blob: 746b72e7bab21dfb81595fe2b6e0ac8bcc494ecb [file] [log] [blame]
(* Copyright (c) 2017, the Dart project authors. Please see the AUTHORS file
* for details. All rights reserved. Use of this source code is governed by a
* BSD-style license that can be found in the LICENSE file. *)
Require Import Common.
Require Import CommonTactics.
Require Import Syntax.
Require Import Coq.Strings.String.
(* This is for convenience, we could remove it with some refactoring if we so wished. *)
Require Import Coq.Logic.FunctionalExtensionality.
Import Common.OptionMonad.
Import Common.ListExtensions.
Import Common.NatMapFacts.
Import Common.MoreNatMapFacts.
Module N := Coq.Arith.PeanoNat.Nat.
(* The subtyping function doesn't satisfy the ordinary subterm totality
condition due to the contravariant property function parameter types.
Instead, we prove it terminates by induction on the sum of both types'
syntactic sizes. *)
Section Dart_Type_Pair_Size_Properties.
Fixpoint size (d : dart_type) : nat :=
match d with
| DT_Interface_Type (Interface_Type n) => 1
| DT_Function_Type (Function_Type p r) => size p + size r + 1
end.
Definition pair_size (d : dart_type * dart_type) :=
let (x, y) := d in size x + size y.
Definition pair_size_order (d e : dart_type * dart_type) := pair_size d < pair_size e.
Hint Constructors Acc.
Lemma pair_size_order_wf' : forall sz, forall d, pair_size d < sz -> Acc pair_size_order d.
Proof.
unfold pair_size_order; induction sz; crush.
Defined.
Theorem pair_size_order_wf : well_founded pair_size_order.
red; intros; eapply pair_size_order_wf'; eauto.
Defined.
End Dart_Type_Pair_Size_Properties.
Module Subtyping.
Local Definition subtype_rec
(p : dart_type * dart_type)
(subtype : forall p' : dart_type * dart_type, pair_size_order p' p -> bool) : bool.
refine (
match p as p' return (p = p' -> bool) with
| (DT_Interface_Type (Interface_Type s_class),
DT_Interface_Type (Interface_Type t_class)) =>
fun H1 => N.eqb s_class t_class
| (DT_Function_Type (Function_Type s_param s_ret),
DT_Function_Type (Function_Type t_param t_ret)) =>
fun H2 => andb (subtype (t_param, s_param) _) (subtype (s_ret, t_ret) _)
| _ => fun _ => false
end (eq_refl : p = p));
destruct p;
destruct d1; destruct d2; crush;
unfold pair_size_order;
crush.
Defined.
Definition subtype : dart_type * dart_type -> bool :=
Fix pair_size_order_wf (fun _ => bool) subtype_rec.
Notation "s ◁ t" := (subtype (s, t) = true) (at level 70, no associativity).
Local Ltac destruct_types :=
repeat match goal with
| [H : interface_type |- _] => destruct H
| [H : function_type |- _] => destruct H
end.
Local Lemma subtype_rec_equiv :
forall (x : dart_type * dart_type)
(f g : forall y : dart_type * dart_type, pair_size_order y x -> bool),
(forall (y : dart_type * dart_type) (p : pair_size_order y x), f y p = g y p) ->
subtype_rec x f = subtype_rec x g.
Proof.
intros;
destruct x;
destruct d;
destruct d0;
destruct_types;
cbv;
crush.
Qed.
Definition subtype_rewrite :=
Fix_eq pair_size_order_wf (fun _ => bool) subtype_rec subtype_rec_equiv.
Local Ltac unfold_subtype' H :=
match type of H with
| ltac_no_arg =>
unfold subtype;
rewrite subtype_rewrite;
unfold subtype_rec at 1;
fold subtype
| _ =>
unfold subtype in H;
rewrite subtype_rewrite in H;
unfold subtype_rec at 1 in H;
fold subtype in H
end.
Tactic Notation "unfold_subtype" := unfold_subtype' Ltac_No_Arg.
Tactic Notation "unfold_subtype" constr(x) := unfold_subtype' x.
Hint Rewrite N.eqb_eq.
Hint Unfold subtype.
Lemma subtype_refl : forall s : dart_type, s ◁ s.
apply
(dart_type_ind_mutual
(fun s => s ◁ s)
(fun i => DT_Interface_Type i ◁ DT_Interface_Type i)
(fun f => DT_Function_Type f ◁ DT_Function_Type f)); crush.
cbv; crush.
unfold_subtype; crush.
Qed.
Definition trans_at t := forall s r, s ◁ t /\ t ◁ r -> s ◁ r.
Hint Unfold trans_at.
(* TODO(sjindel): how can we generalize this? *)
Ltac simplify_subtypes :=
repeat ( intuition; repeat ( destruct_types || match goal with
| [ H : DT_Interface_Type (Interface_Type _) ◁ _ |- _ ] =>
unfold_subtype H
| [ H : DT_Function_Type (Function_Type _ _) ◁ _ |- _ ] =>
unfold_subtype H
| [ H : _ ◁ DT_Interface_Type (Interface_Type _) |- _ ] =>
unfold_subtype H
| [ H : _ ◁ DT_Function_Type (Function_Type _ _) |- _ ] =>
unfold_subtype H
| [ |- DT_Interface_Type (Interface_Type _) ◁ _ ] =>
unfold_subtype
| [ |- DT_Function_Type (Function_Type _ _) ◁ _ ] =>
unfold_subtype
| [ |- _ ◁ DT_Interface_Type (Interface_Type _) ] =>
unfold_subtype
| [ |- _ ◁ DT_Function_Type (Function_Type _ _) ] =>
unfold_subtype
end)).
Local Lemma interface_type_trans : forall (n : nat), trans_at (DT_Interface_Type (Interface_Type n)).
Proof.
intros.
unfold trans_at.
intros.
destruct s; destruct r; simplify_subtypes; crush.
Qed.
Hint Immediate interface_type_trans.
Local Lemma function_type_trans :
forall d, trans_at d -> forall d', trans_at d' ->
trans_at (DT_Function_Type (Function_Type d d')).
Proof.
intros; unfold trans_at in *; intros; destruct s; destruct r.
crush.
simplify_subtypes.
crush.
simplify_subtypes.
rewrite Bool.andb_true_iff in *.
crush.
Qed.
Hint Immediate function_type_trans.
Lemma subtype_trans : forall t s r, s t /\ t r -> s r.
apply (dart_type_induction trans_at); crush.
Qed.
Hint Resolve subtype_trans.
End Subtyping.
Import Subtyping.
Record procedure_desc : Type := mk_procedure_desc {
pr_name : string;
pr_ref : nat;
pr_type : function_type;
}.
Record getter_desc : Type := mk_getter_desc {
gt_name : string;
gt_ref : nat;
gt_type : dart_type;
}.
Record interface : Type := mk_interface {
procedures : list procedure_desc;
getters : list getter_desc;
}.
Inductive member_desc : Type :=
| MD_Method : procedure_desc -> member_desc
| MD_Getter : getter_desc -> member_desc
.
(** Type envronment maps class IDs to their interface type. *)
Definition class_env : Type := NatMap.t interface.
Definition type_env : Type := NatMap.t dart_type.
Fixpoint expression_type
(CE : class_env) (TE : type_env) (e : expression) :
option dart_type :=
match e with
| E_Variable_Get (Variable_Get v) => NatMap.find v TE
| E_Property_Get (Property_Get rec prop) =>
rec_type <- expression_type CE TE rec;
let (prop_name) := prop in
match rec_type with
| DT_Function_Type _ =>
if string_dec prop_name "call" then [rec_type] else None
| DT_Interface_Type (Interface_Type class) =>
interface <- NatMap.find class CE;
proc_desc <- List.find (fun P =>
if string_dec (pr_name P) prop_name then true else false)
(procedures interface);
[DT_Function_Type (pr_type proc_desc)]
end
| E_Invocation_Expression (IE_Constructor_Invocation (Constructor_Invocation class)) =>
_ <- NatMap.find class CE;
[DT_Interface_Type (Interface_Type class)]
| E_Invocation_Expression (IE_Method_Invocation (Method_Invocation rec method args _)) =>
rec_type <- expression_type CE TE rec;
let (arg_exp) := args in
arg_type <- expression_type CE TE arg_exp;
let (method_name) := method in
fun_type <-
match rec_type with
| DT_Function_Type fn_type =>
if string_dec "call" method_name then [fn_type] else None
| DT_Interface_Type (Interface_Type class) =>
interface <- NatMap.find class CE;
proc_desc <- List.find (fun P =>
if string_dec (pr_name P) method_name then true else false)
(procedures interface);
[pr_type proc_desc]
end;
let (param_type, ret_type) := fun_type in
if subtype (arg_type, param_type) then [ret_type] else None
end
.
Fixpoint statement_type (CE : class_env) (TE : type_env) (s : statement) (r: dart_type) :
option type_env :=
match s with
| S_Expression_Statement (Expression_Statement e) =>
_ <- expression_type CE TE e; [TE]
| S_Return_Statement (Return_Statement re) =>
rt <- expression_type CE TE re;
if subtype (rt, r) then [TE] else None
| S_Variable_Declaration (Variable_Declaration _ _ None) => None
| S_Variable_Declaration (Variable_Declaration var type (Some init)) =>
init_type <- expression_type CE TE init;
if subtype (init_type, type) then
[NatMap.add var type TE]
else
None
| S_Block (Block stmts) =>
let process_statements := fix process_statements TE stmts :=
match stmts with
| nil => [TE]
| (s::ss) =>
TE' <- statement_type CE TE s r;
process_statements TE' ss
end in
process_statements TE stmts
end
.
Definition procedure_type (CE : class_env) (p : procedure) : bool :=
let (_, _, fn) := p in
let (param, ret_type, body) := fn in
let (param_var, param_type, _) := param in
let TE := NatMap.add param_var param_type (NatMap.empty _) in
match statement_type CE TE body ret_type with Some _ => true | None => false end
.
Definition class_type (CE : class_env) (c : class) : bool :=
let (nn_data, _, procedures) := c in
forallb (procedure_type CE) procedures
.
Section Typing_Equivalence_Homomorphism.
Definition subtype_at (e : expression) :=
forall CE TE v s t es,
expression_type CE (NatMap.add v s TE) e = [es] /\ t s ->
exists et, expression_type CE (NatMap.add v t TE) e = [et] /\ et es.
Hint Resolve NatMap.add_1.
Hint Resolve NatMap.add_2.
Hint Resolve NatMap.find_1.
Hint Resolve subtype_refl.
Lemma subtype_at_variable_get :
forall v, subtype_at (E_Variable_Get (Variable_Get v)).
Proof.
unfold subtype_at.
intros.
destruct (N.eq_dec v v0).
rewrite e in *.
exists t.
assert (es = s).
unfold expression_type in H.
assert (NatMap.find v0 (NatMap.add v0 s TE) = Some s) by crush.
rewrite H0 in H.
crush.
intuition.
unfold expression_type.
crush.
crush.
destruct H.
unfold expression_type in H.
apply NatMap.find_2 in H.
exists es.
unfold expression_type in *.
pose proof (@NatMap.add_3 dart_type TE v0 v es s (not_eq_sym n) H).
crush.
Qed.
Hint Immediate subtype_at_variable_get.
Hint Rewrite N.eqb_eq.
Lemma subtype_at_property_get :
forall rec prop, subtype_at rec -> subtype_at (E_Property_Get (Property_Get rec prop)).
Proof.
unfold subtype_at.
intros.
intuition.
destruct prop.
unfold expression_type in H1.
fold expression_type in H1.
extract (expression_type CE (NatMap.add v s TE) rec) Orig H0.
(* Go by cases on the original type of the receiver. *)
destruct Orig; [idtac|crush].
simpl in H1.
destruct d.
(* Case 1: receiver has interface type. *)
destruct i.
extract (NatMap.find n CE) iface H3.
destruct iface; [idtac|crush].
simpl in H1.
pose proof (H CE TE v s t (DT_Interface_Type (Interface_Type n)) (conj H0 H2)).
destruct H4 as [new_rec_type].
destruct H4.
destruct new_rec_type.
destruct i0.
unfold_subtype H5.
exists es.
crush.
unfold_subtype H5.
destruct f.
crush.
(* Case 2: receiver has function type. *)
destruct f.
force_options.
pose proof (H CE TE v s t (DT_Function_Type (Function_Type d d0)) (conj H0 H2)).
destruct H3 as [new_rec_type].
destruct H3.
exists new_rec_type.
intuition; [idtac|crush].
unfold expression_type.
fold expression_type.
rewrite H3.
simpl.
destruct new_rec_type.
destruct i.
unfold_subtype H5.
crush.
crush.
Qed.
Hint Immediate subtype_at_property_get.
Lemma subtype_at_ctor_invo :
forall c, subtype_at (E_Invocation_Expression (IE_Constructor_Invocation c)).
Proof.
unfold subtype_at; intros; exists es; crush.
Qed.
Hint Immediate subtype_at_ctor_invo.
Lemma subtype_at_meth_invo :
forall rec arg name n, subtype_at rec -> subtype_at arg ->
subtype_at (E_Invocation_Expression (IE_Method_Invocation (Method_Invocation rec name (Arguments arg) n))).
Proof.
unfold subtype_at; intros.
unfold expression_type in H.
fold expression_type in H.
destruct H1.
unfold expression_type in H1.
fold expression_type in H1.
force_expr (expression_type CE (NatMap.add v s TE) rec) H1.
destruct d.
(* Case 1: receiver has interface type. *)
exists es.
simpl in H1.
force_options.
destruct name.
force_options.
destruct f.
force_options.
destruct i.
force_options.
(* The receiver class must be the same. *)
assert (expression_type CE (NatMap.add v t TE) rec = [DT_Interface_Type (Interface_Type n0)]).
pose proof (H CE TE v s t (DT_Interface_Type (Interface_Type n0)) (conj H4 H2)) as IH_rec.
destruct IH_rec.
destruct H3.
destruct x.
destruct i0.
unfold_subtype H10.
crush.
unfold_subtype H10.
destruct f.
crush.
(* The function called must have the same type. *)
unfold expression_type.
fold expression_type.
rewrite H3; simpl.
(* The argument is still well typed. *)
pose proof (H0 CE TE v s t d (conj H5 H2)) as IH_arg.
destruct IH_arg.
destruct H10.
rewrite H10.
simpl.
intuition; crush.
rewrite H6.
assert (x d0).
pose proof (subtype_trans d x d0 (conj H11 H7)); crush.
rewrite H1; crush.
(* Case 2: The receiver has function type. *)
rewrite bind_some in H1.
force_options.
destruct name.
force_options.
destruct f0.
force_options.
pose proof (H CE TE v s t (DT_Function_Type f) (conj H4 H2)).
destruct H3.
destruct H3.
destruct x.
unfold_subtype H9.
destruct i.
crush.
destruct f; destruct f0.
simplify_subtypes.
rewrite Bool.andb_true_iff in H9; destruct H9.
assert (es = d3) by crush.
exists d5.
intuition; [idtac|crush].
unfold expression_type.
fold expression_type.
rewrite H3.
rewrite bind_some.
pose proof (H0 CE TE v s t d (conj H5 H2)).
destruct H12.
destruct H12.
rewrite H12.
rewrite bind_some.
rewrite H7.
rewrite bind_some.
assert (d2 = d0) by crush.
rewrite H11 in *; clear H11.
rewrite H14 in *; clear H14.
assert (x d0).
refine (subtype_trans d x d0 _); auto.
assert (x d4).
refine (subtype_trans d0 x d4 _); auto.
rewrite H14.
crush.
Qed.
Hint Immediate subtype_at_meth_invo.
Theorem subtype_homo_expr : forall e, subtype_at e.
Hint Extern 1 =>
match goal with
[ x : arguments |- _ ] => destruct x
end.
apply (expr_induction subtype_at); crush.
Qed.
Definition type_env_subtype (TE': type_env) (TE: type_env) :=
forall v s, NatMap.MapsTo v s TE -> exists t, NatMap.MapsTo v t TE' /\ t s.
Notation "X ◂ Y" := (type_env_subtype X Y) (at level 71, no associativity).
Lemma type_env_subtype_refl : forall TE, TE TE.
unfold type_env_subtype.
intros.
exists s.
crush.
Qed.
Hint Immediate type_env_subtype_refl.
Lemma type_env_subtype_1 :
forall v d d' TE TE', TE TE' -> d ◁ d' -> NatMap.add v d TE NatMap.add v d' TE'.
intros.
unfold type_env_subtype in *.
intros.
destruct (N.eq_dec v0 v).
rewrite e in *; clear e.
exists d.
crush.
assert (s = d') by
(rewrite NatMapFacts.add_mapsto_iff in H1; crush).
crush.
rewrite NatMapFacts.add_mapsto_iff in H1.
destruct H1; [crush|idtac].
destruct H1.
destruct (H v0 s H2).
exists x.
crush.
Qed.
Hint Resolve type_env_subtype_1.
Definition expr_extra_irrelevance_at e :=
forall CE TE et v t,
~NatMap.In v TE ->
expression_type CE TE e = [et] ->
expression_type CE (NatMap.add v t TE) e = [et].
Theorem expr_extra_irrelvance : forall e, expr_extra_irrelevance_at e.
apply (expr_induction expr_extra_irrelevance_at).
crush.
crush.
crush.
unfold expr_extra_irrelevance_at.
intros.
simpl in *.
apply NatMap.find_1.
apply NatMap.find_2 in H0.
assert (v <> n).
contradict H.
unfold NatMap.MapsTo in *.
unfold NatMap.In in *.
unfold NatMap.Raw.PX.In in *.
exists et; crush.
crush.
unfold expr_extra_irrelevance_at.
intros.
simpl in H1.
force_options.
pose proof (H _ _ _ _ t H0 H3).
crush.
crush.
crush.
unfold expr_extra_irrelevance_at.
intros.
unfold expression_type in H2.
fold expression_type in H2.
remember (expression_type CE TE e) as E.
destruct E; [idtac|simpl in H1; contradict H1; crush].
pose proof (H _ _ _ _ t H1 (eq_sym HeqE)).
rewrite bind_some in H2.
destruct a.
force_options.
pose proof (H0 _ _ _ _ t H1 H5).
destruct n.
unfold expression_type.
fold expression_type.
rewrite H3.
rewrite H4.
rewrite bind_some.
rewrite bind_some.
crush.
unfold expr_extra_irrelevance_at.
crush.
crush.
Qed.
Theorem subtype_homo_env_expr :
forall e CE TE TE' es,
expression_type CE TE e = [es] /\ TE' ◂ TE ->
(exists et, expression_type CE TE' e = [et] /\ et es).
Proof.
(* This is tedious to prove in Coq, but it follows directly from
subtype_homo_expr and expr_extra_irrelevance, along with the finiteness
of finite maps. *)
Admitted.
Definition subtype_at_stmt (st: statement) :=
forall CE X X' Y r,
statement_type CE X st r = [X'] /\ Y X ->
exists Y', statement_type CE Y st r = [Y'] /\ Y' ◂ X'.
Local Lemma subtype_at_return : forall r, subtype_at_stmt (S_Return_Statement r).
Proof.
unfold subtype_at_stmt.
intros.
destruct r.
unfold statement_type in *.
intuition.
force_options.
inversion H0.
pose proof (subtype_homo_env_expr e _ _ _ _ (conj H2 H1)).
destruct H.
exists Y.
crush.
assert (x r0) by (refine (subtype_trans d x r0 _); auto).
crush.
Qed.
Hint Immediate subtype_at_return.
Local Lemma subtype_at_vardecl : forall vd, subtype_at_stmt (S_Variable_Declaration vd).
Proof.
unfold subtype_at_stmt.
intros.
unfold statement_type in *.
destruct vd.
destruct o; [idtac|crush].
intuition.
force_options.
assert (forall A (x y : A), [x] = [y] -> x = y) as R by crush.
apply R in H0; clear R.
pose proof (subtype_homo_env_expr e _ _ _ _ (conj H2 H1)).
destruct H.
intuition.
rewrite H4.
simpl.
assert (x d) by
(refine (subtype_trans d0 x d _); crush).
exists (NatMap.add n d Y).
crush.
Qed.
Hint Immediate subtype_at_vardecl.
Local Lemma subtype_at_exprstmt : forall es, subtype_at_stmt (S_Expression_Statement es).
Proof.
unfold subtype_at_stmt.
unfold statement_type in *.
intros.
destruct es.
intuition; force_options.
inversion H0; clear H0.
exists Y.
pose proof (subtype_homo_env_expr e _ _ _ _ (conj H2 H1)).
destruct H.
intuition.
rewrite H0.
crush.
crush.
Qed.
Hint Immediate subtype_at_exprstmt.
Local Lemma subtype_at_block : forall ss, Forall subtype_at_stmt ss -> subtype_at_stmt (S_Block (Block ss)).
Proof.
induction ss.
unfold subtype_at_stmt.
intros.
simpl.
exists Y.
crush.
intros.
rewrite forall_list_all in H.
simpl in H.
destruct H.
unfold subtype_at_stmt.
intros.
unfold statement_type in *.
fold statement_type in *.
unfold subtype_at_stmt in H.
extract_head statement_type in H1.
destruct H2; [idtac|simpl in H1; crush].
simpl in H1.
destruct H1.
pose proof (H _ _ _ _ _ (conj (eq_sym H2Eq) H2)) as Z.
destruct Z.
destruct H3.
intuition.
simpl.
match type of H1 with
| ?Y _ _ = ?W => remember Y as PS
end.
(* We need to prove a lemma about the inline helper function. *)
assert (
forall X Y Y',
X ◂ Y -> PS Y ss = [Y'] ->
exists X', PS X ss = [X'] /\ X' ◂ Y') as L.
generalize H0.
generalize ss as l.
clear - HeqPS.
induction l.
intros.
exists X; crush.
intros.
destruct H0.
rewrite HeqPS in H1.
rewrite <- HeqPS in H1.
force_options.
rewrite HeqPS.
rewrite <- HeqPS.
pose proof (H0 _ _ _ _ _ (conj H4 H)).
destruct H3; destruct H3.
rewrite H3; simpl.
apply (IHl H2 x t); crush.
clear HeqPS.
clear H.
rewrite H3.
simpl.
pose proof (L x t X' H4 H1).
destruct H as (Y', H).
destruct H.
exists Y'.
crush.
Qed.
Hint Immediate subtype_at_block.
Theorem subtype_homo_stmt : forall s, subtype_at_stmt s.
Proof.
apply (statement_induction subtype_at_stmt); auto.
Qed.
End Typing_Equivalence_Homomorphism.
Section Environments.
(** Function environment maps defined functions to their procedure type. Used
for direct method invocation, direct property get etc. *)
Definition member_env : Type := NatMap.t member.
Definition procedure_dissect (envs: class_env * member_env) (p : procedure) :=
let (CE, ME) := envs in
let (memb, _, fn) := p in
let (nn, name) := memb in
let (name_str) := name in
let (ref) := nn in
let (id) := ref in
let (param, ret_type, _) := fn in
let (_, param_type, _) := param in
let proc := mk_procedure_desc name_str id (Function_Type param_type ret_type) in
(proc, (CE, NatMap.add id (M_Procedure p) ME)).
Definition procedure_to_env p envs := snd (procedure_dissect envs p).
Definition procedure_to_desc envs p := fst (procedure_dissect envs p).
Definition class_to_env (c : class) (envs: class_env * member_env) :=
let (nn, name, procs) := c in
let (ref) := nn in
let (id) := ref in
let envs' := List.fold_right procedure_to_env envs procs in
let procedures := List.map (procedure_to_desc envs') procs in
let getters := List.map (fun P => mk_getter_desc (pr_name P) (pr_ref P) (DT_Function_Type (pr_type P))) procedures in
let (CE, ME) := envs' in
(NatMap.add id (mk_interface procedures getters) CE, ME).
Definition lib_to_env (l: library) : class_env * member_env :=
let (_, classes, top_procs) := l in
let envs := List.fold_right class_to_env (NatMap.empty _, NatMap.empty _) classes in
List.fold_right procedure_to_env envs top_procs.
Local Ltac destruct_types :=
repeat match goal with
| [H : interface_type |- _] => destruct H
| [H : function_type |- _] => destruct H
| [H : procedure |- _] => destruct H
| [H : member_data |- _] => destruct H
| [H : named_node_data |- _] => destruct H
| [H : function_node |- _] => destruct H
| [H : procedure_desc |- _] => destruct H
| [H : getter_desc |- _] => destruct H
| [H : name |- _] => destruct H
| [H : reference |- _] => destruct H
| [H : variable_declaration |- _] => destruct H
| [H : class |- _] => destruct H
end.
Local Lemma proc_desc_noenv : forall env env', procedure_to_desc env = procedure_to_desc env'.
Proof.
intros.
apply functional_extensionality.
intros.
unfold procedure_to_desc.
unfold procedure_dissect.
destruct env; destruct env'.
destruct_types.
crush.
Qed.
Local Definition mono
(envs: class_env * member_env)
(envs': class_env * member_env) : Prop :=
let (CE, ME) := envs in
let (CE', ME') := envs' in
(forall n, NatMap.In n CE -> NatMap.In n CE') /\
(forall n, NatMap.In n ME -> NatMap.In n ME').
Local Lemma mono_trans : forall x y z, mono x y -> mono y z -> mono x z.
Proof.
intros.
destruct x; destruct y; destruct z.
unfold mono in *.
crush.
Qed.
Local Lemma mono_sym : forall x, mono x x.
Proof.
crush.
Qed.
Hint Rewrite add_in_iff.
Local Lemma proc_mono :
forall E1 E2 p p',
procedure_dissect E1 p = (p', E2) -> mono E1 E2.
Proof.
intros.
unfold procedure_dissect in H.
destruct_types.
destruct E1; destruct E2.
unfold mono.
inject H.
crush.
Qed.
Hint Resolve proc_mono.
Local Lemma class_mono :
forall E1 E2 c, class_to_env c E1 = E2 -> mono E1 E2.
Proof.
intros.
destruct E1; destruct E2.
unfold class_to_env in H.
destruct_types.
extract_head fold_right in H.
assert (mono (c0, m) H0).
pose proof (foldr_mono mono l (c0, m) procedure_to_env mono_sym mono_trans) as X.
continue_with X.
intros.
unfold procedure_to_env.
remember (procedure_dissect a b) as P.
destruct P.
simpl.
apply (proc_mono _ _ _ _ (eq_sym HeqP)).
crush.
destruct H0.
assert (mono (c, m) (t, m0)) by
(inversion H;
unfold mono;
crush); crush.
Qed.
Local Lemma fold_proc_invar :
forall E1 E2 ps,
List.fold_right procedure_to_env E1 ps = E2 ->
fst E1 = fst E2.
Proof.
intros.
destruct E1 as (CE, ME); destruct E2 as (CE' , ME').
pose (x := @foldr_preserve (class_env * member_env) procedure (fun env => let (CE', _) := env in CE = CE') ps (CE, ME) procedure_to_env).
continue_with x.
crush.
destruct_types.
crush.
continue_with x.
crush.
continue_with x3; crush.
rewrite H in H3.
assumption.
Qed.
Local Lemma class_env_invar :
forall CE ME CE' ME' id id' intf n ps,
id <> id' ->
class_to_env (Class (Named_Node (Reference id')) n ps) (CE, ME) = (CE', ME') ->
(NatMap.MapsTo id intf CE' -> NatMap.MapsTo id intf CE).
Proof.
unfold class_to_env.
intros.
extract_head fold_right in H0 as F.
destruct F as (CE_f, ME_f).
inversion H0; clear H0.
rewrite H4 in *; clear H4.
assert (NatMap.MapsTo id intf CE_f).
rewrite <- H3 in H1.
apply (NatMap.add_3 (not_eq_sym H) H1).
apply eq_sym in FEq.
apply fold_proc_invar in FEq.
simpl in FEq.
crush.
Qed.
Hint Resolve NatMap.add_1.
Local Lemma program_wf': forall cs CE ME class_id intf proc_desc,
List.fold_right class_to_env (NatMap.empty _, NatMap.empty _) cs = (CE, ME)
-> NatMap.MapsTo class_id intf CE
-> List.In proc_desc (procedures intf)
-> NatMap.In (pr_ref proc_desc) ME.
Proof.
intro cs.
induction cs.
(* Base case: no classes in the library. Contradiction. *)
intros.
unfold fold_right in H.
inversion H.
contradict H0.
pose proof (@NatMap.empty_1 interface).
rewrite <- H3 in *.
clear H3; clear CE.
unfold NatMap.Empty in *.
unfold NatMap.empty in H0.
unfold NatMap.empty.
unfold NatMap.MapsTo.
simpl in *.
unfold NatMap.Raw.Empty in H0.
generalize class_id intf.
assumption.
(* Inductive case: consider whether top class is ours or not. *)
intros.
simpl in *.
destruct a; destruct n; destruct r.
destruct (N.eq_dec n class_id).
(* Case 1.1: head class is different. *)
Focus 2.
extract_head fold_right in H as Fold.
destruct Fold as (CE_f, ME_f).
(* class_id must map to the same interface after applying the previous classes. *)
assert (NatMap.MapsTo class_id intf CE_f).
pose proof (class_env_invar CE_f ME_f CE ME class_id n intf s l (not_eq_sym n0)) as H2.
continue_with H2; crush.
(* Apply the induction hypothesis. *)
pose proof (IHcs CE_f ME_f class_id intf proc_desc eq_refl H2 H1) as IH.
assert (mono (CE_f, ME_f) (CE, ME)).
apply (class_mono _ _ ((Class (Named_Node (Reference n)) s l))); crush.
crush.
(* Case 1.2: head class is the same. *)
extract_head fold_right in H as Fold.
unfold class_to_env in H.
extract_head fold_right in H as FoldP.
destruct FoldP as (CE_f, ME_f).
inversion H; clear H.
rewrite H4 in *; clear H4.
rewrite e in *; clear e.
extract_head mk_interface in H3 as I, IEq.
assert (NatMap.MapsTo class_id I CE) by crush.
pose proof (@MoreNatMapFacts.add_3 _ CE class_id intf I (conj H0 H)).
rewrite H2 in *; clear H2.
clear H0.
clear H.
simpl in H1.
clear IHcs.
rewrite IEq in *.
clear IEq.
clear I.
generalize H1.
generalize FoldPEq.
generalize CE_f ME.
clear H1.
clear FoldPEq.
clear H3.
induction l.
intros.
unfold In in H1.
simpl in H1.
crush.
intros.
destruct a; destruct n0; destruct r.
destruct proc_desc.
simpl.
simpl in H1.
destruct H1.
unfold procedure_to_desc in H.
unfold procedure_dissect in H.
destruct_types.
simpl in H.
inversion H.
rewrite H1 in *; clear H1.
rewrite H2 in *; clear H2.
rewrite H3 in *; clear H3.
rewrite H4 in *; clear H4.
clear H.
simpl in FoldPEq.
extract_head (fold_right procedure_to_env) in FoldPEq as Rest.
destruct Rest.
unfold procedure_to_env in FoldPEq.
unfold procedure_dissect in FoldPEq.
simpl in FoldPEq.
inject FoldPEq.
crush.
simpl in FoldPEq.
simpl in IHl.
extract_head fold_right in FoldPEq as InnerFold.
destruct InnerFold as (CE_i, ME_i).
unfold procedure_to_env in FoldPEq.
unfold procedure_dissect in FoldPEq.
destruct_types.
simpl in FoldPEq.
rewrite (proc_desc_noenv (CE_f0, ME0) (CE_i, ME_i)) in H.
pose proof (IHl CE_i ME_i eq_refl H).
inversion FoldPEq.
clear FoldPEq.
clear H2.
crush.
Qed.
Lemma program_wf: forall l CE ME class_id intf proc_desc,
lib_to_env l = (CE, ME)
-> NatMap.MapsTo class_id intf CE
-> List.In proc_desc (procedures intf)
-> NatMap.In (pr_ref proc_desc) ME.
Proof.
intros.
destruct l.
unfold lib_to_env in *.
extract_head (fold_right class_to_env) in H as Inner.
destruct Inner as (CE_i, ME_i).
assert (NatMap.MapsTo class_id intf CE_i).
apply eq_sym in InnerEq.
apply (fold_proc_invar _ _ _) in H.
simpl in H.
crush.
pose proof (program_wf' l CE_i ME_i class_id intf proc_desc (eq_sym InnerEq) H2 H1).
assert (mono (CE_i, ME_i) (CE, ME)).
rewrite <- H.
apply foldr_mono.
exact mono_sym.
exact mono_trans.
intros.
unfold procedure_to_env in *.
remember (procedure_dissect a b) as Z.
destruct Z.
simpl.
apply (proc_mono a p0 b p).
auto.
unfold mono in H4.
crush.
Qed.
End Environments.