blob: b4fa546319984ebfd14fb300059820f465ee112e [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_X64.
#if defined(TARGET_ARCH_X64)
#include "vm/assembler.h"
#include "vm/code_patcher.h"
#include "vm/cpu.h"
#include "vm/dart_entry.h"
#include "vm/flow_graph_compiler.h"
#include "vm/instructions.h"
#include "vm/object.h"
#include "vm/raw_object.h"
namespace dart {
// The expected pattern of a Dart unoptimized call (static and instance):
// 0: 49 8b 9f imm32 mov RBX, [PP + off]
// 7: 41 ff 97 imm32 call [PP + off]
// 14 <- return address
class UnoptimizedCall : public ValueObject {
public:
UnoptimizedCall(uword return_address, const Code& code)
: start_(return_address - kCallPatternSize),
object_pool_(Array::Handle(code.ObjectPool())) {
ASSERT(IsValid(return_address));
ASSERT((kCallPatternSize - 7) == Assembler::kCallExternalLabelSize);
}
static const int kCallPatternSize = 14;
static bool IsValid(uword return_address) {
uint8_t* code_bytes =
reinterpret_cast<uint8_t*>(return_address - kCallPatternSize);
return (code_bytes[0] == 0x49) && (code_bytes[1] == 0x8B) &&
(code_bytes[2] == 0x9F) &&
(code_bytes[7] == 0x41) && (code_bytes[8] == 0xFF) &&
(code_bytes[9] == 0x97);
}
RawObject* ic_data() const {
intptr_t index = InstructionPattern::IndexFromPPLoad(start_ + 3);
return object_pool_.At(index);
}
uword target() const {
intptr_t index = InstructionPattern::IndexFromPPLoad(start_ + 10);
return reinterpret_cast<uword>(object_pool_.At(index));
}
void set_target(uword target) const {
intptr_t index = InstructionPattern::IndexFromPPLoad(start_ + 10);
const Smi& smi = Smi::Handle(reinterpret_cast<RawSmi*>(target));
object_pool_.SetAt(index, smi);
// No need to flush the instruction cache, since the code is not modified.
}
private:
uword start_;
const Array& object_pool_;
DISALLOW_IMPLICIT_CONSTRUCTORS(UnoptimizedCall);
};
class InstanceCall : public UnoptimizedCall {
public:
InstanceCall(uword return_address, const Code& code)
: UnoptimizedCall(return_address, code) {
#if defined(DEBUG)
ICData& test_ic_data = ICData::Handle();
test_ic_data ^= ic_data();
ASSERT(test_ic_data.NumArgsTested() > 0);
#endif // DEBUG
}
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(InstanceCall);
};
class UnoptimizedStaticCall : public UnoptimizedCall {
public:
UnoptimizedStaticCall(uword return_address, const Code& code)
: UnoptimizedCall(return_address, code) {
#if defined(DEBUG)
ICData& test_ic_data = ICData::Handle();
test_ic_data ^= ic_data();
ASSERT(test_ic_data.NumArgsTested() >= 0);
#endif // DEBUG
}
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(UnoptimizedStaticCall);
};
// The expected pattern of a call where the target is loaded from
// the object pool:
// 0: 41 ff 97 imm32 call [PP + off]
// 7: <- return address
class PoolPointerCall : public ValueObject {
public:
explicit PoolPointerCall(uword return_address)
: start_(return_address - kCallPatternSize) {
ASSERT(IsValid(return_address));
}
static const int kCallPatternSize = 7;
static bool IsValid(uword return_address) {
uint8_t* code_bytes =
reinterpret_cast<uint8_t*>(return_address - kCallPatternSize);
return (code_bytes[0] == 0x41) && (code_bytes[1] == 0xFF) &&
(code_bytes[2] == 0x97);
}
int32_t pp_offset() const {
return *reinterpret_cast<int32_t*>(start_ + 3);
}
void set_pp_offset(int32_t offset) const {
*reinterpret_cast<int32_t*>(start_ + 3) = offset;
CPU::FlushICache(start_, kCallPatternSize);
}
protected:
uword start_;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(PoolPointerCall);
};
// The expected pattern of a dart static call:
// 0: 41 ff 97 imm32 call [PP + off]
// 7: <- return address
class StaticCall : public PoolPointerCall {
public:
StaticCall(uword return_address, const Code& code)
: PoolPointerCall(return_address),
object_pool_(Array::Handle(code.ObjectPool())) {
ASSERT(IsValid(return_address));
ASSERT(kCallPatternSize == Assembler::kCallExternalLabelSize);
}
uword target() const {
intptr_t index = InstructionPattern::IndexFromPPLoad(start_ + 3);
return reinterpret_cast<uword>(object_pool_.At(index));
}
void set_target(uword target) const {
intptr_t index = InstructionPattern::IndexFromPPLoad(start_ + 3);
const Smi& smi = Smi::Handle(reinterpret_cast<RawSmi*>(target));
object_pool_.SetAt(index, smi);
// No need to flush the instruction cache, since the code is not modified.
}
private:
const Array& object_pool_;
DISALLOW_IMPLICIT_CONSTRUCTORS(StaticCall);
};
uword CodePatcher::GetStaticCallTargetAt(uword return_address,
const Code& code) {
ASSERT(code.ContainsInstructionAt(return_address));
StaticCall call(return_address, code);
return call.target();
}
void CodePatcher::PatchStaticCallAt(uword return_address,
const Code& code,
uword new_target) {
ASSERT(code.ContainsInstructionAt(return_address));
StaticCall call(return_address, code);
call.set_target(new_target);
}
int32_t CodePatcher::GetPoolOffsetAt(uword return_address) {
PoolPointerCall call(return_address);
return call.pp_offset();
}
void CodePatcher::SetPoolOffsetAt(uword return_address, int32_t offset) {
PoolPointerCall call(return_address);
call.set_pp_offset(offset);
}
void CodePatcher::PatchInstanceCallAt(uword return_address,
const Code& code,
uword new_target) {
ASSERT(code.ContainsInstructionAt(return_address));
InstanceCall call(return_address, code);
call.set_target(new_target);
}
uword CodePatcher::GetInstanceCallAt(uword return_address,
const Code& code,
ICData* ic_data) {
ASSERT(code.ContainsInstructionAt(return_address));
InstanceCall call(return_address, code);
if (ic_data != NULL) {
*ic_data ^= call.ic_data();
}
return call.target();
}
intptr_t CodePatcher::InstanceCallSizeInBytes() {
return InstanceCall::kCallPatternSize;
}
void CodePatcher::InsertCallAt(uword start, uword target) {
// The inserted call should not overlap the lazy deopt jump code.
ASSERT(start + ShortCallPattern::InstructionLength() <= target);
*reinterpret_cast<uint8_t*>(start) = 0xE8;
ShortCallPattern call(start);
call.SetTargetAddress(target);
CPU::FlushICache(start, ShortCallPattern::InstructionLength());
}
RawFunction* CodePatcher::GetUnoptimizedStaticCallAt(
uword return_address, const Code& code, ICData* ic_data_result) {
ASSERT(code.ContainsInstructionAt(return_address));
UnoptimizedStaticCall static_call(return_address, code);
ICData& ic_data = ICData::Handle();
ic_data ^= static_call.ic_data();
if (ic_data_result != NULL) {
*ic_data_result = ic_data.raw();
}
return ic_data.GetTargetAt(0);
}
// The expected code pattern of an edge counter in unoptimized code:
// 49 8b 87 imm32 mov RAX, [PP + offset]
class EdgeCounter : public ValueObject {
public:
EdgeCounter(uword pc, const Code& code)
: end_(pc - FlowGraphCompiler::EdgeCounterIncrementSizeInBytes()),
object_pool_(Array::Handle(code.ObjectPool())) {
ASSERT(IsValid(end_));
}
static bool IsValid(uword end) {
uint8_t* bytes = reinterpret_cast<uint8_t*>(end - 7);
return (bytes[0] == 0x49) && (bytes[1] == 0x8b) && (bytes[2] == 0x87);
}
RawObject* edge_counter() const {
return object_pool_.At(InstructionPattern::IndexFromPPLoad(end_ - 4));
}
private:
uword end_;
const Array& object_pool_;
};
RawObject* CodePatcher::GetEdgeCounterAt(uword pc, const Code& code) {
ASSERT(code.ContainsInstructionAt(pc));
EdgeCounter counter(pc, code);
return counter.edge_counter();
}
} // namespace dart
#endif // defined TARGET_ARCH_X64