| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "platform/unicode.h" |
| |
| #include "vm/allocation.h" |
| #include "vm/globals.h" |
| #include "vm/object.h" |
| |
| namespace dart { |
| |
| // A constant mask that can be 'and'ed with a word of data to determine if it |
| // is all ASCII (with no Latin1 characters). |
| #if defined(ARCH_IS_64_BIT) |
| static const uintptr_t kAsciiWordMask = DART_UINT64_C(0x8080808080808080); |
| #else |
| static const uintptr_t kAsciiWordMask = 0x80808080u; |
| #endif |
| |
| intptr_t Utf8::Length(const String& str) { |
| if (str.IsOneByteString() || str.IsExternalOneByteString()) { |
| // For 1-byte strings, all code points < 0x80 have single-byte UTF-8 |
| // encodings and all >= 0x80 have two-byte encodings. To get the length, |
| // start with the number of code points and add the number of high bits in |
| // the bytes. |
| uintptr_t char_length = str.Length(); |
| uintptr_t length = char_length; |
| const uintptr_t* data; |
| NoSafepointScope no_safepoint; |
| if (str.IsOneByteString()) { |
| data = reinterpret_cast<const uintptr_t*>(OneByteString::DataStart(str)); |
| } else { |
| data = reinterpret_cast<const uintptr_t*>( |
| ExternalOneByteString::DataStart(str)); |
| } |
| uintptr_t i; |
| for (i = sizeof(uintptr_t); i <= char_length; i += sizeof(uintptr_t)) { |
| uintptr_t chunk = *data++; |
| chunk &= kAsciiWordMask; |
| if (chunk != 0) { |
| // Shuffle the bits until we have a count of bits in the low nibble. |
| #if defined(ARCH_IS_64_BIT) |
| chunk += chunk >> 32; |
| #endif |
| chunk += chunk >> 16; |
| chunk += chunk >> 8; |
| length += (chunk >> 7) & 0xf; |
| } |
| } |
| // Take care of the tail of the string, the last length % wordsize chars. |
| i -= sizeof(uintptr_t); |
| for (; i < char_length; i++) { |
| if (str.CharAt(i) > kMaxOneByteChar) length++; |
| } |
| return length; |
| } |
| |
| // Slow case for 2-byte strings that handles surrogate pairs and longer UTF-8 |
| // encodings. |
| intptr_t length = 0; |
| String::CodePointIterator it(str); |
| while (it.Next()) { |
| int32_t ch = it.Current(); |
| length += Utf8::Length(ch); |
| } |
| return length; |
| } |
| |
| intptr_t Utf8::Encode(const String& src, char* dst, intptr_t len) { |
| uintptr_t array_len = len; |
| intptr_t pos = 0; |
| ASSERT(static_cast<intptr_t>(array_len) >= Length(src)); |
| if (src.IsOneByteString() || src.IsExternalOneByteString()) { |
| // For 1-byte strings, all code points < 0x80 have single-byte UTF-8 |
| // encodings and all >= 0x80 have two-byte encodings. |
| const uintptr_t* data; |
| NoSafepointScope scope; |
| if (src.IsOneByteString()) { |
| data = reinterpret_cast<const uintptr_t*>(OneByteString::DataStart(src)); |
| } else { |
| data = reinterpret_cast<const uintptr_t*>( |
| ExternalOneByteString::DataStart(src)); |
| } |
| uintptr_t char_length = src.Length(); |
| uintptr_t pos = 0; |
| ASSERT(kMaxOneByteChar + 1 == 0x80); |
| for (uintptr_t i = 0; i < char_length; i += sizeof(uintptr_t)) { |
| // Read the input one word at a time and just write it verbatim if it is |
| // plain ASCII, as determined by the mask. |
| if (i + sizeof(uintptr_t) <= char_length && |
| (*data & kAsciiWordMask) == 0 && |
| pos + sizeof(uintptr_t) <= array_len) { |
| StoreUnaligned(reinterpret_cast<uintptr_t*>(dst + pos), *data); |
| pos += sizeof(uintptr_t); |
| } else { |
| // Process up to one word of input that contains non-ASCII Latin1 |
| // characters. |
| const uint8_t* p = reinterpret_cast<const uint8_t*>(data); |
| const uint8_t* limit = |
| Utils::Minimum(p + sizeof(uintptr_t), p + (char_length - i)); |
| for (; p < limit; p++) { |
| uint8_t c = *p; |
| // These calls to Length and Encode get inlined and the cases for 3 |
| // and 4 byte sequences are removed. |
| intptr_t bytes = Length(c); |
| if (pos + bytes > array_len) { |
| return pos; |
| } |
| Encode(c, reinterpret_cast<char*>(dst) + pos); |
| pos += bytes; |
| } |
| } |
| data++; |
| } |
| } else { |
| // For two-byte strings, which can contain 3 and 4-byte UTF-8 encodings, |
| // which can result in surrogate pairs, use the more general code. |
| String::CodePointIterator it(src); |
| while (it.Next()) { |
| int32_t ch = it.Current(); |
| ASSERT(!Utf::IsOutOfRange(ch)); |
| if (Utf16::IsSurrogate(ch)) { |
| // Encode unpaired surrogates as replacement characters to ensure the |
| // output is valid UTF-8. Encoded size is the same (3), so the computed |
| // length is still valid. |
| ch = Utf::kReplacementChar; |
| } |
| intptr_t num_bytes = Utf8::Length(ch); |
| if (pos + num_bytes > len) { |
| break; |
| } |
| Utf8::Encode(ch, &dst[pos]); |
| pos += num_bytes; |
| } |
| } |
| return pos; |
| } |
| |
| } // namespace dart |