blob: 7bc9f23cbd5014f7165e39beec1398c070006d76 [file] [log] [blame]
// Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef RUNTIME_VM_UNIT_TEST_H_
#define RUNTIME_VM_UNIT_TEST_H_
#include <functional>
#include "include/dart_native_api.h"
#include "platform/globals.h"
#include "vm/dart.h"
#include "vm/dart_api_state.h"
#include "vm/dart_entry.h"
#include "vm/globals.h"
#include "vm/heap/heap.h"
#include "vm/isolate.h"
#include "vm/longjump.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/simulator.h"
#include "vm/zone.h"
// The VM_UNIT_TEST_CASE macro is used for tests that do not need any
// default isolate or zone functionality.
#define VM_UNIT_TEST_CASE_WITH_EXPECTATION(name, expectation) \
void Dart_Test##name(); \
static const dart::TestCase kRegister##name(Dart_Test##name, #name, \
expectation); \
void Dart_Test##name()
#define VM_UNIT_TEST_CASE(name) VM_UNIT_TEST_CASE_WITH_EXPECTATION(name, "Pass")
// The UNIT_TEST_CASE macro is used for tests that do not require any
// functionality provided by the VM. Tests declared using this macro will be run
// after the VM is cleaned up.
#define UNIT_TEST_CASE_WITH_EXPECTATION(name, expectation) \
void Dart_Test##name(); \
static const dart::RawTestCase kRegister##name(Dart_Test##name, #name, \
expectation); \
void Dart_Test##name()
#define UNIT_TEST_CASE(name) UNIT_TEST_CASE_WITH_EXPECTATION(name, "Pass")
// The ISOLATE_UNIT_TEST_CASE macro is used for tests that need an isolate and
// zone in order to test its functionality. This macro is used for tests that
// are implemented using the VM code directly and do not use the Dart API
// for calling into the VM. The safepoint execution state of threads using
// this macro is transitioned from kThreadInNative to kThreadInVM.
#define ISOLATE_UNIT_TEST_CASE_WITH_EXPECTATION(name, expectation) \
static void Dart_TestHelper##name(Thread* thread); \
VM_UNIT_TEST_CASE_WITH_EXPECTATION(name, expectation) { \
TestIsolateScope __test_isolate__; \
Thread* __thread__ = Thread::Current(); \
ASSERT(__thread__->isolate() == __test_isolate__.isolate()); \
TransitionNativeToVM transition(__thread__); \
StackZone __zone__(__thread__); \
HandleScope __hs__(__thread__); \
Dart_TestHelper##name(__thread__); \
} \
static void Dart_TestHelper##name(Thread* thread)
#define ISOLATE_UNIT_TEST_CASE(name) \
ISOLATE_UNIT_TEST_CASE_WITH_EXPECTATION(name, "Pass")
// The TEST_CASE macro is used for tests that need an isolate and zone
// in order to test its functionality. This macro is used for tests that
// are implemented using the Dart API for calling into the VM. The safepoint
// execution state of threads using this macro remains kThreadNative.
#define TEST_CASE_WITH_EXPECTATION(name, expectation) \
static void Dart_TestHelper##name(Thread* thread); \
VM_UNIT_TEST_CASE_WITH_EXPECTATION(name, expectation) { \
TestIsolateScope __test_isolate__; \
Thread* __thread__ = Thread::Current(); \
ASSERT(__thread__->isolate() == __test_isolate__.isolate()); \
TransitionNativeToVM transition1(__thread__); \
StackZone __zone__(__thread__); \
HandleScope __hs__(__thread__); \
TransitionVMToNative transition2(__thread__); \
Dart_TestHelper##name(__thread__); \
} \
static void Dart_TestHelper##name(Thread* thread)
#define TEST_CASE(name) TEST_CASE_WITH_EXPECTATION(name, "Pass")
// The ASSEMBLER_TEST_GENERATE macro is used to generate a unit test
// for the assembler.
#define ASSEMBLER_TEST_GENERATE(name, assembler) \
void AssemblerTestGenerate##name(compiler::Assembler* assembler)
// The ASSEMBLER_TEST_EXTERN macro is used to declare a unit test
// for the assembler.
#define ASSEMBLER_TEST_EXTERN(name) \
extern void AssemblerTestGenerate##name(compiler::Assembler* assembler);
// The ASSEMBLER_TEST_RUN macro is used to execute the assembler unit
// test generated using the ASSEMBLER_TEST_GENERATE macro.
// C++ callee-saved registers are not preserved. Arguments may be passed in.
#define ASSEMBLER_TEST_RUN_WITH_EXPECTATION(name, test, expectation) \
static void AssemblerTestRun##name(AssemblerTest* test); \
ISOLATE_UNIT_TEST_CASE_WITH_EXPECTATION(name, expectation) { \
{ \
bool use_far_branches = false; \
LongJumpScope jump; \
if (setjmp(*jump.Set()) == 0) { \
compiler::ObjectPoolBuilder object_pool_builder; \
compiler::Assembler assembler(&object_pool_builder, use_far_branches); \
AssemblerTest test("" #name, &assembler); \
AssemblerTestGenerate##name(test.assembler()); \
test.Assemble(); \
AssemblerTestRun##name(&test); \
return; \
} \
} \
\
const Error& error = Error::Handle(Thread::Current()->sticky_error()); \
if (error.ptr() == Object::branch_offset_error().ptr()) { \
bool use_far_branches = true; \
compiler::ObjectPoolBuilder object_pool_builder; \
compiler::Assembler assembler(&object_pool_builder, use_far_branches); \
AssemblerTest test("" #name, &assembler); \
AssemblerTestGenerate##name(test.assembler()); \
test.Assemble(); \
AssemblerTestRun##name(&test); \
} else { \
FATAL1("Unexpected error: %s\n", error.ToErrorCString()); \
} \
} \
static void AssemblerTestRun##name(AssemblerTest* test)
#define ASSEMBLER_TEST_RUN(name, test) \
ASSEMBLER_TEST_RUN_WITH_EXPECTATION(name, test, "Pass")
#if defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_ARM64)
#if defined(HOST_ARCH_ARM) || defined(HOST_ARCH_ARM64)
// Running on actual ARM hardware, execute code natively.
#define EXECUTE_TEST_CODE_INT32(name, entry) reinterpret_cast<name>(entry)()
#define EXECUTE_TEST_CODE_INT64(name, entry) reinterpret_cast<name>(entry)()
#define EXECUTE_TEST_CODE_INT64_LL(name, entry, long_arg0, long_arg1) \
reinterpret_cast<name>(entry)(long_arg0, long_arg1)
#define EXECUTE_TEST_CODE_FLOAT(name, entry) reinterpret_cast<name>(entry)()
#define EXECUTE_TEST_CODE_DOUBLE(name, entry) reinterpret_cast<name>(entry)()
#define EXECUTE_TEST_CODE_INT32_F(name, entry, float_arg) \
reinterpret_cast<name>(entry)(float_arg)
#define EXECUTE_TEST_CODE_INT32_D(name, entry, double_arg) \
reinterpret_cast<name>(entry)(double_arg)
#define EXECUTE_TEST_CODE_INTPTR_INTPTR(name, entry, pointer_arg) \
reinterpret_cast<name>(entry)(pointer_arg)
#define EXECUTE_TEST_CODE_INT32_INTPTR(name, entry, pointer_arg) \
reinterpret_cast<name>(entry)(pointer_arg)
#else
// Not running on ARM hardware, call simulator to execute code.
#if defined(ARCH_IS_64_BIT)
#define EXECUTE_TEST_CODE_INT64(name, entry) \
static_cast<int64_t>( \
Simulator::Current()->Call(bit_cast<int64_t, uword>(entry), 0, 0, 0, 0))
#define EXECUTE_TEST_CODE_DOUBLE(name, entry) \
bit_cast<double, int64_t>(Simulator::Current()->Call( \
bit_cast<int64_t, uword>(entry), 0, 0, 0, 0, true))
#define EXECUTE_TEST_CODE_INTPTR_INTPTR(name, entry, pointer_arg) \
static_cast<intptr_t>(Simulator::Current()->Call( \
bit_cast<int64_t, uword>(entry), \
bit_cast<int64_t, intptr_t>(pointer_arg), 0, 0, 0))
#define EXECUTE_TEST_CODE_INT32_INTPTR(name, entry, pointer_arg) \
static_cast<int32_t>(Simulator::Current()->Call( \
bit_cast<int64_t, uword>(entry), \
bit_cast<int64_t, intptr_t>(pointer_arg), 0, 0, 0))
#else
#define EXECUTE_TEST_CODE_INT32(name, entry) \
static_cast<int32_t>( \
Simulator::Current()->Call(bit_cast<int32_t, uword>(entry), 0, 0, 0, 0))
#define EXECUTE_TEST_CODE_DOUBLE(name, entry) \
bit_cast<double, int64_t>(Simulator::Current()->Call( \
bit_cast<int32_t, uword>(entry), 0, 0, 0, 0, true))
#define EXECUTE_TEST_CODE_INTPTR_INTPTR(name, entry, pointer_arg) \
static_cast<intptr_t>(Simulator::Current()->Call( \
bit_cast<int32_t, uword>(entry), \
bit_cast<int32_t, intptr_t>(pointer_arg), 0, 0, 0))
#define EXECUTE_TEST_CODE_INT32_INTPTR(name, entry, pointer_arg) \
static_cast<int32_t>(Simulator::Current()->Call( \
bit_cast<int32_t, uword>(entry), \
bit_cast<int32_t, intptr_t>(pointer_arg), 0, 0, 0))
#endif // defined(ARCH_IS_64_BIT)
#define EXECUTE_TEST_CODE_INT64_LL(name, entry, long_arg0, long_arg1) \
static_cast<int64_t>(Simulator::Current()->Call( \
bit_cast<int32_t, uword>(entry), Utils::Low32Bits(long_arg0), \
Utils::High32Bits(long_arg0), Utils::Low32Bits(long_arg1), \
Utils::High32Bits(long_arg1)))
#define EXECUTE_TEST_CODE_FLOAT(name, entry) \
bit_cast<float, int32_t>(Simulator::Current()->Call( \
bit_cast<int32_t, uword>(entry), 0, 0, 0, 0, true))
#define EXECUTE_TEST_CODE_INT32_F(name, entry, float_arg) \
static_cast<int32_t>(Simulator::Current()->Call( \
bit_cast<int32_t, uword>(entry), bit_cast<int32_t, float>(float_arg), 0, \
0, 0, false, true))
#define EXECUTE_TEST_CODE_INT32_D(name, entry, double_arg) \
static_cast<int32_t>(Simulator::Current()->Call( \
bit_cast<int32_t, uword>(entry), \
Utils::Low32Bits(bit_cast<int64_t, double>(double_arg)), \
Utils::High32Bits(bit_cast<int64_t, double>(double_arg)), 0, 0, false, \
true))
#endif // defined(HOST_ARCH_ARM)
#endif // defined(TARGET_ARCH_{ARM, ARM64})
#define ZONE_STR(FMT, ...) \
OS::SCreate(Thread::Current()->zone(), FMT, __VA_ARGS__)
inline Dart_Handle NewString(const char* str) {
return Dart_NewStringFromCString(str);
}
namespace dart {
// Forward declarations.
namespace compiler {
class Assembler;
}
class CodeGenerator;
class VirtualMemory;
namespace bin {
// Snapshot pieces if we link in a snapshot, otherwise initialized to NULL.
extern const uint8_t* vm_snapshot_data;
extern const uint8_t* vm_snapshot_instructions;
extern const uint8_t* core_isolate_snapshot_data;
extern const uint8_t* core_isolate_snapshot_instructions;
} // namespace bin
extern const uint8_t* platform_strong_dill;
extern const intptr_t platform_strong_dill_size;
class TesterState : public AllStatic {
public:
static const uint8_t* vm_snapshot_data;
static Dart_IsolateGroupCreateCallback create_callback;
static Dart_IsolateShutdownCallback shutdown_callback;
static Dart_IsolateGroupCleanupCallback group_cleanup_callback;
static const char** argv;
static int argc;
};
class KernelBufferList {
public:
explicit KernelBufferList(const uint8_t* kernel_buffer)
: kernel_buffer_(kernel_buffer), next_(NULL) {}
KernelBufferList(const uint8_t* kernel_buffer, KernelBufferList* next)
: kernel_buffer_(kernel_buffer), next_(next) {}
~KernelBufferList() {
free(const_cast<uint8_t*>(kernel_buffer_));
if (next_ != NULL) {
delete next_;
}
}
void AddBufferToList(const uint8_t* kernel_buffer);
private:
const uint8_t* kernel_buffer_;
KernelBufferList* next_;
};
class TestCaseBase {
public:
explicit TestCaseBase(const char* name, const char* expectation);
virtual ~TestCaseBase() {}
const char* name() const { return name_; }
const char* expectation() const { return expectation_; }
virtual void Run() = 0;
void RunTest();
static void RunAll();
static void RunAllRaw();
static void CleanupState();
static void AddToKernelBuffers(const uint8_t* kernel_buffer);
protected:
static KernelBufferList* current_kernel_buffers_;
bool raw_test_;
private:
static TestCaseBase* first_;
static TestCaseBase* tail_;
TestCaseBase* next_;
const char* name_;
const char* expectation_;
DISALLOW_COPY_AND_ASSIGN(TestCaseBase);
};
#define USER_TEST_URI "test-lib"
#define RESOLVED_USER_TEST_URI "file:///test-lib"
#define CORELIB_TEST_URI "dart:test-lib"
class TestCase : TestCaseBase {
public:
typedef void(RunEntry)();
TestCase(RunEntry* run, const char* name, const char* expectation)
: TestCaseBase(name, expectation), run_(run) {}
static char* CompileTestScriptWithDFE(const char* url,
const char* source,
const uint8_t** kernel_buffer,
intptr_t* kernel_buffer_size,
bool incrementally = true,
bool allow_compile_errors = false,
const char* multiroot_filepaths = NULL,
const char* multiroot_scheme = NULL);
static char* CompileTestScriptWithDFE(const char* url,
int sourcefiles_count,
Dart_SourceFile sourcefiles[],
const uint8_t** kernel_buffer,
intptr_t* kernel_buffer_size,
bool incrementally = true,
bool allow_compile_errors = false,
const char* multiroot_filepaths = NULL,
const char* multiroot_scheme = NULL);
static Dart_Handle LoadTestScript(
const char* script,
Dart_NativeEntryResolver resolver,
const char* lib_uri = RESOLVED_USER_TEST_URI,
bool finalize = true,
bool allow_compile_errors = false);
static Dart_Handle LoadTestScriptWithErrors(
const char* script,
Dart_NativeEntryResolver resolver = NULL,
const char* lib_uri = RESOLVED_USER_TEST_URI,
bool finalize = true);
static Dart_Handle LoadTestLibrary(const char* lib_uri,
const char* script,
Dart_NativeEntryResolver resolver = NULL);
static Dart_Handle LoadTestScriptWithDFE(
int sourcefiles_count,
Dart_SourceFile sourcefiles[],
Dart_NativeEntryResolver resolver = NULL,
bool finalize = true,
bool incrementally = true,
bool allow_compile_errors = false,
const char* entry_script_uri = NULL,
const char* multiroot_filepaths = NULL,
const char* multiroot_scheme = NULL);
static Dart_Handle LoadCoreTestScript(const char* script,
Dart_NativeEntryResolver resolver);
static Dart_Handle EvaluateExpression(const Library& lib,
const String& expr,
const Array& param_names,
const Array& param_values);
static Dart_Handle lib();
static const char* url();
static Dart_Isolate CreateTestIsolateFromSnapshot(uint8_t* buffer,
const char* name = NULL) {
return CreateIsolate(buffer, 0, NULL, name);
}
static Dart_Isolate CreateTestIsolate(const char* name = nullptr,
void* isolate_group_data = nullptr,
void* isolate_data = nullptr);
static Dart_Isolate CreateTestIsolateInGroup(const char* name,
Dart_Isolate parent,
void* group_data = nullptr,
void* isolate_data = nullptr);
static Dart_Handle library_handler(Dart_LibraryTag tag,
Dart_Handle library,
Dart_Handle url);
virtual void Run();
// Sets |script| to be the source used at next reload.
static Dart_Handle SetReloadTestScript(const char* script);
// Initiates the reload.
static Dart_Handle TriggerReload(const uint8_t* kernel_buffer,
intptr_t kernel_buffer_size);
static Dart_Handle TriggerReload(const char* root_script_url);
// Helper function which reloads the current isolate using |script|.
static Dart_Handle ReloadTestScript(const char* script);
// Helper function which reloads the current isolate using |script|.
static Dart_Handle ReloadTestKernel(const uint8_t* kernel_buffer,
intptr_t kernel_buffer_size);
static void AddTestLib(const char* url, const char* source);
static const char* GetTestLib(const char* url);
// Return true if non-nullable experiment is enabled.
static bool IsNNBD();
static const char* NullableTag() { return IsNNBD() ? "?" : ""; }
static const char* NullAssertTag() { return IsNNBD() ? "!" : ""; }
static const char* LateTag() { return IsNNBD() ? "late" : ""; }
private:
static Dart_Handle TriggerReload(
std::function<bool(IsolateGroup*, JSONStream*)> do_reload);
// |data_buffer| can either be snapshot data, or kernel binary data.
// If |data_buffer| is snapshot data, then |len| should be zero as snapshot
// size is encoded within them. If |len| is non-zero, then |data_buffer|
// will be treated as a kernel binary (but CreateIsolate will not
// take ownership of the buffer) and |instr_buffer| will be ignored.
static Dart_Isolate CreateIsolate(const uint8_t* data_buffer,
intptr_t len,
const uint8_t* instr_buffer,
const char* name,
void* group_data = nullptr,
void* isolate_data = nullptr);
static char* ValidateCompilationResult(Zone* zone,
Dart_KernelCompilationResult result,
const uint8_t** kernel_buffer,
intptr_t* kernel_buffer_size,
bool allow_compile_errors);
RunEntry* const run_;
};
class RawTestCase : TestCaseBase {
public:
typedef void(RunEntry)();
RawTestCase(RunEntry* run, const char* name, const char* expectation)
: TestCaseBase(name, expectation), run_(run) {
raw_test_ = true;
}
virtual void Run();
private:
RunEntry* const run_;
};
class TestIsolateScope {
public:
TestIsolateScope() {
isolate_ = reinterpret_cast<Isolate*>(TestCase::CreateTestIsolate());
Dart_EnterScope(); // Create a Dart API scope for unit tests.
}
~TestIsolateScope() {
Dart_ExitScope(); // Exit the Dart API scope created for unit tests.
ASSERT(isolate_ == Isolate::Current());
Dart_ShutdownIsolate();
isolate_ = NULL;
}
Isolate* isolate() const { return isolate_; }
private:
Isolate* isolate_;
DISALLOW_COPY_AND_ASSIGN(TestIsolateScope);
};
// Ensures core libraries are initialized, thereby allowing vm/cc tests to
// e.g. run functions using microtasks.
void SetupCoreLibrariesForUnitTest();
template <typename T>
struct is_void {
static const bool value = false;
};
template <>
struct is_void<void> {
static const bool value = true;
};
template <typename T>
struct is_double {
static const bool value = false;
};
template <>
struct is_double<double> {
static const bool value = true;
};
class AssemblerTest {
public:
AssemblerTest(const char* name, compiler::Assembler* assembler)
: name_(name),
assembler_(assembler),
code_(Code::ZoneHandle()),
disassembly_(Thread::Current()->zone()->Alloc<char>(DISASSEMBLY_SIZE)) {
ASSERT(name != NULL);
ASSERT(assembler != NULL);
}
~AssemblerTest() {}
compiler::Assembler* assembler() const { return assembler_; }
const Code& code() const { return code_; }
uword payload_start() const { return code_.PayloadStart(); }
uword payload_size() const { return assembler_->CodeSize(); }
uword entry() const { return code_.EntryPoint(); }
// Invoke/InvokeWithCodeAndThread is used to call assembler test functions
// using the ABI calling convention.
// ResultType is the return type of the assembler test function.
// ArgNType is the type of the Nth argument.
#if defined(USING_SIMULATOR)
#if defined(ARCH_IS_64_BIT)
// TODO(fschneider): Make InvokeWithCodeAndThread<> more general and work on
// 32-bit.
// Since Simulator::Call always return a int64_t, bit_cast does not work
// on 32-bit platforms when returning an int32_t. Since template functions
// don't support partial specialization, we'd need to introduce a helper
// class to support 32-bit return types.
template <typename ResultType>
ResultType InvokeWithCodeAndThread() {
const bool fp_return = is_double<ResultType>::value;
const bool fp_args = false;
Thread* thread = Thread::Current();
ASSERT(thread != NULL);
return bit_cast<ResultType, int64_t>(Simulator::Current()->Call(
bit_cast<intptr_t, uword>(entry()), reinterpret_cast<intptr_t>(&code_),
reinterpret_cast<intptr_t>(thread), 0, 0, fp_return, fp_args));
}
template <typename ResultType, typename Arg1Type>
ResultType InvokeWithCodeAndThread(Arg1Type arg1) {
const bool fp_return = is_double<ResultType>::value;
const bool fp_args = is_double<Arg1Type>::value;
// TODO(fschneider): Support double arguments for simulator calls.
COMPILE_ASSERT(!fp_args);
Thread* thread = Thread::Current();
ASSERT(thread != NULL);
return bit_cast<ResultType, int64_t>(Simulator::Current()->Call(
bit_cast<intptr_t, uword>(entry()), reinterpret_cast<intptr_t>(&code_),
reinterpret_cast<intptr_t>(thread), reinterpret_cast<intptr_t>(arg1), 0,
fp_return, fp_args));
}
#endif // ARCH_IS_64_BIT
template <typename ResultType,
typename Arg1Type,
typename Arg2Type,
typename Arg3Type>
ResultType Invoke(Arg1Type arg1, Arg2Type arg2, Arg3Type arg3) {
// TODO(fschneider): Support double arguments for simulator calls.
COMPILE_ASSERT(is_void<ResultType>::value);
COMPILE_ASSERT(!is_double<Arg1Type>::value);
COMPILE_ASSERT(!is_double<Arg2Type>::value);
COMPILE_ASSERT(!is_double<Arg3Type>::value);
const bool fp_args = false;
const bool fp_return = false;
Simulator::Current()->Call(
bit_cast<intptr_t, uword>(entry()), static_cast<intptr_t>(arg1),
static_cast<intptr_t>(arg2), reinterpret_cast<intptr_t>(arg3), 0,
fp_return, fp_args);
}
#else
template <typename ResultType>
ResultType InvokeWithCodeAndThread() {
Thread* thread = Thread::Current();
ASSERT(thread != NULL);
typedef ResultType (*FunctionType)(const Code&, Thread*);
return reinterpret_cast<FunctionType>(entry())(code_, thread);
}
template <typename ResultType, typename Arg1Type>
ResultType InvokeWithCodeAndThread(Arg1Type arg1) {
Thread* thread = Thread::Current();
ASSERT(thread != NULL);
typedef ResultType (*FunctionType)(const Code&, Thread*, Arg1Type);
return reinterpret_cast<FunctionType>(entry())(code_, thread, arg1);
}
template <typename ResultType,
typename Arg1Type,
typename Arg2Type,
typename Arg3Type>
ResultType Invoke(Arg1Type arg1, Arg2Type arg2, Arg3Type arg3) {
typedef ResultType (*FunctionType)(Arg1Type, Arg2Type, Arg3Type);
return reinterpret_cast<FunctionType>(entry())(arg1, arg2, arg3);
}
#endif // defined(USING_SIMULATOR)
// Assemble test and set code_.
void Assemble();
// Disassembly of the code with large constants blanked out.
char* BlankedDisassembly() { return disassembly_; }
private:
const char* name_;
compiler::Assembler* assembler_;
Code& code_;
static const intptr_t DISASSEMBLY_SIZE = 10240;
char* disassembly_;
DISALLOW_COPY_AND_ASSIGN(AssemblerTest);
};
class CompilerTest : public AllStatic {
public:
// Test the Compiler::CompileFunction functionality by checking the return
// value to see if no parse errors were reported.
static bool TestCompileFunction(const Function& function);
};
#define EXPECT_VALID(handle) \
do { \
Dart_Handle tmp_handle = (handle); \
if (!Api::IsValid(tmp_handle)) { \
dart::Expect(__FILE__, __LINE__) \
.Fail( \
"expected '%s' to be a valid handle but '%s' has already been " \
"freed\n", \
#handle, #handle); \
} \
if (Dart_IsError(tmp_handle)) { \
dart::Expect(__FILE__, __LINE__) \
.Fail( \
"expected '%s' to be a valid handle but found an error " \
"handle:\n" \
" '%s'\n", \
#handle, Dart_GetError(tmp_handle)); \
} \
} while (0)
#define EXPECT_ERROR(handle, substring) \
do { \
Dart_Handle tmp_handle = (handle); \
if (Dart_IsError(tmp_handle)) { \
dart::Expect(__FILE__, __LINE__) \
.IsSubstring((substring), Dart_GetError(tmp_handle)); \
} else { \
dart::Expect(__FILE__, __LINE__) \
.Fail( \
"expected '%s' to be an error handle but found a valid " \
"handle.\n", \
#handle); \
} \
} while (0)
#define EXPECT_TRUE(handle) \
do { \
Dart_Handle tmp_handle = (handle); \
if (Dart_IsBoolean(tmp_handle)) { \
bool value; \
Dart_BooleanValue(tmp_handle, &value); \
if (!value) { \
dart::Expect(__FILE__, __LINE__) \
.Fail("expected True, but was '%s'\n", #handle); \
} \
} else { \
dart::Expect(__FILE__, __LINE__) \
.Fail("expected True, but was '%s'\n", #handle); \
} \
} while (0)
#define EXPECT_NULL(handle) \
do { \
Dart_Handle tmp_handle = (handle); \
if (!Dart_IsNull(tmp_handle)) { \
dart::Expect(__FILE__, __LINE__) \
.Fail("expected '%s' to be a null handle.\n", #handle); \
} \
} while (0)
#define EXPECT_NON_NULL(handle) \
do { \
Dart_Handle tmp_handle = (handle); \
if (Dart_IsNull(tmp_handle)) { \
dart::Expect(__FILE__, __LINE__) \
.Fail("expected '%s' to be a non-null handle.\n", #handle); \
} \
} while (0)
// Elide a substring which starts with some prefix and ends with some postfix.
//
// Prefix is inclusive, postfix is exclusive.
//
// This is used to remove non-deterministic or fragile substrings from
// JSON output.
//
// For example:
//
// prefix = "classes"
// in = "\"id\":\"classes/46\""
//
// Yields:
//
// out = "\"id\":\"\""
//
// WARNING: This function is not safe to use if `in` is bigger than `out`!
void ElideJSONSubstring(const char* prefix,
const char* in,
char* out,
const char* postfix = "\"");
// Elide a substrings such as ",\"tokenPos\":4372,\"endTokenPos\":4430".
//
// Substring to be followed by "}".
//
// Modifies buffer in place.
void StripTokenPositions(char* buffer);
template <typename T>
class SetFlagScope : public ValueObject {
public:
SetFlagScope(T* flag, T value) : flag_(flag), original_value_(*flag) {
*flag_ = value;
}
~SetFlagScope() { *flag_ = original_value_; }
private:
T* flag_;
T original_value_;
};
} // namespace dart
#endif // RUNTIME_VM_UNIT_TEST_H_