blob: 7a966aced373a1502f17548bb6a6be0b5aebedae [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#if !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/scopes.h"
#include "vm/compiler/backend/slot.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/stack_frame.h"
#include "vm/symbols.h"
namespace dart {
DEFINE_FLAG(bool,
share_enclosing_context,
true,
"Allocate captured variables in the existing context of an "
"enclosing scope (up to innermost loop) and spare the allocation "
"of a local context.");
int SourceLabel::FunctionLevel() const {
ASSERT(owner() != NULL);
return owner()->function_level();
}
LocalScope::LocalScope(LocalScope* parent, int function_level, int loop_level)
: parent_(parent),
child_(NULL),
sibling_(NULL),
function_level_(function_level),
loop_level_(loop_level),
context_level_(LocalScope::kUninitializedContextLevel),
begin_token_pos_(TokenPosition::kNoSource),
end_token_pos_(TokenPosition::kNoSource),
variables_(),
labels_(),
context_variables_(),
context_slots_(new (Thread::Current()->zone())
ZoneGrowableArray<const Slot*>()),
referenced_() {
// Hook this node into the children of the parent, unless the parent has a
// different function_level, since the local scope of a nested function can
// be discarded after it has been parsed.
if ((parent != NULL) && (parent->function_level() == function_level)) {
sibling_ = parent->child_;
parent->child_ = this;
}
}
bool LocalScope::IsNestedWithin(LocalScope* scope) const {
const LocalScope* current_scope = this;
while (current_scope != NULL) {
if (current_scope == scope) {
return true;
}
current_scope = current_scope->parent();
}
return false;
}
bool LocalScope::AddVariable(LocalVariable* variable) {
ASSERT(variable != NULL);
if (LocalLookupVariable(variable->name()) != NULL) {
return false;
}
variables_.Add(variable);
if (variable->owner() == NULL) {
// Variables must be added to their owner scope first. Subsequent calls
// to 'add' treat the variable as an alias.
variable->set_owner(this);
}
return true;
}
bool LocalScope::InsertParameterAt(intptr_t pos, LocalVariable* parameter) {
ASSERT(parameter != NULL);
if (LocalLookupVariable(parameter->name()) != NULL) {
return false;
}
variables_.InsertAt(pos, parameter);
// InsertParameterAt is not used to add aliases of parameters.
ASSERT(parameter->owner() == NULL);
parameter->set_owner(this);
return true;
}
bool LocalScope::AddLabel(SourceLabel* label) {
if (LocalLookupLabel(label->name()) != NULL) {
return false;
}
labels_.Add(label);
if (label->owner() == NULL) {
// Labels must be added to their owner scope first. Subsequent calls
// to 'add' treat the label as an alias.
label->set_owner(this);
}
return true;
}
void LocalScope::MoveLabel(SourceLabel* label) {
ASSERT(LocalLookupLabel(label->name()) == NULL);
ASSERT(label->kind() == SourceLabel::kForward);
labels_.Add(label);
label->set_owner(this);
}
NameReference* LocalScope::FindReference(const String& name) const {
ASSERT(name.IsSymbol());
intptr_t num_references = referenced_.length();
for (intptr_t i = 0; i < num_references; i++) {
if (name.ptr() == referenced_[i]->name().ptr()) {
return referenced_[i];
}
}
return NULL;
}
void LocalScope::AddReferencedName(TokenPosition token_pos,
const String& name) {
if (LocalLookupVariable(name) != NULL) {
return;
}
NameReference* ref = FindReference(name);
if (ref != NULL) {
ref->set_token_pos(token_pos);
return;
}
ref = new NameReference(token_pos, name);
referenced_.Add(ref);
// Add name reference in innermost enclosing scopes that do not
// define a local variable with this name.
LocalScope* scope = this->parent();
while (scope != NULL && (scope->LocalLookupVariable(name) == NULL)) {
scope->referenced_.Add(ref);
scope = scope->parent();
}
}
TokenPosition LocalScope::PreviousReferencePos(const String& name) const {
NameReference* ref = FindReference(name);
if (ref != NULL) {
return ref->token_pos();
}
return TokenPosition::kNoSource;
}
void LocalScope::AllocateContextVariable(LocalVariable* variable,
LocalScope** context_owner) {
ASSERT(variable->is_captured());
ASSERT(variable->owner() == this);
// The context level in the owner scope of a captured variable indicates at
// code generation time how far to walk up the context chain in order to
// access the variable from the current context level.
if ((*context_owner) == NULL) {
ASSERT(num_context_variables() == 0);
// This scope becomes the current context owner.
set_context_level(1);
*context_owner = this;
} else if (!FLAG_share_enclosing_context && ((*context_owner) != this)) {
// The captured variable is in a child scope of the context owner and we do
// not share contexts.
// This scope will allocate and chain a new context.
ASSERT(num_context_variables() == 0);
// This scope becomes the current context owner.
set_context_level((*context_owner)->context_level() + 1);
*context_owner = this;
} else if ((*context_owner)->loop_level() < loop_level()) {
ASSERT(FLAG_share_enclosing_context);
// The captured variable is at a deeper loop level than the current context.
// This scope will allocate and chain a new context.
ASSERT(num_context_variables() == 0);
// This scope becomes the current context owner.
set_context_level((*context_owner)->context_level() + 1);
*context_owner = this;
} else {
// Allocate the captured variable in the current context.
if (!HasContextLevel()) {
ASSERT(variable->owner() != *context_owner);
set_context_level((*context_owner)->context_level());
} else {
ASSERT(context_level() == (*context_owner)->context_level());
}
}
(*context_owner)->AddContextVariable(variable);
}
void LocalScope::AddContextVariable(LocalVariable* variable) {
variable->set_index(VariableIndex(context_variables_.length()));
context_variables_.Add(variable);
context_slots_->Add(
&Slot::GetContextVariableSlotFor(Thread::Current(), *variable));
}
VariableIndex LocalScope::AllocateVariables(const Function& function,
VariableIndex first_parameter_index,
int num_parameters,
VariableIndex first_local_index,
LocalScope* context_owner,
bool* found_captured_variables) {
// We should not allocate variables of nested functions while compiling an
// enclosing function.
ASSERT(function_level() == 0);
ASSERT(num_parameters >= 0);
// Parameters must be listed first and must all appear in the top scope.
ASSERT(num_parameters <= num_variables());
int pos = 0; // Current variable position.
VariableIndex next_index =
first_parameter_index; // Current free frame index.
LocalVariable* await_jump_var = nullptr;
LocalVariable* async_future = nullptr;
LocalVariable* controller = nullptr;
LocalVariable* chained_future = nullptr;
LocalVariable* is_sync = nullptr;
for (intptr_t i = 0; i < num_variables(); i++) {
LocalVariable* variable = VariableAt(i);
if (variable->owner() == this) {
if (variable->is_captured()) {
if (variable->name().Equals(Symbols::AwaitJumpVar())) {
await_jump_var = variable;
} else if (variable->name().Equals(Symbols::AsyncFuture())) {
async_future = variable;
} else if (variable->name().Equals(Symbols::Controller())) {
controller = variable;
} else if (variable->is_chained_future()) {
chained_future = variable;
} else if (variable->name().Equals(Symbols::is_sync())) {
is_sync = variable;
}
}
}
}
// If we are in an async/async* function, force :await_jump_var and
// :async_future to be at fixed locations in the slot.
if (await_jump_var != nullptr) {
AllocateContextVariable(await_jump_var, &context_owner);
*found_captured_variables = true;
ASSERT(await_jump_var->index().value() == Context::kAwaitJumpVarIndex);
}
if (async_future != nullptr) {
AllocateContextVariable(async_future, &context_owner);
*found_captured_variables = true;
ASSERT(async_future->index().value() == Context::kAsyncFutureIndex);
}
if (controller != nullptr) {
AllocateContextVariable(controller, &context_owner);
*found_captured_variables = true;
ASSERT(controller->index().value() == Context::kControllerIndex);
}
if (chained_future != nullptr) {
AllocateContextVariable(chained_future, &context_owner);
*found_captured_variables = true;
// Remember context indices of _future variables in _Future.timeout and
// Future.wait. They are used while collecting async stack traces.
if (function.recognized_kind() == MethodRecognizer::kFutureTimeout) {
#ifdef DEBUG
auto old_value = IsolateGroup::Current()
->object_store()
->future_timeout_future_index();
ASSERT(old_value == Object::null() ||
Smi::Value(old_value) == chained_future->index().value());
#endif // DEBUG
IsolateGroup::Current()->object_store()->set_future_timeout_future_index(
Smi::Handle(Smi::New(chained_future->index().value())));
} else if (function.recognized_kind() == MethodRecognizer::kFutureWait) {
#ifdef DEBUG
auto old_value =
IsolateGroup::Current()->object_store()->future_wait_future_index();
ASSERT(old_value == Object::null() ||
Smi::Value(old_value) == chained_future->index().value());
#endif // DEBUG
IsolateGroup::Current()->object_store()->set_future_wait_future_index(
Smi::Handle(Smi::New(chained_future->index().value())));
} else {
UNREACHABLE();
}
}
if (is_sync != nullptr) {
AllocateContextVariable(is_sync, &context_owner);
*found_captured_variables = true;
ASSERT(is_sync->index().value() == Context::kIsSyncIndex);
}
while (pos < num_parameters) {
LocalVariable* parameter = VariableAt(pos);
pos++;
// Parsing formal parameter default values may add local variable aliases
// to the local scope before the formal parameters are added. However,
// the parameters get inserted in front of the aliases, therefore, no
// aliases can be encountered among the first num_parameters variables.
ASSERT(parameter->owner() == this);
if (parameter->is_captured()) {
// A captured parameter has a slot allocated in the frame and one in the
// context, where it gets copied to. The parameter index reflects the
// context allocation index.
next_index = VariableIndex(next_index.value() - 1);
AllocateContextVariable(parameter, &context_owner);
*found_captured_variables = true;
} else {
parameter->set_index(next_index);
next_index = VariableIndex(next_index.value() - 1);
}
}
// No overlapping of parameters and locals.
ASSERT(next_index.value() >= first_local_index.value());
next_index = first_local_index;
while (pos < num_variables()) {
LocalVariable* variable = VariableAt(pos);
if (variable->owner() == this) {
if (variable->is_captured()) {
// Skip the variables already pre-allocated above.
if (variable != await_jump_var && variable != async_future &&
variable != controller && variable != chained_future &&
variable != is_sync) {
AllocateContextVariable(variable, &context_owner);
*found_captured_variables = true;
}
} else {
variable->set_index(next_index);
next_index = VariableIndex(next_index.value() - 1);
}
}
pos++;
}
// Allocate variables of all children.
VariableIndex min_index = next_index;
LocalScope* child = this->child();
while (child != NULL) {
// Ignored, since no parameters.
const VariableIndex dummy_parameter_index(0);
// No parameters in children scopes.
const int num_parameters_in_child = 0;
VariableIndex child_next_index = child->AllocateVariables(
function, dummy_parameter_index, num_parameters_in_child, next_index,
context_owner, found_captured_variables);
if (child_next_index.value() < min_index.value()) {
min_index = child_next_index;
}
child = child->sibling();
}
return min_index;
}
// The parser creates internal variables that start with ":"
static bool IsFilteredIdentifier(const String& str) {
ASSERT(str.Length() > 0);
if (str.ptr() == Symbols::AsyncOperation().ptr()) {
// Keep :async_op for asynchronous debugging.
return false;
}
if (str.ptr() == Symbols::AsyncFuture().ptr()) {
// Keep :async_future for asynchronous debugging.
return false;
}
if (str.ptr() == Symbols::ControllerStream().ptr()) {
// Keep :controller_stream for asynchronous debugging.
return false;
}
if (str.ptr() == Symbols::AwaitJumpVar().ptr()) {
// Keep :await_jump_var for asynchronous debugging.
return false;
}
if (str.ptr() == Symbols::is_sync().ptr()) {
// Keep :is_sync for asynchronous debugging.
return false;
}
if (str.ptr() == Symbols::FunctionTypeArgumentsVar().ptr()) {
// Keep :function_type_arguments for accessing type variables in debugging.
return false;
}
return str.CharAt(0) == ':';
}
LocalVarDescriptorsPtr LocalScope::GetVarDescriptors(
const Function& func,
ZoneGrowableArray<intptr_t>* context_level_array) {
LocalVarDescriptorsBuilder vars;
vars.AddDeoptIdToContextLevelMappings(context_level_array);
// First enter all variables from scopes of outer functions.
const ContextScope& context_scope =
ContextScope::Handle(func.context_scope());
if (!context_scope.IsNull()) {
ASSERT(func.HasParent());
for (int i = 0; i < context_scope.num_variables(); i++) {
String& name = String::Handle(context_scope.NameAt(i));
UntaggedLocalVarDescriptors::VarInfoKind kind;
if (!IsFilteredIdentifier(name)) {
kind = UntaggedLocalVarDescriptors::kContextVar;
} else {
continue;
}
LocalVarDescriptorsBuilder::VarDesc desc;
desc.name = &name;
desc.info.set_kind(kind);
desc.info.scope_id = context_scope.ContextLevelAt(i);
desc.info.declaration_pos = context_scope.DeclarationTokenIndexAt(i);
desc.info.begin_pos = begin_token_pos();
desc.info.end_pos = end_token_pos();
ASSERT((desc.info.begin_pos.IsReal() != desc.info.end_pos.IsReal()) ||
(desc.info.begin_pos <= desc.info.end_pos));
desc.info.set_index(context_scope.ContextIndexAt(i));
vars.Add(desc);
}
}
// Now collect all variables from local scopes.
int16_t scope_id = 0;
CollectLocalVariables(&vars, &scope_id);
return vars.Done();
}
// Add visible variables that are declared in this scope to vars, then
// collect visible variables of children, followed by siblings.
void LocalScope::CollectLocalVariables(LocalVarDescriptorsBuilder* vars,
int16_t* scope_id) {
(*scope_id)++;
for (int i = 0; i < this->variables_.length(); i++) {
LocalVariable* var = variables_[i];
if ((var->owner() == this) && !var->is_invisible()) {
if (var->name().ptr() == Symbols::CurrentContextVar().ptr()) {
// This is the local variable in which the function saves its
// own context before calling a closure function.
LocalVarDescriptorsBuilder::VarDesc desc;
desc.name = &var->name();
desc.info.set_kind(UntaggedLocalVarDescriptors::kSavedCurrentContext);
desc.info.scope_id = 0;
desc.info.declaration_pos = TokenPosition::kMinSource;
desc.info.begin_pos = TokenPosition::kMinSource;
desc.info.end_pos = TokenPosition::kMinSource;
desc.info.set_index(var->index().value());
vars->Add(desc);
} else if (!IsFilteredIdentifier(var->name())) {
// This is a regular Dart variable, either stack-based or captured.
LocalVarDescriptorsBuilder::VarDesc desc;
desc.name = &var->name();
if (var->is_captured()) {
desc.info.set_kind(UntaggedLocalVarDescriptors::kContextVar);
ASSERT(var->owner() != NULL);
ASSERT(var->owner()->context_level() >= 0);
desc.info.scope_id = var->owner()->context_level();
} else {
desc.info.set_kind(UntaggedLocalVarDescriptors::kStackVar);
desc.info.scope_id = *scope_id;
}
desc.info.set_index(var->index().value());
desc.info.declaration_pos = var->declaration_token_pos();
desc.info.begin_pos = var->token_pos();
desc.info.end_pos = var->owner()->end_token_pos();
vars->Add(desc);
}
}
}
LocalScope* child = this->child();
while (child != NULL) {
child->CollectLocalVariables(vars, scope_id);
child = child->sibling();
}
}
SourceLabel* LocalScope::LocalLookupLabel(const String& name) const {
ASSERT(name.IsSymbol());
for (intptr_t i = 0; i < labels_.length(); i++) {
SourceLabel* label = labels_[i];
if (label->name().ptr() == name.ptr()) {
return label;
}
}
return NULL;
}
LocalVariable* LocalScope::LocalLookupVariable(const String& name) const {
ASSERT(name.IsSymbol());
for (intptr_t i = 0; i < variables_.length(); i++) {
LocalVariable* var = variables_[i];
ASSERT(var->name().IsSymbol());
if (var->name().ptr() == name.ptr()) {
return var;
}
}
return NULL;
}
LocalVariable* LocalScope::LookupVariable(const String& name, bool test_only) {
LocalScope* current_scope = this;
while (current_scope != NULL) {
LocalVariable* var = current_scope->LocalLookupVariable(name);
// If testing only, return the variable even if invisible.
if ((var != NULL) && (!var->is_invisible_ || test_only)) {
if (!test_only && (var->owner()->function_level() != function_level())) {
CaptureVariable(var);
}
return var;
}
current_scope = current_scope->parent();
}
return NULL;
}
void LocalScope::CaptureVariable(LocalVariable* variable) {
ASSERT(variable != NULL);
// The variable must exist in an enclosing scope, not necessarily in this one.
variable->set_is_captured();
const int variable_function_level = variable->owner()->function_level();
LocalScope* scope = this;
while (scope->function_level() != variable_function_level) {
// Insert an alias of the variable in the top scope of each function
// level so that the variable is found in the context.
LocalScope* parent_scope = scope->parent();
while ((parent_scope != NULL) &&
(parent_scope->function_level() == scope->function_level())) {
scope = parent_scope;
parent_scope = scope->parent();
}
// An alias may already have been added in this scope, and in that case,
// in parent scopes as needed. If so, we are done.
if (!scope->AddVariable(variable)) {
return;
}
ASSERT(variable->owner() != scope); // Item is an alias.
scope = parent_scope;
}
}
SourceLabel* LocalScope::LookupLabel(const String& name) {
LocalScope* current_scope = this;
while (current_scope != NULL) {
SourceLabel* label = current_scope->LocalLookupLabel(name);
if (label != NULL) {
return label;
}
current_scope = current_scope->parent();
}
return NULL;
}
SourceLabel* LocalScope::LookupInnermostLabel(Token::Kind jump_kind) {
ASSERT((jump_kind == Token::kCONTINUE) || (jump_kind == Token::kBREAK));
LocalScope* current_scope = this;
while (current_scope != NULL) {
for (intptr_t i = 0; i < current_scope->labels_.length(); i++) {
SourceLabel* label = current_scope->labels_[i];
if ((label->kind() == SourceLabel::kWhile) ||
(label->kind() == SourceLabel::kFor) ||
(label->kind() == SourceLabel::kDoWhile) ||
((jump_kind == Token::kBREAK) &&
(label->kind() == SourceLabel::kSwitch))) {
return label;
}
}
current_scope = current_scope->parent();
}
return NULL;
}
LocalScope* LocalScope::LookupSwitchScope() {
LocalScope* current_scope = this->parent();
int this_level = this->function_level();
while (current_scope != NULL &&
current_scope->function_level() == this_level) {
for (int i = 0; i < current_scope->labels_.length(); i++) {
SourceLabel* label = current_scope->labels_[i];
if (label->kind() == SourceLabel::kSwitch) {
// This scope contains a label that is bound to a switch statement,
// so it is the scope of the a statement body.
return current_scope;
}
}
current_scope = current_scope->parent();
}
// We did not find a switch statement scope at the same function level.
return NULL;
}
SourceLabel* LocalScope::CheckUnresolvedLabels() {
for (int i = 0; i < this->labels_.length(); i++) {
SourceLabel* label = this->labels_[i];
if (label->kind() == SourceLabel::kForward) {
LocalScope* outer_switch = LookupSwitchScope();
if (outer_switch == NULL) {
return label;
} else {
outer_switch->MoveLabel(label);
}
}
}
return NULL;
}
int LocalScope::NumCapturedVariables() const {
// It is not necessary to traverse parent scopes, since we are only interested
// in the captured variables referenced in this scope. If this scope is the
// top scope at function level 1 and it (or its children scopes) references a
// captured variable declared in a parent scope at function level 0, it will
// contain an alias for that variable.
// Since code generation for nested functions is postponed until first
// invocation, the function level of the closure scope can only be 1.
ASSERT(function_level() == 1);
int num_captured = 0;
for (int i = 0; i < num_variables(); i++) {
LocalVariable* variable = VariableAt(i);
// Count the aliases of captured variables belonging to outer scopes.
if (variable->owner()->function_level() != 1) {
ASSERT(variable->is_captured());
ASSERT(variable->owner()->function_level() == 0);
num_captured++;
}
}
return num_captured;
}
ContextScopePtr LocalScope::PreserveOuterScope(
int current_context_level) const {
// Since code generation for nested functions is postponed until first
// invocation, the function level of the closure scope can only be 1.
ASSERT(function_level() == 1);
// Count the number of referenced captured variables.
intptr_t num_captured_vars = NumCapturedVariables();
// Create a ContextScope with space for num_captured_vars descriptors.
const ContextScope& context_scope =
ContextScope::Handle(ContextScope::New(num_captured_vars, false));
// Create a descriptor for each referenced captured variable of enclosing
// functions to preserve its name and its context allocation information.
int captured_idx = 0;
for (int i = 0; i < num_variables(); i++) {
LocalVariable* variable = VariableAt(i);
// Preserve the aliases of captured variables belonging to outer scopes.
if (variable->owner()->function_level() != 1) {
context_scope.SetTokenIndexAt(captured_idx, variable->token_pos());
context_scope.SetDeclarationTokenIndexAt(
captured_idx, variable->declaration_token_pos());
context_scope.SetNameAt(captured_idx, variable->name());
context_scope.ClearFlagsAt(captured_idx);
context_scope.SetIsFinalAt(captured_idx, variable->is_final());
context_scope.SetIsLateAt(captured_idx, variable->is_late());
if (variable->is_late()) {
context_scope.SetLateInitOffsetAt(captured_idx,
variable->late_init_offset());
}
context_scope.SetIsConstAt(captured_idx, variable->IsConst());
if (variable->IsConst()) {
context_scope.SetConstValueAt(captured_idx, *variable->ConstValue());
} else {
context_scope.SetTypeAt(captured_idx, variable->type());
}
context_scope.SetContextIndexAt(captured_idx, variable->index().value());
// Adjust the context level relative to the current context level,
// since the context of the current scope will be at level 0 when
// compiling the nested function.
int adjusted_context_level =
variable->owner()->context_level() - current_context_level;
context_scope.SetContextLevelAt(captured_idx, adjusted_context_level);
captured_idx++;
}
}
ASSERT(context_scope.num_variables() == captured_idx); // Verify count.
return context_scope.ptr();
}
LocalScope* LocalScope::RestoreOuterScope(const ContextScope& context_scope) {
// The function level of the outer scope is one less than the function level
// of the current function, which is 0.
LocalScope* outer_scope = new LocalScope(NULL, -1, 0);
// Add all variables as aliases to the outer scope.
for (int i = 0; i < context_scope.num_variables(); i++) {
LocalVariable* variable;
if (context_scope.IsConstAt(i)) {
variable = new LocalVariable(context_scope.DeclarationTokenIndexAt(i),
context_scope.TokenIndexAt(i),
String::ZoneHandle(context_scope.NameAt(i)),
Object::dynamic_type());
variable->SetConstValue(
Instance::ZoneHandle(context_scope.ConstValueAt(i)));
} else {
variable =
new LocalVariable(context_scope.DeclarationTokenIndexAt(i),
context_scope.TokenIndexAt(i),
String::ZoneHandle(context_scope.NameAt(i)),
AbstractType::ZoneHandle(context_scope.TypeAt(i)));
}
variable->set_is_captured();
variable->set_index(VariableIndex(context_scope.ContextIndexAt(i)));
if (context_scope.IsFinalAt(i)) {
variable->set_is_final();
}
if (context_scope.IsLateAt(i)) {
variable->set_is_late();
variable->set_late_init_offset(context_scope.LateInitOffsetAt(i));
}
// Create a fake owner scope describing the index and context level of the
// variable. Function level and loop level are unused (set to 0), since
// context level has already been assigned.
LocalScope* owner_scope = new LocalScope(NULL, 0, 0);
owner_scope->set_context_level(context_scope.ContextLevelAt(i));
owner_scope->AddVariable(variable);
outer_scope->AddVariable(variable); // As alias.
ASSERT(variable->owner() == owner_scope);
}
return outer_scope;
}
void LocalScope::CaptureLocalVariables(LocalScope* top_scope) {
ASSERT(top_scope->function_level() == function_level());
LocalScope* scope = this;
while (scope != top_scope->parent()) {
for (intptr_t i = 0; i < scope->num_variables(); i++) {
LocalVariable* variable = scope->VariableAt(i);
if (variable->is_forced_stack() ||
(variable->name().ptr() == Symbols::ExceptionVar().ptr()) ||
(variable->name().ptr() == Symbols::SavedTryContextVar().ptr()) ||
(variable->name().ptr() == Symbols::ArgDescVar().ptr()) ||
(variable->name().ptr() ==
Symbols::FunctionTypeArgumentsVar().ptr())) {
// Don't capture those variables because the VM expects them to be on
// the stack.
continue;
}
scope->CaptureVariable(variable);
}
scope = scope->parent();
}
}
ContextScopePtr LocalScope::CreateImplicitClosureScope(const Function& func) {
static const intptr_t kNumCapturedVars = 1;
// Create a ContextScope with space for kNumCapturedVars descriptors.
const ContextScope& context_scope =
ContextScope::Handle(ContextScope::New(kNumCapturedVars, true));
// Create a descriptor for 'this' variable.
context_scope.SetTokenIndexAt(0, func.token_pos());
context_scope.SetDeclarationTokenIndexAt(0, func.token_pos());
context_scope.SetNameAt(0, Symbols::This());
context_scope.ClearFlagsAt(0);
context_scope.SetIsFinalAt(0, true);
context_scope.SetIsConstAt(0, false);
const AbstractType& type = AbstractType::Handle(func.ParameterTypeAt(0));
context_scope.SetTypeAt(0, type);
context_scope.SetContextIndexAt(0, 0);
context_scope.SetContextLevelAt(0, 0);
ASSERT(context_scope.num_variables() == kNumCapturedVars); // Verify count.
return context_scope.ptr();
}
bool LocalVariable::Equals(const LocalVariable& other) const {
if (HasIndex() && other.HasIndex() && (index() == other.index())) {
if (is_captured() == other.is_captured()) {
if (!is_captured()) {
return true;
}
if (owner()->context_level() == other.owner()->context_level()) {
return true;
}
}
}
return false;
}
void LocalVarDescriptorsBuilder::AddAll(Zone* zone,
const LocalVarDescriptors& var_descs) {
for (intptr_t i = 0, n = var_descs.Length(); i < n; ++i) {
VarDesc desc;
desc.name = &String::Handle(zone, var_descs.GetName(i));
var_descs.GetInfo(i, &desc.info);
Add(desc);
}
}
void LocalVarDescriptorsBuilder::AddDeoptIdToContextLevelMappings(
ZoneGrowableArray<intptr_t>* context_level_array) {
// Record deopt-id -> context-level mappings, using ranges of deopt-ids with
// the same context-level. [context_level_array] contains (deopt_id,
// context_level) tuples.
for (intptr_t start = 0; start < context_level_array->length();) {
intptr_t start_deopt_id = (*context_level_array)[start];
intptr_t start_context_level = (*context_level_array)[start + 1];
intptr_t end = start;
intptr_t end_deopt_id = start_deopt_id;
for (intptr_t peek = start + 2; peek < context_level_array->length();
peek += 2) {
intptr_t peek_deopt_id = (*context_level_array)[peek];
intptr_t peek_context_level = (*context_level_array)[peek + 1];
// The range encoding assumes the tuples have ascending deopt_ids.
ASSERT(peek_deopt_id > end_deopt_id);
if (peek_context_level != start_context_level) break;
end = peek;
end_deopt_id = peek_deopt_id;
}
VarDesc desc;
desc.name = &Symbols::Empty(); // No name.
desc.info.set_kind(UntaggedLocalVarDescriptors::kContextLevel);
desc.info.scope_id = 0;
// We repurpose the token position fields to store deopt IDs in this case.
desc.info.begin_pos = TokenPosition::Deserialize(start_deopt_id);
desc.info.end_pos = TokenPosition::Deserialize(end_deopt_id);
desc.info.set_index(start_context_level);
Add(desc);
start = end + 2;
}
}
LocalVarDescriptorsPtr LocalVarDescriptorsBuilder::Done() {
if (vars_.is_empty()) {
return Object::empty_var_descriptors().ptr();
}
const LocalVarDescriptors& var_desc =
LocalVarDescriptors::Handle(LocalVarDescriptors::New(vars_.length()));
for (int i = 0; i < vars_.length(); i++) {
var_desc.SetVar(i, *(vars_[i].name), &vars_[i].info);
}
return var_desc.ptr();
}
} // namespace dart
#endif // !defined(DART_PRECOMPILED_RUNTIME)