blob: 50e428346275917b8013fc339136450435efd81a [file] [log] [blame]
// Copyright (c) 2022, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'package:dart2wasm/class_info.dart';
import 'package:dart2wasm/code_generator.dart';
import 'package:dart2wasm/translator.dart';
import 'package:kernel/ast.dart';
import 'package:kernel/core_types.dart';
import 'package:wasm_builder/wasm_builder.dart' as w;
class InterfaceTypeEnvironment {
final Map<TypeParameter, int> typeOffsets = {};
void _add(InterfaceType type) {
Class cls = type.classNode;
if (typeOffsets.containsKey(cls)) {
return;
}
int i = 0;
for (TypeParameter typeParameter in cls.typeParameters) {
typeOffsets[typeParameter] = i++;
}
}
int lookup(TypeParameter typeParameter) => typeOffsets[typeParameter]!;
}
/// Helper class for building runtime types.
class Types {
final Translator translator;
late final typeClassInfo = translator.classInfo[translator.typeClass]!;
late final w.ValueType typeListExpectedType = classAndFieldToType(
translator.interfaceTypeClass, FieldIndex.interfaceTypeTypeArguments);
late final w.ValueType namedParametersExpectedType = classAndFieldToType(
translator.functionTypeClass, FieldIndex.functionTypeNamedParameters);
/// A mapping from concrete subclass `classID` to [Map]s of superclass
/// `classID` and the necessary substitutions which must be performed to test
/// for a valid subtyping relationship.
late final Map<int, Map<int, List<DartType>>> typeRules = _buildTypeRules();
/// We will build the [interfaceTypeEnvironment] when building the
/// [typeRules].
final InterfaceTypeEnvironment interfaceTypeEnvironment =
InterfaceTypeEnvironment();
/// Because we can't currently support [Map]s in our `TypeUniverse`, we have
/// to decompose [typeRules] into two [Map]s based on [List]s.
///
/// [typeRulesSupers] is a [List] where the index in the list is a subclasses'
/// `classID` and the value at that index is a [List] of superclass
/// `classID`s.
late final List<List<int>> typeRulesSupers = _buildTypeRulesSupers();
/// [typeRulesSubstitutions] is a [List] where the index in the list is a
/// subclasses' `classID` and the value at that index is a [List] indexed by
/// the index of the superclasses' `classID` in [typeRulesSuper] and the value
/// at that index is a [List] of [DartType]s which must be substituted for the
/// subtyping relationship to be valid.
late final List<List<List<DartType>>> typeRulesSubstitutions =
_buildTypeRulesSubstitutions();
Types(this.translator);
w.ValueType classAndFieldToType(Class cls, int fieldIndex) =>
translator.classInfo[cls]!.struct.fields[fieldIndex].type.unpacked;
Iterable<Class> _getConcreteSubtypes(Class cls) =>
translator.subtypes.getSubtypesOf(cls).where((c) => !c.isAbstract);
w.ValueType get nullableTypeType => typeClassInfo.nullableType;
w.ValueType get nonNullableTypeType => typeClassInfo.nonNullableType;
InterfaceType get namedParameterType =>
InterfaceType(translator.namedParameterClass, Nullability.nonNullable);
InterfaceType get typeType =>
InterfaceType(translator.typeClass, Nullability.nonNullable);
CoreTypes get coreTypes => translator.coreTypes;
/// Builds a [Map<int, Map<int, List<DartType>>>] to store subtype
/// information. The first key is the class id of a subtype. This returns a
/// map where each key is the class id of a transitively implemented super
/// type and each value is a list of the necessary type substitutions required
/// for the subtyping relationship to be valid.
Map<int, Map<int, List<DartType>>> _buildTypeRules() {
List<ClassInfo> classes = translator.classes;
Map<int, Map<int, List<DartType>>> subtypeMap = {};
for (ClassInfo classInfo in classes) {
ClassInfo superclassInfo = classInfo;
// We don't need type rules for any class without a superclass, or for
// classes whose supertype is [Object]. The latter case will be handled
// directly in the subtype checking algorithm.
if (superclassInfo.cls == null ||
superclassInfo.cls == coreTypes.objectClass) continue;
Class superclass = superclassInfo.cls!;
Iterable<Class> subclasses =
_getConcreteSubtypes(superclass).where((cls) => cls != superclass);
Iterable<InterfaceType> subtypes = subclasses.map(
(Class cls) => cls.getThisType(coreTypes, Nullability.nonNullable));
for (InterfaceType subtype in subtypes) {
interfaceTypeEnvironment._add(subtype);
List<DartType>? typeArguments = translator.hierarchy
.getTypeArgumentsAsInstanceOf(subtype, superclass);
ClassInfo subclassInfo = translator.classInfo[subtype.classNode]!;
Map<int, List<DartType>> substitutionMap =
subtypeMap[subclassInfo.classId] ??= {};
substitutionMap[superclassInfo.classId] = typeArguments ?? const [];
}
}
return subtypeMap;
}
List<List<int>> _buildTypeRulesSupers() {
List<List<int>> typeRulesSupers = [];
for (int i = 0; i < translator.classInfoCollector.nextClassId; i++) {
List<int>? superclassIds = typeRules[i]?.keys.toList();
if (superclassIds == null) {
typeRulesSupers.add(const []);
} else {
superclassIds.sort();
typeRulesSupers.add(superclassIds);
}
}
return typeRulesSupers;
}
List<List<List<DartType>>> _buildTypeRulesSubstitutions() {
List<List<List<DartType>>> typeRulesSubstitutions = [];
for (int i = 0; i < translator.classInfoCollector.nextClassId; i++) {
List<int> supers = typeRulesSupers[i];
typeRulesSubstitutions.add(supers.isEmpty ? const [] : []);
for (int j = 0; j < supers.length; j++) {
int superId = supers[j];
typeRulesSubstitutions.last.add(typeRules[i]![superId]!);
}
}
return typeRulesSubstitutions;
}
/// Builds a map of subclasses to the transitive set of superclasses they
/// implement.
/// TODO(joshualitt): This implementation is just temporary. Eventually we
/// should move to a data structure more closely resembling [typeRules].
w.ValueType makeTypeRulesSupers(w.Instructions b) {
w.ValueType expectedType =
translator.classInfo[translator.immutableListClass]!.nonNullableType;
DartType listIntType = InterfaceType(translator.immutableListClass,
Nullability.nonNullable, [translator.coreTypes.intNonNullableRawType]);
List<ListConstant> listIntConstant = [];
for (List<int> supers in typeRulesSupers) {
listIntConstant.add(ListConstant(
listIntType, supers.map((i) => IntConstant(i)).toList()));
}
DartType listListIntType = InterfaceType(
translator.immutableListClass, Nullability.nonNullable, [listIntType]);
translator.constants.instantiateConstant(
null, b, ListConstant(listListIntType, listIntConstant), expectedType);
return expectedType;
}
/// Similar to the above, but provides the substitutions required for each
/// supertype.
/// TODO(joshualitt): Like [makeTypeRulesSupers], this is just temporary.
w.ValueType makeTypeRulesSubstitutions(w.Instructions b) {
w.ValueType expectedType =
translator.classInfo[translator.immutableListClass]!.nonNullableType;
DartType listTypeType = InterfaceType(
translator.immutableListClass,
Nullability.nonNullable,
[translator.typeClass.getThisType(coreTypes, Nullability.nonNullable)]);
DartType listListTypeType = InterfaceType(
translator.immutableListClass, Nullability.nonNullable, [listTypeType]);
DartType listListListTypeType = InterfaceType(translator.immutableListClass,
Nullability.nonNullable, [listListTypeType]);
List<ListConstant> substitutionsConstantL0 = [];
for (List<List<DartType>> substitutionsL1 in typeRulesSubstitutions) {
List<ListConstant> substitutionsConstantL1 = [];
for (List<DartType> substitutionsL2 in substitutionsL1) {
substitutionsConstantL1.add(ListConstant(
listTypeType,
substitutionsL2.map((t) {
// TODO(joshualitt): implement generic functions
if (t is FunctionType && isGenericFunction(t)) {
return TypeLiteralConstant(DynamicType());
} else {
return TypeLiteralConstant(t);
}
}).toList()));
}
substitutionsConstantL0
.add(ListConstant(listListTypeType, substitutionsConstantL1));
}
translator.constants.instantiateConstant(
null,
b,
ListConstant(listListListTypeType, substitutionsConstantL0),
expectedType);
return expectedType;
}
bool isGenericFunction(FunctionType type) => type.typeParameters.isNotEmpty;
bool isGenericFunctionTypeParameter(TypeParameterType type) =>
type.parameter.parent == null;
bool _isTypeConstant(DartType type) {
return type is DynamicType ||
type is VoidType ||
type is NeverType ||
type is NullType ||
type is FutureOrType && _isTypeConstant(type.typeArgument) ||
(type is FunctionType &&
type.typeParameters.isEmpty && // TODO(joshualitt) generic functions
_isTypeConstant(type.returnType) &&
type.positionalParameters.every(_isTypeConstant) &&
type.namedParameters.every((n) => _isTypeConstant(n.type))) ||
type is InterfaceType && type.typeArguments.every(_isTypeConstant);
}
Class classForType(DartType type) {
if (type is DynamicType) {
return translator.dynamicTypeClass;
} else if (type is VoidType) {
return translator.voidTypeClass;
} else if (type is NeverType) {
// For runtime types with sound null safety, `Never?` is the same as
// `Null`.
if (type.nullability == Nullability.nullable) {
return translator.nullTypeClass;
} else {
return translator.neverTypeClass;
}
} else if (type is NullType) {
return translator.nullTypeClass;
} else if (type is FutureOrType) {
return translator.futureOrTypeClass;
} else if (type is InterfaceType) {
return translator.interfaceTypeClass;
} else if (type is FunctionType) {
if (isGenericFunction(type)) {
return translator.genericFunctionTypeClass;
} else {
return translator.functionTypeClass;
}
} else if (type is TypeParameterType) {
if (isGenericFunctionTypeParameter(type)) {
return translator.genericFunctionTypeParameterTypeClass;
} else {
return translator.interfaceTypeParameterTypeClass;
}
}
throw "Unexpected DartType: $type";
}
void _makeTypeList(CodeGenerator codeGen, List<DartType> types) {
w.ValueType listType = codeGen.makeListFromExpressions(
types.map((t) => TypeLiteral(t)).toList(), typeType);
translator.convertType(codeGen.function, listType, typeListExpectedType);
}
void _makeInterfaceType(
CodeGenerator codeGen, ClassInfo info, InterfaceType type) {
w.Instructions b = codeGen.b;
ClassInfo typeInfo = translator.classInfo[type.classNode]!;
encodeNullability(b, type);
b.i64_const(typeInfo.classId);
_makeTypeList(codeGen, type.typeArguments);
}
void _makeFutureOrType(CodeGenerator codeGen, FutureOrType type) {
w.Instructions b = codeGen.b;
w.DefinedFunction function = codeGen.function;
// We canonicalize `FutureOr<T?>` to `FutureOr<T?>?`. However, we have to
// take special care to handle the case where we have
// undetermined nullability. To handle this, we emit the type argument, and
// read back its nullability at runtime.
if (type.nullability == Nullability.undetermined) {
w.ValueType typeArgumentType = makeType(codeGen, type.typeArgument);
w.Local typeArgumentTemporary = codeGen.addLocal(typeArgumentType);
b.local_tee(typeArgumentTemporary);
b.struct_get(typeClassInfo.struct, FieldIndex.typeIsNullable);
b.local_get(typeArgumentTemporary);
translator.convertType(function, typeArgumentType, nonNullableTypeType);
} else {
encodeNullability(b, type);
makeType(codeGen, type.typeArgument);
}
}
void _makeFunctionType(
CodeGenerator codeGen, ClassInfo info, FunctionType type) {
w.Instructions b = codeGen.b;
encodeNullability(b, type);
makeType(codeGen, type.returnType);
if (type.positionalParameters.every(_isTypeConstant)) {
translator.constants.instantiateConstant(
codeGen.function,
b,
translator.constants.makeTypeList(type.positionalParameters),
typeListExpectedType);
} else {
_makeTypeList(codeGen, type.positionalParameters);
}
b.i64_const(type.requiredParameterCount);
if (type.namedParameters.every((n) => _isTypeConstant(n.type))) {
translator.constants.instantiateConstant(
codeGen.function,
b,
translator.constants.makeNamedParametersList(type),
namedParametersExpectedType);
} else {
Class namedParameterClass = translator.namedParameterClass;
Constructor namedParameterConstructor =
namedParameterClass.constructors.single;
List<Expression> expressions = [];
for (NamedType n in type.namedParameters) {
expressions.add(_isTypeConstant(n.type)
? ConstantExpression(
translator.constants.makeNamedParameterConstant(n),
namedParameterType)
: ConstructorInvocation(
namedParameterConstructor,
Arguments([
StringLiteral(n.name),
TypeLiteral(n.type),
BoolLiteral(n.isRequired)
])));
}
w.ValueType namedParametersListType =
codeGen.makeListFromExpressions(expressions, namedParameterType);
translator.convertType(codeGen.function, namedParametersListType,
namedParametersExpectedType);
}
}
/// Makes a `_Type` object on the stack.
/// TODO(joshualitt): Refactor this logic to remove the dependency on
/// CodeGenerator.
w.ValueType makeType(CodeGenerator codeGen, DartType type) {
w.Instructions b = codeGen.b;
if (_isTypeConstant(type)) {
translator.constants.instantiateConstant(
codeGen.function, b, TypeLiteralConstant(type), nonNullableTypeType);
return nonNullableTypeType;
}
// All of the singleton types represented by canonical objects should be
// created const.
assert(type is TypeParameterType ||
type is InterfaceType ||
type is FutureOrType ||
type is FunctionType);
if (type is TypeParameterType) {
return codeGen.instantiateTypeParameter(type.parameter);
}
ClassInfo info = translator.classInfo[classForType(type)]!;
translator.functions.allocateClass(info.classId);
b.i32_const(info.classId);
b.i32_const(initialIdentityHash);
if (type is InterfaceType) {
_makeInterfaceType(codeGen, info, type);
} else if (type is FutureOrType) {
_makeFutureOrType(codeGen, type);
} else if (type is FunctionType) {
if (isGenericFunction(type)) {
// TODO(joshualitt): Implement generic function types and share most of
// the logic with _makeFunctionType.
print("Not implemented: RTI ${type}");
encodeNullability(b, type);
} else {
_makeFunctionType(codeGen, info, type);
}
} else {
throw '`$type` should have already been handled.';
}
translator.struct_new(b, info);
return info.nonNullableType;
}
/// Test value against a Dart type. Expects the value on the stack as a
/// (ref null #Top) and leaves the result on the stack as an i32.
/// TODO(joshualitt): Remove dependency on [CodeGenerator]
void emitTypeTest(CodeGenerator codeGen, DartType type, DartType operandType,
TreeNode node) {
w.Instructions b = codeGen.b;
if (type is! InterfaceType) {
// TODO(joshualitt): We can enable this after fixing `.runtimeType`.
// makeType(codeGen, type);
// codeGen.call(translator.isSubtype.reference);
print("Not implemented: Type test with non-interface type $type"
" at ${node.location}");
b.drop();
b.i32_const(1);
return;
}
bool isPotentiallyNullable = operandType.isPotentiallyNullable;
w.Label? resultLabel;
if (isPotentiallyNullable) {
// Store operand in a temporary variable, since Binaryen does not support
// block inputs.
w.Local operand = codeGen.addLocal(translator.topInfo.nullableType);
b.local_set(operand);
resultLabel = b.block(const [], const [w.NumType.i32]);
w.Label nullLabel = b.block(const [], const []);
b.local_get(operand);
b.br_on_null(nullLabel);
}
if (type.typeArguments.any((t) => t is! DynamicType)) {
// If the tested-against type as an instance of the static operand type
// has the same type arguments as the static operand type, it is not
// necessary to test the type arguments.
Class cls = translator.classForType(operandType);
InterfaceType? base = translator.hierarchy
.getTypeAsInstanceOf(type, cls, codeGen.member.enclosingLibrary)
?.withDeclaredNullability(operandType.declaredNullability);
if (base != operandType) {
print("Not implemented: Type test with type arguments"
" at ${node.location}");
}
}
List<Class> concrete = _getConcreteSubtypes(type.classNode).toList();
if (type.classNode == coreTypes.functionClass) {
ClassInfo functionInfo = translator.classInfo[translator.functionClass]!;
translator.ref_test(b, functionInfo);
} else if (concrete.isEmpty) {
b.drop();
b.i32_const(0);
} else if (concrete.length == 1) {
ClassInfo info = translator.classInfo[concrete.single]!;
b.struct_get(translator.topInfo.struct, FieldIndex.classId);
b.i32_const(info.classId);
b.i32_eq();
} else {
w.Local idLocal = codeGen.addLocal(w.NumType.i32);
b.struct_get(translator.topInfo.struct, FieldIndex.classId);
b.local_set(idLocal);
w.Label done = b.block(const [], const [w.NumType.i32]);
b.i32_const(1);
for (Class cls in concrete) {
ClassInfo info = translator.classInfo[cls]!;
b.i32_const(info.classId);
b.local_get(idLocal);
b.i32_eq();
b.br_if(done);
}
b.drop();
b.i32_const(0);
b.end(); // done
}
if (isPotentiallyNullable) {
b.br(resultLabel!);
b.end(); // nullLabel
encodeNullability(b, type);
b.end(); // resultLabel
}
}
/// Returns true if a given type is nullable, and false otherwise. This
/// function should not be used on [DartType]s with undetermined nullability.
bool isNullable(DartType type) {
Nullability nullability = type.nullability;
assert(nullability == Nullability.nullable ||
nullability == Nullability.nonNullable);
return nullability == Nullability.nullable ? true : false;
}
void encodeNullability(w.Instructions b, DartType type) =>
b.i32_const(isNullable(type) ? 1 : 0);
}