| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| part of dart._http; |
| |
| class _CryptoUtils { |
| static const int PAD = 61; // '=' |
| static const int CR = 13; // '\r' |
| static const int LF = 10; // '\n' |
| static const int LINE_LENGTH = 76; |
| |
| static const String _encodeTable = |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
| |
| static const String _encodeTableUrlSafe = |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; |
| |
| // Lookup table used for finding Base 64 alphabet index of a given byte. |
| // -2 : Outside Base 64 alphabet. |
| // -1 : '\r' or '\n' |
| // 0 : = (Padding character). |
| // >0 : Base 64 alphabet index of given byte. |
| static const List<int> _decodeTable = const [ |
| -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -2, -2, -1, -2, -2, // |
| -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, // |
| -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 62, -2, 62, -2, 63, // |
| 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -2, -2, -2, 00, -2, -2, // |
| -2, 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, // |
| 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -2, -2, -2, -2, 63, // |
| -2, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, // |
| 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -2, -2, -2, -2, -2, // |
| -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, // |
| -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, // |
| -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, // |
| -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, // |
| -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, // |
| -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, // |
| -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, // |
| -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2 |
| ]; |
| |
| static Random _rng = new Random.secure(); |
| |
| static Uint8List getRandomBytes(int count) { |
| final Uint8List result = new Uint8List(count); |
| for (int i = 0; i < count; i++) { |
| result[i] = _rng.nextInt(0xff); |
| } |
| return result; |
| } |
| |
| static String bytesToHex(List<int> bytes) { |
| var result = new StringBuffer(); |
| for (var part in bytes) { |
| result.write('${part < 16 ? '0' : ''}${part.toRadixString(16)}'); |
| } |
| return result.toString(); |
| } |
| |
| static String bytesToBase64(List<int> bytes, |
| [bool urlSafe = false, bool addLineSeparator = false]) { |
| int len = bytes.length; |
| if (len == 0) { |
| return ""; |
| } |
| final String lookup = urlSafe ? _encodeTableUrlSafe : _encodeTable; |
| // Size of 24 bit chunks. |
| final int remainderLength = len.remainder(3) as int; |
| final int chunkLength = len - remainderLength; |
| // Size of base output. |
| int outputLen = ((len ~/ 3) * 4) + ((remainderLength > 0) ? 4 : 0); |
| // Add extra for line separators. |
| if (addLineSeparator) { |
| outputLen += ((outputLen - 1) ~/ LINE_LENGTH) << 1; |
| } |
| List<int> out = new List<int>.filled(outputLen, 0); |
| |
| // Encode 24 bit chunks. |
| int j = 0, i = 0, c = 0; |
| while (i < chunkLength) { |
| int x = ((bytes[i++] << 16) & 0xFFFFFF) | |
| ((bytes[i++] << 8) & 0xFFFFFF) | |
| bytes[i++]; |
| out[j++] = lookup.codeUnitAt(x >> 18); |
| out[j++] = lookup.codeUnitAt((x >> 12) & 0x3F); |
| out[j++] = lookup.codeUnitAt((x >> 6) & 0x3F); |
| out[j++] = lookup.codeUnitAt(x & 0x3f); |
| // Add optional line separator for each 76 char output. |
| if (addLineSeparator && ++c == 19 && j < outputLen - 2) { |
| out[j++] = CR; |
| out[j++] = LF; |
| c = 0; |
| } |
| } |
| |
| // If input length if not a multiple of 3, encode remaining bytes and |
| // add padding. |
| if (remainderLength == 1) { |
| int x = bytes[i]; |
| out[j++] = lookup.codeUnitAt(x >> 2); |
| out[j++] = lookup.codeUnitAt((x << 4) & 0x3F); |
| out[j++] = PAD; |
| out[j++] = PAD; |
| } else if (remainderLength == 2) { |
| int x = bytes[i]; |
| int y = bytes[i + 1]; |
| out[j++] = lookup.codeUnitAt(x >> 2); |
| out[j++] = lookup.codeUnitAt(((x << 4) | (y >> 4)) & 0x3F); |
| out[j++] = lookup.codeUnitAt((y << 2) & 0x3F); |
| out[j++] = PAD; |
| } |
| |
| return new String.fromCharCodes(out); |
| } |
| |
| static List<int> base64StringToBytes(String input, |
| [bool ignoreInvalidCharacters = true]) { |
| int len = input.length; |
| if (len == 0) { |
| return new List<int>.empty(); |
| } |
| |
| // Count '\r', '\n' and illegal characters, For illegal characters, |
| // if [ignoreInvalidCharacters] is false, throw an exception. |
| int extrasLen = 0; |
| for (int i = 0; i < len; i++) { |
| int c = _decodeTable[input.codeUnitAt(i)]; |
| if (c < 0) { |
| extrasLen++; |
| if (c == -2 && !ignoreInvalidCharacters) { |
| throw new FormatException('Invalid character: ${input[i]}'); |
| } |
| } |
| } |
| |
| if ((len - extrasLen) % 4 != 0) { |
| throw new FormatException('''Size of Base 64 characters in Input |
| must be a multiple of 4. Input: $input'''); |
| } |
| |
| // Count pad characters, ignore illegal characters at the end. |
| int padLength = 0; |
| for (int i = len - 1; i >= 0; i--) { |
| int currentCodeUnit = input.codeUnitAt(i); |
| if (_decodeTable[currentCodeUnit] > 0) break; |
| if (currentCodeUnit == PAD) padLength++; |
| } |
| int outputLen = (((len - extrasLen) * 6) >> 3) - padLength; |
| List<int> out = new List<int>.filled(outputLen, 0); |
| |
| for (int i = 0, o = 0; o < outputLen;) { |
| // Accumulate 4 valid 6 bit Base 64 characters into an int. |
| int x = 0; |
| for (int j = 4; j > 0;) { |
| int c = _decodeTable[input.codeUnitAt(i++)]; |
| if (c >= 0) { |
| x = ((x << 6) & 0xFFFFFF) | c; |
| j--; |
| } |
| } |
| out[o++] = x >> 16; |
| if (o < outputLen) { |
| out[o++] = (x >> 8) & 0xFF; |
| if (o < outputLen) out[o++] = x & 0xFF; |
| } |
| } |
| return out; |
| } |
| } |
| |
| // Constants. |
| const _MASK_8 = 0xff; |
| const _MASK_32 = 0xffffffff; |
| const _BITS_PER_BYTE = 8; |
| const _BYTES_PER_WORD = 4; |
| |
| // Base class encapsulating common behavior for cryptographic hash |
| // functions. |
| abstract class _HashBase { |
| // Hasher state. |
| final int _chunkSizeInWords; |
| final bool _bigEndianWords; |
| int _lengthInBytes = 0; |
| List<int> _pendingData; |
| List<int> _currentChunk; |
| List<int> _h; |
| bool _digestCalled = false; |
| |
| _HashBase(this._chunkSizeInWords, int digestSizeInWords, this._bigEndianWords) |
| : _pendingData = [], |
| _currentChunk = new List.filled(_chunkSizeInWords, 0), |
| _h = new List.filled(digestSizeInWords, 0); |
| |
| // Update the hasher with more data. |
| add(List<int> data) { |
| if (_digestCalled) { |
| throw new StateError( |
| 'Hash update method called after digest was retrieved'); |
| } |
| _lengthInBytes += data.length; |
| _pendingData.addAll(data); |
| _iterate(); |
| } |
| |
| // Finish the hash computation and return the digest string. |
| List<int> close() { |
| if (_digestCalled) { |
| return _resultAsBytes(); |
| } |
| _digestCalled = true; |
| _finalizeData(); |
| _iterate(); |
| assert(_pendingData.length == 0); |
| return _resultAsBytes(); |
| } |
| |
| // Returns the block size of the hash in bytes. |
| int get blockSize { |
| return _chunkSizeInWords * _BYTES_PER_WORD; |
| } |
| |
| // Create a fresh instance of this Hash. |
| newInstance(); |
| |
| // One round of the hash computation. |
| _updateHash(List<int> m); |
| |
| // Helper methods. |
| _add32(x, y) => (x + y) & _MASK_32; |
| _roundUp(val, n) => (val + n - 1) & -n; |
| |
| // Rotate left limiting to unsigned 32-bit values. |
| int _rotl32(int val, int shift) { |
| var mod_shift = shift & 31; |
| return ((val << mod_shift) & _MASK_32) | |
| ((val & _MASK_32) >> (32 - mod_shift)); |
| } |
| |
| // Compute the final result as a list of bytes from the hash words. |
| List<int> _resultAsBytes() { |
| var result = <int>[]; |
| for (var i = 0; i < _h.length; i++) { |
| result.addAll(_wordToBytes(_h[i])); |
| } |
| return result; |
| } |
| |
| // Converts a list of bytes to a chunk of 32-bit words. |
| _bytesToChunk(List<int> data, int dataIndex) { |
| assert((data.length - dataIndex) >= (_chunkSizeInWords * _BYTES_PER_WORD)); |
| |
| for (var wordIndex = 0; wordIndex < _chunkSizeInWords; wordIndex++) { |
| var w3 = _bigEndianWords ? data[dataIndex] : data[dataIndex + 3]; |
| var w2 = _bigEndianWords ? data[dataIndex + 1] : data[dataIndex + 2]; |
| var w1 = _bigEndianWords ? data[dataIndex + 2] : data[dataIndex + 1]; |
| var w0 = _bigEndianWords ? data[dataIndex + 3] : data[dataIndex]; |
| dataIndex += 4; |
| var word = (w3 & 0xff) << 24; |
| word |= (w2 & _MASK_8) << 16; |
| word |= (w1 & _MASK_8) << 8; |
| word |= (w0 & _MASK_8); |
| _currentChunk[wordIndex] = word; |
| } |
| } |
| |
| // Convert a 32-bit word to four bytes. |
| List<int> _wordToBytes(int word) { |
| List<int> bytes = new List.filled(_BYTES_PER_WORD, 0); |
| bytes[0] = (word >> (_bigEndianWords ? 24 : 0)) & _MASK_8; |
| bytes[1] = (word >> (_bigEndianWords ? 16 : 8)) & _MASK_8; |
| bytes[2] = (word >> (_bigEndianWords ? 8 : 16)) & _MASK_8; |
| bytes[3] = (word >> (_bigEndianWords ? 0 : 24)) & _MASK_8; |
| return bytes; |
| } |
| |
| // Iterate through data updating the hash computation for each |
| // chunk. |
| _iterate() { |
| var len = _pendingData.length; |
| var chunkSizeInBytes = _chunkSizeInWords * _BYTES_PER_WORD; |
| if (len >= chunkSizeInBytes) { |
| var index = 0; |
| for (; (len - index) >= chunkSizeInBytes; index += chunkSizeInBytes) { |
| _bytesToChunk(_pendingData, index); |
| _updateHash(_currentChunk); |
| } |
| _pendingData = _pendingData.sublist(index, len); |
| } |
| } |
| |
| // Finalize the data. Add a 1 bit to the end of the message. Expand with |
| // 0 bits and add the length of the message. |
| _finalizeData() { |
| _pendingData.add(0x80); |
| var contentsLength = _lengthInBytes + 9; |
| var chunkSizeInBytes = _chunkSizeInWords * _BYTES_PER_WORD; |
| var finalizedLength = _roundUp(contentsLength, chunkSizeInBytes); |
| var zeroPadding = finalizedLength - contentsLength; |
| for (var i = 0; i < zeroPadding; i++) { |
| _pendingData.add(0); |
| } |
| var lengthInBits = _lengthInBytes * _BITS_PER_BYTE; |
| assert(lengthInBits < pow(2, 32)); |
| if (_bigEndianWords) { |
| _pendingData.addAll(_wordToBytes(0)); |
| _pendingData.addAll(_wordToBytes(lengthInBits & _MASK_32)); |
| } else { |
| _pendingData.addAll(_wordToBytes(lengthInBits & _MASK_32)); |
| _pendingData.addAll(_wordToBytes(0)); |
| } |
| } |
| } |
| |
| // The MD5 hasher is used to compute an MD5 message digest. |
| class _MD5 extends _HashBase { |
| _MD5() : super(16, 4, false) { |
| _h[0] = 0x67452301; |
| _h[1] = 0xefcdab89; |
| _h[2] = 0x98badcfe; |
| _h[3] = 0x10325476; |
| } |
| |
| // Returns a new instance of this Hash. |
| _MD5 newInstance() { |
| return new _MD5(); |
| } |
| |
| static const _k = const [ |
| 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, // |
| 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, // |
| 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, 0xf61e2562, 0xc040b340, // |
| 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8, // |
| 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, // |
| 0x676f02d9, 0x8d2a4c8a, 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, // |
| 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa, // |
| 0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, // |
| 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, // |
| 0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, // |
| 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 |
| ]; |
| |
| static const _r = const [ |
| 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, // |
| 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, // |
| 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, // |
| 10, 15, 21, 6, 10, 15, 21 |
| ]; |
| |
| // Compute one iteration of the MD5 algorithm with a chunk of |
| // 16 32-bit pieces. |
| void _updateHash(List<int> m) { |
| assert(m.length == 16); |
| |
| var a = _h[0]; |
| var b = _h[1]; |
| var c = _h[2]; |
| var d = _h[3]; |
| |
| var t0; |
| var t1; |
| |
| for (var i = 0; i < 64; i++) { |
| if (i < 16) { |
| t0 = (b & c) | ((~b & _MASK_32) & d); |
| t1 = i; |
| } else if (i < 32) { |
| t0 = (d & b) | ((~d & _MASK_32) & c); |
| t1 = ((5 * i) + 1) % 16; |
| } else if (i < 48) { |
| t0 = b ^ c ^ d; |
| t1 = ((3 * i) + 5) % 16; |
| } else { |
| t0 = c ^ (b | (~d & _MASK_32)); |
| t1 = (7 * i) % 16; |
| } |
| |
| var temp = d; |
| d = c; |
| c = b; |
| b = _add32( |
| b, _rotl32(_add32(_add32(a, t0), _add32(_k[i], m[t1])), _r[i])); |
| a = temp; |
| } |
| |
| _h[0] = _add32(a, _h[0]); |
| _h[1] = _add32(b, _h[1]); |
| _h[2] = _add32(c, _h[2]); |
| _h[3] = _add32(d, _h[3]); |
| } |
| } |
| |
| // The SHA1 hasher is used to compute an SHA1 message digest. |
| class _SHA1 extends _HashBase { |
| List<int> _w; |
| |
| // Construct a SHA1 hasher object. |
| _SHA1() |
| : _w = List<int>.filled(80, 0), |
| super(16, 5, true) { |
| _h[0] = 0x67452301; |
| _h[1] = 0xEFCDAB89; |
| _h[2] = 0x98BADCFE; |
| _h[3] = 0x10325476; |
| _h[4] = 0xC3D2E1F0; |
| } |
| |
| // Returns a new instance of this Hash. |
| _SHA1 newInstance() { |
| return new _SHA1(); |
| } |
| |
| // Compute one iteration of the SHA1 algorithm with a chunk of |
| // 16 32-bit pieces. |
| void _updateHash(List<int> m) { |
| assert(m.length == 16); |
| |
| var a = _h[0]; |
| var b = _h[1]; |
| var c = _h[2]; |
| var d = _h[3]; |
| var e = _h[4]; |
| |
| for (var i = 0; i < 80; i++) { |
| if (i < 16) { |
| _w[i] = m[i]; |
| } else { |
| var n = _w[i - 3] ^ _w[i - 8] ^ _w[i - 14] ^ _w[i - 16]; |
| _w[i] = _rotl32(n, 1); |
| } |
| var t = _add32(_add32(_rotl32(a, 5), e), _w[i]); |
| if (i < 20) { |
| t = _add32(_add32(t, (b & c) | (~b & d)), 0x5A827999); |
| } else if (i < 40) { |
| t = _add32(_add32(t, (b ^ c ^ d)), 0x6ED9EBA1); |
| } else if (i < 60) { |
| t = _add32(_add32(t, (b & c) | (b & d) | (c & d)), 0x8F1BBCDC); |
| } else { |
| t = _add32(_add32(t, b ^ c ^ d), 0xCA62C1D6); |
| } |
| |
| e = d; |
| d = c; |
| c = _rotl32(b, 30); |
| b = a; |
| a = t & _MASK_32; |
| } |
| |
| _h[0] = _add32(a, _h[0]); |
| _h[1] = _add32(b, _h[1]); |
| _h[2] = _add32(c, _h[2]); |
| _h[3] = _add32(d, _h[3]); |
| _h[4] = _add32(e, _h[4]); |
| } |
| } |