blob: f29a15b6eb01c8fe3f008c71f9f751bdea786dcb [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
part of dart._http;
class _CryptoUtils {
static const int PAD = 61; // '='
static const int CR = 13; // '\r'
static const int LF = 10; // '\n'
static const int LINE_LENGTH = 76;
static const String _encodeTable =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static const String _encodeTableUrlSafe =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
// Lookup table used for finding Base 64 alphabet index of a given byte.
// -2 : Outside Base 64 alphabet.
// -1 : '\r' or '\n'
// 0 : = (Padding character).
// >0 : Base 64 alphabet index of given byte.
static const List<int> _decodeTable = const [
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -2, -2, -1, -2, -2, //
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, //
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 62, -2, 62, -2, 63, //
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -2, -2, -2, 00, -2, -2, //
-2, 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, //
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -2, -2, -2, -2, 63, //
-2, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, //
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -2, -2, -2, -2, -2, //
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, //
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, //
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, //
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, //
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, //
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, //
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, //
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2
];
static Random _rng = new Random.secure();
static Uint8List getRandomBytes(int count) {
final Uint8List result = new Uint8List(count);
for (int i = 0; i < count; i++) {
result[i] = _rng.nextInt(0xff);
}
return result;
}
static String bytesToHex(List<int> bytes) {
var result = new StringBuffer();
for (var part in bytes) {
result.write('${part < 16 ? '0' : ''}${part.toRadixString(16)}');
}
return result.toString();
}
static String bytesToBase64(List<int> bytes,
[bool urlSafe = false, bool addLineSeparator = false]) {
int len = bytes.length;
if (len == 0) {
return "";
}
final String lookup = urlSafe ? _encodeTableUrlSafe : _encodeTable;
// Size of 24 bit chunks.
final int remainderLength = len.remainder(3) as int;
final int chunkLength = len - remainderLength;
// Size of base output.
int outputLen = ((len ~/ 3) * 4) + ((remainderLength > 0) ? 4 : 0);
// Add extra for line separators.
if (addLineSeparator) {
outputLen += ((outputLen - 1) ~/ LINE_LENGTH) << 1;
}
List<int> out = new List<int>.filled(outputLen, 0);
// Encode 24 bit chunks.
int j = 0, i = 0, c = 0;
while (i < chunkLength) {
int x = ((bytes[i++] << 16) & 0xFFFFFF) |
((bytes[i++] << 8) & 0xFFFFFF) |
bytes[i++];
out[j++] = lookup.codeUnitAt(x >> 18);
out[j++] = lookup.codeUnitAt((x >> 12) & 0x3F);
out[j++] = lookup.codeUnitAt((x >> 6) & 0x3F);
out[j++] = lookup.codeUnitAt(x & 0x3f);
// Add optional line separator for each 76 char output.
if (addLineSeparator && ++c == 19 && j < outputLen - 2) {
out[j++] = CR;
out[j++] = LF;
c = 0;
}
}
// If input length if not a multiple of 3, encode remaining bytes and
// add padding.
if (remainderLength == 1) {
int x = bytes[i];
out[j++] = lookup.codeUnitAt(x >> 2);
out[j++] = lookup.codeUnitAt((x << 4) & 0x3F);
out[j++] = PAD;
out[j++] = PAD;
} else if (remainderLength == 2) {
int x = bytes[i];
int y = bytes[i + 1];
out[j++] = lookup.codeUnitAt(x >> 2);
out[j++] = lookup.codeUnitAt(((x << 4) | (y >> 4)) & 0x3F);
out[j++] = lookup.codeUnitAt((y << 2) & 0x3F);
out[j++] = PAD;
}
return new String.fromCharCodes(out);
}
static List<int> base64StringToBytes(String input,
[bool ignoreInvalidCharacters = true]) {
int len = input.length;
if (len == 0) {
return new List<int>.empty();
}
// Count '\r', '\n' and illegal characters, For illegal characters,
// if [ignoreInvalidCharacters] is false, throw an exception.
int extrasLen = 0;
for (int i = 0; i < len; i++) {
int c = _decodeTable[input.codeUnitAt(i)];
if (c < 0) {
extrasLen++;
if (c == -2 && !ignoreInvalidCharacters) {
throw new FormatException('Invalid character: ${input[i]}');
}
}
}
if ((len - extrasLen) % 4 != 0) {
throw new FormatException('''Size of Base 64 characters in Input
must be a multiple of 4. Input: $input''');
}
// Count pad characters, ignore illegal characters at the end.
int padLength = 0;
for (int i = len - 1; i >= 0; i--) {
int currentCodeUnit = input.codeUnitAt(i);
if (_decodeTable[currentCodeUnit] > 0) break;
if (currentCodeUnit == PAD) padLength++;
}
int outputLen = (((len - extrasLen) * 6) >> 3) - padLength;
List<int> out = new List<int>.filled(outputLen, 0);
for (int i = 0, o = 0; o < outputLen;) {
// Accumulate 4 valid 6 bit Base 64 characters into an int.
int x = 0;
for (int j = 4; j > 0;) {
int c = _decodeTable[input.codeUnitAt(i++)];
if (c >= 0) {
x = ((x << 6) & 0xFFFFFF) | c;
j--;
}
}
out[o++] = x >> 16;
if (o < outputLen) {
out[o++] = (x >> 8) & 0xFF;
if (o < outputLen) out[o++] = x & 0xFF;
}
}
return out;
}
}
// Constants.
const _MASK_8 = 0xff;
const _MASK_32 = 0xffffffff;
const _BITS_PER_BYTE = 8;
const _BYTES_PER_WORD = 4;
// Base class encapsulating common behavior for cryptographic hash
// functions.
abstract class _HashBase {
// Hasher state.
final int _chunkSizeInWords;
final bool _bigEndianWords;
int _lengthInBytes = 0;
List<int> _pendingData;
List<int> _currentChunk;
List<int> _h;
bool _digestCalled = false;
_HashBase(this._chunkSizeInWords, int digestSizeInWords, this._bigEndianWords)
: _pendingData = [],
_currentChunk = new List.filled(_chunkSizeInWords, 0),
_h = new List.filled(digestSizeInWords, 0);
// Update the hasher with more data.
add(List<int> data) {
if (_digestCalled) {
throw new StateError(
'Hash update method called after digest was retrieved');
}
_lengthInBytes += data.length;
_pendingData.addAll(data);
_iterate();
}
// Finish the hash computation and return the digest string.
List<int> close() {
if (_digestCalled) {
return _resultAsBytes();
}
_digestCalled = true;
_finalizeData();
_iterate();
assert(_pendingData.length == 0);
return _resultAsBytes();
}
// Returns the block size of the hash in bytes.
int get blockSize {
return _chunkSizeInWords * _BYTES_PER_WORD;
}
// Create a fresh instance of this Hash.
newInstance();
// One round of the hash computation.
_updateHash(List<int> m);
// Helper methods.
_add32(x, y) => (x + y) & _MASK_32;
_roundUp(val, n) => (val + n - 1) & -n;
// Rotate left limiting to unsigned 32-bit values.
int _rotl32(int val, int shift) {
var mod_shift = shift & 31;
return ((val << mod_shift) & _MASK_32) |
((val & _MASK_32) >> (32 - mod_shift));
}
// Compute the final result as a list of bytes from the hash words.
List<int> _resultAsBytes() {
var result = <int>[];
for (var i = 0; i < _h.length; i++) {
result.addAll(_wordToBytes(_h[i]));
}
return result;
}
// Converts a list of bytes to a chunk of 32-bit words.
_bytesToChunk(List<int> data, int dataIndex) {
assert((data.length - dataIndex) >= (_chunkSizeInWords * _BYTES_PER_WORD));
for (var wordIndex = 0; wordIndex < _chunkSizeInWords; wordIndex++) {
var w3 = _bigEndianWords ? data[dataIndex] : data[dataIndex + 3];
var w2 = _bigEndianWords ? data[dataIndex + 1] : data[dataIndex + 2];
var w1 = _bigEndianWords ? data[dataIndex + 2] : data[dataIndex + 1];
var w0 = _bigEndianWords ? data[dataIndex + 3] : data[dataIndex];
dataIndex += 4;
var word = (w3 & 0xff) << 24;
word |= (w2 & _MASK_8) << 16;
word |= (w1 & _MASK_8) << 8;
word |= (w0 & _MASK_8);
_currentChunk[wordIndex] = word;
}
}
// Convert a 32-bit word to four bytes.
List<int> _wordToBytes(int word) {
List<int> bytes = new List.filled(_BYTES_PER_WORD, 0);
bytes[0] = (word >> (_bigEndianWords ? 24 : 0)) & _MASK_8;
bytes[1] = (word >> (_bigEndianWords ? 16 : 8)) & _MASK_8;
bytes[2] = (word >> (_bigEndianWords ? 8 : 16)) & _MASK_8;
bytes[3] = (word >> (_bigEndianWords ? 0 : 24)) & _MASK_8;
return bytes;
}
// Iterate through data updating the hash computation for each
// chunk.
_iterate() {
var len = _pendingData.length;
var chunkSizeInBytes = _chunkSizeInWords * _BYTES_PER_WORD;
if (len >= chunkSizeInBytes) {
var index = 0;
for (; (len - index) >= chunkSizeInBytes; index += chunkSizeInBytes) {
_bytesToChunk(_pendingData, index);
_updateHash(_currentChunk);
}
_pendingData = _pendingData.sublist(index, len);
}
}
// Finalize the data. Add a 1 bit to the end of the message. Expand with
// 0 bits and add the length of the message.
_finalizeData() {
_pendingData.add(0x80);
var contentsLength = _lengthInBytes + 9;
var chunkSizeInBytes = _chunkSizeInWords * _BYTES_PER_WORD;
var finalizedLength = _roundUp(contentsLength, chunkSizeInBytes);
var zeroPadding = finalizedLength - contentsLength;
for (var i = 0; i < zeroPadding; i++) {
_pendingData.add(0);
}
var lengthInBits = _lengthInBytes * _BITS_PER_BYTE;
assert(lengthInBits < pow(2, 32));
if (_bigEndianWords) {
_pendingData.addAll(_wordToBytes(0));
_pendingData.addAll(_wordToBytes(lengthInBits & _MASK_32));
} else {
_pendingData.addAll(_wordToBytes(lengthInBits & _MASK_32));
_pendingData.addAll(_wordToBytes(0));
}
}
}
// The MD5 hasher is used to compute an MD5 message digest.
class _MD5 extends _HashBase {
_MD5() : super(16, 4, false) {
_h[0] = 0x67452301;
_h[1] = 0xefcdab89;
_h[2] = 0x98badcfe;
_h[3] = 0x10325476;
}
// Returns a new instance of this Hash.
_MD5 newInstance() {
return new _MD5();
}
static const _k = const [
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, //
0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, //
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, 0xf61e2562, 0xc040b340, //
0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8, //
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, //
0x676f02d9, 0x8d2a4c8a, 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, //
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa, //
0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, //
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, //
0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, //
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
];
static const _r = const [
7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, //
20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, //
16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, //
10, 15, 21, 6, 10, 15, 21
];
// Compute one iteration of the MD5 algorithm with a chunk of
// 16 32-bit pieces.
void _updateHash(List<int> m) {
assert(m.length == 16);
var a = _h[0];
var b = _h[1];
var c = _h[2];
var d = _h[3];
var t0;
var t1;
for (var i = 0; i < 64; i++) {
if (i < 16) {
t0 = (b & c) | ((~b & _MASK_32) & d);
t1 = i;
} else if (i < 32) {
t0 = (d & b) | ((~d & _MASK_32) & c);
t1 = ((5 * i) + 1) % 16;
} else if (i < 48) {
t0 = b ^ c ^ d;
t1 = ((3 * i) + 5) % 16;
} else {
t0 = c ^ (b | (~d & _MASK_32));
t1 = (7 * i) % 16;
}
var temp = d;
d = c;
c = b;
b = _add32(
b, _rotl32(_add32(_add32(a, t0), _add32(_k[i], m[t1])), _r[i]));
a = temp;
}
_h[0] = _add32(a, _h[0]);
_h[1] = _add32(b, _h[1]);
_h[2] = _add32(c, _h[2]);
_h[3] = _add32(d, _h[3]);
}
}
// The SHA1 hasher is used to compute an SHA1 message digest.
class _SHA1 extends _HashBase {
List<int> _w;
// Construct a SHA1 hasher object.
_SHA1()
: _w = List<int>.filled(80, 0),
super(16, 5, true) {
_h[0] = 0x67452301;
_h[1] = 0xEFCDAB89;
_h[2] = 0x98BADCFE;
_h[3] = 0x10325476;
_h[4] = 0xC3D2E1F0;
}
// Returns a new instance of this Hash.
_SHA1 newInstance() {
return new _SHA1();
}
// Compute one iteration of the SHA1 algorithm with a chunk of
// 16 32-bit pieces.
void _updateHash(List<int> m) {
assert(m.length == 16);
var a = _h[0];
var b = _h[1];
var c = _h[2];
var d = _h[3];
var e = _h[4];
for (var i = 0; i < 80; i++) {
if (i < 16) {
_w[i] = m[i];
} else {
var n = _w[i - 3] ^ _w[i - 8] ^ _w[i - 14] ^ _w[i - 16];
_w[i] = _rotl32(n, 1);
}
var t = _add32(_add32(_rotl32(a, 5), e), _w[i]);
if (i < 20) {
t = _add32(_add32(t, (b & c) | (~b & d)), 0x5A827999);
} else if (i < 40) {
t = _add32(_add32(t, (b ^ c ^ d)), 0x6ED9EBA1);
} else if (i < 60) {
t = _add32(_add32(t, (b & c) | (b & d) | (c & d)), 0x8F1BBCDC);
} else {
t = _add32(_add32(t, b ^ c ^ d), 0xCA62C1D6);
}
e = d;
d = c;
c = _rotl32(b, 30);
b = a;
a = t & _MASK_32;
}
_h[0] = _add32(a, _h[0]);
_h[1] = _add32(b, _h[1]);
_h[2] = _add32(c, _h[2]);
_h[3] = _add32(d, _h[3]);
_h[4] = _add32(e, _h[4]);
}
}