class::Handle(CreateDummyClass(class_name, script));
// EmptyClass has no fields and no functions.
EXPECT_EQ(Array::Handle(empty_class.fields()).Length(), 0);
EXPECT_EQ(Array::Handle(empty_class.current_functions()).Length(), 0);
ClassFinalizer::FinalizeTypesInClass(empty_class);
{
SafepointWriteRwLocker ml(thread, thread->isolate_group()->program_lock());
empty_class.Finalize();
}
EXPECT_EQ(kObjectAlignment, empty_class.host_instance_size());
Instance& instance = Instance::Handle(Instance::New(empty_class));
EXPECT_EQ(empty_class.ptr(), instance.clazz());
class_name = Symbols::New(thread, "OneFieldClass");
const Class& one_field_class =
Class::Handle(CreateDummyClass(class_name, script));
// No fields, functions, or super type for the OneFieldClass.
EXPECT_EQ(Array::Handle(empty_class.fields()).Length(), 0);
EXPECT_EQ(Array::Handle(empty_class.current_functions()).Length(), 0);
EXPECT_EQ(empty_class.super_type(), AbstractType::null());
ClassFinalizer::FinalizeTypesInClass(one_field_class);
const Array& one_fields = Array::Handle(Array::New(1));
const String& field_name = String::Handle(Symbols::New(thread, "the_field"));
const Field& field = Field::Handle(
Field::New(field_name, false, false, false, true, false, one_field_class,
Object::dynamic_type(), TokenPosition::kMinSource,
TokenPosition::kMinSource));
one_fields.SetAt(0, field);
{
SafepointWriteRwLocker ml(thread, thread->isolate_group()->program_lock());
one_field_class.SetFields(one_fields);
one_field_class.Finalize();
}
intptr_t header_size = sizeof(UntaggedObject);
EXPECT_EQ(Utils::RoundUp((header_size + (1 * kWordSize)), kObjectAlignment),
one_field_class.host_instance_size());
EXPECT_EQ(header_size, field.HostOffset());
EXPECT(!one_field_class.is_implemented());
one_field_class.set_is_implemented_unsafe();
EXPECT(one_field_class.is_implemented());
}
ISOLATE_UNIT_TEST_CASE(Smi) {
const Smi& smi = Smi::Handle(Smi::New(5));
Object& smi_object = Object::Handle(smi.ptr());
EXPECT(smi.IsSmi());
EXPECT(smi_object.IsSmi());
EXPECT_EQ(5, smi.Value());
const Object& object = Object::Handle();
EXPECT(!object.IsSmi());
smi_object = Object::null();
EXPECT(!smi_object.IsSmi());
EXPECT(smi.Equals(Smi::Handle(Smi::New(5))));
EXPECT(!smi.Equals(Smi::Handle(Smi::New(6))));
EXPECT(smi.Equals(smi));
EXPECT(!smi.Equals(Smi::Handle()));
EXPECT(Smi::IsValid(0));
EXPECT(Smi::IsValid(-15));
EXPECT(Smi::IsValid(0xFFu));
// Upper two bits must be either 00 or 11.
#if defined(ARCH_IS_64_BIT) && !defined(DART_COMPRESSED_POINTERS)
EXPECT(!Smi::IsValid(kMaxInt64));
EXPECT(Smi::IsValid(0x3FFFFFFFFFFFFFFF));
EXPECT(Smi::IsValid(-1));
#else
EXPECT(!Smi::IsValid(kMaxInt32));
EXPECT(Smi::IsValid(0x3FFFFFFF));
EXPECT(Smi::IsValid(-1));
EXPECT(!Smi::IsValid(0xFFFFFFFFu));
#endif
EXPECT_EQ(5, smi.AsInt64Value());
EXPECT_EQ(5.0, smi.AsDoubleValue());
Smi& a = Smi::Handle(Smi::New(5));
Smi& b = Smi::Handle(Smi::New(3));
EXPECT_EQ(1, a.CompareWith(b));
EXPECT_EQ(-1, b.CompareWith(a));
EXPECT_EQ(0, a.CompareWith(a));
Smi& c = Smi::Handle(Smi::New(-1));
Mint& mint1 = Mint::Handle();
mint1 ^= Integer::New(DART_2PART_UINT64_C(0x7FFFFFFF, 100));
Mint& mint2 = Mint::Handle();
mint2 ^= Integer::New(-DART_2PART_UINT64_C(0x7FFFFFFF, 100));
EXPECT_EQ(-1, a.CompareWith(mint1));
EXPECT_EQ(1, a.CompareWith(mint2));
EXPECT_EQ(-1, c.CompareWith(mint1));
EXPECT_EQ(1, c.CompareWith(mint2));
}
ISOLATE_UNIT_TEST_CASE(StringCompareTo) {
const String& abcd = String::Handle(String::New("abcd"));
const String& abce = String::Handle(String::New("abce"));
EXPECT_EQ(0, abcd.CompareTo(abcd));
EXPECT_EQ(0, abce.CompareTo(abce));
EXPECT(abcd.CompareTo(abce) < 0);
EXPECT(abce.CompareTo(abcd) > 0);
const int kMonkeyLen = 4;
const uint8_t monkey_utf8[kMonkeyLen] = {0xf0, 0x9f, 0x90, 0xb5};
const String& monkey_face =
String::Handle(String::FromUTF8(monkey_utf8, kMonkeyLen));
const int kDogLen = 4;
// 0x1f436 DOG FACE.
const uint8_t dog_utf8[kDogLen] = {0xf0, 0x9f, 0x90, 0xb6};
const String& dog_face = String::Handle(String::FromUTF8(dog_utf8, kDogLen));
EXPECT_EQ(0, monkey_face.CompareTo(monkey_face));
EXPECT_EQ(0, dog_face.CompareTo(dog_face));
EXPECT(monkey_face.CompareTo(dog_face) < 0);
EXPECT(dog_face.CompareTo(monkey_face) > 0);
const int kDominoLen = 4;
// 0x1f036 DOMINO TILE HORIZONTAL-00-05.
const uint8_t domino_utf8[kDominoLen] = {0xf0, 0x9f, 0x80, 0xb6};
const String& domino =
String::Handle(String::FromUTF8(domino_utf8, kDominoLen));
EXPECT_EQ(0, domino.CompareTo(domino));
EXPECT(domino.CompareTo(dog_face) < 0);
EXPECT(domino.CompareTo(monkey_face) < 0);
EXPECT(dog_face.CompareTo(domino) > 0);
EXPECT(monkey_face.CompareTo(domino) > 0);
EXPECT(abcd.CompareTo(monkey_face) < 0);
EXPECT(abce.CompareTo(monkey_face) < 0);
EXPECT(abcd.CompareTo(domino) < 0);
EXPECT(abce.CompareTo(domino) < 0);
EXPECT(domino.CompareTo(abcd) > 0);
EXPECT(domino.CompareTo(abcd) > 0);
EXPECT(monkey_face.CompareTo(abce) > 0);
EXPECT(monkey_face.CompareTo(abce) > 0);
}
ISOLATE_UNIT_TEST_CASE(StringEncodeIRI) {
const char* kInput =
"file:///usr/local/johnmccutchan/workspace/dart-repo/dart/test.dart";
const char* kOutput =
"file%3A%2F%2F%2Fusr%2Flocal%2Fjohnmccutchan%2Fworkspace%2F"
"dart-repo%2Fdart%2Ftest.dart";
const String& input = String::Handle(String::New(kInput));
const char* encoded = String::EncodeIRI(input);
EXPECT(strcmp(encoded, kOutput) == 0);
}
ISOLATE_UNIT_TEST_CASE(StringDecodeIRI) {
const char* kOutput =
"file:///usr/local/johnmccutchan/workspace/dart-repo/dart/test.dart";
const char* kInput =
"file%3A%2F%2F%2Fusr%2Flocal%2Fjohnmccutchan%2Fworkspace%2F"
"dart-repo%2Fdart%2Ftest.dart";
const String& input = String::Handle(String::New(kInput));
const String& output = String::Handle(String::New(kOutput));
const String& decoded = String::Handle(String::DecodeIRI(input));
EXPECT(output.Equals(decoded));
}
ISOLATE_UNIT_TEST_CASE(StringDecodeIRIInvalid) {
String& input = String::Handle();
input = String::New("file%");
String& decoded = String::Handle();
decoded = String::DecodeIRI(input);
EXPECT(decoded.IsNull());
input = String::New("file%3");
decoded = String::DecodeIRI(input);
EXPECT(decoded.IsNull());
input = String::New("file%3g");
decoded = String::DecodeIRI(input);
EXPECT(decoded.IsNull());
}
ISOLATE_UNIT_TEST_CASE(StringIRITwoByte) {
const intptr_t kInputLen = 3;
const uint16_t kInput[kInputLen] = {'x', '/', 256};
const String& input = String::Handle(String::FromUTF16(kInput, kInputLen));
const intptr_t kOutputLen = 10;
const uint16_t kOutput[kOutputLen] = {'x', '%', '2', 'F', '%',
'C', '4', '%', '8', '0'};
const String& output = String::Handle(String::FromUTF16(kOutput, kOutputLen));
const String& encoded = String::Handle(String::New(String::EncodeIRI(input)));
EXPECT(output.Equals(encoded));
const String& decoded = String::Handle(String::DecodeIRI(output));
EXPECT(input.Equals(decoded));
}
ISOLATE_UNIT_TEST_CASE(Mint) {
// On 64-bit architectures a Smi is stored in a 64 bit word. A Midint cannot
// be allocated if it does fit into a Smi.
#if !defined(ARCH_IS_64_BIT) || defined(DART_COMPRESSED_POINTERS)
{
Mint& med = Mint::Handle();
EXPECT(med.IsNull());
int64_t v = DART_2PART_UINT64_C(1, 0);
med ^= Integer::New(v);
EXPECT_EQ(v, med.value());
const String& smi_str = String::Handle(String::New("1"));
const String& mint1_str = String::Handle(String::New("2147419168"));
const String& mint2_str = String::Handle(String::New("-2147419168"));
Integer& i = Integer::Handle(Integer::NewCanonical(smi_str));
EXPECT(i.IsSmi());
i = Integer::NewCanonical(mint1_str);
EXPECT(i.IsMint());
EXPECT(!i.IsZero());
EXPECT(!i.IsNegative());
i = Integer::NewCanonical(mint2_str);
EXPECT(i.IsMint());
EXPECT(!i.IsZero());
EXPECT(i.IsNegative());
}
Integer& i = Integer::Handle(Integer::New(DART_2PART_UINT64_C(1, 0)));
EXPECT(i.IsMint());
EXPECT(!i.IsZero());
EXPECT(!i.IsNegative());
Integer& i1 = Integer::Handle(Integer::New(DART_2PART_UINT64_C(1010, 0)));
Mint& i2 = Mint::Handle();
i2 ^= Integer::New(DART_2PART_UINT64_C(1010, 0));
EXPECT(i1.Equals(i2));
EXPECT(!i.Equals(i1));
int64_t test = DART_2PART_UINT64_C(1010, 0);
EXPECT_EQ(test, i2.value());
Mint& a = Mint::Handle();
a ^= Integer::New(DART_2PART_UINT64_C(5, 0));
Mint& b = Mint::Handle();
b ^= Integer::New(DART_2PART_UINT64_C(3, 0));
EXPECT_EQ(1, a.CompareWith(b));
EXPECT_EQ(-1, b.CompareWith(a));
EXPECT_EQ(0, a.CompareWith(a));
Mint& c = Mint::Handle();
c ^= Integer::New(-DART_2PART_UINT64_C(3, 0));
Smi& smi1 = Smi::Handle(Smi::New(4));
Smi& smi2 = Smi::Handle(Smi::New(-4));
EXPECT_EQ(1, a.CompareWith(smi1));
EXPECT_EQ(1, a.CompareWith(smi2));
EXPECT_EQ(-1, c.CompareWith(smi1));
EXPECT_EQ(-1, c.CompareWith(smi2));
int64_t mint_value = DART_2PART_UINT64_C(0x7FFFFFFF, 64);
const String& mint_string = String::Handle(String::New("0x7FFFFFFF00000064"));
Mint& mint1 = Mint::Handle();
mint1 ^= Integer::NewCanonical(mint_string);
Mint& mint2 = Mint::Handle();
mint2 ^= Integer::NewCanonical(mint_string);
EXPECT_EQ(mint1.value(), mint_value);
EXPECT_EQ(mint2.value(), mint_value);
EXPECT_EQ(mint1.ptr(), mint2.ptr());
#endif
}
ISOLATE_UNIT_TEST_CASE(Double) {
{
const double dbl_const = 5.0;
const Double& dbl = Double::Handle(Double::New(dbl_const));
Object& dbl_object = Object::Handle(dbl.ptr());
EXPECT(dbl.IsDouble());
EXPECT(dbl_object.IsDouble());
EXPECT_EQ(dbl_const, dbl.value());
}
{
const double dbl_const = -5.0;
const Double& dbl = Double::Handle(Double::New(dbl_const));
Object& dbl_object = Object::Handle(dbl.ptr());
EXPECT(dbl.IsDouble());
EXPECT(dbl_object.IsDouble());
EXPECT_EQ(dbl_const, dbl.value());
}
{
const double dbl_const = 0.0;
const Double& dbl = Double::Handle(Double::New(dbl_const));
Object& dbl_object = Object::Handle(dbl.ptr());
EXPECT(dbl.IsDouble());
EXPECT(dbl_object.IsDouble());
EXPECT_EQ(dbl_const, dbl.value());
}
{
const double dbl_const = 5.0;
const String& dbl_str = String::Handle(String::New("5.0"));
const Double& dbl1 = Double::Handle(Double::NewCanonical(dbl_const));
const Double& dbl2 = Double::Handle(Double::NewCanonical(dbl_const));
const Double& dbl3 = Double::Handle(Double::NewCanonical(dbl_str));
EXPECT_EQ(dbl_const, dbl1.value());
EXPECT_EQ(dbl_const, dbl2.value());
EXPECT_EQ(dbl_const, dbl3.value());
EXPECT_EQ(dbl1.ptr(), dbl2.ptr());
EXPECT_EQ(dbl1.ptr(), dbl3.ptr());
}
{
const double dbl_const = 2.0;
const Double& dbl1 = Double::Handle(Double::New(dbl_const));
const Double& dbl2 = Double::Handle(Double::New(dbl_const));
EXPECT(dbl1.OperatorEquals(dbl2));
EXPECT(dbl1.IsIdenticalTo(dbl2));
EXPECT(dbl1.CanonicalizeEquals(dbl2));
const Double& dbl3 = Double::Handle(Double::New(3.3));
EXPECT(!dbl1.OperatorEquals(dbl3));
EXPECT(!dbl1.OperatorEquals(Smi::Handle(Smi::New(3))));
EXPECT(!dbl1.OperatorEquals(Double::Handle()));
const Double& nan0 = Double::Handle(Double::New(NAN));
EXPECT(isnan(nan0.value()));
EXPECT(nan0.IsIdenticalTo(nan0));
EXPECT(nan0.CanonicalizeEquals(nan0));
EXPECT(!nan0.OperatorEquals(nan0));
const Double& nan1 =
Double::Handle(Double::New(bit_cast<double>(kMaxUint64 - 0)));
const Double& nan2 =
Double::Handle(Double::New(bit_cast<double>(kMaxUint64 - 1)));
EXPECT(isnan(nan1.value()));
EXPECT(isnan(nan2.value()));
EXPECT(!nan1.IsIdenticalTo(nan2));
EXPECT(!nan1.CanonicalizeEquals(nan2));
EXPECT(!nan1.OperatorEquals(nan2));
}
{
const String& dbl_str0 = String::Handle(String::New("bla"));
const Double& dbl0 = Double::Handle(Double::New(dbl_str0));
EXPECT(dbl0.IsNull());
const String& dbl_str1 = String::Handle(String::New("2.0"));
const Double& dbl1 = Double::Handle(Double::New(dbl_str1));
EXPECT_EQ(2.0, dbl1.value());
// Disallow legacy form.
const String& dbl_str2 = String::Handle(String::New("2.0d"));
const Double& dbl2 = Double::Handle(Double::New(dbl_str2));
EXPECT(dbl2.IsNull());
}
}
ISOLATE_UNIT_TEST_CASE(Integer) {
Integer& i = Integer::Handle();
i = Integer::NewCanonical(String::Handle(String::New("12")));
EXPECT(i.IsSmi());
i = Integer::NewCanonical(String::Handle(String::New("-120")));
EXPECT(i.IsSmi());
i = Integer::NewCanonical(String::Handle(String::New("0")));
EXPECT(i.IsSmi());
i = Integer::NewCanonical(
String::Handle(String::New("12345678901234567890")));
EXPECT(i.IsNull());
i = Integer::NewCanonical(
String::Handle(String::New("-12345678901234567890111222")));
EXPECT(i.IsNull());
}
ISOLATE_UNIT_TEST_CASE(String) {
const char* kHello = "Hello World!";
int32_t hello_len = strlen(kHello);
const String& str = String::Handle(String::New(kHello));
EXPECT(str.IsInstance());
EXPECT(str.IsString());
EXPECT(str.IsOneByteString());
EXPECT(!str.IsTwoByteString());
EXPECT(!str.IsNumber());
EXPECT_EQ(hello_len, str.Length());
EXPECT_EQ('H', str.CharAt(0));
EXPECT_EQ('e', str.CharAt(1));
EXPECT_EQ('l', str.CharAt(2));
EXPECT_EQ('l', str.CharAt(3));
EXPECT_EQ('o', str.CharAt(4));
EXPECT_EQ(' ', str.CharAt(5));
EXPECT_EQ('W', str.CharAt(6));
EXPECT_EQ('o', str.CharAt(7));
EXPECT_EQ('r', str.CharAt(8));
EXPECT_EQ('l', str.CharAt(9));
EXPECT_EQ('d', str.CharAt(10));
EXPECT_EQ('!', str.CharAt(11));
const uint8_t* motto =
reinterpret_cast<const uint8_t*>("Dart's bescht wos je hets gits");
const String& str2 = String::Handle(String::FromUTF8(motto + 7, 4));
EXPECT_EQ(4, str2.Length());
EXPECT_EQ('b', str2.CharAt(0));
EXPECT_EQ('e', str2.CharAt(1));
EXPECT_EQ('s', str2.CharAt(2));
EXPECT_EQ('c', str2.CharAt(3));
const String& str3 = String::Handle(String::New(kHello));
EXPECT(str.Equals(str));
EXPECT_EQ(str.Hash(), str.Hash());
EXPECT(!str.Equals(str2));
EXPECT(str.Equals(str3));
EXPECT_EQ(str.Hash(), str3.Hash());
EXPECT(str3.Equals(str));
const String& str4 = String::Handle(String::New("foo"));
const String& str5 = String::Handle(String::New("bar"));
const String& str6 = String::Handle(String::Concat(str4, str5));
const String& str7 = String::Handle(String::New("foobar"));
EXPECT(str6.Equals(str7));
EXPECT(!str6.Equals(Smi::Handle(Smi::New(4))));
const String& empty1 = String::Handle(String::New(""));
const String& empty2 = String::Handle(String::New(""));
EXPECT(empty1.Equals(empty2, 0, 0));
const intptr_t kCharsLen = 8;
const uint8_t chars[kCharsLen] = {1, 2, 127, 64, 92, 0, 55, 55};
const String& str8 = String::Handle(String::FromUTF8(chars, kCharsLen));
EXPECT_EQ(kCharsLen, str8.Length());
EXPECT_EQ(1, str8.CharAt(0));
EXPECT_EQ(127, str8.CharAt(2));
EXPECT_EQ(64, str8.CharAt(3));
EXPECT_EQ(0, str8.CharAt(5));
EXPECT_EQ(55, str8.CharAt(6));
EXPECT_EQ(55, str8.CharAt(7));
const intptr_t kCharsIndex = 3;
const String& sub1 = String::Handle(String::SubString(str8, kCharsIndex));
EXPECT_EQ((kCharsLen - kCharsIndex), sub1.Length());
EXPECT_EQ(64, sub1.CharAt(0));
EXPECT_EQ(92, sub1.CharAt(1));
EXPECT_EQ(0, sub1.CharAt(2));
EXPECT_EQ(55, sub1.CharAt(3));
EXPECT_EQ(55, sub1.CharAt(4));
const intptr_t kWideCharsLen = 7;
uint16_t wide_chars[kWideCharsLen] = {'H', 'e', 'l', 'l', 'o', 256, '!'};
const String& two_str =
String::Handle(String::FromUTF16(wide_chars, kWideCharsLen));
EXPECT(two_str.IsInstance());
EXPECT(two_str.IsString());
EXPECT(two_str.IsTwoByteString());
EXPECT(!two_str.IsOneByteString());
EXPECT_EQ(kWideCharsLen, two_str.Length());
EXPECT_EQ('H', two_str.CharAt(0));
EXPECT_EQ(256, two_str.CharAt(5));
const intptr_t kWideCharsIndex = 3;
const String& sub2 = String::Handle(String::SubString(two_str, kCharsIndex));
EXPECT_EQ((kWideCharsLen - kWideCharsIndex), sub2.Length());
EXPECT_EQ('l', sub2.CharAt(0));
EXPECT_EQ('o', sub2.CharAt(1));
EXPECT_EQ(256, sub2.CharAt(2));
EXPECT_EQ('!', sub2.CharAt(3));
{
const String& str1 = String::Handle(String::New("My.create"));
const String& str2 = String::Handle(String::New("My"));
const String& str3 = String::Handle(String::New("create"));
EXPECT_EQ(true, str1.StartsWith(str2));
EXPECT_EQ(false, str1.StartsWith(str3));
}
const int32_t four_chars[] = {'C', 0xFF, 'h', 0xFFFF, 'a', 0x10FFFF, 'r'};
const String& four_str = String::Handle(String::FromUTF32(four_chars, 7));
EXPECT_EQ(four_str.Hash(), four_str.Hash());
EXPECT(four_str.IsTwoByteString());
EXPECT(!four_str.IsOneByteString());
EXPECT_EQ(8, four_str.Length());
EXPECT_EQ('C', four_str.CharAt(0));
EXPECT_EQ(0xFF, four_str.CharAt(1));
EXPECT_EQ('h', four_str.CharAt(2));
EXPECT_EQ(0xFFFF, four_str.CharAt(3));
EXPECT_EQ('a', four_str.CharAt(4));
EXPECT_EQ(0xDBFF, four_str.CharAt(5));
EXPECT_EQ(0xDFFF, four_str.CharAt(6));
EXPECT_EQ('r', four_str.CharAt(7));
// Create a 1-byte string from an array of 2-byte elements.
{
const uint16_t char16[] = {0x00, 0x7F, 0xFF};
const String& str8 = String::Handle(String::FromUTF16(char16, 3));
EXPECT(str8.IsOneByteString());
EXPECT(!str8.IsTwoByteString());
EXPECT_EQ(0x00, str8.CharAt(0));
EXPECT_EQ(0x7F, str8.CharAt(1));
EXPECT_EQ(0xFF, str8.CharAt(2));
}
// Create a 1-byte string from an array of 4-byte elements.
{
const int32_t char32[] = {0x00, 0x1F, 0x7F};
const String& str8 = String::Handle(String::FromUTF32(char32, 3));
EXPECT(str8.IsOneByteString());
EXPECT(!str8.IsTwoByteString());
EXPECT_EQ(0x00, str8.CharAt(0));
EXPECT_EQ(0x1F, str8.CharAt(1));
EXPECT_EQ(0x7F, str8.CharAt(2));
}
// Create a 2-byte string from an array of 4-byte elements.
{
const int32_t char32[] = {0, 0x7FFF, 0xFFFF};
const String& str16 = String::Handle(String::FromUTF32(char32, 3));
EXPECT(!str16.IsOneByteString());
EXPECT(str16.IsTwoByteString());
EXPECT_EQ(0x0000, str16.CharAt(0));
EXPECT_EQ(0x7FFF, str16.CharAt(1));
EXPECT_EQ(0xFFFF, str16.CharAt(2));
}
}
ISOLATE_UNIT_TEST_CASE(StringFormat) {
const char* hello_str = "Hello World!";
const String& str =
String::Handle(String::NewFormatted("Hello %s!", "World"));
EXPECT(str.IsInstance());
EXPECT(str.IsString());
EXPECT(str.IsOneByteString());
EXPECT(!str.IsTwoByteString());
EXPECT(!str.IsNumber());
EXPECT(str.Equals(hello_str));
}
ISOLATE_UNIT_TEST_CASE(StringConcat) {
// Create strings from concatenated 1-byte empty strings.
{
const String& empty1 = String::Handle(String::New(""));
EXPECT(empty1.IsOneByteString());
EXPECT_EQ(0, empty1.Length());
const String& empty2 = String::Handle(String::New(""));
EXPECT(empty2.IsOneByteString());
EXPECT_EQ(0, empty2.Length());
// Concat
const String& empty3 = String::Handle(String::Concat(empty1, empty2));
EXPECT(empty3.IsOneByteString());
EXPECT_EQ(0, empty3.Length());
// ConcatAll
const Array& array1 = Array::Handle(Array::New(0));
EXPECT_EQ(0, array1.Length());
const String& empty4 = String::Handle(String::ConcatAll(array1));
EXPECT_EQ(0, empty4.Length());
const Array& array2 = Array::Handle(Array::New(10));
EXPECT_EQ(10, array2.Length());
for (int i = 0; i < array2.Length(); ++i) {
array2.SetAt(i, String::Handle(String::New("")));
}
const String& empty5 = String::Handle(String::ConcatAll(array2));
EXPECT(empty5.IsOneByteString());
EXPECT_EQ(0, empty5.Length());
const Array& array3 = Array::Handle(Array::New(123));
EXPECT_EQ(123, array3.Length());
const String& empty6 = String::Handle(String::New(""));
EXPECT(empty6.IsOneByteString());
EXPECT_EQ(0, empty6.Length());
for (int i = 0; i < array3.Length(); ++i) {
array3.SetAt(i, empty6);
}
const String& empty7 = String::Handle(String::ConcatAll(array3));
EXPECT(empty7.IsOneByteString());
EXPECT_EQ(0, empty7.Length());
}
// Concatenated empty and non-empty 1-byte strings.
{
const String& str1 = String::Handle(String::New(""));
EXPECT_EQ(0, str1.Length());
EXPECT(str1.IsOneByteString());
const String& str2 = String::Handle(String::New("one"));
EXPECT(str2.IsOneByteString());
EXPECT_EQ(3, str2.Length());
// Concat
const String& str3 = String::Handle(String::Concat(str1, str2));
EXPECT(str3.IsOneByteString());
EXPECT_EQ(3, str3.Length());
EXPECT(str3.Equals(str2));
const String& str4 = String::Handle(String::Concat(str2, str1));
EXPECT(str4.IsOneByteString());
EXPECT_EQ(3, str4.Length());
EXPECT(str4.Equals(str2));
// ConcatAll
const Array& array1 = Array::Handle(Array::New(2));
EXPECT_EQ(2, array1.Length());
array1.SetAt(0, str1);
array1.SetAt(1, str2);
const String& str5 = String::Handle(String::ConcatAll(array1));
EXPECT(str5.IsOneByteString());
EXPECT_EQ(3, str5.Length());
EXPECT(str5.Equals(str2));
const Array& array2 = Array::Handle(Array::New(2));
EXPECT_EQ(2, array2.Length());
array2.SetAt(0, str1);
array2.SetAt(1, str2);
const String& str6 = String::Handle(String::ConcatAll(array2));
EXPECT(str6.IsOneByteString());
EXPECT_EQ(3, str6.Length());
EXPECT(str6.Equals(str2));
const Array& array3 = Array::Handle(Array::New(3));
EXPECT_EQ(3, array3.Length());
array3.SetAt(0, str2);
array3.SetAt(1, str1);
array3.SetAt(2, str2);
const String& str7 = String::Handle(String::ConcatAll(array3));
EXPECT(str7.IsOneByteString());
EXPECT_EQ(6, str7.Length());
EXPECT(str7.Equals("oneone"));
EXPECT(!str7.Equals("oneoneone"));
}
// Create a string by concatenating non-empty 1-byte strings.
{
const char* one = "one";
intptr_t one_len = strlen(one);
const String& onestr = String::Handle(String::New(one));
EXPECT(onestr.IsOneByteString());
EXPECT_EQ(one_len, onestr.Length());
const char* three = "three";
intptr_t three_len = strlen(three);
const String& threestr = String::Handle(String::New(three));
EXPECT(threestr.IsOneByteString());
EXPECT_EQ(three_len, threestr.Length());
// Concat
const String& str3 = String::Handle(String::Concat(onestr, threestr));
EXPECT(str3.IsOneByteString());
const char* one_three = "onethree";
EXPECT(str3.Equals(one_three));
const String& str4 = String::Handle(String::Concat(threestr, onestr));
EXPECT(str4.IsOneByteString());
const char* three_one = "threeone";
intptr_t three_one_len = strlen(three_one);
EXPECT_EQ(three_one_len, str4.Length());
EXPECT(str4.Equals(three_one));
// ConcatAll
const Array& array1 = Array::Handle(Array::New(2));
EXPECT_EQ(2, array1.Length());
array1.SetAt(0, onestr);
array1.SetAt(1, threestr);
const String& str5 = String::Handle(String::ConcatAll(array1));
EXPECT(str5.IsOneByteString());
intptr_t one_three_len = strlen(one_three);
EXPECT_EQ(one_three_len, str5.Length());
EXPECT(str5.Equals(one_three));
const Array& array2 = Array::Handle(Array::New(2));
EXPECT_EQ(2, array2.Length());
array2.SetAt(0, threestr);
array2.SetAt(1, onestr);
const String& str6 = String::Handle(String::ConcatAll(array2));
EXPECT(str6.IsOneByteString());
EXPECT_EQ(three_one_len, str6.Length());
EXPECT(str6.Equals(three_one));
const Array& array3 = Array::Handle(Array::New(3));
EXPECT_EQ(3, array3.Length());
array3.SetAt(0, onestr);
array3.SetAt(1, threestr);
array3.SetAt(2, onestr);
const String& str7 = String::Handle(String::ConcatAll(array3));
EXPECT(str7.IsOneByteString());
const char* one_three_one = "onethreeone";
intptr_t one_three_one_len = strlen(one_three_one);
EXPECT_EQ(one_three_one_len, str7.Length());
EXPECT(str7.Equals(one_three_one));
const Array& array4 = Array::Handle(Array::New(3));
EXPECT_EQ(3, array4.Length());
array4.SetAt(0, threestr);
array4.SetAt(1, onestr);
array4.SetAt(2, threestr);
const String& str8 = String::Handle(String::ConcatAll(array4));
EXPECT(str8.IsOneByteString());
const char* three_one_three = "threeonethree";
intptr_t three_one_three_len = strlen(three_one_three);
EXPECT_EQ(three_one_three_len, str8.Length());
EXPECT(str8.Equals(three_one_three));
}
// Concatenate empty and non-empty 2-byte strings.
{
const String& str1 = String::Handle(String::New(""));
EXPECT(str1.IsOneByteString());
EXPECT_EQ(0, str1.Length());
uint16_t two[] = {0x05E6, 0x05D5, 0x05D5, 0x05D9, 0x05D9};
intptr_t two_len = sizeof(two) / sizeof(two[0]);
const String& str2 = String::Handle(String::FromUTF16(two, two_len));
EXPECT(str2.IsTwoByteString());
EXPECT_EQ(two_len, str2.Length());
// Concat
const String& str3 = String::Handle(String::Concat(str1, str2));
EXPECT(str3.IsTwoByteString());
EXPECT_EQ(two_len, str3.Length());
EXPECT(str3.Equals(str2));
const String& str4 = String::Handle(String::Concat(str2, str1));
EXPECT(str4.IsTwoByteString());
EXPECT_EQ(two_len, str4.Length());
EXPECT(str4.Equals(str2));
// ConcatAll
const Array& array1 = Array::Handle(Array::New(2));
EXPECT_EQ(2, array1.Length());
array1.SetAt(0, str1);
array1.SetAt(1, str2);
const String& str5 = String::Handle(String::ConcatAll(array1));
EXPECT(str5.IsTwoByteString());
EXPECT_EQ(two_len, str5.Length());
EXPECT(str5.Equals(str2));
const Array& array2 = Array::Handle(Array::New(2));
EXPECT_EQ(2, array2.Length());
array2.SetAt(0, str1);
array2.SetAt(1, str2);
const String& str6 = String::Handle(String::ConcatAll(array2));
EXPECT(str6.IsTwoByteString());
EXPECT_EQ(two_len, str6.Length());
EXPECT(str6.Equals(str2));
const Array& array3 = Array::Handle(Array::New(3));
EXPECT_EQ(3, array3.Length());
array3.SetAt(0, str2);
array3.SetAt(1, str1);
array3.SetAt(2, str2);
const String& str7 = String::Handle(String::ConcatAll(array3));
EXPECT(str7.IsTwoByteString());
EXPECT_EQ(two_len * 2, str7.Length());
uint16_t twotwo[] = {0x05E6, 0x05D5, 0x05D5, 0x05D9, 0x05D9,
0x05E6, 0x05D5, 0x05D5, 0x05D9, 0x05D9};
intptr_t twotwo_len = sizeof(twotwo) / sizeof(twotwo[0]);
EXPECT(str7.IsTwoByteString());
EXPECT(str7.Equals(twotwo, twotwo_len));
}
// Concatenating non-empty 2-byte strings.
{
const uint16_t one[] = {0x05D0, 0x05D9, 0x05D9, 0x05DF};
intptr_t one_len = sizeof(one) / sizeof(one[0]);
const String& str1 = String::Handle(String::FromUTF16(one, one_len));
EXPECT(str1.IsTwoByteString());
EXPECT_EQ(one_len, str1.Length());
const uint16_t two[] = {0x05E6, 0x05D5, 0x05D5, 0x05D9, 0x05D9};
intptr_t two_len = sizeof(two) / sizeof(two[0]);
const String& str2 = String::Handle(String::FromUTF16(two, two_len));
EXPECT(str2.IsTwoByteString());
EXPECT_EQ(two_len, str2.Length());
// Concat
const String& one_two_str = String::Handle(String::Concat(str1, str2));
EXPECT(one_two_str.IsTwoByteString());
const uint16_t one_two[] = {0x05D0, 0x05D9, 0x05D9, 0x05DF, 0x05E6,
0x05D5, 0x05D5, 0x05D9, 0x05D9};
intptr_t one_two_len = sizeof(one_two) / sizeof(one_two[0]);
EXPECT_EQ(one_two_len, one_two_str.Length());
EXPECT(one_two_str.Equals(one_two, one_two_len));
const String& two_one_str = String::Handle(String::Concat(str2, str1));
EXPECT(two_one_str.IsTwoByteString());
const uint16_t two_one[] = {0x05E6, 0x05D5, 0x05D5, 0x05D9, 0x05D9,
0x05D0, 0x05D9, 0x05D9, 0x05DF};
intptr_t two_one_len = sizeof(two_one) / sizeof(two_one[0]);
EXPECT_EQ(two_one_len, two_one_str.Length());
EXPECT(two_one_str.Equals(two_one, two_one_len));
// ConcatAll
const Array& array1 = Array::Handle(Array::New(2));
EXPECT_EQ(2, array1.Length());
array1.SetAt(0, str1);
array1.SetAt(1, str2);
const String& str3 = String::Handle(String::ConcatAll(array1));
EXPECT(str3.IsTwoByteString());
EXPECT_EQ(one_two_len, str3.Length());
EXPECT(str3.Equals(one_two, one_two_len));
const Array& array2 = Array::Handle(Array::New(2));
EXPECT_EQ(2, array2.Length());
array2.SetAt(0, str2);
array2.SetAt(1, str1);
const String& str4 = String::Handle(String::ConcatAll(array2));
EXPECT(str4.IsTwoByteString());
EXPECT_EQ(two_one_len, str4.Length());
EXPECT(str4.Equals(two_one, two_one_len));
const Array& array3 = Array::Handle(Array::New(3));
EXPECT_EQ(3, array3.Length());
array3.SetAt(0, str1);
array3.SetAt(1, str2);
array3.SetAt(2, str1);
const String& str5 = String::Handle(String::ConcatAll(array3));
EXPECT(str5.IsTwoByteString());
const uint16_t one_two_one[] = {0x05D0, 0x05D9, 0x05D9, 0x05DF, 0x05E6,
0x05D5, 0x05D5, 0x05D9, 0x05D9, 0x05D0,
0x05D9, 0x05D9, 0x05DF};
intptr_t one_two_one_len = sizeof(one_two_one) / sizeof(one_two_one[0]);
EXPECT_EQ(one_two_one_len, str5.Length());
EXPECT(str5.Equals(one_two_one, one_two_one_len));
const Array& array4 = Array::Handle(Array::New(3));
EXPECT_EQ(3, array4.Length());
array4.SetAt(0, str2);
array4.SetAt(1, str1);
array4.SetAt(2, str2);
const String& str6 = String::Handle(String::ConcatAll(array4));
EXPECT(str6.IsTwoByteString());
const uint16_t two_one_two[] = {0x05E6, 0x05D5, 0x05D5, 0x05D9, 0x05D9,
0x05D0, 0x05D9, 0x05D9, 0x05DF, 0x05E6,
0x05D5, 0x05D5, 0x05D9, 0x05D9};
intptr_t two_one_two_len = sizeof(two_one_two) / sizeof(two_one_two[0]);
EXPECT_EQ(two_one_two_len, str6.Length());
EXPECT(str6.Equals(two_one_two, two_one_two_len));
}
// Concatenated empty and non-empty strings built from 4-byte elements.
{
const String& str1 = String::Handle(String::New(""));
EXPECT(str1.IsOneByteString());
EXPECT_EQ(0, str1.Length());
int32_t four[] = {0x1D4D5, 0x1D4DE, 0x1D4E4, 0x1D4E1};
intptr_t four_len = sizeof(four) / sizeof(four[0]);
intptr_t expected_len = (four_len * 2);
const String& str2 = String::Handle(String::FromUTF32(four, four_len));
EXPECT(str2.IsTwoByteString());
EXPECT_EQ(expected_len, str2.Length());
// Concat
const String& str3 = String::Handle(String::Concat(str1, str2));
EXPECT_EQ(expected_len, str3.Length());
EXPECT(str3.Equals(str2));
const String& str4 = String::Handle(String::Concat(str2, str1));
EXPECT(str4.IsTwoByteString());
EXPECT_EQ(expected_len, str4.Length());
EXPECT(str4.Equals(str2));
// ConcatAll
const Array& array1 = Array::Handle(Array::New(2));
EXPECT_EQ(2, array1.Length());
array1.SetAt(0, str1);
array1.SetAt(1, str2);
const String& str5 = String::Handle(String::ConcatAll(array1));
EXPECT(str5.IsTwoByteString());
EXPECT_EQ(expected_len, str5.Length());
EXPECT(str5.Equals(str2));
const Array& array2 = Array::Handle(Array::New(2));
EXPECT_EQ(2, array2.Length());
array2.SetAt(0, str1);
array2.SetAt(1, str2);
const String& str6 = String::Handle(String::ConcatAll(array2));
EXPECT(str6.IsTwoByteString());
EXPECT_EQ(expected_len, str6.Length());
EXPECT(str6.Equals(str2));
const Array& array3 = Array::Handle(Array::New(3));
EXPECT_EQ(3, array3.Length());
array3.SetAt(0, str2);
array3.SetAt(1, str1);
array3.SetAt(2, str2);
const String& str7 = String::Handle(String::ConcatAll(array3));
EXPECT(str7.IsTwoByteString());
int32_t fourfour[] = {0x1D4D5, 0x1D4DE, 0x1D4E4, 0x1D4E1,
0x1D4D5, 0x1D4DE, 0x1D4E4, 0x1D4E1};
intptr_t fourfour_len = sizeof(fourfour) / sizeof(fourfour[0]);
EXPECT_EQ((fourfour_len * 2), str7.Length());
const String& fourfour_str =
String::Handle(String::FromUTF32(fourfour, fourfour_len));
EXPECT(str7.Equals(fourfour_str));
}
// Concatenate non-empty strings built from 4-byte elements.
{
const int32_t one[] = {0x105D0, 0x105D9, 0x105D9, 0x105DF};
intptr_t one_len = sizeof(one) / sizeof(one[0]);
const String& onestr = String::Handle(String::FromUTF32(one, one_len));
EXPECT(onestr.IsTwoByteString());
EXPECT_EQ((one_len * 2), onestr.Length());
const int32_t two[] = {0x105E6, 0x105D5, 0x105D5, 0x105D9, 0x105D9};
intptr_t two_len = sizeof(two) / sizeof(two[0]);
const String& twostr = String::Handle(String::FromUTF32(two, two_len));
EXPECT(twostr.IsTwoByteString());
EXPECT_EQ((two_len * 2), twostr.Length());
// Concat
const String& str1 = String::Handle(String::Concat(onestr, twostr));
EXPECT(str1.IsTwoByteString());
const int32_t one_two[] = {0x105D0, 0x105D9, 0x105D9, 0x105DF, 0x105E6,
0x105D5, 0x105D5, 0x105D9, 0x105D9};
intptr_t one_two_len = sizeof(one_two) / sizeof(one_two[0]);
EXPECT_EQ((one_two_len * 2), str1.Length());
const String& one_two_str =
String::Handle(String::FromUTF32(one_two, one_two_len));
EXPECT(str1.Equals(one_two_str));
const String& str2 = String::Handle(String::Concat(twostr, onestr));
EXPECT(str2.IsTwoByteString());
const int32_t two_one[] = {0x105E6, 0x105D5, 0x105D5, 0x105D9, 0x105D9,
0x105D0, 0x105D9, 0x105D9, 0x105DF};
intptr_t two_one_len = sizeof(two_one) / sizeof(two_one[0]);
EXPECT_EQ((two_one_len * 2), str2.Length());
const String& two_one_str =
String::Handle(String::FromUTF32(two_one, two_one_len));
EXPECT(str2.Equals(two_one_str));
// ConcatAll
const Array& array1 = Array::Handle(Array::New(2));
EXPECT_EQ(2, array1.Length());
array1.SetAt(0, onestr);
array1.SetAt(1, twostr);
const String& str3 = String::Handle(String::ConcatAll(array1));
EXPECT(str3.IsTwoByteString());
EXPECT_EQ((one_two_len * 2), str3.Length());
EXPECT(str3.Equals(one_two_str));
const Array& array2 = Array::Handle(Array::New(2));
EXPECT_EQ(2, array2.Length());
array2.SetAt(0, twostr);
array2.SetAt(1, onestr);
const String& str4 = String::Handle(String::ConcatAll(array2));
EXPECT(str4.IsTwoByteString());
EXPECT_EQ((two_one_len * 2), str4.Length());
EXPECT(str4.Equals(two_one_str));
const Array& array3 = Array::Handle(Array::New(3));
EXPECT_EQ(3, array3.Length());
array3.SetAt(0, onestr);
array3.SetAt(1, twostr);
array3.SetAt(2, onestr);
const String& str5 = String::Handle(String::ConcatAll(array3));
EXPECT(str5.IsTwoByteString());
const int32_t one_two_one[] = {0x105D0, 0x105D9, 0x105D9, 0x105DF, 0x105E6,
0x105D5, 0x105D5, 0x105D9, 0x105D9, 0x105D0,
0x105D9, 0x105D9, 0x105DF};
intptr_t one_two_one_len = sizeof(one_two_one) / sizeof(one_two_one[0]);
EXPECT_EQ((one_two_one_len * 2), str5.Length());
const String& one_two_one_str =
String::Handle(String::FromUTF32(one_two_one, one_two_one_len));
EXPECT(str5.Equals(one_two_one_str));
const Array& array4 = Array::Handle(Array::New(3));
EXPECT_EQ(3, array4.Length());
array4.SetAt(0, twostr);
array4.SetAt(1, onestr);
array4.SetAt(2, twostr);
const String& str6 = String::Handle(String::ConcatAll(array4));
EXPECT(str6.IsTwoByteString());
const int32_t two_one_two[] = {0x105E6, 0x105D5, 0x105D5, 0x105D9, 0x105D9,
0x105D0, 0x105D9, 0x105D9, 0x105DF, 0x105E6,
0x105D5, 0x105D5, 0x105D9, 0x105D9};
intptr_t two_one_two_len = sizeof(two_one_two) / sizeof(two_one_two[0]);
EXPECT_EQ((two_one_two_len * 2), str6.Length());
const String& two_one_two_str =
String::Handle(String::FromUTF32(two_one_two, two_one_two_len));
EXPECT(str6.Equals(two_one_two_str));
}
// Concatenate 1-byte strings and 2-byte strings.
{
const uint8_t one[] = {'o', 'n', 'e', ' ', 'b', 'y', 't', 'e'};
intptr_t one_len = sizeof(one) / sizeof(one[0]);
const String& onestr = String::Handle(String::FromLatin1(one, one_len));
EXPECT(onestr.IsOneByteString());
EXPECT_EQ(one_len, onestr.Length());
EXPECT(onestr.EqualsLatin1(one, one_len));
uint16_t two[] = {0x05E6, 0x05D5, 0x05D5, 0x05D9, 0x05D9};
intptr_t two_len = sizeof(two) / sizeof(two[0]);
const String& twostr = String::Handle(String::FromUTF16(two, two_len));
EXPECT(twostr.IsTwoByteString());
EXPECT_EQ(two_len, twostr.Length());
EXPECT(twostr.Equals(two, two_len));
// Concat
const String& one_two_str = String::Handle(String::Concat(onestr, twostr));
EXPECT(one_two_str.IsTwoByteString());
uint16_t one_two[] = {'o', 'n', 'e', ' ', 'b', 'y', 't',
'e', 0x05E6, 0x05D5, 0x05D5, 0x05D9, 0x05D9};
intptr_t one_two_len = sizeof(one_two) / sizeof(one_two[0]);
EXPECT_EQ(one_two_len, one_two_str.Length());
EXPECT(one_two_str.Equals(one_two, one_two_len));
const String& two_one_str = String::Handle(String::Concat(twostr, onestr));
EXPECT(two_one_str.IsTwoByteString());
uint16_t two_one[] = {0x05E6, 0x05D5, 0x05D5, 0x05D9, 0x05D9, 'o', 'n',
'e', ' ', 'b', 'y', 't', 'e'};
intptr_t two_one_len = sizeof(two_one) / sizeof(two_one[0]);
EXPECT_EQ(two_one_len, two_one_str.Length());
EXPECT(two_one_str.Equals(two_one, two_one_len));
// ConcatAll
const Array& array1 = Array::Handle(Array::New(3));
EXPECT_EQ(3, array1.Length());
array1.SetAt(0, onestr);
array1.SetAt(1, twostr);
array1.SetAt(2, onestr);
const String& one_two_one_str = String::Handle(String::ConcatAll(array1));
EXPECT(one_two_one_str.IsTwoByteString());
EXPECT_EQ(onestr.Length() * 2 + twostr.Length(), one_two_one_str.Length());
uint16_t one_two_one[] = {'o', 'n', 'e', ' ', 'b', 'y', 't',
'e', 0x05E6, 0x05D5, 0x05D5, 0x05D9, 0x05D9, 'o',
'n', 'e', ' ', 'b', 'y', 't', 'e'};
intptr_t one_two_one_len = sizeof(one_two_one) / sizeof(one_two_one[0]);
EXPECT(one_two_one_str.Equals(one_two_one, one_two_one_len));
const Array& array2 = Array::Handle(Array::New(3));
EXPECT_EQ(3, array2.Length());
array2.SetAt(0, twostr);
array2.SetAt(1, onestr);
array2.SetAt(2, twostr);
const String& two_one_two_str = String::Handle(String::ConcatAll(array2));
EXPECT(two_one_two_str.IsTwoByteString());
EXPECT_EQ(twostr.Length() * 2 + onestr.Length(), two_one_two_str.Length());
uint16_t two_one_two[] = {0x05E6, 0x05D5, 0x05D5, 0x05D9, 0x05D9, 'o',
'n', 'e', ' ', 'b', 'y', 't',
'e', 0x05E6, 0x05D5, 0x05D5, 0x05D9, 0x05D9};
intptr_t two_one_two_len = sizeof(two_one_two) / sizeof(two_one_two[0]);
EXPECT(two_one_two_str.Equals(two_one_two, two_one_two_len));
}
}
ISOLATE_UNIT_TEST_CASE(StringHashConcat) {
EXPECT_EQ(String::Handle(String::New("onebyte")).Hash(),
String::HashConcat(String::Handle(String::New("one")),
String::Handle(String::New("byte"))));
uint16_t clef_utf16[] = {0xD834, 0xDD1E};
const String& clef = String::Handle(String::FromUTF16(clef_utf16, 2));
int32_t clef_utf32[] = {0x1D11E};
EXPECT(clef.Equals(clef_utf32, 1));
uword hash32 = String::Hash(String::FromUTF32(clef_utf32, 1));
EXPECT_EQ(hash32, clef.Hash());
EXPECT_EQ(hash32, String::HashConcat(
String::Handle(String::FromUTF16(clef_utf16, 1)),
String::Handle(String::FromUTF16(clef_utf16 + 1, 1))));
}
ISOLATE_UNIT_TEST_CASE(StringSubStringDifferentWidth) {
// Create 1-byte substring from a 1-byte source string.
const char* onechars = "\xC3\xB6\xC3\xB1\xC3\xA9";
const String& onestr = String::Handle(String::New(onechars));
EXPECT(!onestr.IsNull());
EXPECT(onestr.IsOneByteString());
EXPECT(!onestr.IsTwoByteString());
const String& onesub = String::Handle(String::SubString(onestr, 0));
EXPECT(!onesub.IsNull());
EXPECT(onestr.IsOneByteString());
EXPECT(!onestr.IsTwoByteString());
EXPECT_EQ(onesub.Length(), 3);
// Create 1- and 2-byte substrings from a 2-byte source string.
const char* twochars =
"\x1f\x2f\x3f"
"\xE1\xB9\xAB\xE1\xBA\x85\xE1\xB9\x93";
const String& twostr = String::Handle(String::New(twochars));
EXPECT(!twostr.IsNull());
EXPECT(twostr.IsTwoByteString());
const String& twosub1 = String::Handle(String::SubString(twostr, 0, 3));
EXPECT(!twosub1.IsNull());
EXPECT(twosub1.IsOneByteString());
EXPECT_EQ(twosub1.Length(), 3);
const String& twosub2 = String::Handle(String::SubString(twostr, 3));
EXPECT(!twosub2.IsNull());
EXPECT(twosub2.IsTwoByteString());
EXPECT_EQ(twosub2.Length(), 3);
// Create substrings from a string built using 1-, 2- and 4-byte elements.
const char* fourchars =
"\x1f\x2f\x3f"
"\xE1\xB9\xAB\xE1\xBA\x85\xE1\xB9\x93"
"\xF0\x9D\x96\xBF\xF0\x9D\x97\x88\xF0\x9D\x97\x8E\xF0\x9D\x97\x8B";
const String& fourstr = String::Handle(String::New(fourchars));
EXPECT(!fourstr.IsNull());
EXPECT(fourstr.IsTwoByteString());
const String& foursub1 = String::Handle(String::SubString(fourstr, 0, 3));
EXPECT(!foursub1.IsNull());
EXPECT(foursub1.IsOneByteString());
EXPECT_EQ(foursub1.Length(), 3);
const String& foursub2 = String::Handle(String::SubString(fourstr, 3, 3));
EXPECT(!foursub2.IsNull());
EXPECT(foursub2.IsTwoByteString());
EXPECT_EQ(foursub2.Length(), 3);
const String& foursub4 = String::Handle(String::SubString(fourstr, 6));
EXPECT_EQ(foursub4.Length(), 8);
EXPECT(!foursub4.IsNull());
EXPECT(foursub4.IsTwoByteString());
}
ISOLATE_UNIT_TEST_CASE(StringFromUtf8Literal) {
// Create a 1-byte string from a UTF-8 encoded string literal.
{
const char* src =
"\xC2\xA0\xC2\xA1\xC2\xA2\xC2\xA3"
"\xC2\xA4\xC2\xA5\xC2\xA6\xC2\xA7"
"\xC2\xA8\xC2\xA9\xC2\xAA\xC2\xAB"
"\xC2\xAC\xC2\xAD\xC2\xAE\xC2\xAF"
"\xC2\xB0\xC2\xB1\xC2\xB2\xC2\xB3"
"\xC2\xB4\xC2\xB5\xC2\xB6\xC2\xB7"
"\xC2\xB8\xC2\xB9\xC2\xBA\xC2\xBB"
"\xC2\xBC\xC2\xBD\xC2\xBE\xC2\xBF"
"\xC3\x80\xC3\x81\xC3\x82\xC3\x83"
"\xC3\x84\xC3\x85\xC3\x86\xC3\x87"
"\xC3\x88\xC3\x89\xC3\x8A\xC3\x8B"
"\xC3\x8C\xC3\x8D\xC3\x8E\xC3\x8F"
"\xC3\x90\xC3\x91\xC3\x92\xC3\x93"
"\xC3\x94\xC3\x95\xC3\x96\xC3\x97"
"\xC3\x98\xC3\x99\xC3\x9A\xC3\x9B"
"\xC3\x9C\xC3\x9D\xC3\x9E\xC3\x9F"
"\xC3\xA0\xC3\xA1\xC3\xA2\xC3\xA3"
"\xC3\xA4\xC3\xA5\xC3\xA6\xC3\xA7"
"\xC3\xA8\xC3\xA9\xC3\xAA\xC3\xAB"
"\xC3\xAC\xC3\xAD\xC3\xAE\xC3\xAF"
"\xC3\xB0\xC3\xB1\xC3\xB2\xC3\xB3"
"\xC3\xB4\xC3\xB5\xC3\xB6\xC3\xB7"
"\xC3\xB8\xC3\xB9\xC3\xBA\xC3\xBB"
"\xC3\xBC\xC3\xBD\xC3\xBE\xC3\xBF";
const uint8_t expected[] = {
0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB,
0xAC, 0xAD, 0xAE, 0xAF, 0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7,
0xB8, 0xB9, 0xBA, 0xBB, 0xBC, 0xBD, 0xBE, 0xBF, 0xC0, 0xC1, 0xC2, 0xC3,
0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF,
0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xDB,
0xDC, 0xDD, 0xDE, 0xDF, 0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7,
0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF3,
0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF,
};
const String& str = String::Handle(String::New(src));
EXPECT(str.IsOneByteString());
intptr_t expected_length = sizeof(expected);
EXPECT_EQ(expected_length, str.Length());
for (int i = 0; i < str.Length(); ++i) {
EXPECT_EQ(expected[i], str.CharAt(i));
}
}
// Create a 2-byte string from a UTF-8 encoded string literal.
{
const char* src =
"\xD7\x92\xD7\x9C\xD7\xA2\xD7\x93"
"\xD7\x91\xD7\xA8\xD7\x9B\xD7\x94";
const uint16_t expected[] = {0x5D2, 0x5DC, 0x5E2, 0x5D3,
0x5D1, 0x5E8, 0x5DB, 0x5D4};
const String& str = String::Handle(String::New(src));
EXPECT(str.IsTwoByteString());
intptr_t expected_size = sizeof(expected) / sizeof(expected[0]);
EXPECT_EQ(expected_size, str.Length());
for (int i = 0; i < str.Length(); ++i) {
EXPECT_EQ(expected[i], str.CharAt(i));
}
}
// Create a BMP 2-byte string from UTF-8 encoded 1- and 2-byte
// characters.
{
const char* src =
"\x0A\x0B\x0D\x0C\x0E\x0F\xC2\xA0"
"\xC2\xB0\xC3\x80\xC3\x90\xC3\xA0"
"\xC3\xB0\xE0\xA8\x80\xE0\xAC\x80"
"\xE0\xB0\x80\xE0\xB4\x80\xE0\xB8"
"\x80\xE0\xBC\x80\xEA\x80\x80\xEB"
"\x80\x80\xEC\x80\x80\xED\x80\x80"
"\xEE\x80\x80\xEF\x80\x80";
const intptr_t expected[] = {
0x000A, 0x000B, 0x000D, 0x000C, 0x000E, 0x000F, 0x00A0, 0x00B0,
0x00C0, 0x00D0, 0x00E0, 0x00F0, 0x0A00, 0x0B00, 0x0C00, 0x0D00,
0x0E00, 0x0F00, 0xA000, 0xB000, 0xC000, 0xD000, 0xE000, 0xF000};
const String& str = String::Handle(String::New(src));
EXPECT(str.IsTwoByteString());
intptr_t expected_size = sizeof(expected) / sizeof(expected[0]);
EXPECT_EQ(expected_size, str.Length());
for (int i = 0; i < str.Length(); ++i) {
EXPECT_EQ(expected[i], str.CharAt(i));
}
}
// Create a 2-byte string with supplementary characters from a UTF-8
// string literal.
{
const char* src =
"\xF0\x9D\x91\xA0\xF0\x9D\x91\xA1"
"\xF0\x9D\x91\xA2\xF0\x9D\x91\xA3";
const intptr_t expected[] = {0xd835, 0xdc60, 0xd835, 0xdc61,
0xd835, 0xdc62, 0xd835, 0xdc63};
const String& str = String::Handle(String::New(src));
EXPECT(str.IsTwoByteString());
intptr_t expected_size = (sizeof(expected) / sizeof(expected[0]));
EXPECT_EQ(expected_size, str.Length());
for (int i = 0; i < str.Length(); ++i) {
EXPECT_EQ(expected[i], str.CharAt(i));
}
}
// Create a 2-byte string from UTF-8 encoded 2- and 4-byte
// characters.
{
const char* src =
"\xE0\xA8\x80\xE0\xAC\x80\xE0\xB0"
"\x80\xE0\xB4\x80\xE0\xB8\x80\xE0"
"\xBC\x80\xEA\x80\x80\xEB\x80\x80"
"\xEC\x80\x80\xED\x80\x80\xEE\x80"
"\x80\xEF\x80\x80\xF0\x9A\x80\x80"
"\xF0\x9B\x80\x80\xF0\x9D\x80\x80"
"\xF0\x9E\x80\x80\xF0\x9F\x80\x80";
const intptr_t expected[] = {
0x0A00, 0x0B00, 0x0C00, 0x0D00, 0x0E00, 0x0F00, 0xA000, 0xB000,
0xC000, 0xD000, 0xE000, 0xF000, 0xD828, 0xDC00, 0xD82c, 0xDC00,
0xD834, 0xDC00, 0xD838, 0xDC00, 0xD83c, 0xDC00,
};
const String& str = String::Handle(String::New(src));
EXPECT(str.IsTwoByteString());
intptr_t expected_size = sizeof(expected) / sizeof(expected[0]);
EXPECT_EQ(expected_size, str.Length());
for (int i = 0; i < str.Length(); ++i) {
EXPECT_EQ(expected[i], str.CharAt(i));
}
}
// Create a 2-byte string from UTF-8 encoded 1-, 2- and 4-byte
// characters.
{
const char* src =
"\x0A\x0B\x0D\x0C\x0E\x0F\xC2\xA0"
"\xC2\xB0\xC3\x80\xC3\x90\xC3\xA0"
"\xC3\xB0\xE0\xA8\x80\xE0\xAC\x80"
"\xE0\xB0\x80\xE0\xB4\x80\xE0\xB8"
"\x80\xE0\xBC\x80\xEA\x80\x80\xEB"
"\x80\x80\xEC\x80\x80\xED\x80\x80"
"\xEE\x80\x80\xEF\x80\x80\xF0\x9A"
"\x80\x80\xF0\x9B\x80\x80\xF0\x9D"
"\x80\x80\xF0\x9E\x80\x80\xF0\x9F"
"\x80\x80";
const intptr_t expected[] = {
0x000A, 0x000B, 0x000D, 0x000C, 0x000E, 0x000F, 0x00A0, 0x00B0, 0x00C0,
0x00D0, 0x00E0, 0x00F0, 0x0A00, 0x0B00, 0x0C00, 0x0D00, 0x0E00, 0x0F00,
0xA000, 0xB000, 0xC000, 0xD000, 0xE000, 0xF000, 0xD828, 0xDC00, 0xD82c,
0xDC00, 0xD834, 0xDC00, 0xD838, 0xDC00, 0xD83c, 0xDC00,
};
const String& str = String::Handle(String::New(src));
EXPECT(str.IsTwoByteString());
intptr_t expected_size = sizeof(expected) / sizeof(expected[0]);
EXPECT_EQ(expected_size, str.Length());
for (int i = 0; i < str.Length(); ++i) {
EXPECT_EQ(expected[i], str.CharAt(i));
}
}
}
ISOLATE_UNIT_TEST_CASE(StringEqualsUtf8) {
const char* onesrc = "abc";
const String& onestr = String::Handle(String::New(onesrc));
EXPECT(onestr.IsOneByteString());
EXPECT(!onestr.Equals(""));
EXPECT(!onestr.Equals("a"));
EXPECT(!onestr.Equals("ab"));
EXPECT(onestr.Equals("abc"));
EXPECT(!onestr.Equals("abcd"));
const char* twosrc = "\xD7\x90\xD7\x91\xD7\x92";
const String& twostr = String::Handle(String::New(twosrc));
EXPECT(twostr.IsTwoByteString());
EXPECT(!twostr.Equals(""));
EXPECT(!twostr.Equals("\xD7\x90"));
EXPECT(!twostr.Equals("\xD7\x90\xD7\x91"));
EXPECT(twostr.Equals("\xD7\x90\xD7\x91\xD7\x92"));
EXPECT(!twostr.Equals("\xD7\x90\xD7\x91\xD7\x92\xD7\x93"));
const char* foursrc = "\xF0\x90\x8E\xA0\xF0\x90\x8E\xA1\xF0\x90\x8E\xA2";
const String& fourstr = String::Handle(String::New(foursrc));
EXPECT(fourstr.IsTwoByteString());
EXPECT(!fourstr.Equals(""));
EXPECT(!fourstr.Equals("\xF0\x90\x8E\xA0"));
EXPECT(!fourstr.Equals("\xF0\x90\x8E\xA0\xF0\x90\x8E\xA1"));
EXPECT(fourstr.Equals("\xF0\x90\x8E\xA0\xF0\x90\x8E\xA1\xF0\x90\x8E\xA2"));
EXPECT(
!fourstr.Equals("\xF0\x90\x8E\xA0\xF0\x90\x8E\xA1"
"\xF0\x90\x8E\xA2\xF0\x90\x8E\xA3"));
}
ISOLATE_UNIT_TEST_CASE(StringEqualsUTF32) {
const String& empty = String::Handle(String::New(""));
const String& t_str = String::Handle(String::New("t"));
const String& th_str = String::Handle(String::New("th"));
const int32_t chars[] = {'t', 'h', 'i', 's'};
EXPECT(!empty.Equals(chars, -1));
EXPECT(empty.Equals(chars, 0));
EXPECT(!empty.Equals(chars, 1));
EXPECT(!t_str.Equals(chars, 0));
EXPECT(t_str.Equals(chars, 1));
EXPECT(!t_str.Equals(chars, 2));
EXPECT(!th_str.Equals(chars, 1));
EXPECT(th_str.Equals(chars, 2));
EXPECT(!th_str.Equals(chars, 3));
}
static void NoopFinalizer(void* isolate_callback_data, void* peer) {}
ISOLATE_UNIT_TEST_CASE(ExternalOneByteString) {
uint8_t characters[] = {0xF6, 0xF1, 0xE9};
intptr_t len = ARRAY_SIZE(characters);
const String& str = String::Handle(ExternalOneByteString::New(
characters, len, NULL, 0, NoopFinalizer, Heap::kNew));
EXPECT(!str.IsOneByteString());
EXPECT(str.IsExternalOneByteString());
EXPECT_EQ(str.Length(), len);
EXPECT(str.Equals("\xC3\xB6\xC3\xB1\xC3\xA9"));
const String& copy = String::Handle(String::SubString(str, 0, len));
EXPECT(!copy.IsExternalOneByteString());
EXPECT(copy.IsOneByteString());
EXPECT_EQ(len, copy.Length());
EXPECT(copy.Equals(str));
const String& concat = String::Handle(String::Concat(str, str));
EXPECT(!concat.IsExternalOneByteString());
EXPECT(concat.IsOneByteString());
EXPECT_EQ(len * 2, concat.Length());
EXPECT(concat.Equals("\xC3\xB6\xC3\xB1\xC3\xA9\xC3\xB6\xC3\xB1\xC3\xA9"));
const String& substr = String::Handle(String::SubString(str, 1, 1));
EXPECT(!substr.IsExternalOneByteString());
EXPECT(substr.IsOneByteString());
EXPECT_EQ(1, substr.Length());
EXPECT(substr.Equals("\xC3\xB1"));
}
ISOLATE_UNIT_TEST_CASE(EscapeSpecialCharactersOneByteString) {
uint8_t characters[] = {'a', '\n', '\f', '\b', '\t',
'\v', '\r', '\\', '$', 'z'};
intptr_t len = ARRAY_SIZE(characters);
const String& str =
String::Handle(OneByteString::New(characters, len, Heap::kNew));
EXPECT(str.IsOneByteString());
EXPECT_EQ(str.Length(), len);
EXPECT(str.Equals("a\n\f\b\t\v\r\\$z"));
const String& escaped_str =
String::Handle(String::EscapeSpecialCharacters(str));
EXPECT(escaped_str.Equals("a\\n\\f\\b\\t\\v\\r\\\\\\$z"));
const String& escaped_empty_str =
String::Handle(String::EscapeSpecialCharacters(Symbols::Empty()));
EXPECT_EQ(escaped_empty_str.Length(), 0);
}
ISOLATE_UNIT_TEST_CASE(EscapeSpecialCharactersExternalOneByteString) {
uint8_t characters[] = {'a', '\n', '\f', '\b', '\t',
'\v', '\r', '\\', '$', 'z'};
intptr_t len = ARRAY_SIZE(characters);
const String& str = String::Handle(ExternalOneByteString::New(
characters, len, NULL, 0, NoopFinalizer, Heap::kNew));
EXPECT(!str.IsOneByteString());
EXPECT(str.IsExternalOneByteString());
EXPECT_EQ(str.Length(), len);
EXPECT(str.Equals("a\n\f\b\t\v\r\\$z"));
const String& escaped_str =
String::Handle(String::EscapeSpecialCharacters(str));
EXPECT(escaped_str.Equals("a\\n\\f\\b\\t\\v\\r\\\\\\$z"));
const String& empty_str = String::Handle(ExternalOneByteString::New(
characters, 0, NULL, 0, NoopFinalizer, Heap::kNew));
const String& escaped_empty_str =
String::Handle(String::EscapeSpecialCharacters(empty_str));
EXPECT_EQ(empty_str.Length(), 0);
EXPECT_EQ(escaped_empty_str.Length(), 0);
}
ISOLATE_UNIT_TEST_CASE(EscapeSpecialCharactersTwoByteString) {
uint16_t characters[] = {'a', '\n', '\f', '\b', '\t',
'\v', '\r', '\\', '$', 'z'};
intptr_t len = ARRAY_SIZE(characters);
const String& str =
String::Handle(TwoByteString::New(characters, len, Heap::kNew));
EXPECT(str.IsTwoByteString());
EXPECT_EQ(str.Length(), len);
EXPECT(str.Equals("a\n\f\b\t\v\r\\$z"));
const String& escaped_str =
String::Handle(String::EscapeSpecialCharacters(str));
EXPECT(escaped_str.Equals("a\\n\\f\\b\\t\\v\\r\\\\\\$z"));
const String& empty_str =
String::Handle(TwoByteString::New(static_cast<intptr_t>(0), Heap::kNew));
const String& escaped_empty_str =
String::Handle(String::EscapeSpecialCharacters(empty_str));
EXPECT_EQ(empty_str.Length(), 0);
EXPECT_EQ(escaped_empty_str.Length(), 0);
}
ISOLATE_UNIT_TEST_CASE(EscapeSpecialCharactersExternalTwoByteString) {
uint16_t characters[] = {'a', '\n', '\f', '\b', '\t',
'\v', '\r', '\\', '$', 'z'};
intptr_t len = ARRAY_SIZE(characters);
const String& str = String::Handle(ExternalTwoByteString::New(
characters, len, NULL, 0, NoopFinalizer, Heap::kNew));
EXPECT(str.IsExternalTwoByteString());
EXPECT_EQ(str.Length(), len);
EXPECT(str.Equals("a\n\f\b\t\v\r\\$z"));
const String& escaped_str =
String::Handle(String::EscapeSpecialCharacters(str));
EXPECT(escaped_str.Equals("a\\n\\f\\b\\t\\v\\r\\\\\\$z"));
const String& empty_str = String::Handle(ExternalTwoByteString::New(
characters, 0, NULL, 0, NoopFinalizer, Heap::kNew));
const String& escaped_empty_str =
String::Handle(String::EscapeSpecialCharacters(empty_str));
EXPECT_EQ(empty_str.Length(), 0);
EXPECT_EQ(escaped_empty_str.Length(), 0);
}
ISOLATE_UNIT_TEST_CASE(ExternalTwoByteString) {
uint16_t characters[] = {0x1E6B, 0x1E85, 0x1E53};
intptr_t len = ARRAY_SIZE(characters);
const String& str = String::Handle(ExternalTwoByteString::New(
characters, len, NULL, 0, NoopFinalizer, Heap::kNew));
EXPECT(!str.IsTwoByteString());
EXPECT(str.IsExternalTwoByteString());
EXPECT_EQ(str.Length(), len);
EXPECT(str.Equals("\xE1\xB9\xAB\xE1\xBA\x85\xE1\xB9\x93"));
const String& copy = String::Handle(String::SubString(str, 0, len));
EXPECT(!copy.IsExternalTwoByteString());
EXPECT(copy.IsTwoByteString());
EXPECT_EQ(len, copy.Length());
EXPECT(copy.Equals(str));
const String& concat = String::Handle(String::Concat(str, str));
EXPECT(!concat.IsExternalTwoByteString());
EXPECT(concat.IsTwoByteString());
EXPECT_EQ(len * 2, concat.Length());
EXPECT(
concat.Equals("\xE1\xB9\xAB\xE1\xBA\x85\xE1\xB9\x93"
"\xE1\xB9\xAB\xE1\xBA\x85\xE1\xB9\x93"));
const String& substr = String::Handle(String::SubString(str, 1, 1));
EXPECT(!substr.IsExternalTwoByteString());
EXPECT(substr.IsTwoByteString());
EXPECT_EQ(1, substr.Length());
EXPECT(substr.Equals("\xE1\xBA\x85"));
}
ISOLATE_UNIT_TEST_CASE(Symbol) {
const String& one = String::Handle(Symbols::New(thread, "Eins"));
EXPECT(one.IsSymbol());
const String& two = String::Handle(Symbols::New(thread, "Zwei"));
const String& three = String::Handle(Symbols::New(thread, "Drei"));
const String& four = String::Handle(Symbols::New(thread, "Vier"));
const String& five = String::Handle(Symbols::New(thread, "Fuenf"));
const String& six = String::Handle(Symbols::New(thread, "Sechs"));
const String& seven = String::Handle(Symbols::New(thread, "Sieben"));
const String& eight = String::Handle(Symbols::New(thread, "Acht"));
const String& nine = String::Handle(Symbols::New(thread, "Neun"));
const String& ten = String::Handle(Symbols::New(thread, "Zehn"));
String& eins = String::Handle(Symbols::New(thread, "Eins"));
EXPECT_EQ(one.ptr(), eins.ptr());
EXPECT(one.ptr() != two.ptr());
EXPECT(two.Equals(String::Handle(String::New("Zwei"))));
EXPECT_EQ(two.ptr(), Symbols::New(thread, "Zwei"));
EXPECT_EQ(three.ptr(), Symbols::New(thread, "Drei"));
EXPECT_EQ(four.ptr(), Symbols::New(thread, "Vier"));
EXPECT_EQ(five.ptr(), Symbols::New(thread, "Fuenf"));
EXPECT_EQ(six.ptr(), Symbols::New(thread, "Sechs"));
EXPECT_EQ(seven.ptr(), Symbols::New(thread, "Sieben"));
EXPECT_EQ(eight.ptr(), Symbols::New(thread, "Acht"));
EXPECT_EQ(nine.ptr(), Symbols::New(thread, "Neun"));
EXPECT_EQ(ten.ptr(), Symbols::New(thread, "Zehn"));
// Make sure to cause symbol table overflow.
for (int i = 0; i < 1024; i++) {
char buf[256];
Utils::SNPrint(buf, sizeof(buf), "%d", i);
Symbols::New(thread, buf);
}
eins = Symbols::New(thread, "Eins");
EXPECT_EQ(one.ptr(), eins.ptr());
EXPECT_EQ(two.ptr(), Symbols::New(thread, "Zwei"));
EXPECT_EQ(three.ptr(), Symbols::New(thread, "Drei"));
EXPECT_EQ(four.ptr(), Symbols::New(thread, "Vier"));
EXPECT_EQ(five.ptr(), Symbols::New(thread, "Fuenf"));
EXPECT_EQ(six.ptr(), Symbols::New(thread, "Sechs"));
EXPECT_EQ(seven.ptr(), Symbols::New(thread, "Sieben"));
EXPECT_EQ(eight.ptr(), Symbols::New(thread, "Acht"));
EXPECT_EQ(nine.ptr(), Symbols::New(thread, "Neun"));
EXPECT_EQ(ten.ptr(), Symbols::New(thread, "Zehn"));
// Symbols from Strings.
eins = String::New("Eins");
EXPECT(!eins.IsSymbol());
String& ein_symbol = String::Handle(Symbols::New(thread, eins));
EXPECT_EQ(one.ptr(), ein_symbol.ptr());
EXPECT(one.ptr() != eins.ptr());
uint16_t char16[] = {'E', 'l', 'f'};
String& elf1 = String::Handle(Symbols::FromUTF16(thread, char16, 3));
int32_t char32[] = {'E', 'l', 'f'};
String& elf2 = String::Handle(
Symbols::New(thread, String::Handle(String::FromUTF32(char32, 3))));
EXPECT(elf1.IsSymbol());
EXPECT(elf2.IsSymbol());
EXPECT_EQ(elf1.ptr(), Symbols::New(thread, "Elf"));
EXPECT_EQ(elf2.ptr(), Symbols::New(thread, "Elf"));
}
ISOLATE_UNIT_TEST_CASE(SymbolUnicode) {
uint16_t monkey_utf16[] = {0xd83d, 0xdc35}; // Unicode Monkey Face.
String& monkey = String::Handle(Symbols::FromUTF16(thread, monkey_utf16, 2));
EXPECT(monkey.IsSymbol());
const char monkey_utf8[] = {'\xf0', '\x9f', '\x90', '\xb5', 0};
EXPECT_EQ(monkey.ptr(), Symbols::New(thread, monkey_utf8));
int32_t kMonkeyFace = 0x1f435;
String& monkey2 = String::Handle(
Symbols::New(thread, String::Handle(String::FromUTF32(&kMonkeyFace, 1))));
EXPECT_EQ(monkey.ptr(), monkey2.ptr());
// Unicode cat face with tears of joy.
int32_t kCatFaceWithTearsOfJoy = 0x1f639;
String& cat = String::Handle(Symbols::New(
thread, String::Handle(String::FromUTF32(&kCatFaceWithTearsOfJoy, 1))));
uint16_t cat_utf16[] = {0xd83d, 0xde39};
String& cat2 = String::Handle(Symbols::FromUTF16(thread, cat_utf16, 2));
EXPECT(cat2.IsSymbol());
EXPECT_EQ(cat2.ptr(), cat.ptr());
}
ISOLATE_UNIT_TEST_CASE(Bool) {
EXPECT(Bool::True().value());
EXPECT(!Bool::False().value());
}
ISOLATE_UNIT_TEST_CASE(Array) {
const int kArrayLen = 5;
const Array& array = Array::Handle(Array::New(kArrayLen));
EXPECT_EQ(kArrayLen, array.Length());
Object& element = Object::Handle(array.At(0));
EXPECT(element.IsNull());
element = array.At(kArrayLen - 1);
EXPECT(element.IsNull());
array.SetAt(0, array);
array.SetAt(2, array);
element = array.At(0);
EXPECT_EQ(array.ptr(), element.ptr());
element = array.At(1);
EXPECT(element.IsNull());
element = array.At(2);
EXPECT_EQ(array.ptr(), element.ptr());
Array& other_array = Array::Handle(Array::New(kArrayLen));
other_array.SetAt(0, array);
other_array.SetAt(2, array);
EXPECT(array.CanonicalizeEquals(array));
EXPECT(array.CanonicalizeEquals(other_array));
other_array.SetAt(1, other_array);
EXPECT(!array.CanonicalizeEquals(other_array));
other_array = Array::New(kArrayLen - 1);
other_array.SetAt(0, array);
other_array.SetAt(2, array);
EXPECT(!array.CanonicalizeEquals(other_array));
EXPECT_EQ(0, Object::empty_array().Length());
EXPECT_EQ(1, Object::zero_array().Length());
element = Object::zero_array().At(0);
EXPECT(Smi::Cast(element).IsZero());
array.MakeImmutable();
Object& obj = Object::Handle(array.ptr());
EXPECT(obj.IsArray());
}
static void TestIllegalArrayLength(intptr_t length) {
char buffer[1024];
Utils::SNPrint(buffer, sizeof(buffer),
"main() {\n"
" List.filled(%" Pd
", null);\n"
"}\n",
length);
Dart_Handle lib = TestCase::LoadTestScript(buffer, NULL);
EXPECT_VALID(lib);
Dart_Handle result = Dart_Invoke(lib, NewString("main"), 0, NULL);
Utils::SNPrint(buffer, sizeof(buffer),
"Unhandled exception:\n"
"RangeError (length): Invalid value: "
"Not in inclusive range 0..%" Pd ": %" Pd,
Array::kMaxElements, length);
EXPECT_ERROR(result, buffer);
}
TEST_CASE(ArrayLengthNegativeOne) {
TestIllegalArrayLength(-1);
}
TEST_CASE(ArrayLengthSmiMin) {
TestIllegalArrayLength(kSmiMin);
}
TEST_CASE(ArrayLengthOneTooMany) {
const intptr_t kOneTooMany = Array::kMaxElements + 1;
ASSERT(kOneTooMany >= 0);
char buffer[1024];
Utils::SNPrint(buffer, sizeof(buffer),
"main() {\n"
" return List.filled(%" Pd
", null);\n"
"}\n",
kOneTooMany);
Dart_Handle lib = TestCase::LoadTestScript(buffer, NULL);
EXPECT_VALID(lib);
Dart_Handle result = Dart_Invoke(lib, NewString("main"), 0, NULL);
EXPECT_ERROR(result, "Out of Memory");
}
TEST_CASE(ArrayLengthMaxElements) {
char buffer[1024];
Utils::SNPrint(buffer, sizeof(buffer),
"main() {\n"
" return List.filled(%" Pd
", null);\n"
"}\n",
Array::kMaxElements);
Dart_Handle lib = TestCase::LoadTestScript(buffer, NULL);
EXPECT_VALID(lib);
Dart_Handle result = Dart_Invoke(lib, NewString("main"), 0, NULL);
if (Dart_IsError(result)) {
EXPECT_ERROR(result, "Out of Memory");
} else {
const intptr_t kExpected = Array::kMaxElements;
intptr_t actual = 0;
EXPECT_VALID(Dart_ListLength(result, &actual));
EXPECT_EQ(kExpected, actual);
}
}
static void TestIllegalTypedDataLength(const char* class_name,
intptr_t length) {
char buffer[1024];
Utils::SNPrint(buffer, sizeof(buffer),
"import 'dart:typed_data';\n"
"main() {\n"
" new %s(%" Pd
");\n"
"}\n",
class_name, length);
Dart_Handle lib = TestCase::LoadTestScript(buffer, NULL);
EXPECT_VALID(lib);
Dart_Handle result = Dart_Invoke(lib, NewString("main"), 0, NULL);
Utils::SNPrint(buffer, sizeof(buffer), "%" Pd, length);
EXPECT_ERROR(result, "RangeError (length): Invalid value");
EXPECT_ERROR(result, buffer);
}
TEST_CASE(Int8ListLengthNegativeOne) {
TestIllegalTypedDataLength("Int8List", -1);
}
TEST_CASE(Int8ListLengthSmiMin) {
TestIllegalTypedDataLength("Int8List", kSmiMin);
}
TEST_CASE(Int8ListLengthOneTooMany) {
const intptr_t kOneTooMany =
TypedData::MaxElements(kTypedDataInt8ArrayCid) + 1;
ASSERT(kOneTooMany >= 0);
char buffer[1024];
Utils::SNPrint(buffer, sizeof(buffer),
"import 'dart:typed_data';\n"
"main() {\n"
" return new Int8List(%" Pd
");\n"
"}\n",
kOneTooMany);
Dart_Handle lib = TestCase::LoadTestScript(buffer, NULL);
EXPECT_VALID(lib);
Dart_Handle result = Dart_Invoke(lib, NewString("main"), 0, NULL);
EXPECT_ERROR(result, "Out of Memory");
}
TEST_CASE(Int8ListLengthMaxElements) {
const intptr_t max_elements = TypedData::MaxElements(kTypedDataInt8ArrayCid);
char buffer[1024];
Utils::SNPrint(buffer, sizeof(buffer),
"import 'dart:typed_data';\n"
"main() {\n"
" return new Int8List(%" Pd
");\n"
"}\n",
max_elements);
Dart_Handle lib = TestCase::LoadTestScript(buffer, NULL);
EXPECT_VALID(lib);
Dart_Handle result = Dart_Invoke(lib, NewString("main"), 0, NULL);
if (Dart_IsError(result)) {
EXPECT_ERROR(result, "Out of Memory");
} else {
intptr_t actual = 0;
EXPECT_VALID(Dart_ListLength(result, &actual));
EXPECT_EQ(max_elements, actual);
}
}
ISOLATE_UNIT_TEST_CASE(StringCodePointIterator) {
const String& str0 = String::Handle(String::New(""));
String::CodePointIterator it0(str0);
EXPECT(!it0.Next());
const String& str1 = String::Handle(String::New(" \xc3\xa7 "));
String::CodePointIterator it1(str1);
EXPECT(it1.Next());
EXPECT_EQ(' ', it1.Current());
EXPECT(it1.Next());
EXPECT_EQ(0xE7, it1.Current());
EXPECT(it1.Next());
EXPECT_EQ(' ', it1.Current());
EXPECT(!it1.Next());
const String& str2 =
String::Handle(String::New("\xD7\x92\xD7\x9C"
"\xD7\xA2\xD7\x93"
"\xD7\x91\xD7\xA8"
"\xD7\x9B\xD7\x94"));
String::CodePointIterator it2(str2);
EXPECT(it2.Next());
EXPECT_EQ(0x5D2, it2.Current());
EXPECT(it2.Next());
EXPECT_EQ(0x5DC, it2.Current());
EXPECT(it2.Next());
EXPECT_EQ(0x5E2, it2.Current());
EXPECT(it2.Next());
EXPECT_EQ(0x5D3, it2.Current());
EXPECT(it2.Next());
EXPECT_EQ(0x5D1, it2.Current());
EXPECT(it2.Next());
EXPECT_EQ(0x5E8, it2.Current());
EXPECT(it2.Next());
EXPECT_EQ(0x5DB, it2.Current());
EXPECT(it2.Next());
EXPECT_EQ(0x5D4, it2.Current());
EXPECT(!it2.Next());
const String& str3 =
String::Handle(String::New("\xF0\x9D\x91\xA0"
"\xF0\x9D\x91\xA1"
"\xF0\x9D\x91\xA2"
"\xF0\x9D\x91\xA3"));
String::CodePointIterator it3(str3);
EXPECT(it3.Next());
EXPECT_EQ(0x1D460, it3.Current());
EXPECT(it3.Next());
EXPECT_EQ(0x1D461, it3.Current());
EXPECT(it3.Next());
EXPECT_EQ(0x1D462, it3.Current());
EXPECT(it3.Next());
EXPECT_EQ(0x1D463, it3.Current());
EXPECT(!it3.Next());
}
ISOLATE_UNIT_TEST_CASE(StringCodePointIteratorRange) {
const String& str = String::Handle(String::New("foo bar baz"));
String::CodePointIterator it0(str, 3, 0);
EXPECT(!it0.Next());
String::CodePointIterator it1(str, 4, 3);
EXPECT(it1.Next());
EXPECT_EQ('b', it1.Current());
EXPECT(it1.Next());
EXPECT_EQ('a', it1.Current());
EXPECT(it1.Next());
EXPECT_EQ('r', it1.Current());
EXPECT(!it1.Next());
}
ISOLATE_UNIT_TEST_CASE(GrowableObjectArray) {
const int kArrayLen = 5;
Smi& value = Smi::Handle();
Smi& expected_value = Smi::Handle();
GrowableObjectArray& array = GrowableObjectArray::Handle();
// Test basic growing functionality.
array = GrowableObjectArray::New(kArrayLen);
EXPECT_EQ(kArrayLen, array.Capacity());
EXPECT_EQ(0, array.Length());
for (intptr_t i = 0; i < 10; i++) {
value = Smi::New(i);
array.Add(value);
}
EXPECT_EQ(10, array.Length());
for (intptr_t i = 0; i < 10; i++) {
expected_value = Smi::New(i);
value ^= array.At(i);
EXPECT(value.Equals(expected_value));
}
for (intptr_t i = 0; i < 10; i++) {
value = Smi::New(i * 10);
array.SetAt(i, value);
}
EXPECT_EQ(10, array.Length());
for (intptr_t i = 0; i < 10; i++) {
expected_value = Smi::New(i * 10);
value ^= array.At(i);
EXPECT(value.Equals(expected_value));
}
// Test the MakeFixedLength functionality to make sure the resulting array
// object is properly setup.
// 1. Should produce an array of length 2 and a left over int8 array.
Array& new_array = Array::Handle();
TypedData& left_over_array = TypedData::Handle();
Object& obj = Object::Handle();
uword addr = 0;
intptr_t used_size = 0;
array = GrowableObjectArray::New(kArrayLen + 1);
EXPECT_EQ(kArrayLen + 1, array.Capacity());
EXPECT_EQ(0, array.Length());
for (intptr_t i = 0; i < 2; i++) {
value = Smi::New(i);
array.Add(value);
}
used_size = Array::InstanceSize(array.Length());
new_array = Array::MakeFixedLength(array);
addr = UntaggedObject::ToAddr(new_array.ptr());
obj = UntaggedObject::FromAddr(addr);
EXPECT(obj.IsArray());
new_array ^= obj.ptr();
EXPECT_EQ(2, new_array.Length());
addr += used_size;
obj = UntaggedObject::FromAddr(addr);
#if defined(DART_COMPRESSED_POINTERS)
// In compressed pointer mode, the TypedData doesn't fit.
EXPECT(obj.IsInstance());
#else
EXPECT(obj.IsTypedData());
left_over_array ^= obj.ptr();
EXPECT_EQ(4 * kWordSize - TypedData::InstanceSize(0),
left_over_array.Length());
#endif
// 2. Should produce an array of length 3 and a left over int8 array or
// instance.
array = GrowableObjectArray::New(kArrayLen);
EXPECT_EQ(kArrayLen, array.Capacity());
EXPECT_EQ(0, array.Length());
for (intptr_t i = 0; i < 3; i++) {
value = Smi::New(i);
array.Add(value);
}
used_size = Array::InstanceSize(array.Length());
new_array = Array::MakeFixedLength(array);
addr = UntaggedObject::ToAddr(new_array.ptr());
obj = UntaggedObject::FromAddr(addr);
EXPECT(obj.IsArray());
new_array ^= obj.ptr();
EXPECT_EQ(3, new_array.Length());
addr += used_size;
obj = UntaggedObject::FromAddr(addr);
if (TypedData::InstanceSize(0) <= 2 * kCompressedWordSize) {
EXPECT(obj.IsTypedData());
left_over_array ^= obj.ptr();
EXPECT_EQ(2 * kCompressedWordSize - TypedData::InstanceSize(0),
left_over_array.Length());
} else {
EXPECT(obj.IsInstance());
}
// 3. Should produce an array of length 1 and a left over int8 array.
array = GrowableObjectArray::New(kArrayLen + 3);
EXPECT_EQ((kArrayLen + 3), array.Capacity());
EXPECT_EQ(0, array.Length());
for (intptr_t i = 0; i < 1; i++) {
value = Smi::New(i);
array.Add(value);
}
used_size = Array::InstanceSize(array.Length());
new_array = Array::MakeFixedLength(array);
addr = UntaggedObject::ToAddr(new_array.ptr());
obj = UntaggedObject::FromAddr(addr);
EXPECT(obj.IsArray());
new_array ^= obj.ptr();
EXPECT_EQ(1, new_array.Length());
addr += used_size;
obj = UntaggedObject::FromAddr(addr);
#if defined(DART_COMPRESSED_POINTERS)
// In compressed pointer mode, the TypedData doesn't fit.
EXPECT(obj.IsInstance());
#else
EXPECT(obj.IsTypedData());
left_over_array ^= obj.ptr();
EXPECT_EQ(8 * kWordSize - TypedData::InstanceSize(0),
left_over_array.Length());
#endif
// 4. Verify that GC can handle the filler object for a large array.
array = GrowableObjectArray::New((1 * MB) >> kWordSizeLog2);
EXPECT_EQ(0, array.Length());
for (intptr_t i = 0; i < 1; i++) {
value = Smi::New(i);
array.Add(value);
}
Heap* heap = IsolateGroup::Current()->heap();
GCTestHelper::CollectAllGarbage();
intptr_t capacity_before = heap->CapacityInWords(Heap::kOld);
new_array = Array::MakeFixedLength(array);
EXPECT_EQ(1, new_array.Length());
GCTestHelper::CollectAllGarbage();
intptr_t capacity_after = heap->CapacityInWords(Heap::kOld);
// Page should shrink.
EXPECT_LT(capacity_after, capacity_before);
EXPECT_EQ(1, new_array.Length());
}
ISOLATE_UNIT_TEST_CASE(InternalTypedData) {
uint8_t data[] = {253, 254, 255, 0, 1, 2, 3, 4};
intptr_t data_length = ARRAY_SIZE(data);
const TypedData& int8_array =
TypedData::Handle(TypedData::New(kTypedDataInt8ArrayCid, data_length));
EXPECT(!int8_array.IsNull());
EXPECT_EQ(data_length, int8_array.Length());
for (intptr_t i = 0; i < data_length; ++i) {
int8_array.SetInt8(i, data[i]);
}
EXPECT_EQ(-3, int8_array.GetInt8(0));
EXPECT_EQ(253, int8_array.GetUint8(0));
EXPECT_EQ(-2, int8_array.GetInt8(1));
EXPECT_EQ(254, int8_array.GetUint8(1));
EXPECT_EQ(-1, int8_array.GetInt8(2));
EXPECT_EQ(255, int8_array.GetUint8(2));
EXPECT_EQ(0, int8_array.GetInt8(3));
EXPECT_EQ(0, int8_array.GetUint8(3));
EXPECT_EQ(1, int8_array.GetInt8(4));
EXPECT_EQ(1, int8_array.GetUint8(4));
EXPECT_EQ(2, int8_array.GetInt8(5));
EXPECT_EQ(2, int8_array.GetUint8(5));
EXPECT_EQ(3, int8_array.GetInt8(6));
EXPECT_EQ(3, int8_array.GetUint8(6));
EXPECT_EQ(4, int8_array.GetInt8(7));
EXPECT_EQ(4, int8_array.GetUint8(7));
const TypedData& int8_array2 =
TypedData::Handle(TypedData::New(kTypedDataInt8ArrayCid, data_length));
EXPECT(!int8_array.IsNull());
EXPECT_EQ(data_length, int8_array.Length());
for (intptr_t i = 0; i < data_length; ++i) {
int8_array2.SetInt8(i, data[i]);
}
for (intptr_t i = 0; i < data_length; ++i) {
EXPECT_EQ(int8_array.GetInt8(i), int8_array2.GetInt8(i));
}
for (intptr_t i = 0; i < data_length; ++i) {
int8_array.SetInt8(i, 123 + i);
}
for (intptr_t i = 0; i < data_length; ++i) {
EXPECT(int8_array.GetInt8(i) != int8_array2.GetInt8(i));
}
}
ISOLATE_UNIT_TEST_CASE(ExternalTypedData) {
uint8_t data[] = {253, 254, 255, 0, 1, 2, 3, 4};
intptr_t data_length = ARRAY_SIZE(data);
const ExternalTypedData& int8_array =
ExternalTypedData::Handle(ExternalTypedData::New(
kExternalTypedDataInt8ArrayCid, data, data_length));
EXPECT(!int8_array.IsNull());
EXPECT_EQ(data_length, int8_array.Length());
const ExternalTypedData& uint8_array =
ExternalTypedData::Handle(ExternalTypedData::New(
kExternalTypedDataUint8ArrayCid, data, data_length));
EXPECT(!uint8_array.IsNull());
EXPECT_EQ(data_length, uint8_array.Length());
const ExternalTypedData& uint8_clamped_array =
ExternalTypedData::Handle(ExternalTypedData::New(
kExternalTypedDataUint8ClampedArrayCid, data, data_length));
EXPECT(!uint8_clamped_array.IsNull());
EXPECT_EQ(data_length, uint8_clamped_array.Length());
EXPECT_EQ(-3, int8_array.GetInt8(0));
EXPECT_EQ(253, uint8_array.GetUint8(0));
EXPECT_EQ(253, uint8_clamped_array.GetUint8(0));
EXPECT_EQ(-2, int8_array.GetInt8(1));
EXPECT_EQ(254, uint8_array.GetUint8(1));
EXPECT_EQ(254, uint8_clamped_array.GetUint8(1));
EXPECT_EQ(-1, int8_array.GetInt8(2));
EXPECT_EQ(255, uint8_array.GetUint8(2));
EXPECT_EQ(255, uint8_clamped_array.GetUint8(2));
EXPECT_EQ(0, int8_array.GetInt8(3));
EXPECT_EQ(0, uint8_array.GetUint8(3));
EXPECT_EQ(0, uint8_clamped_array.GetUint8(3));
EXPECT_EQ(1, int8_array.GetInt8(4));
EXPECT_EQ(1, uint8_array.GetUint8(4));
EXPECT_EQ(1, uint8_clamped_array.GetUint8(4));
EXPECT_EQ(2, int8_array.GetInt8(5));
EXPECT_EQ(2, uint8_array.GetUint8(5));
EXPECT_EQ(2, uint8_clamped_array.GetUint8(5));
for (intptr_t i = 0; i < int8_array.Length(); ++i) {
EXPECT_EQ(int8_array.GetUint8(i), uint8_array.GetUint8(i));
}
int8_array.SetInt8(2, -123);
uint8_array.SetUint8(0, 123);
for (intptr_t i = 0; i < int8_array.Length(); ++i) {
EXPECT_EQ(int8_array.GetInt8(i), uint8_array.GetInt8(i));
}
uint8_clamped_array.SetUint8(0, 123);
for (intptr_t i = 0; i < int8_array.Length(); ++i) {
EXPECT_EQ(int8_array.GetUint8(i), uint8_clamped_array.GetUint8(i));
}
}
ISOLATE_UNIT_TEST_CASE(Script) {
{
const char* url_chars = "builtin:test-case";
const char* source_chars = "This will not compile.";
const String& url = String::Handle(String::New(url_chars));
const String& source = String::Handle(String::New(source_chars));
const Script& script = Script::Handle(Script::New(url, source));
EXPECT(!script.IsNull());
EXPECT(script.IsScript());
String& str = String::Handle(script.url());
EXPECT_EQ(17, str.Length());
EXPECT_EQ('b', str.CharAt(0));
EXPECT_EQ(':', str.CharAt(7));
EXPECT_EQ('e', str.CharAt(16));
str = script.Source();
EXPECT_EQ(22, str.Length());
EXPECT_EQ('T', str.CharAt(0));
EXPECT_EQ('n', str.CharAt(10));
EXPECT_EQ('.', str.CharAt(21));
}
{
const char* url_chars = "";
// Single line, no terminators.
const char* source_chars = "abc";
const String& url = String::Handle(String::New(url_chars));
const String& source = String::Handle(String::New(source_chars));
const Script& script = Script::Handle(Script::New(url, source));
EXPECT(!script.IsNull());
EXPECT(script.IsScript());
auto& str = String::Handle(Z);
str = script.GetLine(1);
EXPECT_STREQ("abc", str.ToCString());
str = script.GetSnippet(1, 1, 1, 2);
EXPECT_STREQ("a", str.ToCString());
str = script.GetSnippet(1, 2, 1, 4);
EXPECT_STREQ("bc", str.ToCString());
// Lines not in the source should return the empty string.
str = script.GetLine(-500);
EXPECT_STREQ("", str.ToCString());
str = script.GetLine(0);
EXPECT_STREQ("", str.ToCString());
str = script.GetLine(2);
EXPECT_STREQ("", str.ToCString());
str = script.GetLine(10000);
EXPECT_STREQ("", str.ToCString());
// Snippets not contained within the source should be the null string.
str = script.GetSnippet(-1, 1, 1, 2);
EXPECT(str.IsNull());
str = script.GetSnippet(2, 1, 2, 2);
EXPECT(str.IsNull());
str = script.GetSnippet(1, 1, 1, 5);
EXPECT(str.IsNull());
}
TransitionVMToNative transition(thread);
const char* kScript = "main() {}";
Dart_Handle h_lib = TestCase::LoadTestScript(kScript, NULL);
EXPECT_VALID(h_lib);
Dart_Handle result = Dart_Invoke(h_lib, NewString("main"), 0, NULL);
EXPECT_VALID(result);
}
ISOLATE_UNIT_TEST_CASE(Context) {
const int kNumVariables = 5;
const Context& parent_context = Context::Handle(Context::New(0));
const Context& context = Context::Handle(Context::New(kNumVariables));
context.set_parent(parent_context);
EXPECT_EQ(kNumVariables, context.num_variables());
EXPECT(Context::Handle(context.parent()).ptr() == parent_context.ptr());
EXPECT_EQ(0, Context::Handle(context.parent()).num_variables());
EXPECT(Context::Handle(Context::Handle(context.parent()).parent()).IsNull());
Object& variable = Object::Handle(context.At(0));
EXPECT(variable.IsNull());
variable = context.At(kNumVariables - 1);
EXPECT(variable.IsNull());
context.SetAt(0, Smi::Handle(Smi::New(2)));
context.SetAt(2, Smi::Handle(Smi::New(3)));
Smi& smi = Smi::Handle();
smi ^= context.At(0);
EXPECT_EQ(2, smi.Value());
smi ^= context.At(2);
EXPECT_EQ(3, smi.Value());
}
ISOLATE_UNIT_TEST_CASE(ContextScope) {
// We need an active compiler context to manipulate scopes, since local
// variables and slots can be canonicalized in the compiler state.
CompilerState compiler_state(Thread::Current(), /*is_aot=*/false,
/*is_optimizing=*/false);
const intptr_t parent_scope_function_level = 0;
LocalScope* parent_scope =
new LocalScope(NULL, parent_scope_function_level, 0);
const intptr_t local_scope_function_level = 1;
LocalScope* local_scope =
new LocalScope(parent_scope, local_scope_function_level, 0);
const Type& dynamic_type = Type::ZoneHandle(Type::DynamicType());
const String& ta = Symbols::FunctionTypeArgumentsVar();
LocalVariable* var_ta = new LocalVariable(
TokenPosition::kNoSource, TokenPosition::kNoSource, ta, dynamic_type);
parent_scope->AddVariable(var_ta);
const String& a = String::ZoneHandle(Symbols::New(thread, "a"));
LocalVariable* var_a = new LocalVariable(
TokenPosition::kNoSource, TokenPosition::kNoSource, a, dynamic_type);
parent_scope->AddVariable(var_a);
const String& b = String::ZoneHandle(Symbols::New(thread, "b"));
LocalVariable* var_b = new LocalVariable(
TokenPosition::kNoSource, TokenPosition::kNoSource, b, dynamic_type);
local_scope->AddVariable(var_b);
const String& c = String::ZoneHandle(Symbols::New(thread, "c"));
LocalVariable* var_c = new LocalVariable(
TokenPosition::kNoSource, TokenPosition::kNoSource, c, dynamic_type);
parent_scope->AddVariable(var_c);
bool test_only = false; // Please, insert alias.
var_ta = local_scope->LookupVariable(ta, test_only);
EXPECT(var_ta->is_captured());
EXPECT_EQ(parent_scope_function_level, var_ta->owner()->function_level());
EXPECT(local_scope->LocalLookupVariable(ta) == var_ta); // Alias.
var_a = local_scope->LookupVariable(a, test_only);
EXPECT(var_a->is_captured());
EXPECT_EQ(parent_scope_function_level, var_a->owner()->function_level());
EXPECT(local_scope->LocalLookupVariable(a) == var_a); // Alias.
var_b = local_scope->LookupVariable(b, test_only);
EXPECT(!var_b->is_captured());
EXPECT_EQ(local_scope_function_level, var_b->owner()->function_level());
EXPECT(local_scope->LocalLookupVariable(b) == var_b);
test_only = true; // Please, do not insert alias.
var_c = local_scope->LookupVariable(c, test_only);
EXPECT(!var_c->is_captured());
EXPECT_EQ(parent_scope_function_level, var_c->owner()->function_level());
// c is not in local_scope.
EXPECT(local_scope->LocalLookupVariable(c) == NULL);
test_only = false; // Please, insert alias.
var_c = local_scope->LookupVariable(c, test_only);
EXPECT(var_c->is_captured());
EXPECT_EQ(4, local_scope->num_variables()); // ta, a, b, c.
EXPECT_EQ(3, local_scope->NumCapturedVariables()); // ta, a, c.
const VariableIndex first_parameter_index(0);
const int num_parameters = 0;
const VariableIndex first_local_index(-1);
bool found_captured_vars = false;
VariableIndex next_index = parent_scope->AllocateVariables(
Function::null_function(), first_parameter_index, num_parameters,
first_local_index, NULL, &found_captured_vars);
// Variables a, c and var_ta are captured, therefore are not allocated in
// frame.
EXPECT_EQ(0, next_index.value() -
first_local_index.value()); // Indices in frame < 0.
const intptr_t parent_scope_context_level = 1;
EXPECT_EQ(parent_scope_context_level, parent_scope->context_level());
EXPECT(found_captured_vars);
const intptr_t local_scope_context_level = 5;
const ContextScope& context_scope = ContextScope::Handle(
local_scope->PreserveOuterScope(local_scope_context_level));
LocalScope* outer_scope = LocalScope::RestoreOuterScope(context_scope);
EXPECT_EQ(3, outer_scope->num_variables());
var_ta = outer_scope->LocalLookupVariable(ta);
EXPECT(var_ta->is_captured());
EXPECT_EQ(0, var_ta->index().value()); // First index.
EXPECT_EQ(parent_scope_context_level - local_scope_context_level,
var_ta->owner()->context_level()); // Adjusted context level.
var_a = outer_scope->LocalLookupVariable(a);
EXPECT(var_a->is_captured());
EXPECT_EQ(1, var_a->index().value()); // First index.
EXPECT_EQ(parent_scope_context_level - local_scope_context_level,
var_a->owner()->context_level()); // Adjusted context level.
// var b was not captured.
EXPECT(outer_scope->LocalLookupVariable(b) == NULL);
var_c = outer_scope->LocalLookupVariable(c);
EXPECT(var_c->is_captured());
EXPECT_EQ(2, var_c->index().value());
EXPECT_EQ(parent_scope_context_level - local_scope_context_level,
var_c->owner()->context_level()); // Adjusted context level.
}
ISOLATE_UNIT_TEST_CASE(Closure) {
// Allocate the class first.
const String& class_name = String::Handle(Symbols::New(thread, "MyClass"));
const Script& script = Script::Handle();
const Class& cls = Class::Handle(CreateDummyClass(class_name, script));
const Array& functions = Array::Handle(Array::New(1));
const Context& context = Context::Handle(Context::New(0));
Function& parent = Function::Handle();
const String& parent_name = String::Handle(Symbols::New(thread, "foo_papa"));
FunctionType& signature = FunctionType::ZoneHandle(FunctionType::New());
parent = Function::New(signature, parent_name,
UntaggedFunction::kRegularFunction, false, false,
false, false, false, cls, TokenPosition::kMinSource);
functions.SetAt(0, parent);
{
SafepointWriteRwLocker ml(thread, thread->isolate_group()->program_lock());
cls.SetFunctions(functions);
cls.Finalize();
}
Function& function = Function::Handle();
const String& function_name = String::Handle(Symbols::New(thread, "foo"));
function = Function::NewClosureFunction(function_name, parent,
TokenPosition::kMinSource);
signature = function.signature();
signature.set_result_type(Object::dynamic_type());
signature ^= ClassFinalizer::FinalizeType(signature);
function.SetSignature(signature);
const Closure& closure = Closure::Handle(
Closure::New(Object::null_type_arguments(), Object::null_type_arguments(),
function, context));
const Class& closure_class = Class::Handle(closure.clazz());
EXPECT_EQ(closure_class.id(), kClosureCid);
const Function& closure_function = Function::Handle(closure.function());
EXPECT_EQ(closure_function.ptr(), function.ptr());
const Context& closure_context = Context::Handle(closure.context());
EXPECT_EQ(closure_context.ptr(), context.ptr());
}
ISOLATE_UNIT_TEST_CASE(ObjectPrinting) {
// Simple Smis.
EXPECT_STREQ("2", Smi::Handle(Smi::New(2)).ToCString());
EXPECT_STREQ("-15", Smi::Handle(Smi::New(-15)).ToCString());
// bool class and true/false values.
ObjectStore* object_store = IsolateGroup::Current()->object_store();
const Class& bool_class = Class::Handle(object_store->bool_class());
EXPECT_STREQ("Library:'dart:core' Class: bool", bool_class.ToCString());
EXPECT_STREQ("true", Bool::True().ToCString());
EXPECT_STREQ("false", Bool::False().ToCString());
// Strings.
EXPECT_STREQ("Sugarbowl",
String::Handle(String::New("Sugarbowl")).ToCString());
}
ISOLATE_UNIT_TEST_CASE(CheckedHandle) {
// Ensure that null handles have the correct C++ vtable setup.
Zone* zone = Thread::Current()->zone();
const String& str1 = String::Handle(zone);
EXPECT(str1.IsString());
EXPECT(str1.IsNull());
const String& str2 = String::CheckedHandle(zone, Object::null());
EXPECT(str2.IsString());
EXPECT(str2.IsNull());
String& str3 = String::Handle(zone);
str3 ^= Object::null();
EXPECT(str3.IsString());
EXPECT(str3.IsNull());
EXPECT(!str3.IsOneByteString());
str3 = String::New("Steep and Deep!");
EXPECT(str3.IsString());
EXPECT(str3.IsOneByteString());
str3 = OneByteString::null();
EXPECT(str3.IsString());
EXPECT(!str3.IsOneByteString());
}
static LibraryPtr CreateDummyLibrary(const String& library_name) {
return Library::New(library_name);
}
static FunctionPtr CreateFunction(const char* name) {
Thread* thread = Thread::Current();
const String& class_name = String::Handle(Symbols::New(thread, "ownerClass"));
const String& lib_name = String::Handle(Symbols::New(thread, "ownerLibrary"));
const Script& script = Script::Handle();
const Class& owner_class =
Class::Handle(CreateDummyClass(class_name, script));
const Library& owner_library = Library::Handle(CreateDummyLibrary(lib_name));
owner_class.set_library(owner_library);
const String& function_name = String::ZoneHandle(Symbols::New(thread, name));
const FunctionType& signature = FunctionType::ZoneHandle(FunctionType::New());
return Function::New(signature, function_name,
UntaggedFunction::kRegularFunction, true, false, false,
false, false, owner_class, TokenPosition::kMinSource);
}
// Test for Code and Instruction object creation.
ISOLATE_UNIT_TEST_CASE(Code) {
extern void GenerateIncrement(compiler::Assembler * assembler);
compiler::ObjectPoolBuilder object_pool_builder;
compiler::Assembler _assembler_(&object_pool_builder);
GenerateIncrement(&_assembler_);
const Function& function = Function::Handle(CreateFunction("Test_Code"));
SafepointWriteRwLocker locker(thread,
thread->isolate_group()->program_lock());
Code& code = Code::Handle(Code::FinalizeCodeAndNotify(
function, nullptr, &_assembler_, Code::PoolAttachment::kAttachPool));
function.AttachCode(code);
const Instructions& instructions = Instructions::Handle(code.instructions());
uword payload_start = instructions.PayloadStart();
EXPECT_EQ(instructions.ptr(), Instructions::FromPayloadStart(payload_start));
const Object& result =
Object::Handle(DartEntry::InvokeFunction(function, Array::empty_array()));
EXPECT_EQ(1, Smi::Cast(result).Value());
}
// Test for immutability of generated instructions. The test crashes with a
// segmentation fault when writing into it.
ISOLATE_UNIT_TEST_CASE_WITH_EXPECTATION(CodeImmutability, "Crash") {
bool stack_trace_collection_enabled =
MallocHooks::stack_trace_collection_enabled();
MallocHooks::set_stack_trace_collection_enabled(false);
extern void GenerateIncrement(compiler::Assembler * assembler);
compiler::ObjectPoolBuilder object_pool_builder;
compiler::Assembler _assembler_(&object_pool_builder);
GenerateIncrement(&_assembler_);
const Function& function = Function::Handle(CreateFunction("Test_Code"));
SafepointWriteRwLocker locker(thread,
thread->isolate_group()->program_lock());
Code& code = Code::Handle(Code::FinalizeCodeAndNotify(
function, nullptr, &_assembler_, Code::PoolAttachment::kAttachPool));
function.AttachCode(code);
Instructions& instructions = Instructions::Handle(code.instructions());
uword payload_start = instructions.PayloadStart();
EXPECT_EQ(instructions.ptr(), Instructions::FromPayloadStart(payload_start));
// Try writing into the generated code, expected to crash.
*(reinterpret_cast<char*>(payload_start) + 1) = 1;
if (!FLAG_write_protect_code) {
// Since this test is expected to crash, crash if write protection of code
// is switched off.
FATAL("Test requires --write-protect-code; skip by forcing expected crash");
}
MallocHooks::set_stack_trace_collection_enabled(
stack_trace_collection_enabled);
}
class CodeTestHelper {
public:
static void SetInstructions(const Code& code,
const Instructions& instructions,
uword unchecked_offset) {
code.SetActiveInstructions(instructions, unchecked_offset);
code.set_instructions(instructions);
}
};
// Test for executability of generated instructions. The test crashes with a
// segmentation fault when executing the writeable view.
ISOLATE_UNIT_TEST_CASE_WITH_EXPECTATION(CodeExecutability, "Crash") {
bool stack_trace_collection_enabled =
MallocHooks::stack_trace_collection_enabled();
MallocHooks::set_stack_trace_collection_enabled(false);
extern void GenerateIncrement(compiler::Assembler * assembler);
compiler::ObjectPoolBuilder object_pool_builder;
compiler::Assembler _assembler_(&object_pool_builder);
GenerateIncrement(&_assembler_);
const Function& function = Function::Handle(CreateFunction("Test_Code"));
SafepointWriteRwLocker locker(thread,
thread->isolate_group()->program_lock());
Code& code = Code::Handle(Code::FinalizeCodeAndNotify(
function, nullptr, &_assembler_, Code::PoolAttachment::kAttachPool));
function.AttachCode(code);
Instructions& instructions = Instructions::Handle(code.instructions());
uword payload_start = code.PayloadStart();
const uword unchecked_offset = code.UncheckedEntryPoint() - code.EntryPoint();
EXPECT_EQ(instructions.ptr(), Instructions::FromPayloadStart(payload_start));
// Execute the executable view of the instructions (default).
Object& result =
Object::Handle(DartEntry::InvokeFunction(function, Array::empty_array()));
EXPECT_EQ(1, Smi::Cast(result).Value());
// Switch to the writeable but non-executable view of the instructions.
instructions ^= OldPage::ToWritable(instructions.ptr());
payload_start = instructions.PayloadStart();
EXPECT_EQ(instructions.ptr(), Instructions::FromPayloadStart(payload_start));
// Hook up Code and Instructions objects.
CodeTestHelper::SetInstructions(code, instructions, unchecked_offset);
function.AttachCode(code);
// Try executing the generated code, expected to crash.
result = DartEntry::InvokeFunction(function, Array::empty_array());
EXPECT_EQ(1, Smi::Cast(result).Value());
if (!FLAG_dual_map_code) {
// Since this test is expected to crash, crash if dual mapping of code
// is switched off.
FATAL("Test requires --dual-map-code; skip by forcing expected crash");
}
MallocHooks::set_stack_trace_collection_enabled(
stack_trace_collection_enabled);
}
// Test for Embedded String object in the instructions.
ISOLATE_UNIT_TEST_CASE(EmbedStringInCode) {
extern void GenerateEmbedStringInCode(compiler::Assembler * assembler,
const char* str);
const char* kHello = "Hello World!";
word expected_length = static_cast<word>(strlen(kHello));
compiler::ObjectPoolBuilder object_pool_builder;
compiler::Assembler _assembler_(&object_pool_builder);
GenerateEmbedStringInCode(&_assembler_, kHello);
const Function& function =
Function::Handle(CreateFunction("Test_EmbedStringInCode"));
SafepointWriteRwLocker locker(thread,
thread->isolate_group()->program_lock());
const Code& code = Code::Handle(Code::FinalizeCodeAndNotify(
function, nullptr, &_assembler_, Code::PoolAttachment::kAttachPool));
function.AttachCode(code);
const Object& result =
Object::Handle(DartEntry::InvokeFunction(function, Array::empty_array()));
EXPECT(result.ptr()->IsHeapObject());
String& string_object = String::Handle();
string_object ^= result.ptr();
EXPECT(string_object.Length() == expected_length);
for (int i = 0; i < expected_length; i++) {
EXPECT(string_object.CharAt(i) == kHello[i]);
}
}
// Test for Embedded Smi object in the instructions.
ISOLATE_UNIT_TEST_CASE(EmbedSmiInCode) {
extern void GenerateEmbedSmiInCode(compiler::Assembler * assembler,
intptr_t value);
const intptr_t kSmiTestValue = 5;
compiler::ObjectPoolBuilder object_pool_builder;
compiler::Assembler _assembler_(&object_pool_builder);
GenerateEmbedSmiInCode(&_assembler_, kSmiTestValue);
const Function& function =
Function::Handle(CreateFunction("Test_EmbedSmiInCode"));
SafepointWriteRwLocker locker(thread,
thread->isolate_group()->program_lock());
const Code& code = Code::Handle(Code::FinalizeCodeAndNotify(
function, nullptr, &_assembler_, Code::PoolAttachment::kAttachPool));
function.AttachCode(code);
const Object& result =
Object::Handle(DartEntry::InvokeFunction(function, Array::empty_array()));
EXPECT(Smi::Cast(result).Value() == kSmiTestValue);
}
#if defined(ARCH_IS_64_BIT) && !defined(DART_COMPRESSED_POINTERS)
// Test for Embedded Smi object in the instructions.
ISOLATE_UNIT_TEST_CASE(EmbedSmiIn64BitCode) {
extern void GenerateEmbedSmiInCode(compiler::Assembler * assembler,
intptr_t value);
const intptr_t kSmiTestValue = DART_INT64_C(5) << 32;
compiler::ObjectPoolBuilder object_pool_builder;
compiler::Assembler _assembler_(&object_pool_builder);
GenerateEmbedSmiInCode(&_assembler_, kSmiTestValue);
const Function& function =
Function::Handle(CreateFunction("Test_EmbedSmiIn64BitCode"));
SafepointWriteRwLocker locker(thread,
thread->isolate_group()->program_lock());
const Code& code = Code::Handle(Code::FinalizeCodeAndNotify(
function, nullptr, &_assembler_, Code::PoolAttachment::kAttachPool));
function.AttachCode(code);
const Object& result =
Object::Handle(DartEntry::InvokeFunction(function, Array::empty_array()));
EXPECT(Smi::Cast(result).Value() == kSmiTestValue);
}
#endif // ARCH_IS_64_BIT && !DART_COMPRESSED_POINTERS
ISOLATE_UNIT_TEST_CASE(ExceptionHandlers) {
const int kNumEntries = 4;
// Add an exception handler table to the code.
ExceptionHandlers& exception_handlers = ExceptionHandlers::Handle();
exception_handlers ^= ExceptionHandlers::New(kNumEntries);
const bool kNeedsStackTrace = true;
const bool kNoStackTrace = false;
exception_handlers.SetHandlerInfo(0, -1, 20u, kNeedsStackTrace, false, true);
exception_handlers.SetHandlerInfo(1, 0, 30u, kNeedsStackTrace, false, true);
exception_handlers.SetHandlerInfo(2, -1, 40u, kNoStackTrace, true, true);
exception_handlers.SetHandlerInfo(3, 1, 150u, kNoStackTrace, true, true);
extern void GenerateIncrement(compiler::Assembler * assembler);
compiler::ObjectPoolBuilder object_pool_builder;
compiler::Assembler _assembler_(&object_pool_builder);
GenerateIncrement(&_assembler_);
SafepointWriteRwLocker locker(thread,
thread->isolate_group()->program_lock());
Code& code = Code::Handle(Code::FinalizeCodeAndNotify(
Function::Handle(CreateFunction("Test_Code")), nullptr, &_assembler_,
Code::PoolAttachment::kAttachPool));
code.set_exception_handlers(exception_handlers);
// Verify the exception handler table entries by accessing them.
const ExceptionHandlers& handlers =
ExceptionHandlers::Handle(code.exception_handlers());
EXPECT_EQ(kNumEntries, handlers.num_entries());
ExceptionHandlerInfo info;
handlers.GetHandlerInfo(0, &info);
EXPECT_EQ(-1, handlers.OuterTryIndex(0));
EXPECT_EQ(-1, info.outer_try_index);
EXPECT_EQ(20u, handlers.HandlerPCOffset(0));
EXPECT(handlers.NeedsStackTrace(0));
EXPECT(!handlers.HasCatchAll(0));
EXPECT_EQ(20u, info.handler_pc_offset);
EXPECT_EQ(1, handlers.OuterTryIndex(3));
EXPECT_EQ(150u, handlers.HandlerPCOffset(3));
EXPECT(!handlers.NeedsStackTrace(3));
EXPECT(handlers.HasCatchAll(3));
}
ISOLATE_UNIT_TEST_CASE(PcDescriptors) {
DescriptorList* builder = new DescriptorList(thread->zone());
// kind, pc_offset, deopt_id, token_pos, try_index, yield_index
builder->AddDescriptor(UntaggedPcDescriptors::kOther, 10, 1,
TokenPosition::Deserialize(20), 1, 1);
builder->AddDescriptor(UntaggedPcDescriptors::kDeopt, 20, 2,
TokenPosition::Deserialize(30), 0, -1);
builder->AddDescriptor(UntaggedPcDescriptors::kOther, 30, 3,
TokenPosition::Deserialize(40), 1, 10);
builder->AddDescriptor(UntaggedPcDescriptors::kOther, 10, 4,
TokenPosition::Deserialize(40), 2, 20);
builder->AddDescriptor(UntaggedPcDescriptors::kOther, 10, 5,
TokenPosition::Deserialize(80), 3, 30);
builder->AddDescriptor(UntaggedPcDescriptors::kOther, 80, 6,
TokenPosition::Deserialize(150), 3, 30);
PcDescriptors& descriptors = PcDescriptors::Handle();
descriptors ^= builder->FinalizePcDescriptors(0);
extern void GenerateIncrement(compiler::Assembler * assembler);
compiler::ObjectPoolBuilder object_pool_builder;
compiler::Assembler _assembler_(&object_pool_builder);
GenerateIncrement(&_assembler_);
SafepointWriteRwLocker locker(thread,
thread->isolate_group()->program_lock());
Code& code = Code::Handle(Code::FinalizeCodeAndNotify(
Function::Handle(CreateFunction("Test_Code")), nullptr, &_assembler_,
Code::PoolAttachment::kAttachPool));
code.set_pc_descriptors(descriptors);
// Verify the PcDescriptor entries by accessing them.
const PcDescriptors& pc_descs = PcDescriptors::Handle(code.pc_descriptors());
PcDescriptors::Iterator iter(pc_descs, UntaggedPcDescriptors::kAnyKind);
EXPECT_EQ(true, iter.MoveNext());
EXPECT_EQ(1, iter.YieldIndex());
EXPECT_EQ(20, iter.TokenPos().Pos());
EXPECT_EQ(1, iter.TryIndex());
EXPECT_EQ(static_cast<uword>(10), iter.PcOffset());
EXPECT_EQ(1, iter.DeoptId());
EXPECT_EQ(UntaggedPcDescriptors::kOther, iter.Kind());
EXPECT_EQ(true, iter.MoveNext());
EXPECT_EQ(-1, iter.YieldIndex());
EXPECT_EQ(30, iter.TokenPos().Pos());
EXPECT_EQ(UntaggedPcDescriptors::kDeopt, iter.Kind());
EXPECT_EQ(true, iter.MoveNext());
EXPECT_EQ(10, iter.YieldIndex());
EXPECT_EQ(40, iter.TokenPos().Pos());
EXPECT_EQ(true, iter.MoveNext());
EXPECT_EQ(20, iter.YieldIndex());
EXPECT_EQ(40, iter.TokenPos().Pos());
EXPECT_EQ(true, iter.MoveNext());
EXPECT_EQ(30, iter.YieldIndex());
EXPECT_EQ(80, iter.TokenPos().Pos());
EXPECT_EQ(true, iter.MoveNext());
EXPECT_EQ(30, iter.YieldIndex());
EXPECT_EQ(150, iter.TokenPos().Pos());
EXPECT_EQ(3, iter.TryIndex());
EXPECT_EQ(static_cast<uword>(80), iter.PcOffset());
EXPECT_EQ(150, iter.TokenPos().Pos());
EXPECT_EQ(UntaggedPcDescriptors::kOther, iter.Kind());
EXPECT_EQ(false, iter.MoveNext());
}
ISOLATE_UNIT_TEST_CASE(PcDescriptorsLargeDeltas) {
DescriptorList* builder = new DescriptorList(thread->zone());
// kind, pc_offset, deopt_id, token_pos, try_index
builder->AddDescriptor(UntaggedPcDescriptors::kOther, 100, 1,
TokenPosition::Deserialize(200), 1, 10);
builder->AddDescriptor(UntaggedPcDescriptors::kDeopt, 200, 2,
TokenPosition::Deserialize(300), 0, -1);
builder->AddDescriptor(UntaggedPcDescriptors::kOther, 300, 3,
TokenPosition::Deserialize(400), 1, 10);
builder->AddDescriptor(UntaggedPcDescriptors::kOther, 100, 4,
TokenPosition::Deserialize(0), 2, 20);
builder->AddDescriptor(UntaggedPcDescriptors::kOther, 100, 5,
TokenPosition::Deserialize(800), 3, 30);
builder->AddDescriptor(UntaggedPcDescriptors::kOther, 800, 6,
TokenPosition::Deserialize(150), 3, 30);
PcDescriptors& descriptors = PcDescriptors::Handle();
descriptors ^= builder->FinalizePcDescriptors(0);
extern void GenerateIncrement(compiler::Assembler * assembler);
compiler::ObjectPoolBuilder object_pool_builder;
compiler::Assembler _assembler_(&object_pool_builder);
GenerateIncrement(&_assembler_);
SafepointWriteRwLocker locker(thread,
thread->isolate_group()->program_lock());
Code& code = Code::Handle(Code::FinalizeCodeAndNotify(
Function::Handle(CreateFunction("Test_Code")), nullptr, &_assembler_,
Code::PoolAttachment::kAttachPool));
code.set_pc_descriptors(descriptors);
// Verify the PcDescriptor entries by accessing them.
const PcDescriptors& pc_descs = PcDescriptors::Handle(code.pc_descriptors());
PcDescriptors::Iterator iter(pc_descs, UntaggedPcDescriptors::kAnyKind);
EXPECT_EQ(true, iter.MoveNext());
EXPECT_EQ(10, iter.YieldIndex());
EXPECT_EQ(200, iter.TokenPos().Pos());
EXPECT_EQ(1, iter.TryIndex());
EXPECT_EQ(static_cast<uword>(100), iter.PcOffset());
EXPECT_EQ(1, iter.DeoptId());
EXPECT_EQ(UntaggedPcDescriptors::kOther, iter.Kind());
EXPECT_EQ(true, iter.MoveNext());
EXPECT_EQ(-1, iter.YieldIndex());
EXPECT_EQ(300, iter.TokenPos().Pos());
EXPECT_EQ(UntaggedPcDescriptors::kDeopt, iter.Kind());
EXPECT_EQ(true, iter.MoveNext());
EXPECT_EQ(10, iter.YieldIndex());
EXPECT_EQ(400, iter.TokenPos().Pos());
EXPECT_EQ(true, iter.MoveNext());
EXPECT_EQ(20, iter.YieldIndex());
EXPECT_EQ(0, iter.TokenPos().Pos());
EXPECT_EQ(true, iter.MoveNext());
EXPECT_EQ(30, iter.YieldIndex());
EXPECT_EQ(800, iter.TokenPos().Pos());
EXPECT_EQ(true, iter.MoveNext());
EXPECT_EQ(30, iter.YieldIndex());
EXPECT_EQ(150, iter.TokenPos().Pos());
EXPECT_EQ(3, iter.TryIndex());
EXPECT_EQ(static_cast<uword>(800), iter.PcOffset());
EXPECT_EQ(150, iter.TokenPos().Pos());
EXPECT_EQ(UntaggedPcDescriptors::kOther, iter.Kind());
EXPECT_EQ(false, iter.MoveNext());
}
static ClassPtr CreateTestClass(const char* name) {
const String& class_name =
String::Handle(Symbols::New(Thread::Current(), name));
const Class& cls =
Class::Handle(CreateDummyClass(class_name, Script::Handle()));
return cls.ptr();
}
static FieldPtr CreateTestField(const char* name) {
auto thread = Thread::Current();
const Class& cls = Class::Handle(CreateTestClass("global:"));
const String& field_name = String::Handle(Symbols::New(thread, name));
const Field& field = Field::Handle(Field::New(
field_name, true, false, false, true, false, cls, Object::dynamic_type(),
TokenPosition::kMinSource, TokenPosition::kMinSource));
{
SafepointWriteRwLocker locker(thread,
thread->isolate_group()->program_lock());
thread->isolate_group()->RegisterStaticField(field, Object::sentinel());
}
return field.ptr();
}
ISOLATE_UNIT_TEST_CASE(ClassDictionaryIterator) {
Class& ae66 = Class::ZoneHandle(CreateTestClass("Ae6/6"));
Class& re44 = Class::ZoneHandle(CreateTestClass("Re4/4"));
Field& ce68 = Field::ZoneHandle(CreateTestField("Ce6/8"));
Field& tee = Field::ZoneHandle(CreateTestField("TEE"));
String& url = String::ZoneHandle(String::New("SBB"));
Library& lib = Library::Handle(Library::New(url));
lib.AddClass(ae66);
lib.AddObject(ce68, String::ZoneHandle(ce68.name()));
lib.AddClass(re44);
lib.AddObject(tee, String::ZoneHandle(tee.name()));
ClassDictionaryIterator iterator(lib);
int count = 0;
Class& cls = Class::Handle();
while (iterator.HasNext()) {
cls = iterator.GetNextClass();
EXPECT((cls.ptr() == ae66.ptr()) || (cls.ptr() == re44.ptr()));
count++;
}
EXPECT(count == 2);
}
static FunctionPtr GetDummyTarget(const char* name) {
const String& function_name =
String::Handle(Symbols::New(Thread::Current(), name));
const Class& cls =
Class::Handle(CreateDummyClass(function_name, Script::Handle()));
const bool is_static = false;
const bool is_const = false;
const bool is_abstract = false;
const bool is_external = false;
const bool is_native = false;
const FunctionType& signature = FunctionType::ZoneHandle(FunctionType::New());
return Function::New(signature, function_name,
UntaggedFunction::kRegularFunction, is_static, is_const,
is_abstract, is_external, is_native, cls,
TokenPosition::kMinSource);
}
ISOLATE_UNIT_TEST_CASE(ICData) {
Function& function = Function::Handle(GetDummyTarget("Bern"));
const intptr_t id = 12;
const intptr_t num_args_tested = 1;
const String& target_name = String::Handle(Symbols::New(thread, "Thun"));
const intptr_t kTypeArgsLen = 0;
const intptr_t kNumArgs = 1;
const Array& args_descriptor = Array::Handle(ArgumentsDescriptor::NewBoxed(
kTypeArgsLen, kNumArgs, Object::null_array()));
ICData& o1 = ICData::Handle();
o1 = ICData::New(function, target_name, args_descriptor, id, num_args_tested,
ICData::kInstance);
EXPECT_EQ(1, o1.NumArgsTested());
EXPECT_EQ(id, o1.deopt_id());
EXPECT_EQ(function.ptr(), o1.Owner());
EXPECT_EQ(0, o1.NumberOfChecks());
EXPECT_EQ(target_name.ptr(), o1.target_name());
EXPECT_EQ(args_descriptor.ptr(), o1.arguments_descriptor());
const Function& target1 = Function::Handle(GetDummyTarget("Thun"));
o1.AddReceiverCheck(kSmiCid, target1);
EXPECT_EQ(1, o1.NumberOfChecks());
EXPECT_EQ(1, o1.NumberOfUsedChecks());
intptr_t test_class_id = -1;
Function& test_target = Function::Handle();
o1.GetOneClassCheckAt(0, &test_class_id, &test_target);
EXPECT_EQ(kSmiCid, test_class_id);
EXPECT_EQ(target1.ptr(), test_target.ptr());
EXPECT_EQ(kSmiCid, o1.GetCidAt(0));
GrowableArray<intptr_t> test_class_ids;
o1.GetCheckAt(0, &test_class_ids, &test_target);
EXPECT_EQ(1, test_class_ids.length());
EXPECT_EQ(kSmiCid, test_class_ids[0]);
EXPECT_EQ(target1.ptr(), test_target.ptr());
const Function& target2 = Function::Handle(GetDummyTarget("Thun"));
o1.AddReceiverCheck(kDoubleCid, target2);
EXPECT_EQ(2, o1.NumberOfChecks());
EXPECT_EQ(2, o1.NumberOfUsedChecks());
o1.GetOneClassCheckAt(1, &test_class_id, &test_target);
EXPECT_EQ(kDoubleCid, test_class_id);
EXPECT_EQ(target2.ptr(), test_target.ptr());
EXPECT_EQ(kDoubleCid, o1.GetCidAt(1));
o1.AddReceiverCheck(kMintCid, target2);
EXPECT_EQ(3, o1.NumberOfUsedChecks());
o1.SetCountAt(o1.NumberOfChecks() - 1, 0);
EXPECT_EQ(2, o1.NumberOfUsedChecks());
ICData& o2 = ICData::Handle();
o2 = ICData::New(function, target_name, args_descriptor, 57, 2,
ICData::kInstance);
EXPECT_EQ(2, o2.NumArgsTested());
EXPECT_EQ(57, o2.deopt_id());
EXPECT_EQ(function.ptr(), o2.Owner());
EXPECT_EQ(0, o2.NumberOfChecks());
GrowableArray<intptr_t> classes;
classes.Add(kSmiCid);
classes.Add(kSmiCid);
o2.AddCheck(classes, target1);
EXPECT_EQ(1, o2.NumberOfChecks());
o2.GetCheckAt(0, &test_class_ids, &test_target);
EXPECT_EQ(2, test_class_ids.length());
EXPECT_EQ(kSmiCid, test_class_ids[0]);
EXPECT_EQ(kSmiCid, test_class_ids[1]);
EXPECT_EQ(target1.ptr(), test_target.ptr());
// Check ICData for unoptimized static calls.
const intptr_t kNumArgsChecked = 0;
const ICData& scall_icdata = ICData::Handle(
ICData::NewForStaticCall(function, target1, args_descriptor, 57,
kNumArgsChecked, ICData::kInstance));
EXPECT_EQ(target1.ptr(), scall_icdata.GetTargetAt(0));
}
ISOLATE_UNIT_TEST_CASE(SubtypeTestCache) {
SafepointMutexLocker ml(thread->isolate_group()->subtype_test_cache_mutex());
String& class1_name = String::Handle(Symbols::New(thread, "EmptyClass1"));
Script& script = Script::Handle();
const Class& empty_class1 =
Class::Handle(CreateDummyClass(class1_name, script));
String& class2_name = String::Handle(Symbols::New(thread, "EmptyClass2"));
const Class& empty_class2 =
Class::Handle(CreateDummyClass(class2_name, script));
SubtypeTestCache& cache = SubtypeTestCache::Handle(SubtypeTestCache::New());
EXPECT(!cache.IsNull());
EXPECT_EQ(0, cache.NumberOfChecks());
const Object& class_id_or_fun = Object::Handle(Smi::New(empty_class1.id()));
const AbstractType& dest_type =
AbstractType::Handle(Type::NewNonParameterizedType(empty_class2));
const TypeArguments& targ_0 = TypeArguments::Handle(TypeArguments::New(2));
const TypeArguments& targ_1 = TypeArguments::Handle(TypeArguments::New(3));
const TypeArguments& targ_2 = TypeArguments::Handle(TypeArguments::New(4));
const TypeArguments& targ_3 = TypeArguments::Handle(TypeArguments::New(5));
const TypeArguments& targ_4 = TypeArguments::Handle(TypeArguments::New(6));
cache.AddCheck(class_id_or_fun, dest_type, targ_0, targ_1, targ_2, targ_3,
targ_4, Bool::True());
EXPECT_EQ(1, cache.NumberOfChecks());
Object& test_class_id_or_fun = Object::Handle();
AbstractType& test_dest_type = AbstractType::Handle();
TypeArguments& test_targ_0 = TypeArguments::Handle();
TypeArguments& test_targ_1 = TypeArguments::Handle();
TypeArguments& test_targ_2 = TypeArguments::Handle();
TypeArguments& test_targ_3 = TypeArguments::Handle();
TypeArguments& test_targ_4 = TypeArguments::Handle();
Bool& test_result = Bool::Handle();
cache.GetCheck(0, &test_class_id_or_fun, &test_dest_type, &test_targ_0,
&test_targ_1, &test_targ_2, &test_targ_3, &test_targ_4,
&test_result);
EXPECT_EQ(class_id_or_fun.ptr(), test_class_id_or_fun.ptr());
EXPECT_EQ(dest_type.ptr(), test_dest_type.ptr());
EXPECT_EQ(targ_0.ptr(), test_targ_0.ptr());
EXPECT_EQ(targ_1.ptr(), test_targ_1.ptr());
EXPECT_EQ(targ_2.ptr(), test_targ_2.ptr());
EXPECT_EQ(targ_3.ptr(), test_targ_3.ptr());
EXPECT_EQ(targ_4.ptr(), test_targ_4.ptr());
EXPECT_EQ(Bool::True().ptr(), test_result.ptr());
}
ISOLATE_UNIT_TEST_CASE(MegamorphicCache) {
const auto& name = String::Handle(Symbols::New(thread, "name"));
const auto& args_descriptor =
Array::Handle(ArgumentsDescriptor::NewBoxed(1, 1, Object::null_array()));
const auto& cidA = Smi::Handle(Smi::New(1));
const auto& cidB = Smi::Handle(Smi::New(2));
const auto& valueA = Smi::Handle(Smi::New(42));
const auto& valueB = Smi::Handle(Smi::New(43));
// Test normal insert/lookup methods.
{
const auto& cache =
MegamorphicCache::Handle(MegamorphicCache::New(name, args_descriptor));
EXPECT(cache.Lookup(cidA) == Object::null());
cache.EnsureContains(cidA, valueA);
EXPECT(cache.Lookup(cidA) == valueA.ptr());
EXPECT(cache.Lookup(cidB) == Object::null());
cache.EnsureContains(cidB, valueB);
EXPECT(cache.Lookup(cidB) == valueB.ptr());
}
// Try to insert many keys to hit collisions & growth.
{
const auto& cache =
MegamorphicCache::Handle(MegamorphicCache::New(name, args_descriptor));
auto& cid = Smi::Handle();
auto& value = Object::Handle();
for (intptr_t i = 0; i < 100; ++i) {
cid = Smi::New(100 * i);
if (cid.Value() == kIllegalCid) continue;
value = Smi::New(i);
cache.EnsureContains(cid, value);
}
auto& expected = Object::Handle();
for (intptr_t i = 0; i < 100; ++i) {
cid = Smi::New(100 * i);
if (cid.Value() == kIllegalCid) continue;
expected = Smi::New(i);
value = cache.Lookup(cid);
EXPECT(Smi::Cast(value).Equals(Smi::Cast(expected)));
}
}
}
ISOLATE_UNIT_TEST_CASE(FieldTests) {
const String& f = String::Handle(String::New("oneField"));
const String& getter_f = String::Handle(Field::GetterName(f));
const String& setter_f = String::Handle(Field::SetterName(f));
EXPECT(!Field::IsGetterName(f));
EXPECT(!Field::IsSetterName(f));
EXPECT(Field::IsGetterName(getter_f));
EXPECT(!Field::IsSetterName(getter_f));
EXPECT(!Field::IsGetterName(setter_f));
EXPECT(Field::IsSetterName(setter_f));
EXPECT_STREQ(f.ToCString(),
String::Handle(Field::NameFromGetter(getter_f)).ToCString());
EXPECT_STREQ(f.ToCString(),
String::Handle(Field::NameFromSetter(setter_f)).ToCString());
}
// Expose helper function from object.cc for testing.
bool EqualsIgnoringPrivate(const String& name, const String& private_name);
ISOLATE_UNIT_TEST_CASE(EqualsIgnoringPrivate) {
String& mangled_name = String::Handle();
String& bare_name = String::Handle();
// Simple matches.
mangled_name = OneByteString::New("foo");
bare_name = OneByteString::New("foo");
EXPECT(String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
mangled_name = OneByteString::New("foo.");
bare_name = OneByteString::New("foo.");
EXPECT(String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
mangled_name = OneByteString::New("foo.named");
bare_name = OneByteString::New("foo.named");
EXPECT(String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Simple mismatches.
mangled_name = OneByteString::New("bar");
bare_name = OneByteString::New("foo");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
mangled_name = OneByteString::New("foo.");
bare_name = OneByteString::New("foo");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
mangled_name = OneByteString::New("foo");
bare_name = OneByteString::New("foo.");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
mangled_name = OneByteString::New("foo.name");
bare_name = OneByteString::New("foo.named");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
mangled_name = OneByteString::New("foo.named");
bare_name = OneByteString::New("foo.name");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Private match.
mangled_name = OneByteString::New("foo@12345");
bare_name = OneByteString::New("foo");
EXPECT(String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Private mismatch.
mangled_name = OneByteString::New("food@12345");
bare_name = OneByteString::New("foo");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Private mismatch 2.
mangled_name = OneByteString::New("foo@12345");
bare_name = OneByteString::New("food");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Private mixin application match.
mangled_name = OneByteString::New("_M1@12345&_M2@12345&_M3@12345");
bare_name = OneByteString::New("_M1&_M2&_M3");
EXPECT(String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Private mixin application mismatch.
mangled_name = OneByteString::New("_M1@12345&_M2@12345&_M3@12345");
bare_name = OneByteString::New("_M1&_M2&_M4");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Private constructor match.
mangled_name = OneByteString::New("foo@12345.");
bare_name = OneByteString::New("foo.");
EXPECT(String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Private constructor mismatch.
mangled_name = OneByteString::New("foo@12345.");
bare_name = OneByteString::New("foo");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Private constructor mismatch 2.
mangled_name = OneByteString::New("foo@12345");
bare_name = OneByteString::New("foo.");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Named private constructor match.
mangled_name = OneByteString::New("foo@12345.named");
bare_name = OneByteString::New("foo.named");
EXPECT(String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Named private constructor mismatch.
mangled_name = OneByteString::New("foo@12345.name");
bare_name = OneByteString::New("foo.named");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Named private constructor mismatch 2.
mangled_name = OneByteString::New("foo@12345.named");
bare_name = OneByteString::New("foo.name");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Named double-private constructor match. Yes, this happens.
mangled_name = OneByteString::New("foo@12345.named@12345");
bare_name = OneByteString::New("foo.named");
EXPECT(String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Named double-private constructor match where the caller knows the private
// key. Yes, this also happens.
mangled_name = OneByteString::New("foo@12345.named@12345");
bare_name = OneByteString::New("foo@12345.named");
EXPECT(String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Named double-private constructor mismatch.
mangled_name = OneByteString::New("foo@12345.name@12345");
bare_name = OneByteString::New("foo.named");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
// Named double-private constructor mismatch.
mangled_name = OneByteString::New("foo@12345.named@12345");
bare_name = OneByteString::New("foo.name");
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, bare_name));
const char* ext_mangled_str = "foo@12345.name@12345";
const char* ext_bare_str = "foo.name";
const char* ext_bad_bare_str = "foo.named";
String& ext_mangled_name = String::Handle();
String& ext_bare_name = String::Handle();
String& ext_bad_bare_name = String::Handle();
mangled_name = OneByteString::New("foo@12345.name@12345");
ext_mangled_name = ExternalOneByteString::New(
reinterpret_cast<const uint8_t*>(ext_mangled_str),
strlen(ext_mangled_str), NULL, 0, NoopFinalizer, Heap::kNew);
EXPECT(ext_mangled_name.IsExternalOneByteString());
ext_bare_name = ExternalOneByteString::New(
reinterpret_cast<const uint8_t*>(ext_bare_str), strlen(ext_bare_str),
NULL, 0, NoopFinalizer, Heap::kNew);
EXPECT(ext_bare_name.IsExternalOneByteString());
ext_bad_bare_name = ExternalOneByteString::New(
reinterpret_cast<const uint8_t*>(ext_bad_bare_str),
strlen(ext_bad_bare_str), NULL, 0, NoopFinalizer, Heap::kNew);
EXPECT(ext_bad_bare_name.IsExternalOneByteString());
// str1 - OneByteString, str2 - ExternalOneByteString.
EXPECT(String::EqualsIgnoringPrivateKey(mangled_name, ext_bare_name));
EXPECT(!String::EqualsIgnoringPrivateKey(mangled_name, ext_bad_bare_name));
// str1 - ExternalOneByteString, str2 - OneByteString.
EXPECT(String::EqualsIgnoringPrivateKey(ext_mangled_name, bare_name));
// str1 - ExternalOneByteString, str2 - ExternalOneByteString.
EXPECT(String::EqualsIgnoringPrivateKey(ext_mangled_name, ext_bare_name));
EXPECT(
!String::EqualsIgnoringPrivateKey(ext_mangled_name, ext_bad_bare_name));
}
ISOLATE_UNIT_TEST_CASE_WITH_EXPECTATION(ArrayNew_Overflow_Crash, "Crash") {
Array::Handle(Array::New(Array::kMaxElements + 1));
}
TEST_CASE(StackTraceFormat) {
const char* kScriptChars =
"void baz() {\n"
" throw 'MyException';\n"
"}\n"
"\n"
"class _OtherClass {\n"
" _OtherClass._named() {\n"
" baz();\n"
" }\n"
"}\n"
"\n"
"set globalVar(var value) {\n"
" new _OtherClass._named();\n"
"}\n"
"\n"
"void _bar() {\n"
" globalVar = null;\n"
"}\n"
"\n"
"class MyClass {\n"
" MyClass() {\n"
" (() => foo())();\n"
" }\n"
"\n"
" static get field {\n"
" _bar();\n"
" }\n"
"\n"
" static foo() {\n"
" fooHelper() {\n"
" field;\n"
" }\n"
" fooHelper();\n"
" }\n"
"}\n"
"\n"
"main() {\n"
" (() => new MyClass())();\n"
"}\n";
Dart_Handle lib = TestCase::LoadTestScript(kScriptChars, NULL);
EXPECT_VALID(lib);
Dart_Handle result = Dart_Invoke(lib, NewString("main"), 0, NULL);
const char* lib_url = "file:///test-lib";
const size_t kBufferSize = 1024;
char expected[kBufferSize];
snprintf(expected, kBufferSize,
"Unhandled exception:\n"
"MyException\n"
"#0 baz (%1$s:2:3)\n"
"#1 new _OtherClass._named (%1$s:7:5)\n"
"#2 globalVar= (%1$s:12:7)\n"
"#3 _bar (%1$s:16:3)\n"
"#4 MyClass.field (%1$s:25:5)\n"
"#5 MyClass.foo.fooHelper (%1$s:30:7)\n"
"#6 MyClass.foo (%1$s:32:5)\n"
"#7 new MyClass.<anonymous closure> (%1$s:21:12)\n"
"#8 new MyClass (%1$s:21:18)\n"
"#9 main.<anonymous closure> (%1$s:37:14)\n"
"#10 main (%1$s:37:24)",
lib_url);
EXPECT_ERROR(result, expected);
}
ISOLATE_UNIT_TEST_CASE(WeakProperty_PreserveCrossGen) {
WeakProperty& weak = WeakProperty::Handle();
{
// Weak property and value in new. Key in old.
HANDLESCOPE(thread);
String& key = String::Handle();
key ^= OneByteString::New("key", Heap::kOld);
String& value = String::Handle();
value ^= OneByteString::New("value", Heap::kNew);
weak ^= WeakProperty::New(Heap::kNew);
weak.set_key(key);
weak.set_value(value);
key ^= OneByteString::null();
value ^= OneByteString::null();
}
GCTestHelper::CollectNewSpace();
GCTestHelper::CollectOldSpace();
// Weak property key and value should survive due to cross-generation
// pointers.
EXPECT(weak.key() != Object::null());
EXPECT(weak.value() != Object::null());
{
// Weak property and value in old. Key in new.
HANDLESCOPE(thread);
String& key = String::Handle();
key ^= OneByteString::New("key", Heap::kNew);
String& value = String::Handle();
value ^= OneByteString::New("value", Heap::kOld);
weak ^= WeakProperty::New(Heap::kOld);
weak.set_key(key);
weak.set_value(value);
key ^= OneByteString::null();
value ^= OneByteString::null();
}
GCTestHelper::CollectNewSpace();
GCTestHelper::CollectOldSpace();
// Weak property key and value should survive due to cross-generation
// pointers.
EXPECT(weak.key() != Object::null());
EXPECT(weak.value() != Object::null());
{
// Weak property and value in new. Key is a Smi.
HANDLESCOPE(thread);
Integer& key = Integer::Handle();
key ^= Integer::New(31);
String& value = String::Handle();
value ^= OneByteString::New("value", Heap::kNew);
weak ^= WeakProperty::New(Heap::kNew);
weak.set_key(key);
weak.set_value(value);
key ^= Integer::null();
value ^= OneByteString::null();
}
GCTestHelper::CollectAllGarbage();
// Weak property key and value should survive due implicit liveness of
// non-heap objects.
EXPECT(weak.key() != Object::null());
EXPECT(weak.value() != Object::null());
{
// Weak property and value in old. Key is a Smi.
HANDLESCOPE(thread);
Integer& key = Integer::Handle();
key ^= Integer::New(32);
String& value = String::Handle();
value ^= OneByteString::New("value", Heap::kOld);
weak ^= WeakProperty::New(Heap::kOld);
weak.set_key(key);
weak.set_value(value);
key ^= OneByteString::null();
value ^= OneByteString::null();
}
GCTestHelper::CollectAllGarbage();
// Weak property key and value should survive due implicit liveness of
// non-heap objects.
EXPECT(weak.key() != Object::null());
EXPECT(weak.value() != Object::null());
{
// Weak property and value in new. Key in VM isolate.
HANDLESCOPE(thread);
String& value = String::Handle();
value ^= OneByteString::New("value", Heap::kNew);
weak ^= WeakProperty::New(Heap::kNew);
weak.set_key(Symbols::Dot());
weak.set_value(value);
String& key = String::Handle();
key ^= OneByteString::null();
value ^= OneByteString::null();
}
GCTestHelper::CollectNewSpace();
GCTestHelper::CollectOldSpace();
// Weak property key and value should survive due to cross-generation
// pointers.
EXPECT(weak.key() != Object::null());
EXPECT(weak.value() != Object::null());
{
// Weak property and value in old. Key in VM isolate.
HANDLESCOPE(thread);
String& value = String::Handle();
value ^= OneByteString::New("value", Heap::kOld);
weak ^= WeakProperty::New(Heap::kOld);
weak.set_key(Symbols::Dot());
weak.set_value(value);
String& key = String::Handle();
key ^= OneByteString::null();
value ^= OneByteString::null();
}
GCTestHelper::CollectNewSpace();
GCTestHelper::CollectOldSpace();
// Weak property key and value should survive due to cross-generation
// pointers.
EXPECT(weak.key() != Object::null());
EXPECT(weak.value() != Object::null());
}
ISOLATE_UNIT_TEST_CASE(WeakProperty_PreserveRecurse) {
// This used to end in an infinite recursion. Caused by scavenging the weak
// property before scavenging the key.
WeakProperty& weak = WeakProperty::Handle();
Array& arr = Array::Handle(Array::New(1));
{
HANDLESCOPE(thread);
String& key = String::Handle();
key ^= OneByteString::New("key");
arr.SetAt(0, key);
String& value = String::Handle();
value ^= OneByteString::New("value");
weak ^= WeakProperty::New();
weak.set_key(key);
weak.set_value(value);
}
GCTestHelper::CollectAllGarbage();
EXPECT(weak.key() != Object::null());
EXPECT(weak.value() != Object::null());
}
ISOLATE_UNIT_TEST_CASE(WeakProperty_PreserveOne_NewSpace) {
WeakProperty& weak = WeakProperty::Handle();
String& key = String::Handle();
key ^= OneByteString::New("key");
{
HANDLESCOPE(thread);
String& value = String::Handle();
value ^= OneByteString::New("value");
weak ^= WeakProperty::New();
weak.set_key(key);
weak.set_value(value);
}
GCTestHelper::CollectNewSpace();
EXPECT(weak.key() != Object::null());
EXPECT(weak.value() != Object::null());
}
ISOLATE_UNIT_TEST_CASE(WeakProperty_PreserveTwo_NewSpace) {
WeakProperty& weak1 = WeakProperty::Handle();
String& key1 = String::Handle();
key1 ^= OneByteString::New("key1");
WeakProperty& weak2 = WeakProperty::Handle();
String& key2 = String::Handle();
key2 ^= OneByteString::New("key2");
{
HANDLESCOPE(thread);
String& value1 = String::Handle();
value1 ^= OneByteString::New("value1");
weak1 ^= WeakProperty::New();
weak1.set_key(key1);
weak1.set_value(value1);
String& value2 = String::Handle();
value2 ^= OneByteString::New("value2");
weak2 ^= WeakProperty::New();
weak2.set_key(key2);
weak2.set_value(value2);
}
GCTestHelper::CollectNewSpace();
EXPECT(weak1.key() != Object::null());
EXPECT(weak1.value() != Object::null());
EXPECT(weak2.key() != Object::null());
EXPECT(weak2.value() != Object::null());
}
ISOLATE_UNIT_TEST_CASE(WeakProperty_PreserveTwoShared_NewSpace) {
WeakProperty& weak1 = WeakProperty::Handle();
WeakProperty& weak2 = WeakProperty::Handle();
String& key = String::Handle();
key ^= OneByteString::New("key");
{
HANDLESCOPE(thread);
String& value1 = String::Handle();
value1 ^= OneByteString::New("value1");
weak1 ^= WeakProperty::New();
weak1.set_key(key);
weak1.set_value(value1);
String& value2 = String::Handle();
value2 ^= OneByteString::New("value2");
weak2 ^= WeakProperty::New();
weak2.set_key(key);
weak2.set_value(value2);
}
GCTestHelper::CollectNewSpace();
EXPECT(weak1.key() != Object::null());
EXPECT(weak1.value() != Object::null());
EXPECT(weak2.key() != Object::null());
EXPECT(weak2.value() != Object::null());
}
ISOLATE_UNIT_TEST_CASE(WeakProperty_PreserveOne_OldSpace) {
WeakProperty& weak = WeakProperty::Handle();
String& key = String::Handle();
key ^= OneByteString::New("key", Heap::kOld);
{
HANDLESCOPE(thread);
String& value = String::Handle();
value ^= OneByteString::New("value", Heap::kOld);
weak ^= WeakProperty::New(Heap::kOld);
weak.set_key(key);
weak.set_value(value);
}
GCTestHelper::CollectAllGarbage();
EXPECT(weak.key() != Object::null());
EXPECT(weak.value() != Object::null());
}
ISOLATE_UNIT_TEST_CASE(WeakProperty_PreserveTwo_OldSpace) {
WeakProperty& weak1 = WeakProperty::Handle();
String& key1 = String::Handle();
key1 ^= OneByteString::New("key1", Heap::kOld);
WeakProperty& weak2 = WeakProperty::Handle();
String& key2 = String::Handle();
key2 ^= OneByteString::New("key2", Heap::kOld);
{
HANDLESCOPE(thread);
String& value1 = String::Handle();
value1 ^= OneByteString::New("value1", Heap::kOld);
weak1 ^= WeakProperty::New(Heap::kOld);
weak1.set_key(key1);
weak1.set_value(value1);
String& value2 = String::Handle();
value2 ^= OneByteString::New("value2", Heap::kOld);
weak2 ^= WeakProperty::New(Heap::kOld);
weak2.set_key(key2);
weak2.set_value(value2);
}
GCTestHelper::CollectAllGarbage();
EXPECT(weak1.key() != Object::null());
EXPECT(weak1.value() != Object::null());
EXPECT(weak2.key() != Object::null());
EXPECT(weak2.value() != Object::null());
}
ISOLATE_UNIT_TEST_CASE(WeakProperty_PreserveTwoShared_OldSpace) {
WeakProperty& weak1 = WeakProperty::Handle();
WeakProperty& weak2 = WeakProperty::Handle();
String& key = String::Handle();
key ^= OneByteString::New("key", Heap::kOld);
{
HANDLESCOPE(thread);
String& value1 = String::Handle();
value1 ^= OneByteString::New("value1", Heap::kOld);
weak1 ^= WeakProperty::New(Heap::kOld);
weak1.set_key(key);
weak1.set_value(value1);
String& value2 = String::Handle();
value2 ^= OneByteString::New("value2", Heap::kOld);
weak2 ^= WeakProperty::New(Heap::kOld);
weak2.set_key(key);
weak2.set_value(value2);
}
GCTestHelper::CollectAllGarbage();
EXPECT(weak1.key() != Object::null());
EXPECT(weak1.value() != Object::null());
EXPECT(weak2.key() != Object::null());
EXPECT(weak2.value() != Object::null());
}
ISOLATE_UNIT_TEST_CASE(WeakProperty_ClearOne_NewSpace) {
WeakProperty& weak = WeakProperty::Handle();
{
HANDLESCOPE(thread);
String& key = String::Handle();
key ^= OneByteString::New("key");
String& value = String::Handle();
value ^= OneByteString::New("value");
weak ^= WeakProperty::New();
weak.set_key(key);
weak.set_value(value);
key ^= OneByteString::null();
value ^= OneByteString::null();
}
GCTestHelper::CollectNewSpace();
EXPECT(weak.key() == Object::null());
EXPECT(weak.value() == Object::null());
}
ISOLATE_UNIT_TEST_CASE(WeakProperty_ClearTwoShared_NewSpace) {
WeakProperty& weak1 = WeakProperty::Handle();
WeakProperty& weak2 = WeakProperty::Handle();
{
HANDLESCOPE(thread);
String& key = String::Handle();
key ^= OneByteString::New("key");
String& value1 = String::Handle();
value1 ^= OneByteString::New("value1");
weak1 ^= WeakProperty::New();
weak1.set_key(key);
weak1.set_value(value1);
String& value2 = String::Handle();
value2 ^= OneByteString::New("value2");
weak2 ^= WeakProperty::New();
weak2.set_key(key);
weak2.set_value(value2);
}
GCTestHelper::CollectNewSpace();
EXPECT(weak1.key() == Object::null());
EXPECT(weak1.value() == Object::null());
EXPECT(weak2.key() == Object::null());
EXPECT(weak2.value() == Object::null());
}
ISOLATE_UNIT_TEST_CASE(WeakProperty_ClearOne_OldSpace) {
WeakProperty& weak = WeakProperty::Handle();
{
HANDLESCOPE(thread);
String& key = String::Handle();
key ^= OneByteString::New("key", Heap::kOld);
String& value = String::Handle();
value ^= OneByteString::New("value", Heap::kOld);
weak ^= WeakProperty::New(Heap::kOld);
weak.set_key(key);
weak.set_value(value);
key ^= OneByteString::null();
value ^= OneByteString::null();
}
GCTestHelper::CollectAllGarbage();
EXPECT(weak.key() == Object::null());
EXPECT(weak.value() == Object::null());
}
ISOLATE_UNIT_TEST_CASE(WeakProperty_ClearTwoShared_OldSpace) {
WeakProperty& weak1 = WeakProperty::Handle();
WeakProperty& weak2 = WeakProperty::Handle();
{
HANDLESCOPE(thread);
String& key = String::Handle();
key ^= OneByteString::New("key", Heap::kOld);
String& value1 = String::Handle();
value1 ^= OneByteString::New("value1");
weak1 ^= WeakProperty::New(Heap::kOld);
weak1.set_key(key);
weak1.set_value(value1);
String& value2 = String::Handle();
value2 ^= OneByteString::New("value2", Heap::kOld);
weak2 ^= WeakProperty::New(Heap::kOld);
weak2.set_key(key);
weak2.set_value(value2);
}
GCTestHelper::CollectAllGarbage();
EXPECT(weak1.key() == Object::null());
EXPECT(weak1.value() == Object::null());
EXPECT(weak2.key() == Object::null());
EXPECT(weak2.value() == Object::null());
}
static void WeakReference_PreserveOne(Thread* thread, Heap::Space space) {
auto& weak = WeakReference::Handle();
const auto& target = String::Handle(OneByteString::New("target", space));
{
HANDLESCOPE(thread);
ObjectStore* object_store = thread->isolate_group()->object_store();
const auto& type_arguments =
TypeArguments::Handle(object_store->type_argument_double());
weak ^= WeakReference::New(space);
weak.set_target(target);
weak.SetTypeArguments(type_arguments);
}
if (space == Heap::kNew) {
GCTestHelper::CollectNewSpace();
} else {
GCTestHelper::CollectAllGarbage();
}
EXPECT(weak.target() != Object::null());
EXPECT(weak.GetTypeArguments() != Object::null());
}
ISOLATE_UNIT_TEST_CASE(WeakReference_PreserveOne_NewSpace) {
WeakReference_PreserveOne(thread, Heap::kNew);
}
ISOLATE_UNIT_TEST_CASE(WeakReference_PreserveOne_OldSpace) {
WeakReference_PreserveOne(thread, Heap::kOld);
}
static void WeakReference_ClearOne(Thread* thread, Heap::Space space) {
auto& weak = WeakReference::Handle();
{
HANDLESCOPE(thread);
const auto& target = String::Handle(OneByteString::New("target", space));
ObjectStore* object_store = thread->isolate_group()->object_store();
const auto& type_arguments =
TypeArguments::Handle(object_store->type_argument_double());
weak ^= WeakReference::New(space);
weak.set_target(target);
weak.SetTypeArguments(type_arguments);
}
if (space == Heap::kNew) {
GCTestHelper::CollectNewSpace();
} else {
GCTestHelper::CollectAllGarbage();
}
EXPECT(weak.target() == Object::null());
EXPECT(weak.GetTypeArguments() != Object::null());
}
ISOLATE_UNIT_TEST_CASE(WeakReference_ClearOne_NewSpace) {
WeakReference_ClearOne(thread, Heap::kNew);
}
ISOLATE_UNIT_TEST_CASE(WeakReference_ClearOne_OldSpace) {
WeakReference_ClearOne(thread, Heap::kOld);
}
static void WeakReference_Clear_ReachableThroughWeakProperty(
Thread* thread,
Heap::Space space) {
auto& weak_property = WeakProperty::Handle();
const auto& key = String::Handle(OneByteString::New("key", space));
{
HANDLESCOPE(thread);
ObjectStore* object_store = thread->isolate_group()->object_store();
const auto& type_arguments =
TypeArguments::Handle(object_store->type_argument_double());
const auto& weak_reference =
WeakReference::Handle(WeakReference::New(space));
const auto& target = String::Handle(OneByteString::New("target", space));
weak_reference.set_target(target);
weak_reference.SetTypeArguments(type_arguments);
weak_property ^= WeakProperty::New(space);
weak_property.set_key(key);
weak_property.set_value(weak_reference);
}
if (space == Heap::kNew) {
GCTestHelper::CollectNewSpace();
} else {
GCTestHelper::CollectAllGarbage();
}
const auto& weak_reference =
WeakReference::CheckedHandle(Z, weak_property.value());
EXPECT(weak_reference.target() == Object::null());
EXPECT(weak_reference.GetTypeArguments() != Object::null());
}
ISOLATE_UNIT_TEST_CASE(
WeakReference_Clear_ReachableThroughWeakProperty_NewSpace) {
WeakReference_Clear_ReachableThroughWeakProperty(thread, Heap::kNew);
}
ISOLATE_UNIT_TEST_CASE(
WeakReference_Clear_ReachableThroughWeakProperty_OldSpace) {
WeakReference_Clear_ReachableThroughWeakProperty(thread, Heap::kOld);
}
static void WeakReference_Preserve_ReachableThroughWeakProperty(
Thread* thread,
Heap::Space space) {
auto& weak_property = WeakProperty::Handle();
const auto& key = String::Handle(OneByteString::New("key", space));
const auto& target = String::Handle(OneByteString::New("target", space));
{
HANDLESCOPE(thread);
ObjectStore* object_store = thread->isolate_group()->object_store();
const auto& type_arguments =
TypeArguments::Handle(object_store->type_argument_double());
const auto& weak_reference =
WeakReference::Handle(WeakReference::New(space));
weak_reference.set_target(target);
weak_reference.SetTypeArguments(type_arguments);
weak_property ^= WeakProperty::New(space);
weak_property.set_key(key);
weak_property.set_value(weak_reference);
}
if (space == Heap::kNew) {
GCTestHelper::CollectNewSpace();
} else {
GCTestHelper::CollectAllGarbage();
}
const auto& weak_reference =
WeakReference::CheckedHandle(Z, weak_property.value());
EXPECT(weak_reference.target() != Object::null());
EXPECT(weak_reference.GetTypeArguments() != Object::null());
}
ISOLATE_UNIT_TEST_CASE(
WeakReference_Preserve_ReachableThroughWeakProperty_NewSpace) {
WeakReference_Preserve_ReachableThroughWeakProperty(thread, Heap::kNew);
}
ISOLATE_UNIT_TEST_CASE(
WeakReference_Preserve_ReachableThroughWeakProperty_OldSpace) {
WeakReference_Preserve_ReachableThroughWeakProperty(thread, Heap::kOld);
}
static int NumEntries(const FinalizerEntry& entry, intptr_t acc = 0) {
if (entry.IsNull()) {
return acc;
}
return NumEntries(FinalizerEntry::Handle(entry.next()), acc + 1);
}
static void Finalizer_PreserveOne(Thread* thread,
Heap::Space space,
bool with_detach) {
#ifdef DEBUG
SetFlagScope<bool> sfs(&FLAG_trace_finalizers, true);
#endif
MessageHandler* handler = thread->isolate()->message_handler();
{
MessageHandler::AcquiredQueues aq(handler);
EXPECT_EQ(0, aq.queue()->Length());
}
const auto& finalizer = Finalizer::Handle(Finalizer::New(space));
finalizer.set_isolate(thread->isolate());
const auto& entry =
FinalizerEntry::Handle(FinalizerEntry::New(finalizer, space));
const auto& value = String::Handle(OneByteString::New("value", space));
entry.set_value(value);
auto& detach = Object::Handle();
if (with_detach) {
detach = OneByteString::New("detach", space);
} else {
detach = Object::null();
}
entry.set_detach(detach);
const auto& token = String::Handle(OneByteString::New("token", space));
entry.set_token(token);
if (space == Heap::kNew) {
GCTestHelper::CollectNewSpace();
} else {
GCTestHelper::CollectAllGarbage();
}
// Nothing in the entry should have been collected.
EXPECT_NE(Object::null(), entry.value());
EXPECT((entry.detach() == Object::null()) ^ with_detach);
EXPECT_NE(Object::null(), entry.token());
// The entry should not have moved to the collected list.
EXPECT_EQ(0,
NumEntries(FinalizerEntry::Handle(finalizer.entries_collected())));
// We should have no messages.
{
// Acquire ownership of message handler queues.
MessageHandler::AcquiredQueues aq(handler);
EXPECT_EQ(0, aq.queue()->Length());
}
}
ISOLATE_UNIT_TEST_CASE(Finalizer_PreserveNoDetachOne_NewSpace) {
Finalizer_PreserveOne(thread, Heap::kNew, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_PreserveNoDetachOne_OldSpace) {
Finalizer_PreserveOne(thread, Heap::kOld, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_PreserveWithDetachOne_NewSpace) {
Finalizer_PreserveOne(thread, Heap::kNew, true);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_PreserveWithDetachOne_OldSpace) {
Finalizer_PreserveOne(thread, Heap::kOld, true);
}
static void Finalizer_ClearDetachOne(Thread* thread, Heap::Space space) {
#ifdef DEBUG
SetFlagScope<bool> sfs(&FLAG_trace_finalizers, true);
#endif
MessageHandler* handler = thread->isolate()->message_handler();
{
MessageHandler::AcquiredQueues aq(handler);
EXPECT_EQ(0, aq.queue()->Length());
}
const auto& finalizer = Finalizer::Handle(Finalizer::New(space));
finalizer.set_isolate(thread->isolate());
const auto& entry =
FinalizerEntry::Handle(FinalizerEntry::New(finalizer, space));
const auto& value = String::Handle(OneByteString::New("value", space));
entry.set_value(value);
const auto& token = String::Handle(OneByteString::New("token", space));
entry.set_token(token);
{
HANDLESCOPE(thread);
const auto& detach = String::Handle(OneByteString::New("detach", space));
entry.set_detach(detach);
}
if (space == Heap::kNew) {
GCTestHelper::CollectNewSpace();
} else {
GCTestHelper::CollectAllGarbage();
}
// Detach should have been collected.
EXPECT_NE(Object::null(), entry.value());
EXPECT_EQ(Object::null(), entry.detach());
EXPECT_NE(Object::null(), entry.token());
// The entry should not have moved to the collected list.
EXPECT_EQ(0,
NumEntries(FinalizerEntry::Handle(finalizer.entries_collected())));
// We should have no messages.
{
// Acquire ownership of message handler queues.
MessageHandler::AcquiredQueues aq(handler);
EXPECT_EQ(0, aq.queue()->Length());
}
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearDetachOne_NewSpace) {
Finalizer_ClearDetachOne(thread, Heap::kNew);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearDetachOne_OldSpace) {
Finalizer_ClearDetachOne(thread, Heap::kOld);
}
static void Finalizer_ClearValueOne(Thread* thread,
Heap::Space space,
bool null_token) {
#ifdef DEBUG
SetFlagScope<bool> sfs(&FLAG_trace_finalizers, true);
#endif
MessageHandler* handler = thread->isolate()->message_handler();
{
MessageHandler::AcquiredQueues aq(handler);
EXPECT_EQ(0, aq.queue()->Length());
}
const auto& finalizer = Finalizer::Handle(Finalizer::New(space));
finalizer.set_isolate(thread->isolate());
const auto& entry =
FinalizerEntry::Handle(FinalizerEntry::New(finalizer, space));
const auto& detach = String::Handle(OneByteString::New("detach", space));
auto& token = Object::Handle();
if (null_token) {
// Null is a valid token in Dart finalizers.
token = Object::null();
} else {
token = OneByteString::New("token", space);
}
entry.set_token(token);
entry.set_detach(detach);
{
HANDLESCOPE(thread);
const auto& value = String::Handle(OneByteString::New("value", space));
entry.set_value(value);
}
if (space == Heap::kNew) {
GCTestHelper::CollectNewSpace();
} else {
GCTestHelper::CollectAllGarbage();
}
// Value should have been collected.
EXPECT_EQ(Object::null(), entry.value());
EXPECT_NE(Object::null(), entry.detach());
// The entry should have moved to the collected list.
EXPECT_EQ(1,
NumEntries(FinalizerEntry::Handle(finalizer.entries_collected())));
// We should have 1 message.
{
// Acquire ownership of message handler queues.
MessageHandler::AcquiredQueues aq(handler);
EXPECT_EQ(1, aq.queue()->Length());
}
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearValueOne_NewSpace) {
Finalizer_ClearValueOne(thread, Heap::kNew, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearValueOne_OldSpace) {
Finalizer_ClearValueOne(thread, Heap::kOld, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearValueNullTokenOne_NewSpace) {
Finalizer_ClearValueOne(thread, Heap::kNew, true);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearValueNullTokenOne_OldSpace) {
Finalizer_ClearValueOne(thread, Heap::kOld, true);
}
static void Finalizer_DetachOne(Thread* thread,
Heap::Space space,
bool clear_value) {
#ifdef DEBUG
SetFlagScope<bool> sfs(&FLAG_trace_finalizers, true);
#endif
MessageHandler* handler = thread->isolate()->message_handler();
{
MessageHandler::AcquiredQueues aq(handler);
EXPECT_EQ(0, aq.queue()->Length());
}
const auto& finalizer = Finalizer::Handle(Finalizer::New(space));
finalizer.set_isolate(thread->isolate());
const auto& entry =
FinalizerEntry::Handle(FinalizerEntry::New(finalizer, space));
const auto& detach = String::Handle(OneByteString::New("detach", space));
entry.set_detach(detach);
// Simulate calling detach, setting the token of the entry to the entry.
entry.set_token(entry);
auto& value = String::Handle();
{
HANDLESCOPE(thread);
const auto& object = String::Handle(OneByteString::New("value", space));
entry.set_value(object);
if (!clear_value) {
value = object.ptr();
}
}
if (space == Heap::kNew) {
GCTestHelper::CollectNewSpace();
} else {
GCTestHelper::CollectAllGarbage();
}
EXPECT((entry.value() == Object::null()) ^ !clear_value);
EXPECT_NE(Object::null(), entry.detach());
EXPECT_EQ(entry.ptr(), entry.token());
// The entry should have been removed entirely
EXPECT_EQ(0,
NumEntries(FinalizerEntry::Handle(finalizer.entries_collected())));
// We should have no message.
{
// Acquire ownership of message handler queues.
MessageHandler::AcquiredQueues aq(handler);
EXPECT_EQ(0, aq.queue()->Length());
}
}
ISOLATE_UNIT_TEST_CASE(Finalizer_DetachOne_NewSpace) {
Finalizer_DetachOne(thread, Heap::kNew, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_DetachOne_OldSpace) {
Finalizer_DetachOne(thread, Heap::kOld, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_DetachAndClearValueOne_NewSpace) {
Finalizer_DetachOne(thread, Heap::kNew, true);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_DetachAndClearValueOne_OldSpace) {
Finalizer_DetachOne(thread, Heap::kOld, true);
}
static void Finalizer_GcFinalizer(Thread* thread, Heap::Space space) {
#ifdef DEBUG
SetFlagScope<bool> sfs(&FLAG_trace_finalizers, true);
#endif
MessageHandler* handler = thread->isolate()->message_handler();
{
MessageHandler::AcquiredQueues aq(handler);
EXPECT_EQ(0, aq.queue()->Length());
}
const auto& detach = String::Handle(OneByteString::New("detach", space));
const auto& token = String::Handle(OneByteString::New("token", space));
{
HANDLESCOPE(thread);
const auto& finalizer = Finalizer::Handle(Finalizer::New(space));
finalizer.set_isolate(thread->isolate());
const auto& entry =
FinalizerEntry::Handle(FinalizerEntry::New(finalizer, space));
entry.set_detach(detach);
entry.set_token(token);
const auto& value = String::Handle(OneByteString::New("value", space));
entry.set_value(value);
}
if (space == Heap::kNew) {
GCTestHelper::CollectNewSpace();
} else {
GCTestHelper::CollectAllGarbage();
}
// We should have no message, the Finalizer itself has been GCed.
{
// Acquire ownership of message handler queues.
MessageHandler::AcquiredQueues aq(handler);
EXPECT_EQ(0, aq.queue()->Length());
}
}
ISOLATE_UNIT_TEST_CASE(Finalizer_GcFinalizer_NewSpace) {
Finalizer_GcFinalizer(thread, Heap::kNew);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_GcFinalizer_OldSpace) {
Finalizer_GcFinalizer(thread, Heap::kOld);
}
static void Finalizer_TwoEntriesCrossGen(
Thread* thread,
Heap::Space* spaces,
bool collect_old_space,
bool collect_new_space,
bool evacuate_new_space_and_collect_old_space,
bool clear_value_1,
bool clear_value_2,
bool clear_detach_1,
bool clear_detach_2) {
#ifdef DEBUG
SetFlagScope<bool> sfs(&FLAG_trace_finalizers, true);
#endif
MessageHandler* handler = thread->isolate()->message_handler();
// We're reusing the isolate in a loop, so there are messages from previous
// runs of this test.
intptr_t queue_length_start = 0;
{
MessageHandler::AcquiredQueues aq(handler);
queue_length_start = aq.queue()->Length();
}
const auto& finalizer = Finalizer::Handle(Finalizer::New(spaces[0]));
finalizer.set_isolate(thread->isolate());
const auto& entry1 =
FinalizerEntry::Handle(FinalizerEntry::New(finalizer, spaces[1]));
const auto& entry2 =
FinalizerEntry::Handle(FinalizerEntry::New(finalizer, spaces[2]));
auto& value1 = String::Handle();
auto& detach1 = String::Handle();
const auto& token1 = String::Handle(OneByteString::New("token1", spaces[3]));
entry1.set_token(token1);
auto& value2 = String::Handle();
auto& detach2 = String::Handle();
const auto& token2 = String::Handle(OneByteString::New("token2", spaces[4]));
entry2.set_token(token2);
entry2.set_detach(detach2);
{
HANDLESCOPE(thread);
auto& object = String::Handle();
object ^= OneByteString::New("value1", spaces[5]);
entry1.set_value(object);
if (!clear_value_1) {
value1 = object.ptr();
}
object ^= OneByteString::New("detach", spaces[6]);
entry1.set_detach(object);
if (!clear_detach_1) {
detach1 = object.ptr();
}
object ^= OneByteString::New("value2", spaces[7]);
entry2.set_value(object);
if (!clear_value_2) {
value2 = object.ptr();
}
object ^= OneByteString::New("detach", spaces[8]);
entry2.set_detach(object);
if (!clear_detach_2) {
detach2 = object.ptr();
}
}
if (collect_old_space) {
GCTestHelper::CollectOldSpace();
}
if (collect_new_space) {
GCTestHelper::CollectNewSpace();
}
if (evacuate_new_space_and_collect_old_space) {
GCTestHelper::CollectAllGarbage();
}
EXPECT((entry1.value() == Object::null()) ^ !clear_value_1);
EXPECT((entry2.value() == Object::null()) ^ !clear_value_2);
EXPECT((entry1.detach() == Object::null()) ^ !clear_detach_1);
EXPECT((entry2.detach() == Object::null()) ^ !clear_detach_2);
EXPECT_NE(Object::null(), entry1.token());
EXPECT_NE(Object::null(), entry2.token());
const intptr_t expect_num_cleared =
(clear_value_1 ? 1 : 0) + (clear_value_2 ? 1 : 0);
EXPECT_EQ(expect_num_cleared,
NumEntries(FinalizerEntry::Handle(finalizer.entries_collected())));
const intptr_t expect_num_messages = expect_num_cleared == 0 ? 0 : 1;
{
// Acquire ownership of message handler queues.
MessageHandler::AcquiredQueues aq(handler);
EXPECT_EQ(expect_num_messages + queue_length_start, aq.queue()->Length());
}
}
const intptr_t kFinalizerTwoEntriesNumObjects = 9;
static void Finalizer_TwoEntries(Thread* thread,
Heap::Space space,
bool clear_value_1,
bool clear_value_2,
bool clear_detach_1,
bool clear_detach_2) {
const bool collect_old_space = true;
const bool collect_new_space = space == Heap::kNew;
const bool evacuate_new_space_and_collect_old_space = !collect_new_space;
Heap::Space spaces[kFinalizerTwoEntriesNumObjects];
for (intptr_t i = 0; i < kFinalizerTwoEntriesNumObjects; i++) {
spaces[i] = space;
}
Finalizer_TwoEntriesCrossGen(
thread, spaces, collect_old_space, collect_new_space,
evacuate_new_space_and_collect_old_space, clear_value_1, clear_value_2,
clear_detach_1, clear_detach_2);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearValueTwo_NewSpace) {
Finalizer_TwoEntries(thread, Heap::kNew, true, true, false, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearValueTwo_OldSpace) {
Finalizer_TwoEntries(thread, Heap::kOld, true, true, false, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearFirstValue_NewSpace) {
Finalizer_TwoEntries(thread, Heap::kNew, true, false, false, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearFirstValue_OldSpace) {
Finalizer_TwoEntries(thread, Heap::kOld, true, false, false, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearSecondValue_NewSpace) {
Finalizer_TwoEntries(thread, Heap::kNew, false, true, false, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearSecondValue_OldSpace) {
Finalizer_TwoEntries(thread, Heap::kOld, false, true, false, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_PreserveTwo_NewSpace) {
Finalizer_TwoEntries(thread, Heap::kNew, false, false, false, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_PreserveTwo_OldSpace) {
Finalizer_TwoEntries(thread, Heap::kOld, false, false, false, false);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearDetachTwo_NewSpace) {
Finalizer_TwoEntries(thread, Heap::kNew, false, false, true, true);
}
ISOLATE_UNIT_TEST_CASE(Finalizer_ClearDetachTwo_OldSpace) {
Finalizer_TwoEntries(thread, Heap::kOld, false, false, true, true);
}
static void Finalizer_TwoEntriesCrossGen(Thread* thread, intptr_t test_i) {
ASSERT(test_i < (1 << kFinalizerTwoEntriesNumObjects));
Heap::Space spaces[kFinalizerTwoEntriesNumObjects];
for (intptr_t i = 0; i < kFinalizerTwoEntriesNumObjects; i++) {
spaces[i] = ((test_i >> i) & 0x1) == 0x1 ? Heap::kOld : Heap::kNew;
}
// Either collect or evacuate new space.
for (const bool collect_new_space : {false, true}) {
// Always run old space collection first.
const bool collect_old_space = true;
// Always run old space collection after new space.
const bool evacuate_new_space_and_collect_old_space = true;
for (intptr_t test_j = 0; test_j < 16; test_j++) {
const bool clear_value_1 = (test_j >> 0 & 0x1) == 0x1;
const bool clear_value_2 = (test_j >> 1 & 0x1) == 0x1;
const bool clear_detach_1 = (test_j >> 2 & 0x1) == 0x1;
const bool clear_detach_2 = (test_j >> 3 & 0x1) == 0x1;
Finalizer_TwoEntriesCrossGen(
thread, spaces, collect_old_space, collect_new_space,
evacuate_new_space_and_collect_old_space, clear_value_1,
clear_value_2, clear_detach_1, clear_detach_2);
}
}
}
#define FINALIZER_CROSS_GEN_TEST_CASE(n) \
ISOLATE_UNIT_TEST_CASE(Finalizer_CrossGen_##n) { \
Finalizer_TwoEntriesCrossGen(thread, n); \
}
#define REPEAT_512(V) \
V(0) \
V(1) \
V(2) \
V(3) \
V(4) \
V(5) \
V(6) \
V(7) \
V(8) \
V(9) \
V(10) \
V(11) \
V(12) \
V(13) \
V(14) \
V(15) \
V(16) \
V(17) \
V(18) \
V(19) \
V(20) \
V(21) \
V(22) \
V(23) \
V(24) \
V(25) \
V(26) \
V(27) \
V(28) \
V(29) \
V(30) \
V(31) \
V(32) \
V(33) \
V(34) \
V(35) \
V(36) \
V(37) \
V(38) \
V(39) \
V(40) \
V(41) \
V(42) \
V(43) \
V(44) \
V(45) \
V(46) \
V(47) \
V(48) \
V(49) \
V(50) \
V(51) \
V(52) \
V(53) \
V(54) \
V(55) \
V(56) \
V(57) \
V(58) \
V(59) \
V(60) \
V(61) \
V(62) \
V(63) \
V(64) \
V(65) \
V(66) \
V(67) \
V(68) \
V(69) \
V(70) \
V(71) \
V(72) \
V(73) \
V(74) \
V(75) \
V(76) \
V(77) \
V(78) \
V(79) \
V(80) \
V(81) \
V(82) \
V(83) \
V(84) \
V(85) \
V(86) \
V(87) \
V(88) \
V(89) \
V(90) \
V(91) \
V(92) \
V(93) \
V(94) \
V(95) \
V(96) \
V(97) \
V(98) \
V(99) \
V(100) \
V(101) \
V(102) \
V(103) \
V(104) \
V(105) \
V(106) \
V(107) \
V(108) \
V(109) \
V(110) \
V(111) \
V(112) \
V(113) \
V(114) \
V(115) \
V(116) \
V(117) \
V(118) \
V(119) \
V(120) \
V(121) \
V(122) \
V(123) \
V(124) \
V(125) \
V(126) \
V(127) \
V(128) \
V(129) \
V(130) \
V(131) \
V(132) \
V(133) \
V(134) \
V(135) \
V(136) \
V(137) \
V(138) \
V(139) \
V(140) \
V(141) \
V(142) \
V(143) \
V(144) \
V(145) \
V(146) \
V(147) \
V(148) \
V(149) \
V(150) \
V(151) \
V(152) \
V(153) \
V(154) \
V(155) \
V(156) \
V(157) \
V(158) \
V(159) \
V(160) \
V(161) \
V(162) \
V(163) \
V(164) \
V(165) \
V(166) \
V(167) \
V(168) \
V(169) \
V(170) \
V(171) \
V(172) \
V(173) \
V(174) \
V(175) \
V(176) \
V(177) \
V(178) \
V(179) \
V(180) \
V(181) \
V(182) \
V(183) \
V(184) \
V(185) \
V(186) \
V(187) \
V(188) \
V(189) \
V(190) \
V(191) \
V(192) \
V(193) \
V(194) \
V(195) \
V(196) \
V(197) \
V(198) \
V(199) \
V(200) \
V(201) \
V(202) \
V(203) \
V(204) \
V(205) \
V(206) \
V(207) \
V(208) \
V(209) \
V(210) \
V(211) \
V(212) \
V(213) \
V(214) \
V(215) \
V(216) \
V(217) \
V(218) \
V(219) \
V(220) \
V(221) \
V(222) \
V(223) \
V(224) \
V(225) \
V(226) \
V(227) \
V(228) \
V(229) \
V(230) \
V(231) \
V(232) \
V(233) \
V(234) \
V(235) \
V(236) \
V(237) \
V(238) \
V(239) \
V(240) \
V(241) \
V(242) \
V(243) \
V(244) \
V(245) \
V(246) \
V(247) \
V(248) \
V(249) \
V(250) \
V(251) \
V(252) \
V(253) \
V(254) \
V(255) \
V(256) \
V(257) \
V(258) \
V(259) \
V(260) \
V(261) \
V(262) \
V(263) \
V(264) \
V(265) \
V(266) \
V(267) \
V(268) \
V(269) \
V(270) \
V(271) \
V(272) \
V(273) \
V(274) \
V(275) \
V(276) \
V(277) \
V(278) \
V(279) \
V(280) \
V(281) \
V(282) \
V(283) \
V(284) \
V(285) \
V(286) \
V(287) \
V(288) \
V(289) \
V(290) \
V(291) \
V(292) \
V(293) \
V(294) \
V(295) \
V(296) \
V(297) \
V(298) \
V(299) \
V(300) \
V(301) \
V(302) \
V(303) \
V(304) \
V(305) \
V(306) \
V(307) \
V(308) \
V(309) \
V(310) \
V(311) \
V(312) \
V(313) \
V(314) \
V(315) \
V(316) \
V(317) \
V(318) \
V(319) \
V(320) \
V(321) \
V(322) \
V(323) \
V(324) \
V(325) \
V(326) \
V(327) \
V(328) \
V(329) \
V(330) \
V(331) \
V(332) \
V(333) \
V(334) \
V(335) \
V(336) \
V(337) \
V(338) \
V(339) \
V(340) \
V(341) \
V(342) \
V(343) \
V(344) \
V(345) \
V(346) \
V(347) \
V(348) \
V(349) \
V(350) \
V(351) \
V(352) \
V(353) \
V(354) \
V(355) \
V(356) \
V(357) \
V(358) \
V(359) \
V(360) \
V(361) \
V(362) \
V(363) \
V(364) \
V(365) \
V(366) \
V(367) \
V(368) \
V(369) \
V(370) \
V(371) \
V(372) \
V(373) \
V(374) \
V(375) \
V(376) \
V(377) \
V(378) \
V(379) \
V(380) \
V(381) \
V(382) \
V(383) \
V(384) \
V(385) \
V(386) \
V(387) \
V(388) \
V(389) \
V(390) \
V(391) \
V(392) \
V(393) \
V(394) \
V(395) \
V(396) \
V(397) \
V(398) \
V(399) \
V(400) \
V(401) \
V(402) \
V(403) \
V(404) \
V(405) \
V(406) \
V(407) \
V(408) \
V(409) \
V(410) \
V(411) \
V(412) \
V(413) \
V(414) \
V(415) \
V(416) \
V(417) \
V(418) \
V(419) \
V(420) \
V(421) \
V(422) \
V(423) \
V(424) \
V(425) \
V(426) \
V(427) \
V(428) \
V(429) \
V(430) \
V(431) \
V(432) \
V(433) \
V(434) \
V(435) \
V(436) \
V(437) \
V(438) \
V(439) \
V(440) \
V(441) \
V(442) \
V(443) \
V(444) \
V(445) \
V(446) \
V(447) \
V(448) \
V(449) \
V(450) \
V(451) \
V(452) \
V(453) \
V(454) \
V(455) \
V(456) \
V(457) \
V(458) \
V(459) \
V(460) \
V(461) \
V(462) \
V(463) \
V(464) \
V(465) \
V(466) \
V(467) \
V(468) \
V(469) \
V(470) \
V(471) \
V(472) \
V(473) \
V(474) \
V(475) \
V(476) \
V(477) \
V(478) \
V(479) \
V(480) \
V(481) \
V(482) \
V(483) \
V(484) \
V(485) \
V(486) \
V(487) \
V(488) \
V(489) \
V(490) \
V(491) \
V(492) \
V(493) \
V(494) \
V(495) \
V(496) \
V(497) \
V(498) \
V(499) \
V(500) \
V(501) \
V(502) \
V(503) \
V(504) \
V(505) \
V(506) \
V(507) \
V(508) \
V(509) \
V(510) \
V(511)
REPEAT_512(FINALIZER_CROSS_GEN_TEST_CASE)
#undef FINALIZER_CROSS_GEN_TEST_CASE
// Force the marker to add a FinalizerEntry to the store buffer during marking.
//
// This test requires two entries, one in new space, one in old space.
// The scavenger should run first, adding the entry to collected_entries.
// The marker runs right after, swapping the collected_entries with the entry
// in old space, _and_ setting the next field to the entry in new space.
// This forces the entry to be added to the store-buffer _during_ marking.
//
// Then, the compacter needs to be used. Which will move the entry in old
// space.
//
// If the thread's store buffer block is not released after that, the compactor
// will not update it, causing an outdated address to be released to the store
// buffer later.
//
// This causes two types of errors to trigger with --verify-store-buffer:
// 1. We see the address in the store buffer but the object is no entry there.
// Also can cause segfaults on reading garbage or unallocated memory.
// 2. We see the entry has a marked bit, but can't find it in the store buffer.
ISOLATE_UNIT_TEST_CASE(Finalizer_Regress_48843) {
#ifdef DEBUG
SetFlagScope<bool> sfs(&FLAG_trace_finalizers, true);
SetFlagScope<bool> sfs2(&FLAG_verify_store_buffer, true);
#endif
SetFlagScope<bool> sfs3(&FLAG_use_compactor, true);
const auto& finalizer = Finalizer::Handle(Finalizer::New(Heap::kOld));
finalizer.set_isolate(thread->isolate());
const auto& detach1 =
String::Handle(OneByteString::New("detach1", Heap::kNew));
const auto& token1 = String::Handle(OneByteString::New("token1", Heap::kNew));
const auto& detach2 =
String::Handle(OneByteString::New("detach2", Heap::kOld));
const auto& token2 = String::Handle(OneByteString::New("token2", Heap::kOld));
{
HANDLESCOPE(thread);
const auto& entry1 =
FinalizerEntry::Handle(FinalizerEntry::New(finalizer, Heap::kNew));
entry1.set_detach(detach1);
entry1.set_token(token1);
const auto& entry2 =
FinalizerEntry::Handle(FinalizerEntry::New(finalizer, Heap::kOld));
entry2.set_detach(detach2);
entry2.set_token(token2);
{
HANDLESCOPE(thread);
const auto& value1 =
String::Handle(OneByteString::New("value1", Heap::kNew));
entry1.set_value(value1);
const auto& value2 =
String::Handle(OneByteString::New("value2", Heap::kOld));
entry2.set_value(value2);
// Lose both values.
}
// First collect new space.
GCTestHelper::CollectNewSpace();
// Then old space, this will make the old space entry point to the new
// space entry.
// Also, this must be a mark compact, not a mark sweep, to move the entry.
GCTestHelper::CollectOldSpace();
}
// Imagine callbacks running.
// Entries themselves become unreachable.
finalizer.set_entries_collected(
FinalizerEntry::Handle(FinalizerEntry::null()));
// There should be a single entry in the store buffer.
// And it should crash when seeing the address in the buffer.
GCTestHelper::CollectNewSpace();
// We should no longer be processing the entries.
GCTestHelper::CollectOldSpace();
GCTestHelper::CollectNewSpace();
}
void NativeFinalizer_TwoEntriesCrossGen_Finalizer(void* peer) {
intptr_t* token = reinterpret_cast<intptr_t*>(peer);
(*token)++;
}
static void NativeFinalizer_TwoEntriesCrossGen(
Thread* thread,
Heap::Space* spaces,
bool collect_new_space,
bool evacuate_new_space_and_collect_old_space,
bool clear_value_1,
bool clear_value_2,
bool clear_detach_1,
bool clear_detach_2) {
#ifdef DEBUG
SetFlagScope<bool> sfs(&FLAG_trace_finalizers, true);
#endif
intptr_t token1_memory = 0;
intptr_t token2_memory = 0;
MessageHandler* handler = thread->isolate()->message_handler();
// We're reusing the isolate in a loop, so there are messages from previous
// runs of this test.
intptr_t queue_length_start = 0;
{
MessageHandler::AcquiredQueues aq(handler);
queue_length_start = aq.queue()->Length();
}
ObjectStore* object_store = thread->isolate_group()->object_store();
const auto& void_type = Type::Handle(object_store->never_type());
const auto& callback = Pointer::Handle(Pointer::New(
void_type,
reinterpret_cast<uword>(&NativeFinalizer_TwoEntriesCrossGen_Finalizer),
spaces[3]));
const auto& finalizer =
NativeFinalizer::Handle(NativeFinalizer::New(spaces[0]));
finalizer.set_callback(callback);
finalizer.set_isolate(thread->isolate());
const auto& isolate_finalizers =
GrowableObjectArray::Handle(GrowableObjectArray::New());
const auto& weak1 = WeakReference::Handle(WeakReference::New());
weak1.set_target(finalizer);
isolate_finalizers.Add(weak1);
thread->isolate()->set_finalizers(isolate_finalizers);
const auto& all_entries = LinkedHashSet::Handle(LinkedHashSet::NewDefault());
finalizer.set_all_entries(all_entries);
const auto& all_entries_data = Array::Handle(all_entries.data());
THR_Print("entry1 space: %s\n", spaces[1] == Heap::kNew ? "new" : "old");
const auto& entry1 =
FinalizerEntry::Handle(FinalizerEntry::New(finalizer, spaces[1]));
all_entries_data.SetAt(0, entry1);
THR_Print("entry2 space: %s\n", spaces[2] == Heap::kNew ? "new" : "old");
const auto& entry2 =
FinalizerEntry::Handle(FinalizerEntry::New(finalizer, spaces[2]));
all_entries_data.SetAt(1, entry2);
all_entries.set_used_data(2); // Don't bother setting the index.
const intptr_t external_size1 = 1024;
const intptr_t external_size2 = 2048;
entry1.set_external_size(external_size1);
entry2.set_external_size(external_size2);
IsolateGroup::Current()->heap()->AllocatedExternal(external_size1, spaces[5]);
IsolateGroup::Current()->heap()->AllocatedExternal(external_size2, spaces[7]);
auto& value1 = String::Handle();
auto& detach1 = String::Handle();
const auto& token1 = Pointer::Handle(Pointer::New(
void_type, reinterpret_cast<uword>(&token1_memory), spaces[3]));
entry1.set_token(token1);
auto& value2 = String::Handle();
auto& detach2 = String::Handle();
const auto& token2 = Pointer::Handle(Pointer::New(
void_type, reinterpret_cast<uword>(&token2_memory), spaces[4]));
entry2.set_token(token2);
entry2.set_detach(detach2);
{
HANDLESCOPE(thread);
auto& object = String::Handle();
THR_Print("value1 space: %s\n", spaces[5] == Heap::kNew ? "new" : "old");
object ^= OneByteString::New("value1", spaces[5]);
entry1.set_value(object);
if (!clear_value_1) {
value1 = object.ptr();
}
object ^= OneByteString::New("detach", spaces[6]);
entry1.set_detach(object);
if (!clear_detach_1) {
detach1 = object.ptr();
}
THR_Print("value2 space: %s\n", spaces[7] == Heap::kNew ? "new" : "old");
object ^= OneByteString::New("value2", spaces[7]);
entry2.set_value(object);
if (!clear_value_2) {
value2 = object.ptr();
}
object ^= OneByteString::New("detach", spaces[8]);
entry2.set_detach(object);
if (!clear_detach_2) {
detach2 = object.ptr();
}
}
THR_Print("CollectOldSpace\n");
GCTestHelper::CollectOldSpace();
if (collect_new_space) {
THR_Print("CollectNewSpace\n");
GCTestHelper::CollectNewSpace();
}
if (evacuate_new_space_and_collect_old_space) {
THR_Print("CollectAllGarbage\n");
GCTestHelper::CollectAllGarbage();
}
EXPECT((entry1.value() == Object::null()) ^ !clear_value_1);
EXPECT((entry2.value() == Object::null()) ^ !clear_value_2);
EXPECT((entry1.detach() == Object::null()) ^ !clear_detach_1);
EXPECT((entry2.detach() == Object::null()) ^ !clear_detach_2);
EXPECT_NE(Object::null(), entry1.token());
EXPECT_NE(Object::null(), entry2.token());
const intptr_t expect_num_cleared =
(clear_value_1 ? 1 : 0) + (clear_value_2 ? 1 : 0);
EXPECT_EQ(expect_num_cleared,
NumEntries(FinalizerEntry::Handle(finalizer.entries_collected())));
EXPECT_EQ(clear_value_1 ? 1 : 0, token1_memory);
EXPECT_EQ(clear_value_2 ? 1 : 0, token2_memory);
const intptr_t expect_num_messages = expect_num_cleared == 0 ? 0 : 1;
{
// Acquire ownership of message handler queues.
MessageHandler::AcquiredQueues aq(handler);
EXPECT_EQ(expect_num_messages + queue_length_start, aq.queue()->Length());
}
// Simulate detachments.
entry1.set_token(entry1);
entry2.set_token(entry2);
all_entries_data.SetAt(0, Object::Handle(Object::null()));
all_entries_data.SetAt(1, Object::Handle(Object::null()));
all_entries.set_used_data(0);
}
static void NativeFinalizer_TwoEntriesCrossGen(Thread* thread,
intptr_t test_i) {
ASSERT(test_i < (1 << kFinalizerTwoEntriesNumObjects));
Heap::Space spaces[kFinalizerTwoEntriesNumObjects];
for (intptr_t i = 0; i < kFinalizerTwoEntriesNumObjects; i++) {
spaces[i] = ((test_i >> i) & 0x1) == 0x1 ? Heap::kOld : Heap::kNew;
}
// Either collect or evacuate new space.
for (const bool collect_new_space : {true, false}) {
// Always run old space collection after new space.
const bool evacuate_new_space_and_collect_old_space = true;
const bool clear_value_1 = true;
const bool clear_value_2 = true;
const bool clear_detach_1 = false;
const bool clear_detach_2 = false;
THR_Print(
"collect_new_space: %s evacuate_new_space_and_collect_old_space: %s\n",
collect_new_space ? "true" : "false",
evacuate_new_space_and_collect_old_space ? "true" : "false");
NativeFinalizer_TwoEntriesCrossGen(thread, spaces, collect_new_space,
evacuate_new_space_and_collect_old_space,
clear_value_1, clear_value_2,
clear_detach_1, clear_detach_2);
}
}
#define FINALIZER_NATIVE_CROSS_GEN_TEST_CASE(n) \
ISOLATE_UNIT_TEST_CASE(NativeFinalizer_CrossGen_##n) { \
NativeFinalizer_TwoEntriesCrossGen(thread, n); \
}
REPEAT_512(FINALIZER_NATIVE_CROSS_GEN_TEST_CASE)
#undef FINALIZER_NATIVE_CROSS_GEN_TEST_CASE
#undef REPEAT_512
static ClassPtr GetClass(const Library& lib, const char* name) {
const Class& cls = Class::Handle(
lib.LookupClass(String::Handle(Symbols::New(Thread::Current(), name))));
EXPECT(!cls.IsNull()); // No ambiguity error expected.
return cls.ptr();
}
TEST_CASE(ImplementsFinalizable) {
Zone* const zone = Thread::Current()->zone();
const char* kScript = R"(
import 'dart:ffi';
class AImpl implements A {}
class ASub extends A {}
// Wonky class order and non-alhpabetic naming on purpose.
class C extends Z {}
class E extends D {}
class A implements Finalizable {}
class Z implements A {}
class D implements C {}
class X extends E {}
)";
Dart_Handle h_lib = TestCase::LoadTestScript(kScript, nullptr);
EXPECT_VALID(h_lib);
TransitionNativeToVM transition(thread);
const Library& lib = Library::CheckedHandle(zone, Api::UnwrapHandle(h_lib));
EXPECT(!lib.IsNull());
const auto& class_x = Class::Handle(zone, GetClass(lib, "X"));
ClassFinalizer::FinalizeTypesInClass(class_x);
EXPECT(class_x.implements_finalizable());
const auto& class_a_impl = Class::Handle(zone, GetClass(lib, "AImpl"));
ClassFinalizer::FinalizeTypesInClass(class_a_impl);
EXPECT(class_a_impl.implements_finalizable());
const auto& class_a_sub = Class::Handle(zone, GetClass(lib, "ASub"));
ClassFinalizer::FinalizeTypesInClass(class_a_sub);
EXPECT(class_a_sub.implements_finalizable());
}
TEST_CASE(ImplementorCid) {
const char* kScriptChars = R"(
abstract class AInterface {}
abstract class BInterface {}
class BImplementation implements BInterface {}
abstract class CInterface {}
class CImplementation1 implements CInterface {}
class CImplementation2 implements CInterface {}
abstract class DInterface {}
abstract class DSubinterface implements DInterface {}
abstract class EInterface {}
abstract class ESubinterface implements EInterface {}
class EImplementation implements ESubinterface {}
abstract class FInterface {}
abstract class FSubinterface implements FInterface {}
class FImplementation1 implements FSubinterface {}
class FImplementation2 implements FSubinterface {}
main() {
new BImplementation();
new CImplementation1();
new CImplementation2();
new EImplementation();
new FImplementation1();
new FImplementation2();
}
)";
Dart_Handle h_lib = TestCase::LoadTestScript(kScriptChars, NULL);
EXPECT_VALID(h_lib);
Dart_Handle result = Dart_Invoke(h_lib, NewString("main"), 0, NULL);
EXPECT_VALID(result);
TransitionNativeToVM transition(thread);
const Library& lib =
Library::CheckedHandle(thread->zone(), Api::UnwrapHandle(h_lib));
EXPECT(!lib.IsNull());
const Class& AInterface = Class::Handle(GetClass(lib, "AInterface"));
EXPECT_EQ(AInterface.implementor_cid(), kIllegalCid);
const Class& BInterface = Class::Handle(GetClass(lib, "BInterface"));
const Class& BImplementation =
Class::Handle(GetClass(lib, "BImplementation"));
EXPECT_EQ(BInterface.implementor_cid(), BImplementation.id());
EXPECT_EQ(BImplementation.implementor_cid(), BImplementation.id());
const Class& CInterface = Class::Handle(GetClass(lib, "CInterface"));
const Class& CImplementation1 =
Class::Handle(GetClass(lib, "CImplementation1"));
const Class& CImplementation2 =
Class::Handle(GetClass(lib, "CImplementation2"));
EXPECT_EQ(CInterface.implementor_cid(), kDynamicCid);
EXPECT_EQ(CImplementation1.implementor_cid(), CImplementation1.id());
EXPECT_EQ(CImplementation2.implementor_cid(), CImplementation2.id());
const Class& DInterface = Class::Handle(GetClass(lib, "DInterface"));
const Class& DSubinterface = Class::Handle(GetClass(lib, "DSubinterface"));
EXPECT_EQ(DInterface.implementor_cid(), kIllegalCid);
EXPECT_EQ(DSubinterface.implementor_cid(), kIllegalCid);
const Class& EInterface = Class::Handle(GetClass(lib, "EInterface"));
const Class& ESubinterface = Class::Handle(GetClass(lib, "ESubinterface"));
const Class& EImplementation =
Class::Handle(GetClass(lib, "EImplementation"));
EXPECT_EQ(EInterface.implementor_cid(), EImplementation.id());
EXPECT_EQ(ESubinterface.implementor_cid(), EImplementation.id());
EXPECT_EQ(EImplementation.implementor_cid(), EImplementation.id());
const Class& FInterface = Class::Handle(GetClass(lib, "FInterface"));
const Class& FSubinterface = Class::Handle(GetClass(lib, "FSubinterface"));
const Class& FImplementation1 =
Class::Handle(GetClass(lib, "FImplementation1"));
const Class& FImplementation2 =
Class::Handle(GetClass(lib, "FImplementation2"));
EXPECT_EQ(FInterface.implementor_cid(), kDynamicCid);
EXPECT_EQ(FSubinterface.implementor_cid(), kDynamicCid);
EXPECT_EQ(FImplementation1.implementor_cid(), FImplementation1.id());
EXPECT_EQ(FImplementation2.implementor_cid(), FImplementation2.id());
}
ISOLATE_UNIT_TEST_CASE(MirrorReference) {
const MirrorReference& reference =
MirrorReference::Handle(MirrorReference::New(Object::Handle()));
Object& initial_referent = Object::Handle(reference.referent());
EXPECT(initial_referent.IsNull());
Library& library = Library::Handle(Library::CoreLibrary());
EXPECT(!library.IsNull());
EXPECT(library.IsLibrary());
reference.set_referent(library);
const Object& returned_referent = Object::Handle(reference.referent());
EXPECT(returned_referent.IsLibrary());
EXPECT_EQ(returned_referent.ptr(), library.ptr());
const MirrorReference& other_reference =
MirrorReference::Handle(MirrorReference::New(Object::Handle()));
EXPECT_NE(reference.ptr(), other_reference.ptr());
other_reference.set_referent(library);
EXPECT_NE(reference.ptr(), other_reference.ptr());
EXPECT_EQ(reference.referent(), other_reference.referent());
Object& obj = Object::Handle(reference.ptr());
EXPECT(obj.IsMirrorReference());
}
static FunctionPtr GetFunction(const Class& cls, const char* name) {
Thread* thread = Thread::Current();
const auto& error = cls.EnsureIsFinalized(thread);
EXPECT(error == Error::null());
const Function& result = Function::Handle(Resolver::ResolveDynamicFunction(
Z, cls, String::Handle(String::New(name))));
EXPECT(!result.IsNull());
return result.ptr();
}
static FunctionPtr GetFunction(const Library& lib, const char* name) {
const Function& result = Function::Handle(
lib.LookupLocalFunction(String::Handle(String::New(name))));
EXPECT(!result.IsNull());
return result.ptr();
}
static FunctionPtr GetStaticFunction(const Class& cls, const char* name) {
const auto& error = cls.EnsureIsFinalized(Thread::Current());
EXPECT(error == Error::null());
const Function& result = Function::Handle(
cls.LookupStaticFunction(String::Handle(String::New(name))));
EXPECT(!result.IsNull());
return result.ptr();
}
static FieldPtr GetField(const Class& cls, const char* name) {
const Field& field =
Field::Handle(cls.LookupField(String::Handle(String::New(name))));
EXPECT(!field.IsNull());
return field.ptr();
}
ISOLATE_UNIT_TEST_CASE(FindClosureIndex) {
// Allocate the class first.
const String& class_name = String::Handle(Symbols::New(thread, "MyClass"));
const Script& script = Script::Handle();
const Class& cls = Class::Handle(CreateDummyClass(class_name, script));
const Array& functions = Array::Handle(Array::New(1));
Function& parent = Function::Handle();
const String& parent_name = String::Handle(Symbols::New(thread, "foo_papa"));
const FunctionType& signature = FunctionType::ZoneHandle(FunctionType::New());
parent = Function::New(signature, parent_name,
UntaggedFunction::kRegularFunction, false, false,
false, false, false, cls, TokenPosition::kMinSource);
functions.SetAt(0, parent);
{
SafepointWriteRwLocker ml(thread, thread->isolate_group()->program_lock());
cls.SetFunctions(functions);
}
Function& function = Function::Handle();
const String& function_name = String::Handle(Symbols::New(thread, "foo"));
function = Function::NewClosureFunction(function_name, parent,
TokenPosition::kMinSource);
// Add closure function to class.
{
SafepointWriteRwLocker ml(thread, thread->isolate_group()->program_lock());
ClosureFunctionsCache::AddClosureFunctionLocked(function);
}
// The closure should return a valid index.
intptr_t good_closure_index =
ClosureFunctionsCache::FindClosureIndex(function);
EXPECT_GE(good_closure_index, 0);
// The parent function should return an invalid index.
intptr_t bad_closure_index = ClosureFunctionsCache::FindClosureIndex(parent);
EXPECT_EQ(bad_closure_index, -1);
// Retrieve closure function via index.
Function& func_from_index = Function::Handle();
func_from_index ^=
ClosureFunctionsCache::ClosureFunctionFromIndex(good_closure_index);
// Same closure function.
EXPECT_EQ(func_from_index.ptr(), function.ptr());
}
ISOLATE_UNIT_TEST_CASE(FindInvocationDispatcherFunctionIndex) {
const String& class_name = String::Handle(Symbols::New(thread, "MyClass"));
const Script& script = Script::Handle();
const Class& cls = Class::Handle(CreateDummyClass(class_name, script));
ClassFinalizer::FinalizeTypesInClass(cls);
const Array& functions = Array::Handle(Array::New(1));
Function& parent = Function::Handle();
const String& parent_name = String::Handle(Symbols::New(thread, "foo_papa"));
const FunctionType& signature = FunctionType::ZoneHandle(FunctionType::New());
parent = Function::New(signature, parent_name,
UntaggedFunction::kRegularFunction, false, false,
false, false, false, cls, TokenPosition::kMinSource);
functions.SetAt(0, parent);
{
SafepointWriteRwLocker ml(thread, thread->isolate_group()->program_lock());
cls.SetFunctions(functions);
cls.Finalize();
}
// Add invocation dispatcher.
const String& invocation_dispatcher_name =
String::Handle(Symbols::New(thread, "myMethod"));
const Array& args_desc = Array::Handle(ArgumentsDescriptor::NewBoxed(0, 1));
Function& invocation_dispatcher = Function::Handle();
invocation_dispatcher ^= cls.GetInvocationDispatcher(
invocation_dispatcher_name, args_desc,
UntaggedFunction::kNoSuchMethodDispatcher, true /* create_if_absent */);
EXPECT(!invocation_dispatcher.IsNull());
// Get index to function.
intptr_t invocation_dispatcher_index =
cls.FindInvocationDispatcherFunctionIndex(invocation_dispatcher);
// Expect a valid index.
EXPECT_GE(invocation_dispatcher_index, 0);
// Retrieve function through index.
Function& invocation_dispatcher_from_index = Function::Handle();
invocation_dispatcher_from_index ^=
cls.InvocationDispatcherFunctionFromIndex(invocation_dispatcher_index);
// Same function.
EXPECT_EQ(invocation_dispatcher.ptr(),
invocation_dispatcher_from_index.ptr());
// Test function not found case.
const Function& bad_function = Function::Handle(Function::null());
intptr_t bad_invocation_dispatcher_index =
cls.FindInvocationDispatcherFunctionIndex(bad_function);
EXPECT_EQ(bad_invocation_dispatcher_index, -1);
}
static void PrintMetadata(const char* name, const Object& data) {
if (data.IsError()) {
OS::PrintErr("Error in metadata evaluation for %s: '%s'\n", name,
Error::Cast(data).ToErrorCString());
}
EXPECT(data.IsArray());
const Array& metadata = Array::Cast(data);
OS::PrintErr("Metadata for %s has %" Pd " values:\n", name,
metadata.Length());
Object& elem = Object::Handle();
for (int i = 0; i < metadata.Length(); i++) {
elem = metadata.At(i);
OS::PrintErr(" %d: %s\n", i, elem.ToCString());
}
}
TEST_CASE(Metadata) {
// clang-format off
auto kScriptChars =
Utils::CStringUniquePtr(OS::SCreate(nullptr,
"@metafoo \n"
"class Meta { \n"
" final m; \n"
" const Meta(this.m); \n"
"} \n"
" \n"
"const metafoo = 'metafoo'; \n"
"const metabar = 'meta' 'bar'; \n"
" \n"
"@metafoo \n"
"@Meta(0) String%s gVar; \n"
" \n"
"@metafoo \n"
"get tlGetter => gVar; \n"
" \n"
"@metabar \n"
"class A { \n"
" @metafoo \n"
" @metabar \n"
" @Meta('baz') \n"
" var aField; \n"
" \n"
" @metabar @Meta('baa') \n"
" int aFunc(a,b) => a + b; \n"
"} \n"
" \n"
"@Meta('main') \n"
"A main() { \n"
" return A(); \n"
"} \n",
TestCase::NullableTag()), std::free);
// clang-format on
Dart_Handle h_lib = TestCase::LoadTestScript(kScriptChars.get(), NULL);
EXPECT_VALID(h_lib);
Dart_Handle result = Dart_Invoke(h_lib, NewString("main"), 0, NULL);
EXPECT_VALID(result);
TransitionNativeToVM transition(thread);
Library& lib = Library::Handle();
lib ^= Api::UnwrapHandle(h_lib);
EXPECT(!lib.IsNull());
const Class& class_a = Class::Handle(GetClass(lib, "A"));
Object& res = Object::Handle(lib.GetMetadata(class_a));
PrintMetadata("A", res);
const Class& class_meta = Class::Handle(GetClass(lib, "Meta"));
res = lib.GetMetadata(class_meta);
PrintMetadata("Meta", res);
Field& field = Field::Handle(GetField(class_a, "aField"));
res = lib.GetMetadata(field);
PrintMetadata("A.aField", res);
Function& func = Function::Handle(GetFunction(class_a, "aFunc"));
res = lib.GetMetadata(func);
PrintMetadata("A.aFunc", res);
func = lib.LookupLocalFunction(String::Handle(Symbols::New(thread, "main")));
EXPECT(!func.IsNull());
res = lib.GetMetadata(func);
PrintMetadata("main", res);
func = lib.LookupLocalFunction(
String::Handle(Symbols::New(thread, "get:tlGetter")));
EXPECT(!func.IsNull());
res = lib.GetMetadata(func);
PrintMetadata("tlGetter", res);
field = lib.LookupLocalField(String::Handle(Symbols::New(thread, "gVar")));
EXPECT(!field.IsNull());
res = lib.GetMetadata(field);
PrintMetadata("gVar", res);
}
TEST_CASE(FunctionSourceFingerprint) {
const char* kScriptChars =
"class A {\n"
" static test1(int a) {\n"
" return a > 1 ? a + 1 : a;\n"
" }\n"
" static test2(a) {\n"
" return a > 1 ? a + 1 : a;\n"
" }\n"
" static test3(b) {\n"
" return b > 1 ? b + 1 : b;\n"
" }\n"
" static test4(b) {\n"
" return b > 1 ? b - 1 : b;\n"
" }\n"
" static test5(b) {\n"
" return b > 1 ? b - 2 : b;\n"
" }\n"
" test6(int a) {\n"
" return a > 1 ? a + 1 : a;\n"
" }\n"
"}\n"
"class B {\n"
" static /* Different declaration style. */\n"
" test1(int a) {\n"
" /* Returns a + 1 for a > 1, a otherwise. */\n"
" return a > 1 ?\n"
" a + 1 :\n"
" a;\n"
" }\n"
" static test5(b) {\n"
" return b > 1 ?\n"
" b - 2 : b;\n"
" }\n"
" test6(int a) {\n"
" return a > 1 ? a + 1 : a;\n"
" }\n"
"}";
TestCase::LoadTestScript(kScriptChars, NULL);
TransitionNativeToVM transition(thread);
EXPECT(ClassFinalizer::ProcessPendingClasses());
const String& name = String::Handle(String::New(TestCase::url()));
const Library& lib = Library::Handle(Library::LookupLibrary(thread, name));
EXPECT(!lib.IsNull());
const Class& class_a =
Class::Handle(lib.LookupClass(String::Handle(Symbols::New(thread, "A"))));
const Class& class_b =
Class::Handle(lib.LookupClass(String::Handle(Symbols::New(thread, "B"))));
const Function& a_test1 =
Function::Handle(GetStaticFunction(class_a, "test1"));
const Function& b_test1 =
Function::Handle(GetStaticFunction(class_b, "test1"));
const Function& a_test2 =
Function::Handle(GetStaticFunction(class_a, "test2"));
const Function& a_test3 =
Function::Handle(GetStaticFunction(class_a, "test3"));
const Function& a_test4 =
Function::Handle(GetStaticFunction(class_a, "test4"));
const Function& a_test5 =
Function::Handle(GetStaticFunction(class_a, "test5"));
const Function& b_test5 =
Function::Handle(GetStaticFunction(class_b, "test5"));
const Function& a_test6 = Function::Handle(GetFunction(class_a, "test6"));
const Function& b_test6 = Function::Handle(GetFunction(class_b, "test6"));
EXPECT_EQ(a_test1.SourceFingerprint(), b_test1.SourceFingerprint());
EXPECT_NE(a_test1.SourceFingerprint(), a_test2.SourceFingerprint());
EXPECT_NE(a_test2.SourceFingerprint(), a_test3.SourceFingerprint());
EXPECT_NE(a_test3.SourceFingerprint(), a_test4.SourceFingerprint());
EXPECT_NE(a_test4.SourceFingerprint(), a_test5.SourceFingerprint());
EXPECT_EQ(a_test5.SourceFingerprint(), b_test5.SourceFingerprint());
// Although a_test6's receiver type is different than b_test6's receiver type,
// the fingerprints are identical. The token stream does not reflect the
// receiver's type. This is not a problem, since we recognize functions
// of a given class and of a given name.
EXPECT_EQ(a_test6.SourceFingerprint(), b_test6.SourceFingerprint());
}
#ifndef PRODUCT
TEST_CASE(FunctionWithBreakpointNotInlined) {
const char* kScriptChars =
"class A {\n"
" a() {\n"
" }\n"
" b() {\n"
" a();\n" // This is line 5.
" }\n"
"}\n"
"test() {\n"
" new A().b();\n"
"}";
const int kBreakpointLine = 5;
Dart_Handle lib = TestCase::LoadTestScript(kScriptChars, NULL);
EXPECT_VALID(lib);
// Run function A.b one time.
Dart_Handle result = Dart_Invoke(lib, NewString("test"), 0, NULL);
EXPECT_VALID(result);
// With no breakpoint, function A.b is inlineable.
{
TransitionNativeToVM transition(thread);
const String& name = String::Handle(String::New(TestCase::url()));
const Library& vmlib =
Library::Handle(Library::LookupLibrary(thread, name));
EXPECT(!vmlib.IsNull());
const Class& class_a = Class::Handle(
vmlib.LookupClass(String::Handle(Symbols::New(thread, "A"))));
Function& func_b = Function::Handle(GetFunction(class_a, "b"));
EXPECT(func_b.CanBeInlined());
}
result = Dart_SetBreakpoint(NewString(TestCase::url()), kBreakpointLine);
EXPECT_VALID(result);
// After setting a breakpoint in a function A.b, it is no longer inlineable.
{
TransitionNativeToVM transition(thread);
const String& name = String::Handle(String::New(TestCase::url()));
const Library& vmlib =
Library::Handle(Library::LookupLibrary(thread, name));
EXPECT(!vmlib.IsNull());
const Class& class_a = Class::Handle(
vmlib.LookupClass(String::Handle(Symbols::New(thread, "A"))));
Function& func_b = Function::Handle(GetFunction(class_a, "b"));
EXPECT(!func_b.CanBeInlined());
}
}
ISOLATE_UNIT_TEST_CASE(SpecialClassesHaveEmptyArrays) {
ObjectStore* object_store = IsolateGroup::Current()->object_store();
Class& cls = Class::Handle();
Object& array = Object::Handle();
cls = object_store->null_class();
array = cls.fields();
EXPECT(!array.IsNull());
EXPECT(array.IsArray());
array = cls.current_functions();
EXPECT(!array.IsNull());
EXPECT(array.IsArray());
cls = Object::void_class();
array = cls.fields();
EXPECT(!array.IsNull());
EXPECT(array.IsArray());
array = cls.current_functions();
EXPECT(!array.IsNull());
EXPECT(array.IsArray());
cls = Object::dynamic_class();
array = cls.fields();
EXPECT(!array.IsNull());
EXPECT(array.IsArray());
array = cls.current_functions();
EXPECT(!array.IsNull());
EXPECT(array.IsArray());
}
class ObjectAccumulator : public ObjectVisitor {
public:
explicit ObjectAccumulator(GrowableArray<Object*>* objects)
: objects_(objects) {}
virtual ~ObjectAccumulator() {}
virtual void VisitObject(ObjectPtr obj) {
if (obj->IsPseudoObject()) {
return; // Cannot be wrapped in handles.
}
Object& handle = Object::Handle(obj);
// Skip some common simple objects to run in reasonable time.
if (handle.IsString() || handle.IsArray()) {
return;
}
objects_->Add(&handle);
}
private:
GrowableArray<Object*>* objects_;
};
ISOLATE_UNIT_TEST_CASE(ToCString) {
// Set native resolvers in case we need to read native methods.
{
TransitionVMToNative transition(thread);
bin::Builtin::SetNativeResolver(bin::Builtin::kBuiltinLibrary);
bin::Builtin::SetNativeResolver(bin::Builtin::kIOLibrary);
bin::Builtin::SetNativeResolver(bin::Builtin::kCLILibrary);
bin::VmService::SetNativeResolver();
}
GCTestHelper::CollectAllGarbage();
GrowableArray<Object*> objects;
{
HeapIterationScope iteration(Thread::Current());
ObjectAccumulator acc(&objects);
iteration.IterateObjects(&acc);
}
for (intptr_t i = 0; i < objects.length(); ++i) {
StackZone zone(thread);
HANDLESCOPE(thread);
// All ToCString implementations should not allocate on the Dart heap so
// they remain useful in all parts of the VM.
NoSafepointScope no_safepoint;
objects[i]->ToCString();
}
}
ISOLATE_UNIT_TEST_CASE(PrintJSON) {
// Set native resolvers in case we need to read native methods.
{
TransitionVMToNative transition(thread);
bin::Builtin::SetNativeResolver(bin::Builtin::kBuiltinLibrary);
bin::Builtin::SetNativeResolver(bin::Builtin::kIOLibrary);
bin::Builtin::SetNativeResolver(bin::Builtin::kCLILibrary);
bin::VmService::SetNativeResolver();
}
GCTestHelper::CollectAllGarbage();
GrowableArray<Object*> objects;
{
HeapIterationScope iteration(Thread::Current());
ObjectAccumulator acc(&objects);
iteration.IterateObjects(&acc);
}
for (intptr_t i = 0; i < objects.length(); ++i) {
JSONStream js;
objects[i]->PrintJSON(&js, false);
EXPECT_SUBSTRING("\"type\":", js.ToCString());
}
}
ISOLATE_UNIT_TEST_CASE(PrintJSONPrimitives) {
// WARNING: This MUST be big enough for the serialized JSON string.
const int kBufferSize = 4096;
char buffer[kBufferSize];
Isolate* isolate = Isolate::Current();
// Class reference
{
JSONStream js;
Class& cls = Class::Handle(isolate->group()->object_store()->bool_class());
cls.PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("classes", json_str, buffer);
ElideJSONSubstring("libraries", buffer, buffer);
StripTokenPositions(buffer);
EXPECT_STREQ(
"{\"type\":\"@Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"bool\","
"\"location\":{\"type\":\"SourceLocation\",\"script\":{\"type\":\"@"
"Script\","
"\"fixedId\":true,\"id\":\"\",\"uri\":\"dart:core\\/bool.dart\","
"\"_kind\":\"kernel\"}},"
"\"library\":{\"type\":\"@Library\",\"fixedId\":true,\"id\":\"\","
"\"name\":\"dart.core\",\"uri\":\"dart:core\"}}",
buffer);
}
// Function reference
{
Thread* thread = Thread::Current();
JSONStream js;
Class& cls = Class::Handle(isolate->group()->object_store()->bool_class());
const String& func_name = String::Handle(String::New("toString"));
Function& func =
Function::Handle(Resolver::ResolveFunction(Z, cls, func_name));
ASSERT(!func.IsNull());
func.PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("classes", json_str, buffer);
ElideJSONSubstring("libraries", buffer, buffer);
StripTokenPositions(buffer);
EXPECT_STREQ(
"{\"type\":\"@Function\",\"fixedId\":true,\"id\":\"\","
"\"name\":\"toString\",\"owner\":{\"type\":\"@Class\","
"\"fixedId\":true,\"id\":\"\",\"name\":\"bool\","
"\"location\":{\"type\":\"SourceLocation\","
"\"script\":{\"type\":\"@Script\",\"fixedId\":true,"
"\"id\":\"\",\"uri\":\"dart:core\\/bool.dart\","
"\"_kind\":\"kernel\"}},"
"\"library\":{\"type\":\"@Library\",\"fixedId\":true,\"id\":\"\","
"\"name\":\"dart.core\",\"uri\":\"dart:core\"}},"
"\"_kind\":\"RegularFunction\",\"static\":false,\"const\":false,"
"\"implicit\":false,\"abstract\":false,"
"\"_intrinsic\":false,\"_native\":false,"
"\"location\":{\"type\":\"SourceLocation\","
"\"script\":{\"type\":\"@Script\",\"fixedId\":true,\"id\":\"\","
"\"uri\":\"dart:core\\/bool.dart\",\"_kind\":\"kernel\"}}}",
buffer);
}
// Library reference
{
JSONStream js;
Library& lib =
Library::Handle(isolate->group()->object_store()->core_library());
lib.PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("libraries", json_str, buffer);
EXPECT_STREQ(
"{\"type\":\"@Library\",\"fixedId\":true,\"id\":\"\","
"\"name\":\"dart.core\",\"uri\":\"dart:core\"}",
buffer);
}
// Bool reference
{
JSONStream js;
Bool::True().PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("classes", json_str, buffer);
ElideJSONSubstring("libraries", buffer, buffer);
StripTokenPositions(buffer);
EXPECT_STREQ(
"{\"type\":\"@Instance\",\"_vmType\":\"Bool\",\"class\":{\"type\":\"@"
"Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"bool\",\"location\":{"
"\"type\":\"SourceLocation\",\"script\":{\"type\":\"@Script\","
"\"fixedId\":true,\"id\":\"\",\"uri\":\"dart:core\\/bool.dart\",\"_"
"kind\":\"kernel\"}},\"library\":"
"{\"type\":\"@Library\",\"fixedId\":true,\"id\":\"\",\"name\":\"dart."
"core\",\"uri\":\"dart:core\"}},\"identityHashCode\":0,\"kind\":"
"\"Bool\",\"fixedId\":true,\"id\":\"objects\\/bool-true\","
"\"valueAsString\":\"true\"}",
buffer);
}
// Smi reference
{
JSONStream js;
const Integer& smi = Integer::Handle(Integer::New(7));
smi.PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("classes", json_str, buffer);
ElideJSONSubstring("_Smi@", buffer, buffer);
ElideJSONSubstring("libraries", buffer, buffer);
StripTokenPositions(buffer);
EXPECT_STREQ(
"{\"type\":\"@Instance\",\"_vmType\":\"Smi\",\"class\":{\"type\":\"@"
"Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"_Smi\",\"_vmName\":"
"\"\",\"location\":{\"type\":\"SourceLocation\",\"script\":{\"type\":"
"\"@Script\",\"fixedId\":true,\"id\":\"\",\"uri\":\"dart:core-"
"patch\\/integers.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":"
"true,\"id\":\"\",\"name\":\"dart.core\",\"uri\":\"dart:core\"}},"
"\"identityHashCode\":0,\"kind\":\"Int\",\"fixedId\":true,\"id\":"
"\"objects\\/int-7\",\"valueAsString\":\"7\"}",
buffer);
}
// Mint reference
{
JSONStream js;
const Integer& smi = Integer::Handle(Integer::New(Mint::kMinValue));
smi.PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("classes", json_str, buffer);
ElideJSONSubstring("objects", buffer, buffer);
ElideJSONSubstring("libraries", buffer, buffer);
ElideJSONSubstring("_Mint@", buffer, buffer);
StripTokenPositions(buffer);
EXPECT_STREQ(
"{\"type\":\"@Instance\",\"_vmType\":\"Mint\",\"class\":{\"type\":\"@"
"Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"_Mint\",\"_vmName\":"
"\"\",\"location\":{\"type\":\"SourceLocation\",\"script\":{\"type\":"
"\"@Script\",\"fixedId\":true,\"id\":\"\",\"uri\":\"dart:core-"
"patch\\/integers.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":"
"true,\"id\":\"\",\"name\":\"dart.core\",\"uri\":\"dart:core\"}},"
"\"identityHashCode\":0,\"kind\":\"Int\",\"id\":\"\",\"valueAsString\":"
"\"-9223372036854775808\"}",
buffer);
}
// Double reference
{
JSONStream js;
const Double& dub = Double::Handle(Double::New(0.1234));
dub.PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("classes", json_str, buffer);
ElideJSONSubstring("objects", buffer, buffer);
ElideJSONSubstring("libraries", buffer, buffer);
ElideJSONSubstring("_Double@", buffer, buffer);
StripTokenPositions(buffer);
EXPECT_STREQ(
"{\"type\":\"@Instance\",\"_vmType\":\"Double\",\"class\":{\"type\":\"@"
"Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"_Double\",\"_vmName\":"
"\"\",\"location\":{\"type\":\"SourceLocation\",\"script\":{\"type\":"
"\"@Script\",\"fixedId\":true,\"id\":\"\",\"uri\":\"dart:core-"
"patch\\/double.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":"
"true,\"id\":\"\",\"name\":\"dart.core\",\"uri\":\"dart:core\"}},"
"\"identityHashCode\":0,\"kind\":\"Double\",\"id\":\"\","
"\"valueAsString\":\"0.1234\"}",
buffer);
}
// String reference
{
JSONStream js;
const String& str = String::Handle(String::New("dw"));
str.PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("classes", json_str, buffer);
ElideJSONSubstring("objects", buffer, buffer);
ElideJSONSubstring("libraries", buffer, buffer);
ElideJSONSubstring("_OneByteString@", buffer, buffer);
StripTokenPositions(buffer);
EXPECT_STREQ(
"{\"type\":\"@Instance\",\"_vmType\":\"String\",\"class\":{\"type\":\"@"
"Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"_OneByteString\",\"_"
"vmName\":\"\",\"location\":{\"type\":\"SourceLocation\",\"script\":{"
"\"type\":\"@Script\",\"fixedId\":true,\"id\":\"\",\"uri\":\"dart:core-"
"patch\\/string_patch.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":"
"true,\"id\":\"\",\"name\":\"dart.core\",\"uri\":\"dart:core\"}},"
"\"identityHashCode\":0,\"kind\":\"String\",\"id\":\"\",\"length\":2,"
"\"valueAsString\":\"dw\"}",
buffer);
}
// Array reference
{
JSONStream js;
const Array& array = Array::Handle(Array::New(0));
array.PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("classes", json_str, buffer);
ElideJSONSubstring("objects", buffer, buffer);
ElideJSONSubstring("libraries", buffer, buffer);
ElideJSONSubstring("_List@", buffer, buffer);
ElideJSONSubstring("_TypeParameter@", buffer, buffer);
StripTokenPositions(buffer);
EXPECT_SUBSTRING(
"{\"type\":\"@Instance\",\"_vmType\":\"Array\",\"class\":{\"type\":\"@"
"Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"_List\",\"_vmName\":"
"\"\",\"location\":{\"type\":\"SourceLocation\",\"script\":{\"type\":"
"\"@Script\",\"fixedId\":true,\"id\":\"\",\"uri\":\"dart:core-patch\\/"
"array.dart\",\"_kind\":\"kernel\"}},"
"\"library\":{\"type\":\"@Library\",\"fixedId\":true,\"id\":\"\","
"\"name\":\"dart.core\",\"uri\":\"dart:core\"},\"typeParameters\":[{"
"\"type\":\"@"
"Instance\",\"_vmType\":\"TypeParameter\",\"class\":{\"type\":\"@"
"Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"_TypeParameter\",\"_"
"vmName\":\"\",\"location\":{\"type\":"
"\"SourceLocation\",\"script\":{\"type\":\"@Script\",\"fixedId\":true,"
"\"id\":\"\",\"uri\":\"dart:core-patch\\/"
"type_patch.dart\",\"_kind\":\"kernel\"}},"
"\"library\":{\"type\":\"@Library\",\"fixedId\":"
"true,\"id\":\"\",\"name\":\"dart.core\",\"uri\":\"dart:core\"}},"
"\"identityHashCode\":",
buffer);
EXPECT_SUBSTRING(
"\"kind\":\"TypeParameter\",\"id\":\"\",\"name\":\"X0\","
"\"parameterizedClass\":{\"type\":\"@Instance\",\"_vmType\":\"Class\","
"\"class\":{\"type\":\"@Class\",\"fixedId\":true,\"id\":\"\",\"name\":"
"\"Null\",\"location\":{\"type\":\"SourceLocation\",\"script\":{"
"\"type\":\"@Script\",\"fixedId\":true,\"id\":\"\",\"uri\":\"dart:"
"core\\/"
"null.dart\",\"_kind\":\"kernel\"}},"
"\"library\":{\"type\":\"@Library\",\"fixedId\":true,\"id\":\"\","
"\"name\":\"dart.core\",\"uri\":\"dart:core\"}},\"kind\":\"Null\","
"\"fixedId\":true,\"id\":\"\",\"valueAsString\":\"null\"}}]},"
"\"identityHashCode\":0,\"kind\":\"List\",\"id\":\"\",\"length\":0}",
buffer);
}
OS::PrintErr("\n\n\n");
// GrowableObjectArray reference
{
JSONStream js;
const GrowableObjectArray& array =
GrowableObjectArray::Handle(GrowableObjectArray::New());
array.PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("classes", json_str, buffer);
ElideJSONSubstring("objects", buffer, buffer);
ElideJSONSubstring("libraries", buffer, buffer);
ElideJSONSubstring("_GrowableList@", buffer, buffer);
StripTokenPositions(buffer);
ElideJSONSubstring("_TypeParameter@", buffer, buffer);
EXPECT_SUBSTRING(
"{\"type\":\"@Instance\",\"_vmType\":\"GrowableObjectArray\",\"class\":"
"{\"type\":\"@Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"_"
"GrowableList\",\"_vmName\":\"\",\"location\":{\"type\":"
"\"SourceLocation\",\"script\":{\"type\":\"@Script\",\"fixedId\":true,"
"\"id\":\"\",\"uri\":\"dart:core-patch\\/"
"growable_array.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":"
"true,\"id\":\"\",\"name\":\"dart.core\",\"uri\":\"dart:core\"},"
"\"typeParameters\":[{\"type\":\"@Instance\",\"_vmType\":"
"\"TypeParameter\",\"class\":{\"type\":\"@Class\",\"fixedId\":true,"
"\"id\":\"\",\"name\":\"_TypeParameter\",\"_vmName\":\""
"\",\"location\":{\"type\":\"SourceLocation\",\"script\":{"
"\"type\":\"@Script\",\"fixedId\":true,\"id\":\"\",\"uri\":\"dart:core-"
"patch\\/"
"type_patch.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":"
"true,\"id\":\"\",\"name\":\"dart.core\",\"uri\":\"dart:core\"}},"
"\"identityHashCode\":",
buffer);
EXPECT_SUBSTRING(
"\"kind\":\"TypeParameter\",\"id\":"
"\"\",\"name\":\"X0\",\"parameterizedClass\":{\"type\":\"@Instance\","
"\"_vmType\":\"Class\",\"class\":{\"type\":\"@Class\",\"fixedId\":true,"
"\"id\":\"\",\"name\":\"Null\",\"location\":{\"type\":"
"\"SourceLocation\",\"script\":{\"type\":\"@Script\",\"fixedId\":true,"
"\"id\":\"\",\"uri\":\"dart:core\\/"
"null.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":true,\"id\":\"\","
"\"name\":\"dart.core\",\"uri\":\"dart:core\"}},\"kind\":\"Null\","
"\"fixedId\":true,\"id\":\"\",\"valueAsString\":\"null\"}}]},"
"\"identityHashCode\":0,\"kind\":\"List\",\"id\":\"\",\"length\":0}",
buffer);
}
// LinkedHashMap reference
{
JSONStream js;
const LinkedHashMap& array =
LinkedHashMap::Handle(LinkedHashMap::NewDefault());
array.PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("classes", json_str, buffer);
ElideJSONSubstring("objects", buffer, buffer);
ElideJSONSubstring("libraries", buffer, buffer);
ElideJSONSubstring("_InternalLinkedHashMap@", buffer, buffer);
StripTokenPositions(buffer);
ElideJSONSubstring("_TypeParameter@", buffer, buffer);
EXPECT_SUBSTRING(
"{\"type\":\"@Instance\",\"_vmType\":\"LinkedHashMap\",\"class\":{"
"\"type\":\"@Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"_"
"InternalLinkedHashMap\",\"_vmName\":\"\",\"location\":{\"type\":"
"\"SourceLocation\",\"script\":{\"type\":\"@Script\",\"fixedId\":true,"
"\"id\":\"\",\"uri\":\"dart:collection-patch\\/"
"compact_hash.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":"
"true,\"id\":\"\",\"name\":\"dart.collection\",\"uri\":\"dart:"
"collection\"},\"typeParameters\":[{\"type\":\"@Instance\",\"_vmType\":"
"\"TypeParameter\",\"class\":{\"type\":\"@Class\",\"fixedId\":true,"
"\"id\":\"\",\"name\":\"_TypeParameter\",\"_vmName\":\""
"\",\"location\":{\"type\":\"SourceLocation\",\"script\":{"
"\"type\":\"@Script\",\"fixedId\":true,\"id\":\"\",\"uri\":\"dart:core-"
"patch\\/"
"type_patch.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":"
"true,\"id\":\"\",\"name\":\"dart.core\",\"uri\":\"dart:core\"}},"
"\"identityHashCode\":",
buffer);
EXPECT_SUBSTRING(
"\"kind\":\"TypeParameter\",\"id\":"
"\"\",\"name\":\"X0\",\"parameterizedClass\":{\"type\":\"@Instance\","
"\"_vmType\":\"Class\",\"class\":{\"type\":\"@Class\",\"fixedId\":true,"
"\"id\":\"\",\"name\":\"Null\",\"location\":{\"type\":"
"\"SourceLocation\",\"script\":{\"type\":\"@Script\",\"fixedId\":true,"
"\"id\":\"\",\"uri\":\"dart:core\\/"
"null.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":true,\"id\":\"\","
"\"name\":\"dart.core\",\"uri\":\"dart:core\"}},\"kind\":\"Null\","
"\"fixedId\":true,\"id\":\"\",\"valueAsString\":\"null\"}},{\"type\":"
"\"@Instance\",\"_vmType\":\"TypeParameter\",\"class\":{\"type\":\"@"
"Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"_TypeParameter\",\"_"
"vmName\":\"\",\"location\":{\"type\":"
"\"SourceLocation\",\"script\":{\"type\":\"@Script\",\"fixedId\":true,"
"\"id\":\"\",\"uri\":\"dart:core-patch\\/"
"type_patch.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":"
"true,\"id\":\"\",\"name\":\"dart.core\",\"uri\":\"dart:core\"}},"
"\"identityHashCode\":",
buffer);
EXPECT_SUBSTRING(
"\"kind\":\"TypeParameter\",\"id\":"
"\"\",\"name\":\"X1\",\"parameterizedClass\":{\"type\":\"@Instance\","
"\"_vmType\":\"Class\",\"class\":{\"type\":\"@Class\",\"fixedId\":true,"
"\"id\":\"\",\"name\":\"Null\",\"location\":{\"type\":"
"\"SourceLocation\",\"script\":{\"type\":\"@Script\",\"fixedId\":true,"
"\"id\":\"\",\"uri\":\"dart:core\\/"
"null.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":true,\"id\":\"\","
"\"name\":\"dart.core\",\"uri\":\"dart:core\"}},\"kind\":\"Null\","
"\"fixedId\":true,\"id\":\"\",\"valueAsString\":\"null\"}}]},"
"\"identityHashCode\":0,\"kind\":\"Map\",\"id\":\"\",\"length\":0}",
buffer);
}
// UserTag reference
{
JSONStream js;
Instance& tag = Instance::Handle(isolate->default_tag());
tag.PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("classes", json_str, buffer);
ElideJSONSubstring("objects", buffer, buffer);
ElideJSONSubstring("libraries", buffer, buffer);
ElideJSONSubstring("_UserTag@", buffer, buffer);
StripTokenPositions(buffer);
EXPECT_SUBSTRING(
"\"type\":\"@Instance\",\"_vmType\":\"UserTag\",\"class\":{\"type\":\"@"
"Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"_UserTag\",\"_"
"vmName\":\"\",\"location\":{\"type\":\"SourceLocation\",\"script\":{"
"\"type\":\"@Script\",\"fixedId\":true,\"id\":\"\",\"uri\":\"dart:"
"developer-patch\\/"
"profiler.dart\",\"_kind\":\"kernel\"}},\"library\":{\"type\":\"@"
"Library\","
"\"fixedId\":true,\"id\":\"\",\"name\":\"dart.developer\",\"uri\":"
"\"dart:developer\"}},"
// Handle non-zero identity hash.
"\"identityHashCode\":",
buffer);
EXPECT_SUBSTRING(
"\"kind\":\"PlainInstance\","
"\"id\":\"\"}",
buffer);
}
// Type reference
// TODO(turnidge): Add in all of the other Type siblings.
{
JSONStream js;
Instance& type =
Instance::Handle(isolate->group()->object_store()->bool_type());
type.PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("classes", json_str, buffer);
ElideJSONSubstring("objects", buffer, buffer);
ElideJSONSubstring("libraries", buffer, buffer);
ElideJSONSubstring("_Type@", buffer, buffer);
StripTokenPositions(buffer);
EXPECT_SUBSTRING(
"{\"type\":\"@Instance\",\"_vmType\":\"Type\",\"class\":{\"type\":\"@"
"Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"_Type\",\"_vmName\":"
"\"\",\"location\":{\"type\":\"SourceLocation\",\"script\":{\"type\":"
"\"@Script\",\"fixedId\":true,\"id\":\"\",\"uri\":\"dart:core-"
"patch\\/type_patch.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":"
"true,\"id\":\"\",\"name\":\"dart.core\",\"uri\":\"dart:core\"}},"
// Handle non-zero identity hash.
"\"identityHashCode\":",
buffer);
EXPECT_SUBSTRING(
"\"kind\":\"Type\","
"\"fixedId\":true,\"id\":\"\","
"\"typeClass\":{\"type\":\"@Class\",\"fixedId\":true,\"id\":\"\","
"\"name\":\"bool\",\"location\":{\"type\":\"SourceLocation\","
"\"script\":{\"type\":\"@Script\",\"fixedId\":true,\"id\":\"\",\"uri\":"
"\"dart:core\\/bool.dart\",\"_kind\":\"kernel\"}"
"},\"library\":{\"type\":\"@Library\",\"fixedId\":"
"true,\"id\":\"\",\"name\":\"dart.core\",\"uri\":\"dart:core\"}},"
"\"name\":\"bool\"}",
buffer);
}
// Null reference
{
JSONStream js;
Object::null_object().PrintJSON(&js, true);
const char* json_str = js.ToCString();
ASSERT(strlen(json_str) < kBufferSize);
ElideJSONSubstring("classes", json_str, buffer);
ElideJSONSubstring("libraries", buffer, buffer);
StripTokenPositions(buffer);
EXPECT_STREQ(
"{\"type\":\"@Instance\",\"_vmType\":\"null\",\"class\":{\"type\":\"@"
"Class\",\"fixedId\":true,\"id\":\"\",\"name\":\"Null\",\"location\":{"
"\"type\":\"SourceLocation\",\"script\":{\"type\":\"@Script\","
"\"fixedId\":true,\"id\":\"\",\"uri\":\"dart:core\\/null.dart\",\"_"
"kind\":\"kernel\"}},\"library\":"
"{\"type\":\"@Library\",\"fixedId\":true,\"id\":\"\",\"name\":\"dart."
"core\",\"uri\":\"dart:core\"}},\"kind\":\"Null\",\"fixedId\":true,"
"\"id\":\"objects\\/null\",\"valueAsString\":\"null\"}",
buffer);
}
// Sentinel reference
{
JSONStream js;
Object::sentinel().PrintJSON(&js, true);
EXPECT_STREQ(
"{\"type\":\"Sentinel\","
"\"kind\":\"NotInitialized\","
"\"valueAsString\":\"<not initialized>\"}",
js.ToCString());
}
// Transition sentinel reference
{
JSONStream js;
Object::transition_sentinel().PrintJSON(&js, true);
EXPECT_STREQ(
"{\"type\":\"Sentinel\","
"\"kind\":\"BeingInitialized\","
"\"valueAsString\":\"<being initialized>\"}",
js.ToCString());
}
}
#endif // !PRODUCT
TEST_CASE(InstanceEquality) {
// Test that Instance::OperatorEquals can call a user-defined operator==.
const char* kScript =
"class A {\n"
" bool operator==(covariant A other) { return true; }\n"
"}\n"
"main() {\n"
" A a = new A();\n"
"}";
Dart_Handle h_lib = TestCase::LoadTestScript(kScript, NULL);
EXPECT_VALID(h_lib);
Dart_Handle result = Dart_Invoke(h_lib, NewString("main"), 0, NULL);
EXPECT_VALID(result);
TransitionNativeToVM transition(thread);
Library& lib = Library::Handle();
lib ^= Api::UnwrapHandle(h_lib);
const Class& clazz = Class::Handle(GetClass(lib, "A"));
EXPECT(!clazz.IsNull());
const Instance& a0 = Instance::Handle(Instance::New(clazz));
const Instance& a1 = Instance::Handle(Instance::New(clazz));
EXPECT(a0.ptr() != a1.ptr());
EXPECT(a0.OperatorEquals(a0));
EXPECT(a0.OperatorEquals(a1));
EXPECT(a0.IsIdenticalTo(a0));
EXPECT(!a0.IsIdenticalTo(a1));
}
TEST_CASE(HashCode) {
// Ensure C++ overrides of Instance::HashCode match the Dart implementations.
const char* kScript =
"foo() {\n"
" return \"foo\".hashCode;\n"
"}";
Dart_Handle h_lib = TestCase::LoadTestScript(kScript, NULL);
EXPECT_VALID(h_lib);
Dart_Handle h_result = Dart_Invoke(h_lib, NewString("foo"), 0, NULL);
EXPECT_VALID(h_result);
TransitionNativeToVM transition(thread);
Integer& result = Integer::Handle();
result ^= Api::UnwrapHandle(h_result);
String& foo = String::Handle(String::New("foo"));
Integer& expected = Integer::Handle();
expected ^= foo.HashCode();
EXPECT(result.IsIdenticalTo(expected));
}
const uint32_t kCalculateCanonizalizeHash = 0;
// Checks that the .hashCode equals the VM CanonicalizeHash() for keys in
// constant maps.
//
// Expects a script with a method named `value`.
//
// If `hashcode_canonicalize_vm` is non-zero, the VM CanonicalizeHash()
// is not executed but the provided value is used.
static bool HashCodeEqualsCanonicalizeHash(
const char* value_script,
uint32_t hashcode_canonicalize_vm = kCalculateCanonizalizeHash,
bool check_identity = true,
bool check_hashcode = true) {
auto kScriptChars = Utils::CStringUniquePtr(
OS::SCreate(nullptr,
"%s"
"\n"
"valueHashCode() {\n"
" return value().hashCode;\n"
"}\n"
"\n"
"valueIdentityHashCode() {\n"
" return identityHashCode(value());\n"
"}\n",
value_script),
std::free);
Dart_Handle lib = TestCase::LoadTestScript(kScriptChars.get(), nullptr);
EXPECT_VALID(lib);
Dart_Handle value_result = Dart_Invoke(lib, NewString("value"), 0, nullptr);
EXPECT_VALID(value_result);
Dart_Handle hashcode_result;
if (check_hashcode) {
hashcode_result = Dart_Invoke(lib, NewString("valueHashCode"), 0, nullptr);
EXPECT_VALID(hashcode_result);
}
Dart_Handle identity_hashcode_result =
Dart_Invoke(lib, NewString("valueIdentityHashCode"), 0, nullptr);
EXPECT_VALID(identity_hashcode_result);
TransitionNativeToVM transition(Thread::Current());
const auto& value_dart = Instance::CheckedHandle(
Thread::Current()->zone(), Api::UnwrapHandle(value_result));
int64_t hashcode_dart;
if (check_hashcode) {
hashcode_dart =
Integer::Cast(Object::Handle(Api::UnwrapHandle(hashcode_result)))
.AsInt64Value();
}
const int64_t identity_hashcode_dart =
Integer::Cast(Object::Handle(Api::UnwrapHandle(identity_hashcode_result)))
.AsInt64Value();
if (hashcode_canonicalize_vm == 0) {
hashcode_canonicalize_vm = Instance::Cast(value_dart).CanonicalizeHash();
}
bool success = true;
if (check_hashcode) {
success &= hashcode_dart == hashcode_canonicalize_vm;
}
if (check_identity) {
success &= identity_hashcode_dart == hashcode_canonicalize_vm;
}
if (!success) {
LogBlock lb;
THR_Print(
"Dart hashCode or Dart identityHashCode does not equal VM "
"CanonicalizeHash for %s\n",
value_dart.ToCString());
THR_Print("Dart hashCode %" Px64 " %" Pd64 "\n", hashcode_dart,
hashcode_dart);
THR_Print("Dart identityHashCode %" Px64 " %" Pd64 "\n",
identity_hashcode_dart, identity_hashcode_dart);
THR_Print("VM CanonicalizeHash %" Px32 " %" Pd32 "\n",
hashcode_canonicalize_vm, hashcode_canonicalize_vm);
}
return success;
}
TEST_CASE(HashCode_Double) {
const char* kScript =
"value() {\n"
" return 1.0;\n"
"}\n";
// Double VM CanonicalizeHash is not equal to hashCode, because doubles
// cannot be used as keys in constant sets and maps. However, doubles
// _can_ be used for lookups in which case they are equal to their integer
// value.
const uint32_t kInt1HashCode = 1;
EXPECT(HashCodeEqualsCanonicalizeHash(kScript, kInt1HashCode));
}
TEST_CASE(HashCode_Mint) {
const char* kScript =
"value() {\n"
" return 0x8000000;\n"
"}\n";
EXPECT(HashCodeEqualsCanonicalizeHash(kScript));
}
TEST_CASE(HashCode_Null) {
const char* kScript =
"value() {\n"
" return null;\n"
"}\n";
EXPECT(HashCodeEqualsCanonicalizeHash(kScript));
}
TEST_CASE(HashCode_Smi) {
const char* kScript =
"value() {\n"
" return 123;\n"
"}\n";
EXPECT(HashCodeEqualsCanonicalizeHash(kScript));
}
TEST_CASE(HashCode_String) {
const char* kScript =
"value() {\n"
" return 'asdf';\n"
"}\n";
EXPECT(HashCodeEqualsCanonicalizeHash(kScript));
}
TEST_CASE(HashCode_Symbol) {
const char* kScript =
"value() {\n"
" return #A;\n"
"}\n";
EXPECT(HashCodeEqualsCanonicalizeHash(kScript, kCalculateCanonizalizeHash,
/*check_identity=*/false));
}
TEST_CASE(HashCode_True) {
const char* kScript =
"value() {\n"
" return true;\n"
"}\n";
EXPECT(HashCodeEqualsCanonicalizeHash(kScript));
}
TEST_CASE(HashCode_Type_Dynamic) {
const char* kScript =
"const type = dynamic;\n"
"\n"
"value() {\n"
" return type;\n"
"}\n";
EXPECT(HashCodeEqualsCanonicalizeHash(kScript, kCalculateCanonizalizeHash,
/*check_identity=*/false));
}
TEST_CASE(HashCode_Type_Int) {
const char* kScript =
"const type = int;\n"
"\n"
"value() {\n"
" return type;\n"
"}\n";
EXPECT(HashCodeEqualsCanonicalizeHash(kScript, kCalculateCanonizalizeHash,
/*check_identity=*/false));
}
TEST_CASE(LinkedHashMap_iteration) {
const char* kScript =
"makeMap() {\n"
" var map = {'x': 3, 'y': 4, 'z': 5, 'w': 6};\n"
" map.remove('y');\n"
" map.remove('w');\n"
" return map;\n"
"}";
Dart_Handle h_lib = TestCase::LoadTestScript(kScript, NULL);
EXPECT_VALID(h_lib);
Dart_Handle h_result = Dart_Invoke(h_lib, NewString("makeMap"), 0, NULL);
EXPECT_VALID(h_result);
TransitionNativeToVM transition(thread);
Instance& dart_map = Instance::Handle();
dart_map ^= Api::UnwrapHandle(h_result);
ASSERT(dart_map.IsLinkedHashMap());
const LinkedHashMap& cc_map = LinkedHashMap::Cast(dart_map);
EXPECT_EQ(2, cc_map.Length());
LinkedHashMap::Iterator iterator(cc_map);
Object& object = Object::Handle();
EXPECT(iterator.MoveNext());
object = iterator.CurrentKey();
EXPECT_STREQ("x", object.ToCString());
object = iterator.CurrentValue();
EXPECT_STREQ("3", object.ToCString());
EXPECT(iterator.MoveNext());
object = iterator.CurrentKey();
EXPECT_STREQ("z", object.ToCString());
object = iterator.CurrentValue();
EXPECT_STREQ("5", object.ToCString());
EXPECT(!iterator.MoveNext());
}
template <class LinkedHashBase>
static bool LinkedHashBaseEqual(const LinkedHashBase& map1,
const LinkedHashBase& map2,
bool print_diff,
bool check_data = true) {
if (check_data) {
// Check data, only for non-nested.
const auto& data1 = Array::Handle(map1.data());
const auto& data2 = Array::Handle(map2.data());
const intptr_t data1_length = Smi::Value(map1.used_data());
const intptr_t data2_length = Smi::Value(map2.used_data());
const bool data_length_equal = data1_length == data2_length;
bool data_equal = data_length_equal;
if (data_length_equal) {
auto& object1 = Instance::Handle();
auto& object2 = Instance::Handle();
for (intptr_t i = 0; i < data1_length; i++) {
object1 ^= data1.At(i);
object2 ^= data2.At(i);
data_equal &= object1.CanonicalizeEquals(object2);
}
}
if (!data_equal) {
if (print_diff) {
THR_Print("LinkedHashBaseEqual Data not equal.\n");
THR_Print("LinkedHashBaseEqual data1.length %" Pd " data1.length %" Pd
" \n",
data1_length, data2_length);
auto& object1 = Instance::Handle();
for (intptr_t i = 0; i < data1_length; i++) {
object1 ^= data1.At(i);
THR_Print("LinkedHashBaseEqual data1[%" Pd "] %s\n", i,
object1.ToCString());
}
for (intptr_t i = 0; i < data2_length; i++) {
object1 ^= data2.At(i);
THR_Print("LinkedHashBaseEqual data2[%" Pd "] %s\n", i,
object1.ToCString());
}
}
return false;
}
}
// Check hashing.
intptr_t hash_mask1 = Smi::Value(map1.hash_mask());
EXPECT(!Integer::Handle(map2.hash_mask()).IsNull());
intptr_t hash_mask2 = Smi::Value(map2.hash_mask());
const bool hash_masks_equal = hash_mask1 == hash_mask2;
if (!hash_masks_equal) {
if (print_diff) {
THR_Print("LinkedHashBaseEqual Hash masks not equal.\n");
THR_Print("LinkedHashBaseEqual hash_mask1 %" Px " hash_mask2 %" Px " \n",
hash_mask1, hash_mask2);
}
}
// Check indices.
const auto& index1 = TypedData::Handle(map1.index());
const auto& index2 = TypedData::Handle(map2.index());
EXPECT(!index2.IsNull());
ASSERT(index1.ElementType() == kUint32ArrayElement);
ASSERT(index2.ElementType() == kUint32ArrayElement);
const intptr_t kElementSize = 4;
ASSERT(kElementSize == index1.ElementSizeInBytes());
const bool index_length_equal = index1.Length() == index2.Length();
bool index_equal = index_length_equal;
if (index_length_equal) {
for (intptr_t i = 0; i < index1.Length(); i++) {
const uint32_t index1_val = index1.GetUint32(i * kElementSize);
const uint32_t index2_val = index2.GetUint32(i * kElementSize);
index_equal &= index1_val == index2_val;
}
}
if (!index_equal && print_diff) {
THR_Print("LinkedHashBaseEqual Indices not equal.\n");
THR_Print("LinkedHashBaseEqual index1.length %" Pd " index2.length %" Pd
" \n",
index1.Length(), index2.Length());
for (intptr_t i = 0; i < index1.Length(); i++) {
const uint32_t index_val = index1.GetUint32(i * kElementSize);
THR_Print("LinkedHashBaseEqual index1[%" Pd "] %" Px32 "\n", i,
index_val);
}
for (intptr_t i = 0; i < index2.Length(); i++) {
const uint32_t index_val = index2.GetUint32(i * kElementSize);
THR_Print("LinkedHashBaseEqual index2[%" Pd "] %" Px32 "\n", i,
index_val);
}
}
return index_equal;
}
// Copies elements from data.
static LinkedHashMapPtr ConstructImmutableMap(
const Array& input_data,
intptr_t used_data,
const TypeArguments& type_arguments) {
auto& map = LinkedHashMap::Handle(ImmutableLinkedHashMap::NewUninitialized());
const auto& data = Array::Handle(Array::New(used_data));
for (intptr_t i = 0; i < used_data; i++) {
data.SetAt(i, Object::Handle(input_data.At(i)));
}
map.set_data(data);
map.set_used_data(used_data);
map.SetTypeArguments(type_arguments);
map.set_deleted_keys(0);
map.ComputeAndSetHashMask();
map ^= map.Canonicalize(Thread::Current());
return map.ptr();
}
// Constructs an immutable hashmap from a mutable one in this test.
TEST_CASE(ImmutableLinkedHashMap_vm) {
const char* kScript = R"(
enum ExperimentalFlag {
alternativeInvalidationStrategy,
constFunctions,
constantUpdate2018,
constructorTearoffs,
controlFlowCollections,
extensionMethods,
extensionTypes,
genericMetadata,
nonNullable,
nonfunctionTypeAliases,
setLiterals,
spreadCollections,
testExperiment,
tripleShift,
valueClass,
variance,
}
final Map<ExperimentalFlag?, bool> expiredExperimentalFlagsNonConst = {
ExperimentalFlag.alternativeInvalidationStrategy: false,
ExperimentalFlag.constFunctions: false,
ExperimentalFlag.constantUpdate2018: true,
ExperimentalFlag.constructorTearoffs: false,
ExperimentalFlag.controlFlowCollections: true,
ExperimentalFlag.extensionMethods: false,
ExperimentalFlag.extensionTypes: false,
ExperimentalFlag.genericMetadata: false,
ExperimentalFlag.nonNullable: false,
ExperimentalFlag.nonfunctionTypeAliases: false,
ExperimentalFlag.setLiterals: true,
ExperimentalFlag.spreadCollections: true,
ExperimentalFlag.testExperiment: false,
ExperimentalFlag.tripleShift: false,
ExperimentalFlag.valueClass: false,
ExperimentalFlag.variance: false,
};
makeNonConstMap() {
return expiredExperimentalFlagsNonConst;
}
firstKey() {
return ExperimentalFlag.alternativeInvalidationStrategy;
}
firstKeyHashCode() {
return firstKey().hashCode;
}
firstKeyIdentityHashCode() {
return identityHashCode(firstKey());
}
bool lookupSpreadCollections(Map map) =>
map[ExperimentalFlag.spreadCollections];
bool? lookupNull(Map map) => map[null];
)";
Dart_Handle lib = TestCase::LoadTestScript(kScript, NULL);
EXPECT_VALID(lib);
Dart_Handle non_const_result =
Dart_Invoke(lib, NewString("makeNonConstMap"), 0, NULL);
EXPECT_VALID(non_const_result);
Dart_Handle first_key_result =
Dart_Invoke(lib, NewString("firstKey"), 0, NULL);
EXPECT_VALID(first_key_result);
Dart_Handle first_key_hashcode_result =
Dart_Invoke(lib, NewString("firstKeyHashCode"), 0, NULL);
EXPECT_VALID(first_key_hashcode_result);
Dart_Handle first_key_identity_hashcode_result =
Dart_Invoke(lib, NewString("firstKeyIdentityHashCode"), 0, NULL);
EXPECT_VALID(first_key_identity_hashcode_result);
Dart_Handle const_argument;
{
TransitionNativeToVM transition(thread);
const auto& non_const_map = LinkedHashMap::Cast(
Object::Handle(Api::UnwrapHandle(non_const_result)));
const auto& non_const_type_args =
TypeArguments::Handle(non_const_map.GetTypeArguments());
const auto& non_const_data = Array::Handle(non_const_map.data());
const auto& const_map = LinkedHashMap::Handle(ConstructImmutableMap(
non_const_data, Smi::Value(non_const_map.used_data()),
non_const_type_args));
ASSERT(non_const_map.GetClassId() == kLinkedHashMapCid);
ASSERT(const_map.GetClassId() == kImmutableLinkedHashMapCid);
ASSERT(!non_const_map.IsCanonical());
ASSERT(const_map.IsCanonical());
const_argument = Api::NewHandle(thread, const_map.ptr());
}
Dart_Handle lookup_result = Dart_Invoke(
lib, NewString("lookupSpreadCollections"), 1, &const_argument);
EXPECT_VALID(lookup_result);
EXPECT_TRUE(lookup_result);
Dart_Handle lookup_null_result =
Dart_Invoke(lib, NewString("lookupNull"), 1, &const_argument);
EXPECT_VALID(lookup_null_result);
EXPECT_NULL(lookup_null_result);
{
TransitionNativeToVM transition(thread);
const auto& non_const_object =
Object::Handle(Api::UnwrapHandle(non_const_result));
const auto& non_const_map = LinkedHashMap::Cast(non_const_object);
const auto& const_object =
Object::Handle(Api::UnwrapHandle(const_argument));
const auto& const_map = LinkedHashMap::Cast(const_object);
EXPECT(non_const_map.GetClassId() != const_map.GetClassId());
// Check that the index is identical.
EXPECT(LinkedHashBaseEqual(non_const_map, const_map,
/*print_diff=*/true));
}
}
static bool IsLinkedHashBase(const Object& object) {
return object.IsLinkedHashMap() || object.IsLinkedHashSet();
}
// Checks that the non-constant and constant HashMap and HashSets are equal.
//
// Expects a script with a methods named `nonConstValue`, `constValue`, and
// `init`.
template <class LinkedHashBase, int kMutableCid, int kImmutableCid>
static void HashBaseNonConstEqualsConst(const char* script,
bool check_data = true) {
Dart_Handle lib = TestCase::LoadTestScript(script, NULL);
EXPECT_VALID(lib);
Dart_Handle init_result = Dart_Invoke(lib, NewString("init"), 0, NULL);
EXPECT_VALID(init_result);
Dart_Handle non_const_result =
Dart_Invoke(lib, NewString("nonConstValue"), 0, NULL);
EXPECT_VALID(non_const_result);
Dart_Handle const_result = Dart_Invoke(lib, NewString("constValue"), 0, NULL);
EXPECT_VALID(const_result);
TransitionNativeToVM transition(Thread::Current());
const auto& non_const_object =
Object::Handle(Api::UnwrapHandle(non_const_result));
const auto& const_object = Object::Handle(Api::UnwrapHandle(const_result));
non_const_object.IsLinkedHashMap();
EXPECT(IsLinkedHashBase(non_const_object));
if (!IsLinkedHashBase(non_const_object)) return;
const auto& non_const_value = LinkedHashBase::Cast(non_const_object);
EXPECT(IsLinkedHashBase(const_object));
if (!IsLinkedHashBase(const_object)) return;
const auto& const_value = LinkedHashBase::Cast(const_object);
EXPECT_EQ(non_const_value.GetClassId(), kMutableCid);
EXPECT_EQ(const_value.GetClassId(), kImmutableCid);
EXPECT(!non_const_value.IsCanonical());
EXPECT(const_value.IsCanonical());
EXPECT(LinkedHashBaseEqual(non_const_value, const_value,
/*print_diff=*/true, check_data));
}
static void HashMapNonConstEqualsConst(const char* script,
bool check_data = true) {
HashBaseNonConstEqualsConst<LinkedHashMap, kLinkedHashMapCid,
kImmutableLinkedHashMapCid>(script, check_data);
}
static void HashSetNonConstEqualsConst(const char* script,
bool check_data = true) {
HashBaseNonConstEqualsConst<LinkedHashSet, kLinkedHashSetCid,
kImmutableLinkedHashSetCid>(script, check_data);
}
TEST_CASE(ImmutableLinkedHashMap_small) {
const char* kScript = R"(
constValue() => const {1: 42, 'foo': 499, 2: 'bar'};
nonConstValue() => {1: 42, 'foo': 499, 2: 'bar'};
void init() {
constValue()[null];
}
)";
HashMapNonConstEqualsConst(kScript);
}
TEST_CASE(ImmutableLinkedHashMap_null) {
const char* kScript = R"(
constValue() => const {1: 42, 'foo': 499, null: 'bar'};
nonConstValue() => {1: 42, 'foo': 499, null: 'bar'};
void init() {
constValue()[null];
}
)";
HashMapNonConstEqualsConst(kScript);
}
TEST_CASE(ImmutableLinkedHashMap_larger) {
const char* kScript = R"(
enum ExperimentalFlag {
alternativeInvalidationStrategy,
constFunctions,
constantUpdate2018,
constructorTearoffs,
controlFlowCollections,
extensionMethods,
extensionTypes,
genericMetadata,
nonNullable,
nonfunctionTypeAliases,
setLiterals,
spreadCollections,
testExperiment,
tripleShift,
valueClass,
variance,
}
const Map<ExperimentalFlag, bool> expiredExperimentalFlags = {
ExperimentalFlag.alternativeInvalidationStrategy: false,
ExperimentalFlag.constFunctions: false,
ExperimentalFlag.constantUpdate2018: true,
ExperimentalFlag.constructorTearoffs: false,
ExperimentalFlag.controlFlowCollections: true,
ExperimentalFlag.extensionMethods: false,
ExperimentalFlag.extensionTypes: false,
ExperimentalFlag.genericMetadata: false,
ExperimentalFlag.nonNullable: false,
ExperimentalFlag.nonfunctionTypeAliases: false,
ExperimentalFlag.setLiterals: true,
ExperimentalFlag.spreadCollections: true,
ExperimentalFlag.testExperiment: false,
ExperimentalFlag.tripleShift: false,
ExperimentalFlag.valueClass: false,
ExperimentalFlag.variance: false,
};
final Map<ExperimentalFlag, bool> expiredExperimentalFlagsNonConst = {
ExperimentalFlag.alternativeInvalidationStrategy: false,
ExperimentalFlag.constFunctions: false,
ExperimentalFlag.constantUpdate2018: true,
ExperimentalFlag.constructorTearoffs: false,
ExperimentalFlag.controlFlowCollections: true,
ExperimentalFlag.extensionMethods: false,
ExperimentalFlag.extensionTypes: false,
ExperimentalFlag.genericMetadata: false,
ExperimentalFlag.nonNullable: false,
ExperimentalFlag.nonfunctionTypeAliases: false,
ExperimentalFlag.setLiterals: true,
ExperimentalFlag.spreadCollections: true,
ExperimentalFlag.testExperiment: false,
ExperimentalFlag.tripleShift: false,
ExperimentalFlag.valueClass: false,
ExperimentalFlag.variance: false,
};
constValue() => expiredExperimentalFlags;
nonConstValue() => expiredExperimentalFlagsNonConst;
void init() {
constValue()[null];
}
)";
HashMapNonConstEqualsConst(kScript);
}
TEST_CASE(ImmutableLinkedHashMap_nested) {
const char* kScript = R"(
enum Abi {
wordSize64,
wordSize32Align32,
wordSize32Align64,
}
enum NativeType {
kNativeType,
kNativeInteger,
kNativeDouble,
kPointer,
kNativeFunction,
kInt8,
kInt16,
kInt32,
kInt64,
kUint8,
kUint16,
kUint32,
kUint64,
kIntptr,
kFloat,
kDouble,
kVoid,
kOpaque,
kStruct,
kHandle,
}
const nonSizeAlignment = <Abi, Map<NativeType, int>>{
Abi.wordSize64: {},
Abi.wordSize32Align32: {
NativeType.kDouble: 4,
NativeType.kInt64: 4,
NativeType.kUint64: 4
},
Abi.wordSize32Align64: {},
};
final nonSizeAlignmentNonConst = <Abi, Map<NativeType, int>>{
Abi.wordSize64: {},
Abi.wordSize32Align32: {
NativeType.kDouble: 4,
NativeType.kInt64: 4,
NativeType.kUint64: 4
},
Abi.wordSize32Align64: {},
};
constValue() => nonSizeAlignment;
nonConstValue() => nonSizeAlignmentNonConst;
void init() {
constValue()[null];
}
)";
HashMapNonConstEqualsConst(kScript, false);
}
TEST_CASE(LinkedHashSet_iteration) {
const char* kScript = R"(
makeSet() {
var set = {'x', 'y', 'z', 'w'};
set.remove('y');
set.remove('w');
return set;
}
)";
Dart_Handle h_lib = TestCase::LoadTestScript(kScript, NULL);
EXPECT_VALID(h_lib);
Dart_Handle h_result = Dart_Invoke(h_lib, NewString("makeSet"), 0, NULL);
EXPECT_VALID(h_result);
TransitionNativeToVM transition(thread);
Instance& dart_set = Instance::Handle();
dart_set ^= Api::UnwrapHandle(h_result);
ASSERT(dart_set.IsLinkedHashSet());
const LinkedHashSet& cc_set = LinkedHashSet::Cast(dart_set);
EXPECT_EQ(2, cc_set.Length());
LinkedHashSet::Iterator iterator(cc_set);
Object& object = Object::Handle();
EXPECT(iterator.MoveNext());
object = iterator.CurrentKey();
EXPECT_STREQ("x", object.ToCString());
EXPECT(iterator.MoveNext());
object = iterator.CurrentKey();
EXPECT_STREQ("z", object.ToCString());
EXPECT(!iterator.MoveNext());
}
// Copies elements from data.
static LinkedHashSetPtr ConstructImmutableSet(
const Array& input_data,
intptr_t used_data,
const TypeArguments& type_arguments) {
auto& set = LinkedHashSet::Handle(ImmutableLinkedHashSet::NewUninitialized());
const auto& data = Array::Handle(Array::New(used_data));
for (intptr_t i = 0; i < used_data; i++) {
data.SetAt(i, Object::Handle(input_data.At(i)));
}
set.set_data(data);
set.set_used_data(used_data);
set.SetTypeArguments(type_arguments);
set.set_deleted_keys(0);
set.ComputeAndSetHashMask();
set ^= set.Canonicalize(Thread::Current());
return set.ptr();
}
TEST_CASE(ImmutableLinkedHashSet_vm) {
const char* kScript = R"(
makeNonConstSet() {
return {1, 2, 3, 5, 8, 13};
}
bool containsFive(Set set) => set.contains(5);
)";
Dart_Handle lib = TestCase::LoadTestScript(kScript, NULL);
EXPECT_VALID(lib);
Dart_Handle non_const_result =
Dart_Invoke(lib, NewString("makeNonConstSet"), 0, NULL);
EXPECT_VALID(non_const_result);
Dart_Handle const_argument;
{
TransitionNativeToVM transition(thread);
const auto& non_const_object =
Object::Handle(Api::UnwrapHandle(non_const_result));
const auto& non_const_set = LinkedHashSet::Cast(non_const_object);
ASSERT(non_const_set.GetClassId() == kLinkedHashSetCid);
ASSERT(!non_const_set.IsCanonical());
const auto& non_const_data = Array::Handle(non_const_set.data());
const auto& non_const_type_args =
TypeArguments::Handle(non_const_set.GetTypeArguments());
const auto& const_set = LinkedHashSet::Handle(ConstructImmutableSet(
non_const_data, Smi::Value(non_const_set.used_data()),
non_const_type_args));
ASSERT(const_set.GetClassId() == kImmutableLinkedHashSetCid);
ASSERT(const_set.IsCanonical());
const_argument = Api::NewHandle(thread, const_set.ptr());
}
Dart_Handle contains_5_result =
Dart_Invoke(lib, NewString("containsFive"), 1, &const_argument);
EXPECT_VALID(contains_5_result);
EXPECT_TRUE(contains_5_result);
{
TransitionNativeToVM transition(thread);
const auto& non_const_object =
Object::Handle(Api::UnwrapHandle(non_const_result));
const auto& non_const_set = LinkedHashSet::Cast(non_const_object);
const auto& const_object =
Object::Handle(Api::UnwrapHandle(const_argument));
const auto& const_set = LinkedHashSet::Cast(const_object);
EXPECT(non_const_set.GetClassId() != const_set.GetClassId());
// Check that the index is identical.
EXPECT(LinkedHashBaseEqual(non_const_set, const_set,
/*print_diff=*/true));
}
}
TEST_CASE(ImmutableLinkedHashSet_small) {
const char* kScript = R"(
constValue() => const {1, 2, 3, 5, 8, 13};
nonConstValue() => {1, 2, 3, 5, 8, 13};
void init() {
constValue().contains(null);
}
)";
HashSetNonConstEqualsConst(kScript);
}
TEST_CASE(ImmutableLinkedHashSet_larger) {
const char* kScript = R"(
const Set<String> tokensThatMayFollowTypeArg = {
'(',
')',
']',
'}',
':',
';',
',',
'.',
'?',
'==',
'!=',
'..',
'?.',
'\?\?',
'?..',
'&',
'|',
'^',
'+',
'*',
'%',
'/',
'~/'
};
final Set<String> tokensThatMayFollowTypeArgNonConst = {
'(',
')',
']',
'}',
':',
';',
',',
'.',
'?',
'==',
'!=',
'..',
'?.',
'\?\?',
'?..',
'&',
'|',
'^',
'+',
'*',
'%',
'/',
'~/'
};
constValue() => tokensThatMayFollowTypeArg;
nonConstValue() => tokensThatMayFollowTypeArgNonConst;
void init() {
constValue().contains(null);
}
)";
HashSetNonConstEqualsConst(kScript);
}
static void CheckConcatAll(const String* data[], intptr_t n) {
Thread* thread = Thread::Current();
Zone* zone = thread->zone();
GrowableHandlePtrArray<const String> pieces(zone, n);
const Array& array = Array::Handle(zone, Array::New(n));
for (int i = 0; i < n; i++) {
pieces.Add(*data[i]);
array.SetAt(i, *data[i]);
}
const String& res1 =
String::Handle(zone, Symbols::FromConcatAll(thread, pieces));
const String& res2 = String::Handle(zone, String::ConcatAll(array));
EXPECT(res1.Equals(res2));
}
ISOLATE_UNIT_TEST_CASE(Symbols_FromConcatAll) {
{
const String* data[3] = {&Symbols::FallThroughError(), &Symbols::Dot(),
&Symbols::isPaused()};
CheckConcatAll(data, 3);
}
{
const intptr_t kWideCharsLen = 7;
uint16_t wide_chars[kWideCharsLen] = {'H', 'e', 'l', 'l', 'o', 256, '!'};
const String& two_str =
String::Handle(String::FromUTF16(wide_chars, kWideCharsLen));
const String* data[3] = {&two_str, &Symbols::Dot(), &two_str};
CheckConcatAll(data, 3);
}
{
uint8_t characters[] = {0xF6, 0xF1, 0xE9};
intptr_t len = ARRAY_SIZE(characters);
const String& str = String::Handle(ExternalOneByteString::New(
characters, len, NULL, 0, NoopFinalizer, Heap::kNew));
const String* data[3] = {&str, &Symbols::Dot(), &str};
CheckConcatAll(data, 3);
}
{
uint16_t characters[] = {'a', '\n', '\f', '\b', '\t',
'\v', '\r', '\\', '$', 'z'};
intptr_t len = ARRAY_SIZE(characters);
const String& str = String::Handle(ExternalTwoByteString::New(
characters, len, NULL, 0, NoopFinalizer, Heap::kNew));
const String* data[3] = {&str, &Symbols::Dot(), &str};
CheckConcatAll(data, 3);
}
{
uint8_t characters1[] = {0xF6, 0xF1, 0xE9};
intptr_t len1 = ARRAY_SIZE(characters1);
const String& str1 = String::Handle(ExternalOneByteString::New(
characters1, len1, NULL, 0, NoopFinalizer, Heap::kNew));
uint16_t characters2[] = {'a', '\n', '\f', '\b', '\t',
'\v', '\r', '\\', '$', 'z'};
intptr_t len2 = ARRAY_SIZE(characters2);
const String& str2 = String::Handle(ExternalTwoByteString::New(
characters2, len2, NULL, 0, NoopFinalizer, Heap::kNew));
const String* data[3] = {&str1, &Symbols::Dot(), &str2};
CheckConcatAll(data, 3);
}
{
const String& empty = String::Handle(String::New(""));
const String* data[3] = {&Symbols::FallThroughError(), &empty,
&Symbols::isPaused()};
CheckConcatAll(data, 3);
}
}
struct TestResult {
const char* in;
const char* out;
};
ISOLATE_UNIT_TEST_CASE(String_ScrubName) {
TestResult tests[] = {
{"(dynamic, dynamic) => void", "(dynamic, dynamic) => void"},
{"_List@915557746", "_List"},
{"_HashMap@600006304<K, V>(dynamic) => V",
"_HashMap<K, V>(dynamic) => V"},
{"set:foo", "foo="},
{"get:foo", "foo"},
{"_ReceivePortImpl@709387912", "_ReceivePortImpl"},
{"_ReceivePortImpl@709387912._internal@709387912",
"_ReceivePortImpl._internal"},
{"_C@6328321&_E@6328321&_F@6328321", "_C&_E&_F"},
{"List.", "List"},
{"get:foo@6328321", "foo"},
{"_MyClass@6328321.", "_MyClass"},
{"_MyClass@6328321.named", "_MyClass.named"},
};
String& test = String::Handle();
const char* result;
for (size_t i = 0; i < ARRAY_SIZE(tests); i++) {
test = String::New(tests[i].in);
result = String::ScrubName(test);
EXPECT_STREQ(tests[i].out, result);
}
}
ISOLATE_UNIT_TEST_CASE(String_EqualsUTF32) {
// Regression test for Issue 27433. Checks that comparisons between Strings
// and utf32 arrays happens after conversion to utf16 instead of utf32, as
// required for proper canonicalization of string literals with a lossy
// utf32->utf16 conversion.
int32_t char_codes[] = {0, 0x0a, 0x0d, 0x7f, 0xff,
0xffff, 0xd800, 0xdc00, 0xdbff, 0xdfff};
const String& str =
String::Handle(String::FromUTF32(char_codes, ARRAY_SIZE(char_codes)));
EXPECT(str.Equals(char_codes, ARRAY_SIZE(char_codes)));
}
TEST_CASE(TypeParameterTypeRef) {
// Regression test for issue 82890.
const char* kScriptChars =
"void foo<T extends C<T>>(T x) {}\n"
"void bar<M extends U<M>>(M x) {}\n"
"abstract class C<T> {}\n"
"abstract class U<T> extends C<T> {}\n";
TestCase::LoadTestScript(kScriptChars, NULL);
TransitionNativeToVM transition(thread);
EXPECT(ClassFinalizer::ProcessPendingClasses());
const String& name = String::Handle(String::New(TestCase::url()));
const Library& lib = Library::Handle(Library::LookupLibrary(thread, name));
EXPECT(!lib.IsNull());
const Function& foo = Function::Handle(GetFunction(lib, "foo"));
const Function& bar = Function::Handle(GetFunction(lib, "bar"));
const TypeParameter& t = TypeParameter::Handle(foo.TypeParameterAt(0));
const TypeParameter& m = TypeParameter::Handle(bar.TypeParameterAt(0));
EXPECT(!m.IsSubtypeOf(t, Heap::kNew));
}
static void FinalizeAndCanonicalize(AbstractType* type) {
*type ^= ClassFinalizer::FinalizeType(*type);
ASSERT(type->IsCanonical());
}
static void CheckSubtypeRelation(const Expect& expect,
const AbstractType& sub,
const AbstractType& super,
bool is_subtype) {
if (sub.IsSubtypeOf(super, Heap::kNew) != is_subtype) {
TextBuffer buffer(128);
buffer.AddString("Expected ");
sub.PrintName(Object::kScrubbedName, &buffer);
buffer.Printf(" to %s a subtype of ", is_subtype ? "be" : "not be");
super.PrintName(Object::kScrubbedName, &buffer);
expect.Fail("%s", buffer.buffer());
}
}
#define EXPECT_SUBTYPE(sub, super) \
CheckSubtypeRelation(Expect(__FILE__, __LINE__), sub, super, true);
#define EXPECT_NOT_SUBTYPE(sub, super) \
CheckSubtypeRelation(Expect(__FILE__, __LINE__), sub, super, false);
ISOLATE_UNIT_TEST_CASE(ClosureType_SubtypeOfFunctionType) {
const auto& closure_class =
Class::Handle(IsolateGroup::Current()->object_store()->closure_class());
const auto& closure_type = Type::Handle(closure_class.DeclarationType());
auto& closure_type_nullable = Type::Handle(
closure_type.ToNullability(Nullability::kNullable, Heap::kNew));
FinalizeAndCanonicalize(&closure_type_nullable);
auto& closure_type_legacy = Type::Handle(
closure_type.ToNullability(Nullability::kLegacy, Heap::kNew));
FinalizeAndCanonicalize(&closure_type_legacy);
auto& closure_type_nonnullable = Type::Handle(
closure_type.ToNullability(Nullability::kNonNullable, Heap::kNew));
FinalizeAndCanonicalize(&closure_type_nonnullable);
const auto& function_type =
Type::Handle(IsolateGroup::Current()->object_store()->function_type());
auto& function_type_nullable = Type::Handle(
function_type.ToNullability(Nullability::kNullable, Heap::kNew));
FinalizeAndCanonicalize(&function_type_nullable);
auto& function_type_legacy = Type::Handle(
function_type.ToNullability(Nullability::kLegacy, Heap::kNew));
FinalizeAndCanonicalize(&function_type_legacy);
auto& function_type_nonnullable = Type::Handle(
function_type.ToNullability(Nullability::kNonNullable, Heap::kNew));
FinalizeAndCanonicalize(&function_type_nonnullable);
EXPECT_SUBTYPE(closure_type_nonnullable, function_type_nullable);
EXPECT_SUBTYPE(closure_type_nonnullable, function_type_legacy);
EXPECT_SUBTYPE(closure_type_nonnullable, function_type_nonnullable);
EXPECT_SUBTYPE(closure_type_legacy, function_type_nullable);
EXPECT_SUBTYPE(closure_type_legacy, function_type_legacy);
EXPECT_SUBTYPE(closure_type_legacy, function_type_nonnullable);
EXPECT_SUBTYPE(closure_type_nullable, function_type_nullable);
EXPECT_SUBTYPE(closure_type_nullable, function_type_legacy);
// Nullable types are not a subtype of non-nullable types in strict mode.
if (IsolateGroup::Current()->use_strict_null_safety_checks()) {
EXPECT_NOT_SUBTYPE(closure_type_nullable, function_type_nonnullable);
} else {
EXPECT_SUBTYPE(closure_type_nullable, function_type_nonnullable);
}
const auto& async_lib = Library::Handle(Library::AsyncLibrary());
const auto& future_or_class =
Class::Handle(async_lib.LookupClass(Symbols::FutureOr()));
auto& tav_function_nullable = TypeArguments::Handle(TypeArguments::New(1));
tav_function_nullable.SetTypeAt(0, function_type_nullable);
tav_function_nullable = tav_function_nullable.Canonicalize(thread, nullptr);
auto& tav_function_legacy = TypeArguments::Handle(TypeArguments::New(1));
tav_function_legacy.SetTypeAt(0, function_type_legacy);
tav_function_legacy = tav_function_legacy.Canonicalize(thread, nullptr);
auto& tav_function_nonnullable = TypeArguments::Handle(TypeArguments::New(1));
tav_function_nonnullable.SetTypeAt(0, function_type_nonnullable);
tav_function_nonnullable =
tav_function_nonnullable.Canonicalize(thread, nullptr);
auto& future_or_function_type_nullable =
Type::Handle(Type::New(future_or_class, tav_function_nullable));
FinalizeAndCanonicalize(&future_or_function_type_nullable);
auto& future_or_function_type_legacy =
Type::Handle(Type::New(future_or_class, tav_function_legacy));
FinalizeAndCanonicalize(&future_or_function_type_legacy);
auto& future_or_function_type_nonnullable =
Type::Handle(Type::New(future_or_class, tav_function_nonnullable));
FinalizeAndCanonicalize(&future_or_function_type_nonnullable);
EXPECT_SUBTYPE(closure_type_nonnullable, future_or_function_type_nullable);
EXPECT_SUBTYPE(closure_type_nonnullable, future_or_function_type_legacy);
EXPECT_SUBTYPE(closure_type_nonnullable, future_or_function_type_nonnullable);
EXPECT_SUBTYPE(closure_type_legacy, future_or_function_type_nullable);
EXPECT_SUBTYPE(closure_type_legacy, future_or_function_type_legacy);
EXPECT_SUBTYPE(closure_type_legacy, future_or_function_type_nonnullable);
EXPECT_SUBTYPE(closure_type_nullable, future_or_function_type_nullable);
EXPECT_SUBTYPE(closure_type_nullable, future_or_function_type_legacy);
// Nullable types are not a subtype of non-nullable types in strict mode.
if (IsolateGroup::Current()->use_strict_null_safety_checks()) {
EXPECT_NOT_SUBTYPE(closure_type_nullable,
future_or_function_type_nonnullable);
} else {
EXPECT_SUBTYPE(closure_type_nullable, future_or_function_type_nonnullable);
}
}
ISOLATE_UNIT_TEST_CASE(FunctionType_IsSubtypeOfNonNullableObject) {
const auto& type_object = Type::Handle(
IsolateGroup::Current()->object_store()->non_nullable_object_type());
auto& type_function_int_nullary =
FunctionType::Handle(FunctionType::New(0, Nullability::kNonNullable));
type_function_int_nullary.set_result_type(Type::Handle(Type::IntType()));
FinalizeAndCanonicalize(&type_function_int_nullary);
auto& type_nullable_function_int_nullary =
FunctionType::Handle(type_function_int_nullary.ToNullability(
Nullability::kNullable, Heap::kOld));
FinalizeAndCanonicalize(&type_nullable_function_int_nullary);
EXPECT_SUBTYPE(type_function_int_nullary, type_object);
if (IsolateGroup::Current()->use_strict_null_safety_checks()) {
EXPECT_NOT_SUBTYPE(type_nullable_function_int_nullary, type_object);
} else {
EXPECT_SUBTYPE(type_nullable_function_int_nullary, type_object);
}
}
#undef EXPECT_NOT_SUBTYPE
#undef EXPECT_SUBTYPE
static void ExpectTypesEquivalent(const Expect& expect,
const AbstractType& expected,
const AbstractType& got,
TypeEquality kind) {
if (got.IsEquivalent(expected, kind)) return;
TextBuffer buffer(128);
buffer.AddString("Expected type ");
expected.PrintName(Object::kScrubbedName, &buffer);
buffer.AddString(", got ");
got.PrintName(Object::kScrubbedName, &buffer);
expect.Fail("%s", buffer.buffer());
}
#define EXPECT_TYPES_EQUAL(expected, got) \
ExpectTypesEquivalent(Expect(__FILE__, __LINE__), expected, got, \
TypeEquality::kCanonical);
TEST_CASE(Class_GetInstantiationOf) {
const char* kScript = R"(
class B<T> {}
class A1<X, Y> implements B<List<Y>> {}
class A2<X, Y> extends A1<Y, X> {}
)";
Dart_Handle api_lib = TestCase::LoadTestScript(kScript, nullptr);
EXPECT_VALID(api_lib);
TransitionNativeToVM transition(thread);
Zone* const zone = thread->zone();
const auto& root_lib =
Library::CheckedHandle(zone, Api::UnwrapHandle(api_lib));
EXPECT(!root_lib.IsNull());
const auto& class_b = Class::Handle(zone, GetClass(root_lib, "B"));
const auto& class_a1 = Class::Handle(zone, GetClass(root_lib, "A1"));
const auto& class_a2 = Class::Handle(zone, GetClass(root_lib, "A2"));
const auto& core_lib = Library::Handle(zone, Library::CoreLibrary());
const auto& class_list = Class::Handle(zone, GetClass(core_lib, "List"));
const auto& decl_type_b = Type::Handle(zone, class_b.DeclarationType());
const auto& decl_type_list = Type::Handle(zone, class_list.DeclarationType());
const auto& null_tav = Object::null_type_arguments();
// Test that A1.GetInstantiationOf(B) returns B<List<A1::Y>>.
{
const auto& decl_type_a1 = Type::Handle(zone, class_a1.DeclarationType());
const auto& decl_type_args_a1 =
TypeArguments::Handle(zone, decl_type_a1.arguments());
const auto& type_arg_a1_y =
TypeParameter::CheckedHandle(zone, decl_type_args_a1.TypeAt(1));
auto& tav_a1_y = TypeArguments::Handle(TypeArguments::New(1));
tav_a1_y.SetTypeAt(0, type_arg_a1_y);
tav_a1_y = tav_a1_y.Canonicalize(thread, nullptr);
auto& type_list_a1_y = Type::CheckedHandle(
zone, decl_type_list.InstantiateFrom(tav_a1_y, null_tav, kAllFree,
Heap::kNew));
type_list_a1_y ^= type_list_a1_y.Canonicalize(thread, nullptr);
auto& tav_list_a1_y = TypeArguments::Handle(TypeArguments::New(1));
tav_list_a1_y.SetTypeAt(0, type_list_a1_y);
tav_list_a1_y = tav_list_a1_y.Canonicalize(thread, nullptr);
auto& type_b_list_a1_y = Type::CheckedHandle(
zone, decl_type_b.InstantiateFrom(tav_list_a1_y, null_tav, kAllFree,
Heap::kNew));
type_b_list_a1_y ^= type_b_list_a1_y.Canonicalize(thread, nullptr);
const auto& inst_b_a1 =
Type::Handle(zone, class_a1.GetInstantiationOf(zone, class_b));
EXPECT(!inst_b_a1.IsNull());
EXPECT_TYPES_EQUAL(type_b_list_a1_y, inst_b_a1);
}
// Test that A2.GetInstantiationOf(B) returns B<List<A2::X>>.
{
const auto& decl_type_a2 = Type::Handle(zone, class_a2.DeclarationType());
const auto& decl_type_args_a2 =
TypeArguments::Handle(zone, decl_type_a2.arguments());
const auto& type_arg_a2_x =
TypeParameter::CheckedHandle(zone, decl_type_args_a2.TypeAt(1));
auto& tav_a2_x = TypeArguments::Handle(TypeArguments::New(1));
tav_a2_x.SetTypeAt(0, type_arg_a2_x);
tav_a2_x = tav_a2_x.Canonicalize(thread, nullptr);
auto& type_list_a2_x = Type::CheckedHandle(
zone, decl_type_list.InstantiateFrom(tav_a2_x, null_tav, kAllFree,
Heap::kNew));
type_list_a2_x ^= type_list_a2_x.Canonicalize(thread, nullptr);
auto& tav_list_a2_x = TypeArguments::Handle(TypeArguments::New(1));
tav_list_a2_x.SetTypeAt(0, type_list_a2_x);
tav_list_a2_x = tav_list_a2_x.Canonicalize(thread, nullptr);
auto& type_b_list_a2_x = Type::CheckedHandle(
zone, decl_type_b.InstantiateFrom(tav_list_a2_x, null_tav, kAllFree,
Heap::kNew));
type_b_list_a2_x ^= type_b_list_a2_x.Canonicalize(thread, nullptr);
const auto& inst_b_a2 =
Type::Handle(zone, class_a2.GetInstantiationOf(zone, class_b));
EXPECT(!inst_b_a2.IsNull());
EXPECT_TYPES_EQUAL(type_b_list_a2_x, inst_b_a2);
}
}
#undef EXPECT_TYPES_EQUAL
#define EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(expected, got) \
ExpectTypesEquivalent(Expect(__FILE__, __LINE__), expected, got, \
TypeEquality::kSyntactical);
static TypePtr CreateFutureOrType(const AbstractType& param,
Nullability nullability) {
const auto& async_lib = Library::Handle(Library::AsyncLibrary());
const auto& future_or_class =
Class::Handle(async_lib.LookupClass(Symbols::FutureOr()));
const auto& tav = TypeArguments::Handle(TypeArguments::New(1));
tav.SetTypeAt(0, param);
const auto& type =
AbstractType::Handle(Type::New(future_or_class, tav, nullability));
return Type::RawCast(
ClassFinalizer::FinalizeType(type, ClassFinalizer::kFinalize));
}
static TypePtr CreateFutureType(const AbstractType& param,
Nullability nullability) {
ObjectStore* const object_store = IsolateGroup::Current()->object_store();
const auto& future_class = Class::Handle(object_store->future_class());
const auto& tav = TypeArguments::Handle(TypeArguments::New(1));
tav.SetTypeAt(0, param);
const auto& type = Type::Handle(Type::New(future_class, tav, nullability));
return Type::RawCast(
ClassFinalizer::FinalizeType(type, ClassFinalizer::kFinalize));
}
ISOLATE_UNIT_TEST_CASE(AbstractType_NormalizeFutureOrType) {
// This should be kept up to date with any changes in
// https://github.com/dart-lang/language/blob/master/resources/type-system/normalization.md
ObjectStore* const object_store = IsolateGroup::Current()->object_store();
auto normalized_future_or = [&](const AbstractType& param,
Nullability nullability) -> AbstractTypePtr {
const auto& type = Type::Handle(CreateFutureOrType(param, nullability));
return type.NormalizeFutureOrType(Heap::kNew);
};
// NORM(FutureOr<T>) =
// let S be NORM(T)
// if S is a top type then S
{
const auto& type = AbstractType::Handle(normalized_future_or(
Object::dynamic_type(), Nullability::kNonNullable));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(Object::dynamic_type(), type);
}
{
const auto& type = AbstractType::Handle(
normalized_future_or(Object::void_type(), Nullability::kNonNullable));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(Object::void_type(), type);
}
{
const auto& type_nullable_object =
Type::Handle(object_store->nullable_object_type());
const auto& type = AbstractType::Handle(
normalized_future_or(type_nullable_object, Nullability::kNonNullable));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(type_nullable_object, type);
}
// if S is Object then S
{
const auto& type_non_nullable_object =
Type::Handle(object_store->non_nullable_object_type());
const auto& type = AbstractType::Handle(normalized_future_or(
type_non_nullable_object, Nullability::kNonNullable));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(type_non_nullable_object, type);
}
// if S is Object* then S
{
const auto& type_legacy_object =
Type::Handle(object_store->legacy_object_type());
const auto& type = AbstractType::Handle(
normalized_future_or(type_legacy_object, Nullability::kNonNullable));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(type_legacy_object, type);
}
// if S is Never then Future<Never>
{
const auto& type_never = Type::Handle(object_store->never_type());
const auto& expected =
Type::Handle(CreateFutureType(type_never, Nullability::kNonNullable));
const auto& got = AbstractType::Handle(
normalized_future_or(type_never, Nullability::kNonNullable));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(expected, got);
}
// if S is Null then Future<Null>?
{
const auto& type_null = Type::Handle(object_store->null_type());
const auto& expected =
Type::Handle(CreateFutureType(type_null, Nullability::kNullable));
const auto& got = AbstractType::Handle(
normalized_future_or(type_null, Nullability::kNonNullable));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(expected, got);
}
// else FutureOr<S>
// NORM(T?) =
// let S be NORM(T)
// ...
// if S is FutureOr<R> and R is nullable then S
{
const auto& type_nullable_int =
Type::Handle(object_store->nullable_int_type());
const auto& expected = Type::Handle(
CreateFutureOrType(type_nullable_int, Nullability::kNonNullable));
const auto& got = AbstractType::Handle(
normalized_future_or(type_nullable_int, Nullability::kNullable));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(expected, got);
}
}
TEST_CASE(AbstractType_InstantiatedFutureOrIsNormalized) {
const char* kScript = R"(
import 'dart:async';
FutureOr<T>? foo<T>() { return null; }
FutureOr<T?> bar<T>() { return null; }
)";
Dart_Handle api_lib = TestCase::LoadTestScript(kScript, nullptr);
EXPECT_VALID(api_lib);
TransitionNativeToVM transition(thread);
Zone* const zone = thread->zone();
ObjectStore* const object_store = IsolateGroup::Current()->object_store();
const auto& null_tav = Object::null_type_arguments();
auto instantiate_future_or =
[&](const AbstractType& generic,
const AbstractType& param) -> AbstractTypePtr {
const auto& tav = TypeArguments::Handle(TypeArguments::New(1));
tav.SetTypeAt(0, param);
return generic.InstantiateFrom(null_tav, tav, kCurrentAndEnclosingFree,
Heap::kNew);
};
const auto& root_lib =
Library::CheckedHandle(zone, Api::UnwrapHandle(api_lib));
EXPECT(!root_lib.IsNull());
const auto& foo = Function::Handle(zone, GetFunction(root_lib, "foo"));
const auto& bar = Function::Handle(zone, GetFunction(root_lib, "bar"));
const auto& foo_sig = FunctionType::Handle(zone, foo.signature());
const auto& bar_sig = FunctionType::Handle(zone, bar.signature());
const auto& nullable_future_or_T =
AbstractType::Handle(zone, foo_sig.result_type());
const auto& future_or_nullable_T =
AbstractType::Handle(zone, bar_sig.result_type());
const auto& type_nullable_object =
Type::Handle(object_store->nullable_object_type());
const auto& type_non_nullable_object =
Type::Handle(object_store->non_nullable_object_type());
const auto& type_legacy_object =
Type::Handle(object_store->legacy_object_type());
// Testing same cases as AbstractType_NormalizeFutureOrType.
// FutureOr<T>?[top type] = top type
{
const auto& got = AbstractType::Handle(
instantiate_future_or(nullable_future_or_T, Object::dynamic_type()));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(Object::dynamic_type(), got);
}
{
const auto& got = AbstractType::Handle(
instantiate_future_or(nullable_future_or_T, Object::void_type()));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(Object::void_type(), got);
}
{
const auto& got = AbstractType::Handle(
instantiate_future_or(nullable_future_or_T, type_nullable_object));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(type_nullable_object, got);
}
// FutureOr<T?>[top type] = top type
{
const auto& got = AbstractType::Handle(
instantiate_future_or(future_or_nullable_T, Object::dynamic_type()));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(Object::dynamic_type(), got);
}
{
const auto& got = AbstractType::Handle(
instantiate_future_or(future_or_nullable_T, Object::void_type()));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(Object::void_type(), got);
}
{
const auto& got = AbstractType::Handle(
instantiate_future_or(future_or_nullable_T, type_nullable_object));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(type_nullable_object, got);
}
// FutureOr<T?>[Object] = Object?
{
const auto& got = AbstractType::Handle(
instantiate_future_or(future_or_nullable_T, type_non_nullable_object));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(type_nullable_object, got);
}
// FutureOr<T?>[Object*] = Object?
{
const auto& got = AbstractType::Handle(
instantiate_future_or(future_or_nullable_T, type_legacy_object));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(type_nullable_object, got);
}
// FutureOr<T>?[Object] = Object?
{
const auto& got = AbstractType::Handle(
instantiate_future_or(nullable_future_or_T, type_non_nullable_object));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(type_nullable_object, got);
}
// FutureOr<T>?[Object*] = Object?
{
const auto& got = AbstractType::Handle(
instantiate_future_or(nullable_future_or_T, type_legacy_object));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(type_nullable_object, got);
}
const auto& type_never = Type::Handle(object_store->never_type());
const auto& type_null = Type::Handle(object_store->null_type());
// FutureOr<T?>[Never] = Future<Null>?
{
const auto& expected =
Type::Handle(CreateFutureType(type_null, Nullability::kNullable));
const auto& got = AbstractType::Handle(
instantiate_future_or(future_or_nullable_T, type_never));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(expected, got);
}
// FutureOr<T>?[Never] = Future<Never>?
{
const auto& expected =
Type::Handle(CreateFutureType(type_never, Nullability::kNullable));
const auto& got = AbstractType::Handle(
instantiate_future_or(nullable_future_or_T, type_never));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(expected, got);
}
// FutureOr<T?>[Null] = Future<Null>?
{
const auto& expected =
Type::Handle(CreateFutureType(type_null, Nullability::kNullable));
const auto& got = AbstractType::Handle(
instantiate_future_or(future_or_nullable_T, type_null));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(expected, got);
}
// FutureOr<T>?[Null] = Future<Null>?
{
const auto& expected =
Type::Handle(CreateFutureType(type_null, Nullability::kNullable));
const auto& got = AbstractType::Handle(
instantiate_future_or(nullable_future_or_T, type_null));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(expected, got);
}
const auto& type_nullable_int =
Type::Handle(object_store->nullable_int_type());
const auto& type_non_nullable_int =
Type::Handle(object_store->non_nullable_int_type());
// FutureOr<T?>[int] = FutureOr<int?>
{
const auto& expected = Type::Handle(
CreateFutureOrType(type_nullable_int, Nullability::kNonNullable));
const auto& got = AbstractType::Handle(
instantiate_future_or(future_or_nullable_T, type_non_nullable_int));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(expected, got);
}
// FutureOr<T?>[int?] = FutureOr<int?>
{
const auto& expected = Type::Handle(
CreateFutureOrType(type_nullable_int, Nullability::kNonNullable));
const auto& got = AbstractType::Handle(
instantiate_future_or(future_or_nullable_T, type_nullable_int));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(expected, got);
}
// FutureOr<T>?[int?] = FutureOr<int?>
{
const auto& expected = Type::Handle(
CreateFutureOrType(type_nullable_int, Nullability::kNonNullable));
const auto& got = AbstractType::Handle(
instantiate_future_or(nullable_future_or_T, type_nullable_int));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(expected, got);
}
// FutureOr<T>?[int] = FutureOr<int>?
{
const auto& expected = Type::Handle(
CreateFutureOrType(type_non_nullable_int, Nullability::kNullable));
const auto& got = AbstractType::Handle(
instantiate_future_or(nullable_future_or_T, type_non_nullable_int));
EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT(expected, got);
}
}
#undef EXPECT_TYPES_SYNTACTICALLY_EQUIVALENT
} // namespace dart