blob: 4b8f59dac8e3d0fba77bedb8da25b1adb1b0eee1 [file] [log] [blame]
// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "platform/globals.h"
#if defined(DART_HOST_OS_FUCHSIA)
#include "bin/process.h"
#include <errno.h>
#include <fcntl.h>
#include <lib/fdio/io.h>
#include <lib/fdio/namespace.h>
#include <lib/fdio/spawn.h>
#include <poll.h>
#include <pthread.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <zircon/process.h>
#include <zircon/processargs.h>
#include <zircon/status.h>
#include <zircon/syscalls.h>
#include <zircon/syscalls/object.h>
#include <zircon/types.h>
#include "bin/dartutils.h"
#include "bin/eventhandler.h"
#include "bin/fdutils.h"
#include "bin/file.h"
#include "bin/lockers.h"
#include "bin/namespace.h"
#include "bin/namespace_fuchsia.h"
#include "platform/signal_blocker.h"
#include "platform/syslog.h"
#include "platform/utils.h"
// #define PROCESS_LOGGING 1
#if defined(PROCESS_LOGGING)
#define LOG_ERR(msg, ...) Syslog::PrintErr("Dart Process: " msg, ##__VA_ARGS__)
#define LOG_INFO(msg, ...) Syslog::Print("Dart Process: " msg, ##__VA_ARGS__)
#else
#define LOG_ERR(msg, ...)
#define LOG_INFO(msg, ...)
#endif // defined(PROCESS_LOGGING)
namespace dart {
namespace bin {
int Process::global_exit_code_ = 0;
Mutex* Process::global_exit_code_mutex_ = nullptr;
Process::ExitHook Process::exit_hook_ = NULL;
// ProcessInfo is used to map a process id to the file descriptor for
// the pipe used to communicate the exit code of the process to Dart.
// ProcessInfo objects are kept in the static singly-linked
// ProcessInfoList.
class ProcessInfo {
public:
ProcessInfo(zx_handle_t process, intptr_t fd)
: process_(process), exit_pipe_fd_(fd) {}
~ProcessInfo() {
int closed = NO_RETRY_EXPECTED(close(exit_pipe_fd_));
if (closed != 0) {
LOG_ERR("Failed to close process exit code pipe");
}
zx_handle_close(process_);
}
zx_handle_t process() const { return process_; }
intptr_t exit_pipe_fd() const { return exit_pipe_fd_; }
ProcessInfo* next() const { return next_; }
void set_next(ProcessInfo* info) { next_ = info; }
private:
zx_handle_t process_;
intptr_t exit_pipe_fd_;
ProcessInfo* next_;
DISALLOW_COPY_AND_ASSIGN(ProcessInfo);
};
// Singly-linked list of ProcessInfo objects for all active processes
// started from Dart.
class ProcessInfoList {
public:
static void Init();
static void Cleanup();
static void AddProcess(zx_handle_t process, intptr_t fd) {
MutexLocker locker(mutex_);
ProcessInfo* info = new ProcessInfo(process, fd);
info->set_next(active_processes_);
active_processes_ = info;
}
static intptr_t LookupProcessExitFd(zx_handle_t process) {
MutexLocker locker(mutex_);
ProcessInfo* current = active_processes_;
while (current != NULL) {
if (current->process() == process) {
return current->exit_pipe_fd();
}
current = current->next();
}
return 0;
}
static bool Exists(zx_handle_t process) {
return LookupProcessExitFd(process) != 0;
}
static void RemoveProcess(zx_handle_t process) {
MutexLocker locker(mutex_);
ProcessInfo* prev = NULL;
ProcessInfo* current = active_processes_;
while (current != NULL) {
if (current->process() == process) {
if (prev == NULL) {
active_processes_ = current->next();
} else {
prev->set_next(current->next());
}
delete current;
return;
}
prev = current;
current = current->next();
}
}
private:
// Linked list of ProcessInfo objects for all active processes
// started from Dart code.
static ProcessInfo* active_processes_;
// Mutex protecting all accesses to the linked list of active
// processes.
static Mutex* mutex_;
DISALLOW_ALLOCATION();
DISALLOW_IMPLICIT_CONSTRUCTORS(ProcessInfoList);
};
ProcessInfo* ProcessInfoList::active_processes_ = NULL;
Mutex* ProcessInfoList::mutex_ = nullptr;
// The exit code handler sets up a separate thread which waits for child
// processes to terminate. That separate thread can then get the exit code from
// processes that have exited and communicate it to Dart through the
// event loop.
class ExitCodeHandler {
public:
static void Init();
static void Cleanup();
// Notify the ExitCodeHandler that another process exists.
static void Start() {
// Multiple isolates could be starting processes at the same
// time. Make sure that only one ExitCodeHandler thread exists.
MonitorLocker locker(monitor_);
if (running_) {
return;
}
LOG_INFO("ExitCodeHandler Starting\n");
zx_status_t status = zx_port_create(0, &port_);
if (status != ZX_OK) {
FATAL1("ExitCodeHandler: zx_port_create failed: %s\n",
zx_status_get_string(status));
return;
}
// Start thread that handles process exits when wait returns.
intptr_t result =
Thread::Start("dart:io Process.start", ExitCodeHandlerEntry, 0);
if (result != 0) {
FATAL1("Failed to start exit code handler worker thread %ld", result);
}
running_ = true;
}
static zx_status_t Add(zx_handle_t process) {
MonitorLocker locker(monitor_);
LOG_INFO("ExitCodeHandler Adding Process: %u\n", process);
return zx_object_wait_async(process, port_, static_cast<uint64_t>(process),
ZX_TASK_TERMINATED, ZX_WAIT_ASYNC_ONCE);
}
static void Terminate() {
MonitorLocker locker(monitor_);
if (!running_) {
return;
}
running_ = false;
LOG_INFO("ExitCodeHandler Terminating\n");
SendShutdownMessage();
while (!terminate_done_) {
monitor_->Wait(Monitor::kNoTimeout);
}
zx_handle_close(port_);
LOG_INFO("ExitCodeHandler Terminated\n");
}
private:
static const uint64_t kShutdownPacketKey = 1;
static void SendShutdownMessage() {
zx_port_packet_t pkt;
pkt.key = kShutdownPacketKey;
zx_status_t status = zx_port_queue(port_, &pkt);
if (status != ZX_OK) {
Syslog::PrintErr("ExitCodeHandler: zx_port_queue failed: %s\n",
zx_status_get_string(status));
}
}
// Entry point for the separate exit code handler thread started by
// the ExitCodeHandler.
static void ExitCodeHandlerEntry(uword param) {
LOG_INFO("ExitCodeHandler Entering ExitCodeHandler thread\n");
zx_port_packet_t pkt;
while (true) {
zx_status_t status = zx_port_wait(port_, ZX_TIME_INFINITE, &pkt);
if (status != ZX_OK) {
FATAL1("ExitCodeHandler: zx_port_wait failed: %s\n",
zx_status_get_string(status));
}
if (pkt.type == ZX_PKT_TYPE_USER) {
ASSERT(pkt.key == kShutdownPacketKey);
break;
}
zx_handle_t process = static_cast<zx_handle_t>(pkt.key);
zx_signals_t observed = pkt.signal.observed;
if ((observed & ZX_TASK_TERMINATED) == ZX_SIGNAL_NONE) {
LOG_ERR("ExitCodeHandler: Unexpected signals, process %u: %ux\n",
process, observed);
}
SendProcessStatus(process);
}
LOG_INFO("ExitCodeHandler thread shutting down\n");
terminate_done_ = true;
monitor_->Notify();
}
static void SendProcessStatus(zx_handle_t process) {
LOG_INFO("ExitCodeHandler thread getting process status: %u\n", process);
int return_code = -1;
zx_info_process_t proc_info;
zx_status_t status = zx_object_get_info(
process, ZX_INFO_PROCESS, &proc_info, sizeof(proc_info), NULL, NULL);
if (status != ZX_OK) {
Syslog::PrintErr("ExitCodeHandler: zx_object_get_info failed: %s\n",
zx_status_get_string(status));
} else {
return_code = proc_info.return_code;
}
zx_handle_close(process);
LOG_INFO("ExitCodeHandler thread process %u exited with %d\n", process,
return_code);
const intptr_t exit_code_fd = ProcessInfoList::LookupProcessExitFd(process);
LOG_INFO("ExitCodeHandler thread sending %u code %d on fd %ld\n", process,
return_code, exit_code_fd);
if (exit_code_fd != 0) {
int exit_message[2];
exit_message[0] = abs(return_code);
exit_message[1] = return_code >= 0 ? 0 : 1;
intptr_t result = FDUtils::WriteToBlocking(exit_code_fd, &exit_message,
sizeof(exit_message));
ASSERT((result == -1) || (result == sizeof(exit_code_fd)));
if ((result == -1) && (errno != EPIPE)) {
int err = errno;
Syslog::PrintErr("Failed to write exit code for process %d: errno=%d\n",
process, err);
}
LOG_INFO("ExitCodeHandler thread wrote %ld bytes to fd %ld\n", result,
exit_code_fd);
LOG_INFO("ExitCodeHandler thread removing process %u from list\n",
process);
ProcessInfoList::RemoveProcess(process);
} else {
LOG_ERR("ExitCodeHandler: Process %u not found\n", process);
}
}
static zx_handle_t port_;
// Protected by monitor_.
static bool terminate_done_;
static bool running_;
static Monitor* monitor_;
DISALLOW_ALLOCATION();
DISALLOW_IMPLICIT_CONSTRUCTORS(ExitCodeHandler);
};
zx_handle_t ExitCodeHandler::port_ = ZX_HANDLE_INVALID;
bool ExitCodeHandler::running_ = false;
bool ExitCodeHandler::terminate_done_ = false;
Monitor* ExitCodeHandler::monitor_ = nullptr;
void Process::TerminateExitCodeHandler() {
ExitCodeHandler::Terminate();
}
intptr_t Process::CurrentProcessId() {
return static_cast<intptr_t>(getpid());
}
int64_t Process::CurrentRSS() {
zx_info_task_stats_t task_stats;
zx_handle_t process = zx_process_self();
zx_status_t status = zx_object_get_info(
process, ZX_INFO_TASK_STATS, &task_stats, sizeof(task_stats), NULL, NULL);
if (status != ZX_OK) {
// TODO(zra): Translate this to a Unix errno.
errno = status;
return -1;
}
return task_stats.mem_private_bytes + task_stats.mem_shared_bytes;
}
int64_t Process::MaxRSS() {
// There is currently no way to get the high watermark value on Fuchsia, so
// just return the current RSS value.
return CurrentRSS();
}
class IOHandleScope {
public:
explicit IOHandleScope(IOHandle* io_handle) : io_handle_(io_handle) {}
~IOHandleScope() {
io_handle_->Close();
io_handle_->Release();
}
private:
IOHandle* io_handle_;
DISALLOW_ALLOCATION();
DISALLOW_COPY_AND_ASSIGN(IOHandleScope);
};
bool Process::Wait(intptr_t pid,
intptr_t in,
intptr_t out,
intptr_t err,
intptr_t exit_event,
ProcessResult* result) {
IOHandle* out_iohandle = reinterpret_cast<IOHandle*>(out);
IOHandle* err_iohandle = reinterpret_cast<IOHandle*>(err);
IOHandle* exit_iohandle = reinterpret_cast<IOHandle*>(exit_event);
// There is no return from this function using Dart_PropagateError
// as memory used by the buffer lists is freed through their
// destructors.
BufferList out_data;
BufferList err_data;
union {
uint8_t bytes[8];
int32_t ints[2];
} exit_code_data;
// Create a port, which is like an epoll() fd on Linux.
zx_handle_t port;
zx_status_t status = zx_port_create(0, &port);
if (status != ZX_OK) {
Syslog::PrintErr("Process::Wait: zx_port_create failed: %s\n",
zx_status_get_string(status));
return false;
}
IOHandle* out_tmp = out_iohandle;
IOHandle* err_tmp = err_iohandle;
IOHandle* exit_tmp = exit_iohandle;
const uint64_t out_key = reinterpret_cast<uint64_t>(out_tmp);
const uint64_t err_key = reinterpret_cast<uint64_t>(err_tmp);
const uint64_t exit_key = reinterpret_cast<uint64_t>(exit_tmp);
const uint32_t events = POLLRDHUP | POLLIN;
if (!out_tmp->AsyncWait(port, events, out_key)) {
return false;
}
if (!err_tmp->AsyncWait(port, events, err_key)) {
return false;
}
if (!exit_tmp->AsyncWait(port, events, exit_key)) {
return false;
}
while ((out_tmp != NULL) || (err_tmp != NULL) || (exit_tmp != NULL)) {
zx_port_packet_t pkt;
status = zx_port_wait(port, ZX_TIME_INFINITE, &pkt);
if (status != ZX_OK) {
Syslog::PrintErr("Process::Wait: zx_port_wait failed: %s\n",
zx_status_get_string(status));
return false;
}
IOHandle* event_handle = reinterpret_cast<IOHandle*>(pkt.key);
const intptr_t event_mask = event_handle->WaitEnd(pkt.signal.observed);
if (event_handle == out_tmp) {
if ((event_mask & POLLIN) != 0) {
const intptr_t avail = FDUtils::AvailableBytes(out_tmp->fd());
if (!out_data.Read(out_tmp->fd(), avail)) {
return false;
}
}
if ((event_mask & POLLRDHUP) != 0) {
out_tmp->CancelWait(port, out_key);
out_tmp = NULL;
}
} else if (event_handle == err_tmp) {
if ((event_mask & POLLIN) != 0) {
const intptr_t avail = FDUtils::AvailableBytes(err_tmp->fd());
if (!err_data.Read(err_tmp->fd(), avail)) {
return false;
}
}
if ((event_mask & POLLRDHUP) != 0) {
err_tmp->CancelWait(port, err_key);
err_tmp = NULL;
}
} else if (event_handle == exit_tmp) {
if ((event_mask & POLLIN) != 0) {
const intptr_t avail = FDUtils::AvailableBytes(exit_tmp->fd());
if (avail == 8) {
intptr_t b =
NO_RETRY_EXPECTED(read(exit_tmp->fd(), exit_code_data.bytes, 8));
if (b != 8) {
return false;
}
}
}
if ((event_mask & POLLRDHUP) != 0) {
exit_tmp->CancelWait(port, exit_key);
exit_tmp = NULL;
}
} else {
Syslog::PrintErr("Process::Wait: Unexpected wait key: %p\n",
event_handle);
}
if (out_tmp != NULL) {
if (!out_tmp->AsyncWait(port, events, out_key)) {
return false;
}
}
if (err_tmp != NULL) {
if (!err_tmp->AsyncWait(port, events, err_key)) {
return false;
}
}
if (exit_tmp != NULL) {
if (!exit_tmp->AsyncWait(port, events, exit_key)) {
return false;
}
}
}
// All handles closed and all data read.
result->set_stdout_data(out_data.GetData());
result->set_stderr_data(err_data.GetData());
DEBUG_ASSERT(out_data.IsEmpty());
DEBUG_ASSERT(err_data.IsEmpty());
// Calculate the exit code.
intptr_t exit_code = exit_code_data.ints[0];
intptr_t negative = exit_code_data.ints[1];
if (negative != 0) {
exit_code = -exit_code;
}
result->set_exit_code(exit_code);
// Close the process handle.
zx_handle_t process = static_cast<zx_handle_t>(pid);
zx_handle_close(process);
return true;
}
bool Process::Kill(intptr_t id, int signal) {
LOG_INFO("Sending signal %d to process with id %ld\n", signal, id);
// zx_task_kill is definitely going to kill the process.
if ((signal != SIGTERM) && (signal != SIGKILL)) {
LOG_ERR("Signal %d not supported\n", signal);
errno = ENOSYS;
return false;
}
// We can only use zx_task_kill if we know id is a process handle, and we only
// know that for sure if it's in our list.
zx_handle_t process = static_cast<zx_handle_t>(id);
if (!ProcessInfoList::Exists(process)) {
LOG_ERR("Process %ld wasn't in the ProcessInfoList\n", id);
errno = ESRCH; // No such process.
return false;
}
zx_status_t status = zx_task_kill(process);
if (status != ZX_OK) {
LOG_ERR("zx_task_kill failed: %s\n", zx_status_get_string(status));
errno = EPERM; // TODO(zra): Figure out what it really should be.
return false;
}
LOG_INFO("Signal %d sent successfully to process %ld\n", signal, id);
return true;
}
class ProcessStarter {
public:
ProcessStarter(Namespace* namespc,
const char* path,
char* arguments[],
intptr_t arguments_length,
const char* working_directory,
char* environment[],
intptr_t environment_length,
ProcessStartMode mode,
intptr_t* in,
intptr_t* out,
intptr_t* err,
intptr_t* id,
intptr_t* exit_event,
char** os_error_message)
: namespc_(namespc),
path_(path),
working_directory_(working_directory),
mode_(mode),
in_(in),
out_(out),
err_(err),
id_(id),
exit_event_(exit_event),
os_error_message_(os_error_message) {
LOG_INFO("ProcessStarter: ctor %s with %ld args, mode = %d\n", path,
arguments_length, mode);
read_in_ = -1;
read_err_ = -1;
write_out_ = -1;
program_arguments_ = reinterpret_cast<char**>(Dart_ScopeAllocate(
(arguments_length + 2) * sizeof(*program_arguments_)));
program_arguments_[0] = const_cast<char*>(path_);
for (int i = 0; i < arguments_length; i++) {
program_arguments_[i + 1] = arguments[i];
}
program_arguments_[arguments_length + 1] = NULL;
program_environment_ = NULL;
if (environment != NULL) {
program_environment_ = reinterpret_cast<char**>(Dart_ScopeAllocate(
(environment_length + 1) * sizeof(*program_environment_)));
for (int i = 0; i < environment_length; i++) {
program_environment_[i] = environment[i];
}
program_environment_[environment_length] = NULL;
}
}
~ProcessStarter() {
if (read_in_ != -1) {
close(read_in_);
}
if (read_err_ != -1) {
close(read_err_);
}
if (write_out_ != -1) {
close(write_out_);
}
}
int Start() {
LOG_INFO("ProcessStarter: Start()\n");
int exit_pipe_fds[2];
intptr_t result = NO_RETRY_EXPECTED(pipe(exit_pipe_fds));
if (result != 0) {
*os_error_message_ = DartUtils::ScopedCopyCString(
"Failed to create exit code pipe for process start.");
return result;
}
LOG_INFO("ProcessStarter: Start() set up exit_pipe_fds (%d, %d)\n",
exit_pipe_fds[0], exit_pipe_fds[1]);
NamespaceScope ns(namespc_, path_);
const int pathfd =
TEMP_FAILURE_RETRY(openat(ns.fd(), ns.path(), O_RDONLY));
zx_handle_t vmo = ZX_HANDLE_INVALID;
zx_status_t status = fdio_get_vmo_clone(pathfd, &vmo);
close(pathfd);
if (status != ZX_OK) {
close(exit_pipe_fds[0]);
close(exit_pipe_fds[1]);
*os_error_message_ = DartUtils::ScopedCopyCString(
"Failed to load executable for process start.");
return status;
}
// After reading the binary into a VMO, we need to mark it as executable,
// since the VMO returned by fdio_get_vmo_clone should be read-only.
status = zx_vmo_replace_as_executable(vmo, ZX_HANDLE_INVALID, &vmo);
if (status != ZX_OK) {
close(exit_pipe_fds[0]);
close(exit_pipe_fds[1]);
*os_error_message_ = DartUtils::ScopedCopyCString(
"Failed to mark binary as executable for process start.");
return status;
}
fdio_spawn_action_t* actions;
const intptr_t actions_count = BuildSpawnActions(
namespc_->namespc()->fdio_ns(), &actions);
if (actions_count < 0) {
zx_handle_close(vmo);
close(exit_pipe_fds[0]);
close(exit_pipe_fds[1]);
*os_error_message_ = DartUtils::ScopedCopyCString(
"Failed to build spawn actions array.");
return ZX_ERR_IO;
}
// TODO(zra): Use the supplied working directory when fdio_spawn_vmo adds an
// API to set it.
LOG_INFO("ProcessStarter: Start() Calling fdio_spawn_vmo\n");
zx_handle_t process = ZX_HANDLE_INVALID;
char err_msg[FDIO_SPAWN_ERR_MSG_MAX_LENGTH];
uint32_t flags = FDIO_SPAWN_CLONE_JOB | FDIO_SPAWN_DEFAULT_LDSVC |
FDIO_SPAWN_CLONE_UTC_CLOCK;
status = fdio_spawn_vmo(ZX_HANDLE_INVALID, flags, vmo, program_arguments_,
program_environment_, actions_count, actions,
&process, err_msg);
// Handles are consumed by fdio_spawn_vmo even if it fails.
delete[] actions;
if (status != ZX_OK) {
LOG_ERR("ProcessStarter: Start() fdio_spawn_vmo failed\n");
close(exit_pipe_fds[0]);
close(exit_pipe_fds[1]);
ReportStartError(err_msg);
return status;
}
LOG_INFO("ProcessStarter: Start() adding %u to list with exit_pipe %d\n",
process, exit_pipe_fds[1]);
ProcessInfoList::AddProcess(process, exit_pipe_fds[1]);
ExitCodeHandler::Start();
status = ExitCodeHandler::Add(process);
if (status != ZX_OK) {
LOG_ERR("ProcessStarter: ExitCodeHandler: Add failed: %s\n",
zx_status_get_string(status));
close(exit_pipe_fds[0]);
close(exit_pipe_fds[1]);
zx_task_kill(process);
ProcessInfoList::RemoveProcess(process);
ReportStartError(zx_status_get_string(status));
return status;
}
// The IOHandles allocated below are returned to Dart code. The Dart code
// calls into the runtime again to allocate a C++ Socket object, which
// becomes the native field of a Dart _NativeSocket object. The C++ Socket
// object and the EventHandler manage the lifetime of these IOHandles.
*id_ = process;
FDUtils::SetNonBlocking(read_in_);
*in_ = reinterpret_cast<intptr_t>(new IOHandle(read_in_));
read_in_ = -1;
FDUtils::SetNonBlocking(read_err_);
*err_ = reinterpret_cast<intptr_t>(new IOHandle(read_err_));
read_err_ = -1;
FDUtils::SetNonBlocking(write_out_);
*out_ = reinterpret_cast<intptr_t>(new IOHandle(write_out_));
write_out_ = -1;
FDUtils::SetNonBlocking(exit_pipe_fds[0]);
*exit_event_ = reinterpret_cast<intptr_t>(new IOHandle(exit_pipe_fds[0]));
return 0;
}
private:
void ReportStartError(const char* errormsg) {
const intptr_t kMaxMessageSize = 256;
char* message = DartUtils::ScopedCString(kMaxMessageSize);
snprintf(message, kMaxMessageSize, "Process start failed: %s\n", errormsg);
*os_error_message_ = message;
}
zx_status_t AddPipe(int target_fd, int* local_fd,
fdio_spawn_action_t* action) {
zx_status_t status = fdio_pipe_half(local_fd, &action->h.handle);
if (status != ZX_OK) return status;
action->action = FDIO_SPAWN_ACTION_ADD_HANDLE;
action->h.id = PA_HND(PA_HND_TYPE(PA_FD), target_fd);
return ZX_OK;
}
// Fills in 'actions_out' and returns action count.
intptr_t BuildSpawnActions(fdio_ns_t* ns, fdio_spawn_action_t** actions_out) {
const intptr_t fixed_actions_cnt = 4;
intptr_t ns_cnt = 0;
zx_status_t status;
// First, figure out how many namespace actions are needed.
fdio_flat_namespace_t* flat_ns = nullptr;
if (ns != nullptr) {
status = fdio_ns_export(ns, &flat_ns);
if (status != ZX_OK) {
LOG_ERR("ProcessStarter: BuildSpawnActions: fdio_ns_export: %s\n",
zx_status_get_string(status));
return -1;
}
ns_cnt = flat_ns->count;
}
// Allocate the actions array.
const intptr_t actions_cnt = ns_cnt + fixed_actions_cnt;
fdio_spawn_action_t* actions = new fdio_spawn_action_t[actions_cnt];
// Fill in the entries for passing stdin/out/err handles, and the program
// name.
status = AddPipe(0, &write_out_, &actions[0]);
if (status != ZX_OK) {
LOG_ERR("ProcessStarter: BuildSpawnActions: stdout AddPipe failed: %s\n",
zx_status_get_string(status));
if (flat_ns != nullptr) {
fdio_ns_free_flat_ns(flat_ns);
}
return -1;
}
status = AddPipe(1, &read_in_, &actions[1]);
if (status != ZX_OK) {
LOG_ERR("ProcessStarter: BuildSpawnActions: stdin AddPipe failed: %s\n",
zx_status_get_string(status));
if (flat_ns != nullptr) {
fdio_ns_free_flat_ns(flat_ns);
}
return -1;
}
status = AddPipe(2, &read_err_, &actions[2]);
if (status != ZX_OK) {
LOG_ERR("ProcessStarter: BuildSpawnActions: stderr AddPipe failed: %s\n",
zx_status_get_string(status));
if (flat_ns != nullptr) {
fdio_ns_free_flat_ns(flat_ns);
}
return -1;
}
actions[3] = {
.action = FDIO_SPAWN_ACTION_SET_NAME,
.name = {
.data = program_arguments_[0],
},
};
// Then fill in the namespace actions.
if (ns != nullptr) {
for (size_t i = 0; i < flat_ns->count; i++) {
actions[fixed_actions_cnt + i] = {
.action = FDIO_SPAWN_ACTION_ADD_NS_ENTRY,
.ns = {
.prefix = DartUtils::ScopedCopyCString(flat_ns->path[i]),
.handle = flat_ns->handle[i],
},
};
flat_ns->handle[i] = ZX_HANDLE_INVALID;
}
fdio_ns_free_flat_ns(flat_ns);
flat_ns = nullptr;
}
*actions_out = actions;
return actions_cnt;
}
int read_in_; // Pipe for stdout to child process.
int read_err_; // Pipe for stderr to child process.
int write_out_; // Pipe for stdin to child process.
char** program_arguments_;
char** program_environment_;
Namespace* namespc_;
const char* path_;
const char* working_directory_;
ProcessStartMode mode_;
intptr_t* in_;
intptr_t* out_;
intptr_t* err_;
intptr_t* id_;
intptr_t* exit_event_;
char** os_error_message_;
DISALLOW_ALLOCATION();
DISALLOW_IMPLICIT_CONSTRUCTORS(ProcessStarter);
};
int Process::Start(Namespace* namespc,
const char* path,
char* arguments[],
intptr_t arguments_length,
const char* working_directory,
char* environment[],
intptr_t environment_length,
ProcessStartMode mode,
intptr_t* in,
intptr_t* out,
intptr_t* err,
intptr_t* id,
intptr_t* exit_event,
char** os_error_message) {
if (mode != kNormal) {
*os_error_message = DartUtils::ScopedCopyCString(
"Only ProcessStartMode.NORMAL is supported on this platform");
return -1;
}
ProcessStarter starter(namespc, path, arguments, arguments_length,
working_directory, environment, environment_length,
mode, in, out, err, id, exit_event, os_error_message);
return starter.Start();
}
intptr_t Process::SetSignalHandler(intptr_t signal) {
errno = ENOSYS;
return -1;
}
void Process::ClearSignalHandler(intptr_t signal, Dart_Port port) {}
void Process::ClearSignalHandlerByFd(intptr_t fd, Dart_Port port) {}
void ProcessInfoList::Init() {
active_processes_ = NULL;
ASSERT(ProcessInfoList::mutex_ == nullptr);
ProcessInfoList::mutex_ = new Mutex();
}
void ProcessInfoList::Cleanup() {
ASSERT(ProcessInfoList::mutex_ != nullptr);
delete ProcessInfoList::mutex_;
ProcessInfoList::mutex_ = nullptr;
}
void ExitCodeHandler::Init() {
port_ = ZX_HANDLE_INVALID;
running_ = false;
terminate_done_ = false;
ASSERT(ExitCodeHandler::monitor_ == nullptr);
ExitCodeHandler::monitor_ = new Monitor();
}
void ExitCodeHandler::Cleanup() {
ASSERT(ExitCodeHandler::monitor_ != nullptr);
delete ExitCodeHandler::monitor_;
ExitCodeHandler::monitor_ = nullptr;
}
void Process::Init() {
ExitCodeHandler::Init();
ProcessInfoList::Init();
ASSERT(Process::global_exit_code_mutex_ == nullptr);
Process::global_exit_code_mutex_ = new Mutex();
}
void Process::Cleanup() {
ASSERT(Process::global_exit_code_mutex_ != nullptr);
delete Process::global_exit_code_mutex_;
Process::global_exit_code_mutex_ = nullptr;
ProcessInfoList::Cleanup();
ExitCodeHandler::Cleanup();
}
} // namespace bin
} // namespace dart
#endif // defined(DART_HOST_OS_FUCHSIA)