blob: b5b3ccf977cf23f8a844454459fbc2e193b66f0e [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM.
#if defined(TARGET_ARCH_ARM)
#include "vm/intrinsifier.h"
#include "vm/assembler.h"
#include "vm/cpu.h"
#include "vm/dart_entry.h"
#include "vm/flow_graph_compiler.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/regexp_assembler.h"
#include "vm/symbols.h"
namespace dart {
DECLARE_FLAG(bool, enable_type_checks);
#define __ assembler->
intptr_t Intrinsifier::ParameterSlotFromSp() { return -1; }
static intptr_t ComputeObjectArrayTypeArgumentsOffset() {
const Library& core_lib = Library::Handle(Library::CoreLibrary());
const Class& cls = Class::Handle(
core_lib.LookupClassAllowPrivate(Symbols::_List()));
ASSERT(!cls.IsNull());
ASSERT(cls.NumTypeArguments() == 1);
const intptr_t field_offset = cls.type_arguments_field_offset();
ASSERT(field_offset != Class::kNoTypeArguments);
return field_offset;
}
// Intrinsify only for Smi value and index. Non-smi values need a store buffer
// update. Array length is always a Smi.
void Intrinsifier::ObjectArraySetIndexed(Assembler* assembler) {
Label fall_through;
if (Isolate::Current()->TypeChecksEnabled()) {
const intptr_t type_args_field_offset =
ComputeObjectArrayTypeArgumentsOffset();
// Inline simple tests (Smi, null), fallthrough if not positive.
const int32_t raw_null = reinterpret_cast<intptr_t>(Object::null());
Label checked_ok;
__ ldr(R2, Address(SP, 0 * kWordSize)); // Value.
// Null value is valid for any type.
__ CompareImmediate(R2, raw_null);
__ b(&checked_ok, EQ);
__ ldr(R1, Address(SP, 2 * kWordSize)); // Array.
__ ldr(R1, FieldAddress(R1, type_args_field_offset));
// R1: Type arguments of array.
__ CompareImmediate(R1, raw_null);
__ b(&checked_ok, EQ);
// Check if it's dynamic.
// Get type at index 0.
__ ldr(R0, FieldAddress(R1, TypeArguments::type_at_offset(0)));
__ CompareObject(R0, Type::ZoneHandle(Type::DynamicType()));
__ b(&checked_ok, EQ);
// Check for int and num.
__ tst(R2, Operand(kSmiTagMask)); // Value is Smi?
__ b(&fall_through, NE); // Non-smi value.
__ CompareObject(R0, Type::ZoneHandle(Type::IntType()));
__ b(&checked_ok, EQ);
__ CompareObject(R0, Type::ZoneHandle(Type::Number()));
__ b(&fall_through, NE);
__ Bind(&checked_ok);
}
__ ldr(R1, Address(SP, 1 * kWordSize)); // Index.
__ tst(R1, Operand(kSmiTagMask));
// Index not Smi.
__ b(&fall_through, NE);
__ ldr(R0, Address(SP, 2 * kWordSize)); // Array.
// Range check.
__ ldr(R3, FieldAddress(R0, Array::length_offset())); // Array length.
__ cmp(R1, Operand(R3));
// Runtime throws exception.
__ b(&fall_through, CS);
// Note that R1 is Smi, i.e, times 2.
ASSERT(kSmiTagShift == 1);
__ ldr(R2, Address(SP, 0 * kWordSize)); // Value.
__ add(R1, R0, Operand(R1, LSL, 1)); // R1 is Smi.
__ StoreIntoObject(R0, FieldAddress(R1, Array::data_offset()), R2);
// Caller is responsible for preserving the value if necessary.
__ Ret();
__ Bind(&fall_through);
}
// Allocate a GrowableObjectArray using the backing array specified.
// On stack: type argument (+1), data (+0).
void Intrinsifier::GrowableArray_Allocate(Assembler* assembler) {
// The newly allocated object is returned in R0.
const intptr_t kTypeArgumentsOffset = 1 * kWordSize;
const intptr_t kArrayOffset = 0 * kWordSize;
Label fall_through;
// Try allocating in new space.
const Class& cls = Class::Handle(
Isolate::Current()->object_store()->growable_object_array_class());
__ TryAllocate(cls, &fall_through, R0, R1);
// Store backing array object in growable array object.
__ ldr(R1, Address(SP, kArrayOffset)); // Data argument.
// R0 is new, no barrier needed.
__ InitializeFieldNoBarrier(
R0,
FieldAddress(R0, GrowableObjectArray::data_offset()),
R1);
// R0: new growable array object start as a tagged pointer.
// Store the type argument field in the growable array object.
__ ldr(R1, Address(SP, kTypeArgumentsOffset)); // Type argument.
__ InitializeFieldNoBarrier(
R0,
FieldAddress(R0, GrowableObjectArray::type_arguments_offset()),
R1);
// Set the length field in the growable array object to 0.
__ LoadImmediate(R1, 0);
__ InitializeFieldNoBarrier(
R0,
FieldAddress(R0, GrowableObjectArray::length_offset()),
R1);
__ Ret(); // Returns the newly allocated object in R0.
__ Bind(&fall_through);
}
// Add an element to growable array if it doesn't need to grow, otherwise
// call into regular code.
// On stack: growable array (+1), value (+0).
void Intrinsifier::GrowableArray_add(Assembler* assembler) {
// In checked mode we need to type-check the incoming argument.
if (Isolate::Current()->TypeChecksEnabled()) {
return;
}
Label fall_through;
// R0: Array.
__ ldr(R0, Address(SP, 1 * kWordSize));
// R1: length.
__ ldr(R1, FieldAddress(R0, GrowableObjectArray::length_offset()));
// R2: data.
__ ldr(R2, FieldAddress(R0, GrowableObjectArray::data_offset()));
// R3: capacity.
__ ldr(R3, FieldAddress(R2, Array::length_offset()));
// Compare length with capacity.
__ cmp(R1, Operand(R3));
__ b(&fall_through, EQ); // Must grow data.
const int32_t value_one = reinterpret_cast<int32_t>(Smi::New(1));
// len = len + 1;
__ add(R3, R1, Operand(value_one));
__ StoreIntoSmiField(FieldAddress(R0, GrowableObjectArray::length_offset()),
R3);
__ ldr(R0, Address(SP, 0 * kWordSize)); // Value.
ASSERT(kSmiTagShift == 1);
__ add(R1, R2, Operand(R1, LSL, 1));
__ StoreIntoObject(R2, FieldAddress(R1, Array::data_offset()), R0);
const int32_t raw_null = reinterpret_cast<int32_t>(Object::null());
__ LoadImmediate(R0, raw_null);
__ Ret();
__ Bind(&fall_through);
}
#define TYPED_ARRAY_ALLOCATION(type_name, cid, max_len, scale_shift) \
Label fall_through; \
const intptr_t kArrayLengthStackOffset = 0 * kWordSize; \
__ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
/* Check that length is a positive Smi. */ \
/* R2: requested array length argument. */ \
__ tst(R2, Operand(kSmiTagMask)); \
__ b(&fall_through, NE); \
__ CompareImmediate(R2, 0); \
__ b(&fall_through, LT); \
__ SmiUntag(R2); \
/* Check for maximum allowed length. */ \
/* R2: untagged array length. */ \
__ CompareImmediate(R2, max_len); \
__ b(&fall_through, GT); \
__ mov(R2, Operand(R2, LSL, scale_shift)); \
const intptr_t fixed_size = sizeof(Raw##type_name) + kObjectAlignment - 1; \
__ AddImmediate(R2, fixed_size); \
__ bic(R2, R2, Operand(kObjectAlignment - 1)); \
Heap* heap = Isolate::Current()->heap(); \
Heap::Space space = heap->SpaceForAllocation(cid); \
__ LoadImmediate(R0, heap->TopAddress(space)); \
__ ldr(R0, Address(R0, 0)); \
\
/* R2: allocation size. */ \
__ add(R1, R0, Operand(R2)); \
__ b(&fall_through, VS); \
\
/* Check if the allocation fits into the remaining space. */ \
/* R0: potential new object start. */ \
/* R1: potential next object start. */ \
/* R2: allocation size. */ \
__ LoadImmediate(R3, heap->EndAddress(space)); \
__ ldr(R3, Address(R3, 0)); \
__ cmp(R1, Operand(R3)); \
__ b(&fall_through, CS); \
\
/* Successfully allocated the object(s), now update top to point to */ \
/* next object start and initialize the object. */ \
__ LoadAllocationStatsAddress(R4, cid, space); \
__ LoadImmediate(R3, heap->TopAddress(space)); \
__ str(R1, Address(R3, 0)); \
__ AddImmediate(R0, kHeapObjectTag); \
/* Initialize the tags. */ \
/* R0: new object start as a tagged pointer. */ \
/* R1: new object end address. */ \
/* R2: allocation size. */ \
/* R4: allocation stats address */ \
{ \
__ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag); \
__ mov(R3, Operand(R2, LSL, \
RawObject::kSizeTagPos - kObjectAlignmentLog2), LS); \
__ mov(R3, Operand(0), HI); \
\
/* Get the class index and insert it into the tags. */ \
__ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid)); \
__ orr(R3, R3, Operand(TMP)); \
__ str(R3, FieldAddress(R0, type_name::tags_offset())); /* Tags. */ \
} \
/* Set the length field. */ \
/* R0: new object start as a tagged pointer. */ \
/* R1: new object end address. */ \
/* R2: allocation size. */ \
/* R4: allocation stats address. */ \
__ ldr(R3, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
__ InitializeFieldNoBarrier(R0, \
FieldAddress(R0, type_name::length_offset()), \
R3); \
/* Initialize all array elements to 0. */ \
/* R0: new object start as a tagged pointer. */ \
/* R1: new object end address. */ \
/* R2: allocation size. */ \
/* R3: iterator which initially points to the start of the variable */ \
/* R4: allocation stats address */ \
/* R6, R7: zero. */ \
/* data area to be initialized. */ \
__ LoadImmediate(R6, 0); \
__ mov(R7, Operand(R6)); \
__ AddImmediate(R3, R0, sizeof(Raw##type_name) - 1); \
Label init_loop; \
__ Bind(&init_loop); \
__ AddImmediate(R3, 2 * kWordSize); \
__ cmp(R3, Operand(R1)); \
__ strd(R6, Address(R3, -2 * kWordSize), LS); \
__ b(&init_loop, CC); \
__ str(R6, Address(R3, -2 * kWordSize), HI); \
\
__ IncrementAllocationStatsWithSize(R4, R2, cid, space); \
__ Ret(); \
__ Bind(&fall_through); \
static int GetScaleFactor(intptr_t size) {
switch (size) {
case 1: return 0;
case 2: return 1;
case 4: return 2;
case 8: return 3;
case 16: return 4;
}
UNREACHABLE();
return -1;
}
#define TYPED_DATA_ALLOCATOR(clazz) \
void Intrinsifier::TypedData_##clazz##_new(Assembler* assembler) { \
intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \
intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \
int shift = GetScaleFactor(size); \
TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \
} \
void Intrinsifier::TypedData_##clazz##_factory(Assembler* assembler) { \
intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \
intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \
int shift = GetScaleFactor(size); \
TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \
}
CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR)
#undef TYPED_DATA_ALLOCATOR
// Loads args from stack into R0 and R1
// Tests if they are smis, jumps to label not_smi if not.
static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) {
__ ldr(R0, Address(SP, + 0 * kWordSize));
__ ldr(R1, Address(SP, + 1 * kWordSize));
__ orr(TMP, R0, Operand(R1));
__ tst(TMP, Operand(kSmiTagMask));
__ b(not_smi, NE);
return;
}
void Intrinsifier::Integer_addFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
__ adds(R0, R0, Operand(R1)); // Adds.
__ bx(LR, VC); // Return if no overflow.
// Otherwise fall through.
__ Bind(&fall_through);
}
void Intrinsifier::Integer_add(Assembler* assembler) {
Integer_addFromInteger(assembler);
}
void Intrinsifier::Integer_subFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ subs(R0, R0, Operand(R1)); // Subtract.
__ bx(LR, VC); // Return if no overflow.
// Otherwise fall through.
__ Bind(&fall_through);
}
void Intrinsifier::Integer_sub(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ subs(R0, R1, Operand(R0)); // Subtract.
__ bx(LR, VC); // Return if no overflow.
// Otherwise fall through.
__ Bind(&fall_through);
}
void Intrinsifier::Integer_mulFromInteger(Assembler* assembler) {
if (TargetCPUFeatures::arm_version() == ARMv7) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // checks two smis
__ SmiUntag(R0); // Untags R6. We only want result shifted by one.
__ smull(R0, IP, R0, R1); // IP:R0 <- R0 * R1.
__ cmp(IP, Operand(R0, ASR, 31));
__ bx(LR, EQ);
__ Bind(&fall_through); // Fall through on overflow.
} else if (TargetCPUFeatures::can_divide()) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // checks two smis
__ SmiUntag(R0); // Untags R6. We only want result shifted by one.
__ CheckMultSignedOverflow(R0, R1, IP, D0, D1, &fall_through);
__ mul(R0, R0, R1);
__ Ret();
__ Bind(&fall_through); // Fall through on overflow.
}
}
void Intrinsifier::Integer_mul(Assembler* assembler) {
Integer_mulFromInteger(assembler);
}
// Optimizations:
// - result is 0 if:
// - left is 0
// - left equals right
// - result is left if
// - left > 0 && left < right
// R1: Tagged left (dividend).
// R0: Tagged right (divisor).
// Returns:
// R1: Untagged fallthrough result (remainder to be adjusted), or
// R0: Tagged return result (remainder).
static void EmitRemainderOperation(Assembler* assembler) {
Label modulo;
const Register left = R1;
const Register right = R0;
const Register result = R1;
const Register tmp = R2;
ASSERT(left == result);
// Check for quick zero results.
__ cmp(left, Operand(0));
__ mov(R0, Operand(0), EQ);
__ bx(LR, EQ); // left is 0? Return 0.
__ cmp(left, Operand(right));
__ mov(R0, Operand(0), EQ);
__ bx(LR, EQ); // left == right? Return 0.
// Check if result should be left.
__ cmp(left, Operand(0));
__ b(&modulo, LT);
// left is positive.
__ cmp(left, Operand(right));
// left is less than right, result is left.
__ mov(R0, Operand(left), LT);
__ bx(LR, LT);
__ Bind(&modulo);
// result <- left - right * (left / right)
__ SmiUntag(left);
__ SmiUntag(right);
__ IntegerDivide(tmp, left, right, D1, D0);
__ mls(result, right, tmp, left); // result <- left - right * TMP
return;
}
// Implementation:
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
void Intrinsifier::Integer_moduloFromInteger(Assembler* assembler) {
if (!TargetCPUFeatures::can_divide()) {
return;
}
// Check to see if we have integer division
Label fall_through;
__ ldr(R1, Address(SP, + 0 * kWordSize));
__ ldr(R0, Address(SP, + 1 * kWordSize));
__ orr(TMP, R0, Operand(R1));
__ tst(TMP, Operand(kSmiTagMask));
__ b(&fall_through, NE);
// R1: Tagged left (dividend).
// R0: Tagged right (divisor).
// Check if modulo by zero -> exception thrown in main function.
__ cmp(R0, Operand(0));
__ b(&fall_through, EQ);
EmitRemainderOperation(assembler);
// Untagged right in R0. Untagged remainder result in R1.
__ cmp(R1, Operand(0));
__ mov(R0, Operand(R1, LSL, 1), GE); // Tag and move result to R0.
__ bx(LR, GE);
// Result is negative, adjust it.
__ cmp(R0, Operand(0));
__ sub(R0, R1, Operand(R0), LT);
__ add(R0, R1, Operand(R0), GE);
__ SmiTag(R0);
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_truncDivide(Assembler* assembler) {
if (!TargetCPUFeatures::can_divide()) {
return;
}
// Check to see if we have integer division
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ cmp(R0, Operand(0));
__ b(&fall_through, EQ); // If b is 0, fall through.
__ SmiUntag(R0);
__ SmiUntag(R1);
__ IntegerDivide(R0, R1, R0, D1, D0);
// Check the corner case of dividing the 'MIN_SMI' with -1, in which case we
// cannot tag the result.
__ CompareImmediate(R0, 0x40000000);
__ SmiTag(R0, NE); // Not equal. Okay to tag and return.
__ bx(LR, NE); // Return.
__ Bind(&fall_through);
}
void Intrinsifier::Integer_negate(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, + 0 * kWordSize)); // Grab first argument.
__ tst(R0, Operand(kSmiTagMask)); // Test for Smi.
__ b(&fall_through, NE);
__ rsbs(R0, R0, Operand(0)); // R0 is a Smi. R0 <- 0 - R0.
__ bx(LR, VC); // Return if there wasn't overflow, fall through otherwise.
// R0 is not a Smi. Fall through.
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitAndFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // checks two smis
__ and_(R0, R0, Operand(R1));
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitAnd(Assembler* assembler) {
Integer_bitAndFromInteger(assembler);
}
void Intrinsifier::Integer_bitOrFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // checks two smis
__ orr(R0, R0, Operand(R1));
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitOr(Assembler* assembler) {
Integer_bitOrFromInteger(assembler);
}
void Intrinsifier::Integer_bitXorFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // checks two smis
__ eor(R0, R0, Operand(R1));
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitXor(Assembler* assembler) {
Integer_bitXorFromInteger(assembler);
}
void Intrinsifier::Integer_shl(Assembler* assembler) {
ASSERT(kSmiTagShift == 1);
ASSERT(kSmiTag == 0);
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ CompareImmediate(R0, Smi::RawValue(Smi::kBits));
__ b(&fall_through, HI);
__ SmiUntag(R0);
// Check for overflow by shifting left and shifting back arithmetically.
// If the result is different from the original, there was overflow.
__ mov(IP, Operand(R1, LSL, R0));
__ cmp(R1, Operand(IP, ASR, R0));
// No overflow, result in R0.
__ mov(R0, Operand(R1, LSL, R0), EQ);
__ bx(LR, EQ);
// Arguments are Smi but the shift produced an overflow to Mint.
__ CompareImmediate(R1, 0);
__ b(&fall_through, LT);
__ SmiUntag(R1);
// Pull off high bits that will be shifted off of R1 by making a mask
// ((1 << R0) - 1), shifting it to the left, masking R1, then shifting back.
// high bits = (((1 << R0) - 1) << (32 - R0)) & R1) >> (32 - R0)
// lo bits = R1 << R0
__ LoadImmediate(R7, 1);
__ mov(R7, Operand(R7, LSL, R0)); // R7 <- 1 << R0
__ sub(R7, R7, Operand(1)); // R7 <- R7 - 1
__ rsb(R8, R0, Operand(32)); // R8 <- 32 - R0
__ mov(R7, Operand(R7, LSL, R8)); // R7 <- R7 << R8
__ and_(R7, R1, Operand(R7)); // R7 <- R7 & R1
__ mov(R7, Operand(R7, LSR, R8)); // R7 <- R7 >> R8
// Now R7 has the bits that fall off of R1 on a left shift.
__ mov(R1, Operand(R1, LSL, R0)); // R1 gets the low bits.
const Class& mint_class = Class::Handle(
Isolate::Current()->object_store()->mint_class());
__ TryAllocate(mint_class, &fall_through, R0, R2);
__ str(R1, FieldAddress(R0, Mint::value_offset()));
__ str(R7, FieldAddress(R0, Mint::value_offset() + kWordSize));
__ Ret();
__ Bind(&fall_through);
}
static void Get64SmiOrMint(Assembler* assembler,
Register res_hi,
Register res_lo,
Register reg,
Label* not_smi_or_mint) {
Label not_smi, done;
__ tst(reg, Operand(kSmiTagMask));
__ b(&not_smi, NE);
__ SmiUntag(reg);
// Sign extend to 64 bit
__ mov(res_lo, Operand(reg));
__ mov(res_hi, Operand(res_lo, ASR, 31));
__ b(&done);
__ Bind(&not_smi);
__ CompareClassId(reg, kMintCid, res_lo);
__ b(not_smi_or_mint, NE);
// Mint.
__ ldr(res_lo, FieldAddress(reg, Mint::value_offset()));
__ ldr(res_hi, FieldAddress(reg, Mint::value_offset() + kWordSize));
__ Bind(&done);
return;
}
static void CompareIntegers(Assembler* assembler, Condition true_condition) {
Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through;
TestBothArgumentsSmis(assembler, &try_mint_smi);
// R0 contains the right argument. R1 contains left argument
__ cmp(R1, Operand(R0));
__ b(&is_true, true_condition);
__ Bind(&is_false);
__ LoadObject(R0, Bool::False());
__ Ret();
__ Bind(&is_true);
__ LoadObject(R0, Bool::True());
__ Ret();
// 64-bit comparison
Condition hi_true_cond, hi_false_cond, lo_false_cond;
switch (true_condition) {
case LT:
case LE:
hi_true_cond = LT;
hi_false_cond = GT;
lo_false_cond = (true_condition == LT) ? CS : HI;
break;
case GT:
case GE:
hi_true_cond = GT;
hi_false_cond = LT;
lo_false_cond = (true_condition == GT) ? LS : CC;
break;
default:
UNREACHABLE();
hi_true_cond = hi_false_cond = lo_false_cond = VS;
}
__ Bind(&try_mint_smi);
// Get left as 64 bit integer.
Get64SmiOrMint(assembler, R3, R2, R1, &fall_through);
// Get right as 64 bit integer.
Get64SmiOrMint(assembler, R7, R6, R0, &fall_through);
// R3: left high.
// R2: left low.
// R7: right high.
// R6: right low.
__ cmp(R3, Operand(R7)); // Compare left hi, right high.
__ b(&is_false, hi_false_cond);
__ b(&is_true, hi_true_cond);
__ cmp(R2, Operand(R6)); // Compare left lo, right lo.
__ b(&is_false, lo_false_cond);
// Else is true.
__ b(&is_true);
__ Bind(&fall_through);
}
void Intrinsifier::Integer_greaterThanFromInt(Assembler* assembler) {
CompareIntegers(assembler, LT);
}
void Intrinsifier::Integer_lessThan(Assembler* assembler) {
Integer_greaterThanFromInt(assembler);
}
void Intrinsifier::Integer_greaterThan(Assembler* assembler) {
CompareIntegers(assembler, GT);
}
void Intrinsifier::Integer_lessEqualThan(Assembler* assembler) {
CompareIntegers(assembler, LE);
}
void Intrinsifier::Integer_greaterEqualThan(Assembler* assembler) {
CompareIntegers(assembler, GE);
}
// This is called for Smi, Mint and Bigint receivers. The right argument
// can be Smi, Mint, Bigint or double.
void Intrinsifier::Integer_equalToInteger(Assembler* assembler) {
Label fall_through, true_label, check_for_mint;
// For integer receiver '===' check first.
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R1, Address(SP, 1 * kWordSize));
__ cmp(R0, Operand(R1));
__ b(&true_label, EQ);
__ orr(R2, R0, Operand(R1));
__ tst(R2, Operand(kSmiTagMask));
__ b(&check_for_mint, NE); // If R0 or R1 is not a smi do Mint checks.
// Both arguments are smi, '===' is good enough.
__ LoadObject(R0, Bool::False());
__ Ret();
__ Bind(&true_label);
__ LoadObject(R0, Bool::True());
__ Ret();
// At least one of the arguments was not Smi.
Label receiver_not_smi;
__ Bind(&check_for_mint);
__ tst(R1, Operand(kSmiTagMask)); // Check receiver.
__ b(&receiver_not_smi, NE);
// Left (receiver) is Smi, return false if right is not Double.
// Note that an instance of Mint or Bigint never contains a value that can be
// represented by Smi.
__ CompareClassId(R0, kDoubleCid, R2);
__ b(&fall_through, EQ);
__ LoadObject(R0, Bool::False()); // Smi == Mint -> false.
__ Ret();
__ Bind(&receiver_not_smi);
// R1:: receiver.
__ CompareClassId(R1, kMintCid, R2);
__ b(&fall_through, NE);
// Receiver is Mint, return false if right is Smi.
__ tst(R0, Operand(kSmiTagMask));
__ LoadObject(R0, Bool::False(), EQ);
__ bx(LR, EQ);
// TODO(srdjan): Implement Mint == Mint comparison.
__ Bind(&fall_through);
}
void Intrinsifier::Integer_equal(Assembler* assembler) {
Integer_equalToInteger(assembler);
}
void Intrinsifier::Integer_sar(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
// Shift amount in R0. Value to shift in R1.
// Fall through if shift amount is negative.
__ SmiUntag(R0);
__ CompareImmediate(R0, 0);
__ b(&fall_through, LT);
// If shift amount is bigger than 31, set to 31.
__ CompareImmediate(R0, 0x1F);
__ LoadImmediate(R0, 0x1F, GT);
__ SmiUntag(R1);
__ mov(R0, Operand(R1, ASR, R0));
__ SmiTag(R0);
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::Smi_bitNegate(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ mvn(R0, Operand(R0));
__ bic(R0, R0, Operand(kSmiTagMask)); // Remove inverted smi-tag.
__ Ret();
}
void Intrinsifier::Smi_bitLength(Assembler* assembler) {
// TODO(sra): Implement as word-length - CLZ.
}
void Intrinsifier::Bigint_absAdd(Assembler* assembler) {
// static void _absAdd(Uint32List digits, int used,
// Uint32List a_digits, int a_used,
// Uint32List r_digits)
// R2 = used, R3 = digits
__ ldrd(R2, Address(SP, 3 * kWordSize));
// R3 = &digits[0]
__ add(R3, R3, Operand(TypedData::data_offset() - kHeapObjectTag));
// R4 = a_used, R5 = a_digits
__ ldrd(R4, Address(SP, 1 * kWordSize));
// R5 = &a_digits[0]
__ add(R5, R5, Operand(TypedData::data_offset() - kHeapObjectTag));
// R6 = r_digits
__ ldr(R6, Address(SP, 0 * kWordSize));
// R6 = &r_digits[0]
__ add(R6, R6, Operand(TypedData::data_offset() - kHeapObjectTag));
// R7 = &digits[a_used >> 1], a_used is Smi.
__ add(R7, R3, Operand(R4, LSL, 1));
// R8 = &digits[used >> 1], used is Smi.
__ add(R8, R3, Operand(R2, LSL, 1));
__ adds(R0, R0, Operand(0)); // carry flag = 0
Label add_loop;
__ Bind(&add_loop);
// Loop a_used times, a_used > 0.
__ ldr(R0, Address(R3, Bigint::kBytesPerDigit, Address::PostIndex));
__ ldr(R1, Address(R5, Bigint::kBytesPerDigit, Address::PostIndex));
__ adcs(R0, R0, Operand(R1));
__ teq(R3, Operand(R7)); // Does not affect carry flag.
__ str(R0, Address(R6, Bigint::kBytesPerDigit, Address::PostIndex));
__ b(&add_loop, NE);
Label last_carry;
__ teq(R3, Operand(R8)); // Does not affect carry flag.
__ b(&last_carry, EQ); // If used - a_used == 0.
Label carry_loop;
__ Bind(&carry_loop);
// Loop used - a_used times, used - a_used > 0.
__ ldr(R0, Address(R3, Bigint::kBytesPerDigit, Address::PostIndex));
__ adcs(R0, R0, Operand(0));
__ teq(R3, Operand(R8)); // Does not affect carry flag.
__ str(R0, Address(R6, Bigint::kBytesPerDigit, Address::PostIndex));
__ b(&carry_loop, NE);
__ Bind(&last_carry);
__ mov(R0, Operand(0));
__ adc(R0, R0, Operand(0));
__ str(R0, Address(R6, 0));
// Returning Object::null() is not required, since this method is private.
__ Ret();
}
void Intrinsifier::Bigint_absSub(Assembler* assembler) {
// static void _absSub(Uint32List digits, int used,
// Uint32List a_digits, int a_used,
// Uint32List r_digits)
// R2 = used, R3 = digits
__ ldrd(R2, Address(SP, 3 * kWordSize));
// R3 = &digits[0]
__ add(R3, R3, Operand(TypedData::data_offset() - kHeapObjectTag));
// R4 = a_used, R5 = a_digits
__ ldrd(R4, Address(SP, 1 * kWordSize));
// R5 = &a_digits[0]
__ add(R5, R5, Operand(TypedData::data_offset() - kHeapObjectTag));
// R6 = r_digits
__ ldr(R6, Address(SP, 0 * kWordSize));
// R6 = &r_digits[0]
__ add(R6, R6, Operand(TypedData::data_offset() - kHeapObjectTag));
// R7 = &digits[a_used >> 1], a_used is Smi.
__ add(R7, R3, Operand(R4, LSL, 1));
// R8 = &digits[used >> 1], used is Smi.
__ add(R8, R3, Operand(R2, LSL, 1));
__ subs(R0, R0, Operand(0)); // carry flag = 1
Label sub_loop;
__ Bind(&sub_loop);
// Loop a_used times, a_used > 0.
__ ldr(R0, Address(R3, Bigint::kBytesPerDigit, Address::PostIndex));
__ ldr(R1, Address(R5, Bigint::kBytesPerDigit, Address::PostIndex));
__ sbcs(R0, R0, Operand(R1));
__ teq(R3, Operand(R7)); // Does not affect carry flag.
__ str(R0, Address(R6, Bigint::kBytesPerDigit, Address::PostIndex));
__ b(&sub_loop, NE);
Label done;
__ teq(R3, Operand(R8)); // Does not affect carry flag.
__ b(&done, EQ); // If used - a_used == 0.
Label carry_loop;
__ Bind(&carry_loop);
// Loop used - a_used times, used - a_used > 0.
__ ldr(R0, Address(R3, Bigint::kBytesPerDigit, Address::PostIndex));
__ sbcs(R0, R0, Operand(0));
__ teq(R3, Operand(R8)); // Does not affect carry flag.
__ str(R0, Address(R6, Bigint::kBytesPerDigit, Address::PostIndex));
__ b(&carry_loop, NE);
__ Bind(&done);
// Returning Object::null() is not required, since this method is private.
__ Ret();
}
void Intrinsifier::Bigint_mulAdd(Assembler* assembler) {
if (TargetCPUFeatures::arm_version() != ARMv7) {
return;
}
// Pseudo code:
// static int _mulAdd(Uint32List x_digits, int xi,
// Uint32List m_digits, int i,
// Uint32List a_digits, int j, int n) {
// uint32_t x = x_digits[xi >> 1]; // xi is Smi.
// if (x == 0 || n == 0) {
// return 1;
// }
// uint32_t* mip = &m_digits[i >> 1]; // i is Smi.
// uint32_t* ajp = &a_digits[j >> 1]; // j is Smi.
// uint32_t c = 0;
// SmiUntag(n);
// do {
// uint32_t mi = *mip++;
// uint32_t aj = *ajp;
// uint64_t t = x*mi + aj + c; // 32-bit * 32-bit -> 64-bit.
// *ajp++ = low32(t);
// c = high32(t);
// } while (--n > 0);
// while (c != 0) {
// uint64_t t = *ajp + c;
// *ajp++ = low32(t);
// c = high32(t); // c == 0 or 1.
// }
// return 1;
// }
Label done;
// R3 = x, no_op if x == 0
__ ldrd(R0, Address(SP, 5 * kWordSize)); // R0 = xi as Smi, R1 = x_digits.
__ add(R1, R1, Operand(R0, LSL, 1));
__ ldr(R3, FieldAddress(R1, TypedData::data_offset()));
__ tst(R3, Operand(R3));
__ b(&done, EQ);
// R6 = SmiUntag(n), no_op if n == 0
__ ldr(R6, Address(SP, 0 * kWordSize));
__ Asrs(R6, R6, Operand(kSmiTagSize));
__ b(&done, EQ);
// R4 = mip = &m_digits[i >> 1]
__ ldrd(R0, Address(SP, 3 * kWordSize)); // R0 = i as Smi, R1 = m_digits.
__ add(R1, R1, Operand(R0, LSL, 1));
__ add(R4, R1, Operand(TypedData::data_offset() - kHeapObjectTag));
// R5 = ajp = &a_digits[j >> 1]
__ ldrd(R0, Address(SP, 1 * kWordSize)); // R0 = j as Smi, R1 = a_digits.
__ add(R1, R1, Operand(R0, LSL, 1));
__ add(R5, R1, Operand(TypedData::data_offset() - kHeapObjectTag));
// R1 = c = 0
__ mov(R1, Operand(0));
Label muladd_loop;
__ Bind(&muladd_loop);
// x: R3
// mip: R4
// ajp: R5
// c: R1
// n: R6
// uint32_t mi = *mip++
__ ldr(R2, Address(R4, Bigint::kBytesPerDigit, Address::PostIndex));
// uint32_t aj = *ajp
__ ldr(R0, Address(R5, 0));
// uint64_t t = x*mi + aj + c
__ umaal(R0, R1, R2, R3); // R1:R0 = R2*R3 + R1 + R0.
// *ajp++ = low32(t) = R0
__ str(R0, Address(R5, Bigint::kBytesPerDigit, Address::PostIndex));
// c = high32(t) = R1
// while (--n > 0)
__ subs(R6, R6, Operand(1)); // --n
__ b(&muladd_loop, NE);
__ tst(R1, Operand(R1));
__ b(&done, EQ);
// *ajp++ += c
__ ldr(R0, Address(R5, 0));
__ adds(R0, R0, Operand(R1));
__ str(R0, Address(R5, Bigint::kBytesPerDigit, Address::PostIndex));
__ b(&done, CC);
Label propagate_carry_loop;
__ Bind(&propagate_carry_loop);
__ ldr(R0, Address(R5, 0));
__ adds(R0, R0, Operand(1));
__ str(R0, Address(R5, Bigint::kBytesPerDigit, Address::PostIndex));
__ b(&propagate_carry_loop, CS);
__ Bind(&done);
__ mov(R0, Operand(Smi::RawValue(1))); // One digit processed.
__ Ret();
}
void Intrinsifier::Bigint_sqrAdd(Assembler* assembler) {
if (TargetCPUFeatures::arm_version() != ARMv7) {
return;
}
// Pseudo code:
// static int _sqrAdd(Uint32List x_digits, int i,
// Uint32List a_digits, int used) {
// uint32_t* xip = &x_digits[i >> 1]; // i is Smi.
// uint32_t x = *xip++;
// if (x == 0) return 1;
// uint32_t* ajp = &a_digits[i]; // j == 2*i, i is Smi.
// uint32_t aj = *ajp;
// uint64_t t = x*x + aj;
// *ajp++ = low32(t);
// uint64_t c = high32(t);
// int n = ((used - i) >> 1) - 1; // used and i are Smi.
// while (--n >= 0) {
// uint32_t xi = *xip++;
// uint32_t aj = *ajp;
// uint96_t t = 2*x*xi + aj + c; // 2-bit * 32-bit * 32-bit -> 65-bit.
// *ajp++ = low32(t);
// c = high64(t); // 33-bit.
// }
// uint32_t aj = *ajp;
// uint64_t t = aj + c; // 32-bit + 33-bit -> 34-bit.
// *ajp++ = low32(t);
// *ajp = high32(t);
// return 1;
// }
// R4 = xip = &x_digits[i >> 1]
__ ldrd(R2, Address(SP, 2 * kWordSize)); // R2 = i as Smi, R3 = x_digits
__ add(R3, R3, Operand(R2, LSL, 1));
__ add(R4, R3, Operand(TypedData::data_offset() - kHeapObjectTag));
// R3 = x = *xip++, return if x == 0
Label x_zero;
__ ldr(R3, Address(R4, Bigint::kBytesPerDigit, Address::PostIndex));
__ tst(R3, Operand(R3));
__ b(&x_zero, EQ);
// R5 = ajp = &a_digits[i]
__ ldr(R1, Address(SP, 1 * kWordSize)); // a_digits
__ add(R1, R1, Operand(R2, LSL, 2)); // j == 2*i, i is Smi.
__ add(R5, R1, Operand(TypedData::data_offset() - kHeapObjectTag));
// R6:R0 = t = x*x + *ajp
__ ldr(R0, Address(R5, 0));
__ mov(R6, Operand(0));
__ umaal(R0, R6, R3, R3); // R6:R0 = R3*R3 + R6 + R0.
// *ajp++ = low32(t) = R0
__ str(R0, Address(R5, Bigint::kBytesPerDigit, Address::PostIndex));
// R6 = low32(c) = high32(t)
// R7 = high32(c) = 0
__ mov(R7, Operand(0));
// int n = used - i - 1; while (--n >= 0) ...
__ ldr(R0, Address(SP, 0 * kWordSize)); // used is Smi
__ sub(R8, R0, Operand(R2));
__ mov(R0, Operand(2)); // n = used - i - 2; if (n >= 0) ... while (--n >= 0)
__ rsbs(R8, R0, Operand(R8, ASR, kSmiTagSize));
Label loop, done;
__ b(&done, MI);
__ Bind(&loop);
// x: R3
// xip: R4
// ajp: R5
// c: R7:R6
// t: R2:R1:R0 (not live at loop entry)
// n: R8
// uint32_t xi = *xip++
__ ldr(R2, Address(R4, Bigint::kBytesPerDigit, Address::PostIndex));
// uint96_t t = R7:R6:R0 = 2*x*xi + aj + c
__ umull(R0, R1, R2, R3); // R1:R0 = R2*R3.
__ adds(R0, R0, Operand(R0));
__ adcs(R1, R1, Operand(R1));
__ mov(R2, Operand(0));
__ adc(R2, R2, Operand(0)); // R2:R1:R0 = 2*x*xi.
__ adds(R0, R0, Operand(R6));
__ adcs(R1, R1, Operand(R7));
__ adc(R2, R2, Operand(0)); // R2:R1:R0 = 2*x*xi + c.
__ ldr(R6, Address(R5, 0)); // R6 = aj = *ajp.
__ adds(R0, R0, Operand(R6));
__ adcs(R6, R1, Operand(0));
__ adc(R7, R2, Operand(0)); // R7:R6:R0 = 2*x*xi + c + aj.
// *ajp++ = low32(t) = R0
__ str(R0, Address(R5, Bigint::kBytesPerDigit, Address::PostIndex));
// while (--n >= 0)
__ subs(R8, R8, Operand(1)); // --n
__ b(&loop, PL);
__ Bind(&done);
// uint32_t aj = *ajp
__ ldr(R0, Address(R5, 0));
// uint64_t t = aj + c
__ adds(R6, R6, Operand(R0));
__ adc(R7, R7, Operand(0));
// *ajp = low32(t) = R6
// *(ajp + 1) = high32(t) = R7
__ strd(R6, Address(R5, 0));
__ Bind(&x_zero);
__ mov(R0, Operand(Smi::RawValue(1))); // One digit processed.
__ Ret();
}
void Intrinsifier::Bigint_estQuotientDigit(Assembler* assembler) {
// No unsigned 64-bit / 32-bit divide instruction.
}
void Intrinsifier::Montgomery_mulMod(Assembler* assembler) {
if (TargetCPUFeatures::arm_version() != ARMv7) {
return;
}
// Pseudo code:
// static int _mulMod(Uint32List args, Uint32List digits, int i) {
// uint32_t rho = args[_RHO]; // _RHO == 2.
// uint32_t d = digits[i >> 1]; // i is Smi.
// uint64_t t = rho*d;
// args[_MU] = t mod DIGIT_BASE; // _MU == 4.
// return 1;
// }
// R4 = args
__ ldr(R4, Address(SP, 2 * kWordSize)); // args
// R3 = rho = args[2]
__ ldr(R3, FieldAddress(R4,
TypedData::data_offset() + 2*Bigint::kBytesPerDigit));
// R2 = digits[i >> 1]
__ ldrd(R0, Address(SP, 0 * kWordSize)); // R0 = i as Smi, R1 = digits
__ add(R1, R1, Operand(R0, LSL, 1));
__ ldr(R2, FieldAddress(R1, TypedData::data_offset()));
// R1:R0 = t = rho*d
__ umull(R0, R1, R2, R3);
// args[4] = t mod DIGIT_BASE = low32(t)
__ str(R0,
FieldAddress(R4, TypedData::data_offset() + 4*Bigint::kBytesPerDigit));
__ mov(R0, Operand(Smi::RawValue(1))); // One digit processed.
__ Ret();
}
// Check if the last argument is a double, jump to label 'is_smi' if smi
// (easy to convert to double), otherwise jump to label 'not_double_smi',
// Returns the last argument in R0.
static void TestLastArgumentIsDouble(Assembler* assembler,
Label* is_smi,
Label* not_double_smi) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ tst(R0, Operand(kSmiTagMask));
__ b(is_smi, EQ);
__ CompareClassId(R0, kDoubleCid, R1);
__ b(not_double_smi, NE);
// Fall through with Double in R0.
}
// Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown
// type. Return true or false object in the register R0. Any NaN argument
// returns false. Any non-double arg1 causes control flow to fall through to the
// slow case (compiled method body).
static void CompareDoubles(Assembler* assembler, Condition true_condition) {
if (TargetCPUFeatures::vfp_supported()) {
Label fall_through, is_smi, double_op;
TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
// Both arguments are double, right operand is in R0.
__ LoadDFromOffset(D1, R0, Double::value_offset() - kHeapObjectTag);
__ Bind(&double_op);
__ ldr(R0, Address(SP, 1 * kWordSize)); // Left argument.
__ LoadDFromOffset(D0, R0, Double::value_offset() - kHeapObjectTag);
__ vcmpd(D0, D1);
__ vmstat();
__ LoadObject(R0, Bool::False());
// Return false if D0 or D1 was NaN before checking true condition.
__ bx(LR, VS);
__ LoadObject(R0, Bool::True(), true_condition);
__ Ret();
__ Bind(&is_smi); // Convert R0 to a double.
__ SmiUntag(R0);
__ vmovsr(S0, R0);
__ vcvtdi(D1, S0);
__ b(&double_op); // Then do the comparison.
__ Bind(&fall_through);
}
}
void Intrinsifier::Double_greaterThan(Assembler* assembler) {
CompareDoubles(assembler, HI);
}
void Intrinsifier::Double_greaterEqualThan(Assembler* assembler) {
CompareDoubles(assembler, CS);
}
void Intrinsifier::Double_lessThan(Assembler* assembler) {
CompareDoubles(assembler, CC);
}
void Intrinsifier::Double_equal(Assembler* assembler) {
CompareDoubles(assembler, EQ);
}
void Intrinsifier::Double_lessEqualThan(Assembler* assembler) {
CompareDoubles(assembler, LS);
}
// Expects left argument to be double (receiver). Right argument is unknown.
// Both arguments are on stack.
static void DoubleArithmeticOperations(Assembler* assembler, Token::Kind kind) {
if (TargetCPUFeatures::vfp_supported()) {
Label fall_through;
TestLastArgumentIsDouble(assembler, &fall_through, &fall_through);
// Both arguments are double, right operand is in R0.
__ LoadDFromOffset(D1, R0, Double::value_offset() - kHeapObjectTag);
__ ldr(R0, Address(SP, 1 * kWordSize)); // Left argument.
__ LoadDFromOffset(D0, R0, Double::value_offset() - kHeapObjectTag);
switch (kind) {
case Token::kADD: __ vaddd(D0, D0, D1); break;
case Token::kSUB: __ vsubd(D0, D0, D1); break;
case Token::kMUL: __ vmuld(D0, D0, D1); break;
case Token::kDIV: __ vdivd(D0, D0, D1); break;
default: UNREACHABLE();
}
const Class& double_class = Class::Handle(
Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, R0, R1); // Result register.
__ StoreDToOffset(D0, R0, Double::value_offset() - kHeapObjectTag);
__ Ret();
__ Bind(&fall_through);
}
}
void Intrinsifier::Double_add(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kADD);
}
void Intrinsifier::Double_mul(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kMUL);
}
void Intrinsifier::Double_sub(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kSUB);
}
void Intrinsifier::Double_div(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kDIV);
}
// Left is double right is integer (Bigint, Mint or Smi)
void Intrinsifier::Double_mulFromInteger(Assembler* assembler) {
if (TargetCPUFeatures::vfp_supported()) {
Label fall_through;
// Only smis allowed.
__ ldr(R0, Address(SP, 0 * kWordSize));
__ tst(R0, Operand(kSmiTagMask));
__ b(&fall_through, NE);
// Is Smi.
__ SmiUntag(R0);
__ vmovsr(S0, R0);
__ vcvtdi(D1, S0);
__ ldr(R0, Address(SP, 1 * kWordSize));
__ LoadDFromOffset(D0, R0, Double::value_offset() - kHeapObjectTag);
__ vmuld(D0, D0, D1);
const Class& double_class = Class::Handle(
Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, R0, R1); // Result register.
__ StoreDToOffset(D0, R0, Double::value_offset() - kHeapObjectTag);
__ Ret();
__ Bind(&fall_through);
}
}
void Intrinsifier::DoubleFromInteger(Assembler* assembler) {
if (TargetCPUFeatures::vfp_supported()) {
Label fall_through;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ tst(R0, Operand(kSmiTagMask));
__ b(&fall_through, NE);
// Is Smi.
__ SmiUntag(R0);
__ vmovsr(S0, R0);
__ vcvtdi(D0, S0);
const Class& double_class = Class::Handle(
Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, R0, R1); // Result register.
__ StoreDToOffset(D0, R0, Double::value_offset() - kHeapObjectTag);
__ Ret();
__ Bind(&fall_through);
}
}
void Intrinsifier::Double_getIsNaN(Assembler* assembler) {
if (TargetCPUFeatures::vfp_supported()) {
Label is_true;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ LoadDFromOffset(D0, R0, Double::value_offset() - kHeapObjectTag);
__ vcmpd(D0, D0);
__ vmstat();
__ LoadObject(R0, Bool::False(), VC);
__ LoadObject(R0, Bool::True(), VS);
__ Ret();
}
}
void Intrinsifier::Double_getIsNegative(Assembler* assembler) {
if (TargetCPUFeatures::vfp_supported()) {
Label is_false, is_true, is_zero;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ LoadDFromOffset(D0, R0, Double::value_offset() - kHeapObjectTag);
__ vcmpdz(D0);
__ vmstat();
__ b(&is_false, VS); // NaN -> false.
__ b(&is_zero, EQ); // Check for negative zero.
__ b(&is_false, CS); // >= 0 -> false.
__ Bind(&is_true);
__ LoadObject(R0, Bool::True());
__ Ret();
__ Bind(&is_false);
__ LoadObject(R0, Bool::False());
__ Ret();
__ Bind(&is_zero);
// Check for negative zero by looking at the sign bit.
__ vmovrrd(R0, R1, D0); // R1:R0 <- D0, so sign bit is in bit 31 of R1.
__ mov(R1, Operand(R1, LSR, 31));
__ tst(R1, Operand(1));
__ b(&is_true, NE); // Sign bit set.
__ b(&is_false);
}
}
void Intrinsifier::DoubleToInteger(Assembler* assembler) {
if (TargetCPUFeatures::vfp_supported()) {
Label fall_through;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ LoadDFromOffset(D0, R0, Double::value_offset() - kHeapObjectTag);
// Explicit NaN check, since ARM gives an FPU exception if you try to
// convert NaN to an int.
__ vcmpd(D0, D0);
__ vmstat();
__ b(&fall_through, VS);
__ vcvtid(S0, D0);
__ vmovrs(R0, S0);
// Overflow is signaled with minint.
// Check for overflow and that it fits into Smi.
__ CompareImmediate(R0, 0xC0000000);
__ SmiTag(R0, PL);
__ bx(LR, PL);
__ Bind(&fall_through);
}
}
void Intrinsifier::MathSqrt(Assembler* assembler) {
if (TargetCPUFeatures::vfp_supported()) {
Label fall_through, is_smi, double_op;
TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
// Argument is double and is in R0.
__ LoadDFromOffset(D1, R0, Double::value_offset() - kHeapObjectTag);
__ Bind(&double_op);
__ vsqrtd(D0, D1);
const Class& double_class = Class::Handle(
Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, R0, R1); // Result register.
__ StoreDToOffset(D0, R0, Double::value_offset() - kHeapObjectTag);
__ Ret();
__ Bind(&is_smi);
__ SmiUntag(R0);
__ vmovsr(S0, R0);
__ vcvtdi(D1, S0);
__ b(&double_op);
__ Bind(&fall_through);
}
}
// var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64;
// _state[kSTATE_LO] = state & _MASK_32;
// _state[kSTATE_HI] = state >> 32;
void Intrinsifier::Random_nextState(Assembler* assembler) {
// No 32x32 -> 64 bit multiply/accumulate on ARMv5 or ARMv6.
if (TargetCPUFeatures::arm_version() == ARMv7) {
const Library& math_lib = Library::Handle(Library::MathLibrary());
ASSERT(!math_lib.IsNull());
const Class& random_class = Class::Handle(
math_lib.LookupClassAllowPrivate(Symbols::_Random()));
ASSERT(!random_class.IsNull());
const Field& state_field = Field::ZoneHandle(
random_class.LookupInstanceField(Symbols::_state()));
ASSERT(!state_field.IsNull());
const Field& random_A_field = Field::ZoneHandle(
random_class.LookupStaticField(Symbols::_A()));
ASSERT(!random_A_field.IsNull());
ASSERT(random_A_field.is_const());
const Instance& a_value = Instance::Handle(random_A_field.value());
const int64_t a_int_value = Integer::Cast(a_value).AsInt64Value();
// 'a_int_value' is a mask.
ASSERT(Utils::IsUint(32, a_int_value));
int32_t a_int32_value = static_cast<int32_t>(a_int_value);
__ ldr(R0, Address(SP, 0 * kWordSize)); // Receiver.
__ ldr(R1, FieldAddress(R0, state_field.Offset())); // Field '_state'.
// Addresses of _state[0] and _state[1].
const int64_t disp_0 = Instance::DataOffsetFor(kTypedDataUint32ArrayCid);
const int64_t disp_1 = disp_0 +
Instance::ElementSizeFor(kTypedDataUint32ArrayCid);
__ LoadImmediate(R0, a_int32_value);
__ LoadFromOffset(kWord, R2, R1, disp_0 - kHeapObjectTag);
__ LoadFromOffset(kWord, R3, R1, disp_1 - kHeapObjectTag);
__ mov(R6, Operand(0)); // Zero extend unsigned _state[kSTATE_HI].
// Unsigned 32-bit multiply and 64-bit accumulate into R6:R3.
__ umlal(R3, R6, R0, R2); // R6:R3 <- R6:R3 + R0 * R2.
__ StoreToOffset(kWord, R3, R1, disp_0 - kHeapObjectTag);
__ StoreToOffset(kWord, R6, R1, disp_1 - kHeapObjectTag);
__ Ret();
}
}
void Intrinsifier::ObjectEquals(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R1, Address(SP, 1 * kWordSize));
__ cmp(R0, Operand(R1));
__ LoadObject(R0, Bool::False(), NE);
__ LoadObject(R0, Bool::True(), EQ);
__ Ret();
}
void Intrinsifier::String_getHashCode(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R0, String::hash_offset()));
__ cmp(R0, Operand(0));
__ bx(LR, NE); // Hash not yet computed.
}
void Intrinsifier::StringBaseCodeUnitAt(Assembler* assembler) {
Label fall_through, try_two_byte_string;
__ ldr(R1, Address(SP, 0 * kWordSize)); // Index.
__ ldr(R0, Address(SP, 1 * kWordSize)); // String.
__ tst(R1, Operand(kSmiTagMask));
__ b(&fall_through, NE); // Index is not a Smi.
// Range check.
__ ldr(R2, FieldAddress(R0, String::length_offset()));
__ cmp(R1, Operand(R2));
__ b(&fall_through, CS); // Runtime throws exception.
__ CompareClassId(R0, kOneByteStringCid, R3);
__ b(&try_two_byte_string, NE);
__ SmiUntag(R1);
__ AddImmediate(R0, OneByteString::data_offset() - kHeapObjectTag);
__ ldrb(R0, Address(R0, R1));
__ SmiTag(R0);
__ Ret();
__ Bind(&try_two_byte_string);
__ CompareClassId(R0, kTwoByteStringCid, R3);
__ b(&fall_through, NE);
ASSERT(kSmiTagShift == 1);
__ AddImmediate(R0, TwoByteString::data_offset() - kHeapObjectTag);
__ ldrh(R0, Address(R0, R1));
__ SmiTag(R0);
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::StringBaseCharAt(Assembler* assembler) {
Label fall_through, try_two_byte_string;
__ ldr(R1, Address(SP, 0 * kWordSize)); // Index.
__ ldr(R0, Address(SP, 1 * kWordSize)); // String.
__ tst(R1, Operand(kSmiTagMask));
__ b(&fall_through, NE); // Index is not a Smi.
// Range check.
__ ldr(R2, FieldAddress(R0, String::length_offset()));
__ cmp(R1, Operand(R2));
__ b(&fall_through, CS); // Runtime throws exception.
__ CompareClassId(R0, kOneByteStringCid, R3);
__ b(&try_two_byte_string, NE);
__ SmiUntag(R1);
__ AddImmediate(R0, OneByteString::data_offset() - kHeapObjectTag);
__ ldrb(R1, Address(R0, R1));
__ CompareImmediate(R1, Symbols::kNumberOfOneCharCodeSymbols);
__ b(&fall_through, GE);
__ LoadImmediate(R0,
reinterpret_cast<uword>(Symbols::PredefinedAddress()));
__ AddImmediate(R0, Symbols::kNullCharCodeSymbolOffset * kWordSize);
__ ldr(R0, Address(R0, R1, LSL, 2));
__ Ret();
__ Bind(&try_two_byte_string);
__ CompareClassId(R0, kTwoByteStringCid, R3);
__ b(&fall_through, NE);
ASSERT(kSmiTagShift == 1);
__ AddImmediate(R0, TwoByteString::data_offset() - kHeapObjectTag);
__ ldrh(R1, Address(R0, R1));
__ CompareImmediate(R1, Symbols::kNumberOfOneCharCodeSymbols);
__ b(&fall_through, GE);
__ LoadImmediate(R0,
reinterpret_cast<uword>(Symbols::PredefinedAddress()));
__ AddImmediate(R0, Symbols::kNullCharCodeSymbolOffset * kWordSize);
__ ldr(R0, Address(R0, R1, LSL, 2));
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::StringBaseIsEmpty(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R0, String::length_offset()));
__ cmp(R0, Operand(Smi::RawValue(0)));
__ LoadObject(R0, Bool::True(), EQ);
__ LoadObject(R0, Bool::False(), NE);
__ Ret();
}
void Intrinsifier::OneByteString_getHashCode(Assembler* assembler) {
__ ldr(R1, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R1, String::hash_offset()));
__ cmp(R0, Operand(0));
__ bx(LR, NE); // Return if already computed.
__ ldr(R2, FieldAddress(R1, String::length_offset()));
Label done;
// If the string is empty, set the hash to 1, and return.
__ cmp(R2, Operand(Smi::RawValue(0)));
__ b(&done, EQ);
__ SmiUntag(R2);
__ mov(R3, Operand(0));
__ AddImmediate(R6, R1, OneByteString::data_offset() - kHeapObjectTag);
// R1: Instance of OneByteString.
// R2: String length, untagged integer.
// R3: Loop counter, untagged integer.
// R6: String data.
// R0: Hash code, untagged integer.
Label loop;
// Add to hash code: (hash_ is uint32)
// hash_ += ch;
// hash_ += hash_ << 10;
// hash_ ^= hash_ >> 6;
// Get one characters (ch).
__ Bind(&loop);
__ ldrb(R7, Address(R6, 0));
// R7: ch.
__ add(R3, R3, Operand(1));
__ add(R6, R6, Operand(1));
__ add(R0, R0, Operand(R7));
__ add(R0, R0, Operand(R0, LSL, 10));
__ eor(R0, R0, Operand(R0, LSR, 6));
__ cmp(R3, Operand(R2));
__ b(&loop, NE);
// Finalize.
// hash_ += hash_ << 3;
// hash_ ^= hash_ >> 11;
// hash_ += hash_ << 15;
__ add(R0, R0, Operand(R0, LSL, 3));
__ eor(R0, R0, Operand(R0, LSR, 11));
__ add(R0, R0, Operand(R0, LSL, 15));
// hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1);
__ LoadImmediate(R2, (static_cast<intptr_t>(1) << String::kHashBits) - 1);
__ and_(R0, R0, Operand(R2));
__ cmp(R0, Operand(0));
// return hash_ == 0 ? 1 : hash_;
__ Bind(&done);
__ mov(R0, Operand(1), EQ);
__ SmiTag(R0);
__ StoreIntoSmiField(FieldAddress(R1, String::hash_offset()), R0);
__ Ret();
}
// Allocates one-byte string of length 'end - start'. The content is not
// initialized.
// 'length-reg' (R2) contains tagged length.
// Returns new string as tagged pointer in R0.
static void TryAllocateOnebyteString(Assembler* assembler,
Label* ok,
Label* failure) {
const Register length_reg = R2;
Label fail;
__ mov(R6, Operand(length_reg)); // Save the length register.
__ SmiUntag(length_reg);
const intptr_t fixed_size = sizeof(RawString) + kObjectAlignment - 1;
__ AddImmediate(length_reg, fixed_size);
__ bic(length_reg, length_reg, Operand(kObjectAlignment - 1));
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
const intptr_t cid = kOneByteStringCid;
Heap::Space space = heap->SpaceForAllocation(cid);
__ LoadImmediate(R3, heap->TopAddress(space));
__ ldr(R0, Address(R3, 0));
// length_reg: allocation size.
__ adds(R1, R0, Operand(length_reg));
__ b(&fail, VS); // Fail on overflow.
// Check if the allocation fits into the remaining space.
// R0: potential new object start.
// R1: potential next object start.
// R2: allocation size.
// R3: heap->TopAddress(space).
__ LoadImmediate(R7, heap->EndAddress(space));
__ ldr(R7, Address(R7, 0));
__ cmp(R1, Operand(R7));
__ b(&fail, CS);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ LoadAllocationStatsAddress(R4, cid, space);
__ str(R1, Address(R3, 0));
__ AddImmediate(R0, kHeapObjectTag);
// Initialize the tags.
// R0: new object start as a tagged pointer.
// R1: new object end address.
// R2: allocation size.
// R4: allocation stats address.
{
const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2;
__ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag);
__ mov(R3, Operand(R2, LSL, shift), LS);
__ mov(R3, Operand(0), HI);
// Get the class index and insert it into the tags.
// R3: size and bit tags.
__ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid));
__ orr(R3, R3, Operand(TMP));
__ str(R3, FieldAddress(R0, String::tags_offset())); // Store tags.
}
// Set the length field using the saved length (R6).
__ InitializeFieldNoBarrier(R0,
FieldAddress(R0, String::length_offset()),
R6);
// Clear hash.
__ LoadImmediate(TMP, 0);
__ InitializeFieldNoBarrier(R0,
FieldAddress(R0, String::hash_offset()),
TMP);
__ IncrementAllocationStatsWithSize(R4, R2, cid, space);
__ b(ok);
__ Bind(&fail);
__ b(failure);
}
// Arg0: OneByteString (receiver).
// Arg1: Start index as Smi.
// Arg2: End index as Smi.
// The indexes must be valid.
void Intrinsifier::OneByteString_substringUnchecked(Assembler* assembler) {
const intptr_t kStringOffset = 2 * kWordSize;
const intptr_t kStartIndexOffset = 1 * kWordSize;
const intptr_t kEndIndexOffset = 0 * kWordSize;
Label fall_through, ok;
__ ldr(R2, Address(SP, kEndIndexOffset));
__ ldr(TMP, Address(SP, kStartIndexOffset));
__ orr(R3, R2, Operand(TMP));
__ tst(R3, Operand(kSmiTagMask));
__ b(&fall_through, NE); // 'start', 'end' not Smi.
__ sub(R2, R2, Operand(TMP));
TryAllocateOnebyteString(assembler, &ok, &fall_through);
__ Bind(&ok);
// R0: new string as tagged pointer.
// Copy string.
__ ldr(R3, Address(SP, kStringOffset));
__ ldr(R1, Address(SP, kStartIndexOffset));
__ SmiUntag(R1);
__ add(R3, R3, Operand(R1));
// Calculate start address and untag (- 1).
__ AddImmediate(R3, OneByteString::data_offset() - 1);
// R3: Start address to copy from (untagged).
// R1: Untagged start index.
__ ldr(R2, Address(SP, kEndIndexOffset));
__ SmiUntag(R2);
__ sub(R2, R2, Operand(R1));
// R3: Start address to copy from (untagged).
// R2: Untagged number of bytes to copy.
// R0: Tagged result string.
// R6: Pointer into R3.
// R7: Pointer into R0.
// R1: Scratch register.
Label loop, done;
__ cmp(R2, Operand(0));
__ b(&done, LE);
__ mov(R6, Operand(R3));
__ mov(R7, Operand(R0));
__ Bind(&loop);
__ ldrb(R1, Address(R6, 0));
__ AddImmediate(R6, 1);
__ sub(R2, R2, Operand(1));
__ cmp(R2, Operand(0));
__ strb(R1, FieldAddress(R7, OneByteString::data_offset()));
__ AddImmediate(R7, 1);
__ b(&loop, GT);
__ Bind(&done);
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::OneByteStringSetAt(Assembler* assembler) {
__ ldr(R2, Address(SP, 0 * kWordSize)); // Value.
__ ldr(R1, Address(SP, 1 * kWordSize)); // Index.
__ ldr(R0, Address(SP, 2 * kWordSize)); // OneByteString.
__ SmiUntag(R1);
__ SmiUntag(R2);
__ AddImmediate(R3, R0, OneByteString::data_offset() - kHeapObjectTag);
__ strb(R2, Address(R3, R1));
__ Ret();
}
void Intrinsifier::OneByteString_allocate(Assembler* assembler) {
__ ldr(R2, Address(SP, 0 * kWordSize)); // Length.
Label fall_through, ok;
TryAllocateOnebyteString(assembler, &ok, &fall_through);
__ Bind(&ok);
__ Ret();
__ Bind(&fall_through);
}
// TODO(srdjan): Add combinations (one-byte/two-byte/external strings).
static void StringEquality(Assembler* assembler, intptr_t string_cid) {
Label fall_through, is_true, is_false, loop;
__ ldr(R0, Address(SP, 1 * kWordSize)); // This.
__ ldr(R1, Address(SP, 0 * kWordSize)); // Other.
// Are identical?
__ cmp(R0, Operand(R1));
__ b(&is_true, EQ);
// Is other OneByteString?
__ tst(R1, Operand(kSmiTagMask));
__ b(&fall_through, EQ);
__ CompareClassId(R1, string_cid, R2);
__ b(&fall_through, NE);
// Have same length?
__ ldr(R2, FieldAddress(R0, String::length_offset()));
__ ldr(R3, FieldAddress(R1, String::length_offset()));
__ cmp(R2, Operand(R3));
__ b(&is_false, NE);
// Check contents, no fall-through possible.
// TODO(zra): try out other sequences.
ASSERT((string_cid == kOneByteStringCid) ||
(string_cid == kTwoByteStringCid));
const intptr_t offset = (string_cid == kOneByteStringCid) ?
OneByteString::data_offset() : TwoByteString::data_offset();
__ AddImmediate(R0, offset - kHeapObjectTag);
__ AddImmediate(R1, offset - kHeapObjectTag);
__ SmiUntag(R2);
__ Bind(&loop);
__ AddImmediate(R2, -1);
__ cmp(R2, Operand(0));
__ b(&is_true, LT);
if (string_cid == kOneByteStringCid) {
__ ldrb(R3, Address(R0));
__ ldrb(R4, Address(R1));
__ AddImmediate(R0, 1);
__ AddImmediate(R1, 1);
} else if (string_cid == kTwoByteStringCid) {
__ ldrh(R3, Address(R0));
__ ldrh(R4, Address(R1));
__ AddImmediate(R0, 2);
__ AddImmediate(R1, 2);
} else {
UNIMPLEMENTED();
}
__ cmp(R3, Operand(R4));
__ b(&is_false, NE);
__ b(&loop);
__ Bind(&is_true);
__ LoadObject(R0, Bool::True());
__ Ret();
__ Bind(&is_false);
__ LoadObject(R0, Bool::False());
__ Ret();
__ Bind(&fall_through);
}
void Intrinsifier::OneByteString_equality(Assembler* assembler) {
StringEquality(assembler, kOneByteStringCid);
}
void Intrinsifier::TwoByteString_equality(Assembler* assembler) {
StringEquality(assembler, kTwoByteStringCid);
}
void Intrinsifier::JSRegExp_ExecuteMatch(Assembler* assembler) {
if (FLAG_use_jscre) {
return;
}
static const intptr_t kRegExpParamOffset = 2 * kWordSize;
static const intptr_t kStringParamOffset = 1 * kWordSize;
// start_index smi is located at offset 0.
// Incoming registers:
// R0: Function. (Will be reloaded with the specialized matcher function.)
// R4: Arguments descriptor. (Will be preserved.)
// R5: Unknown. (Must be GC safe on tail call.)
// Load the specialized function pointer into R0. Leverage the fact the
// string CIDs as well as stored function pointers are in sequence.
__ ldr(R2, Address(SP, kRegExpParamOffset));
__ ldr(R1, Address(SP, kStringParamOffset));
__ LoadClassId(R1, R1);
__ AddImmediate(R1, R1, -kOneByteStringCid);
__ add(R1, R2, Operand(R1, LSL, kWordSizeLog2));
__ ldr(R0, FieldAddress(R1, JSRegExp::function_offset(kOneByteStringCid)));
// Registers are now set up for the lazy compile stub. It expects the function
// in R0, the argument descriptor in R4, and IC-Data in R5.
static const intptr_t arg_count = RegExpMacroAssembler::kParamCount;
__ LoadObject(R4, Array::Handle(ArgumentsDescriptor::New(arg_count)));
__ eor(R5, R5, Operand(R5));
// Tail-call the function.
__ ldr(R1, FieldAddress(R0, Function::instructions_offset()));
__ AddImmediate(R1, Instructions::HeaderSize() - kHeapObjectTag);
__ bx(R1);
}
// On stack: user tag (+0).
void Intrinsifier::UserTag_makeCurrent(Assembler* assembler) {
// R1: Isolate.
Isolate* isolate = Isolate::Current();
__ LoadImmediate(R1, reinterpret_cast<uword>(isolate));
// R0: Current user tag.
__ ldr(R0, Address(R1, Isolate::current_tag_offset()));
// R2: UserTag.
__ ldr(R2, Address(SP, + 0 * kWordSize));
// Set Isolate::current_tag_.
__ str(R2, Address(R1, Isolate::current_tag_offset()));
// R2: UserTag's tag.
__ ldr(R2, FieldAddress(R2, UserTag::tag_offset()));
// Set Isolate::user_tag_.
__ str(R2, Address(R1, Isolate::user_tag_offset()));
__ Ret();
}
void Intrinsifier::UserTag_defaultTag(Assembler* assembler) {
Isolate* isolate = Isolate::Current();
// Set return value to default tag address.
__ LoadImmediate(R0,
reinterpret_cast<uword>(isolate) + Isolate::default_tag_offset());
__ ldr(R0, Address(R0, 0));
__ Ret();
}
void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) {
// R1: Default tag address.
Isolate* isolate = Isolate::Current();
__ LoadImmediate(R1, reinterpret_cast<uword>(isolate));
// Set return value to Isolate::current_tag_.
__ ldr(R0, Address(R1, Isolate::current_tag_offset()));
__ Ret();
}
} // namespace dart
#endif // defined TARGET_ARCH_ARM