blob: eef54b6705296a133394f60559b405f974bc4a21 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(TARGET_OS_ANDROID)
#include "vm/os.h"
#include <android/log.h> // NOLINT
#include <endian.h> // NOLINT
#include <errno.h> // NOLINT
#include <limits.h> // NOLINT
#include <malloc.h> // NOLINT
#include <time.h> // NOLINT
#include <sys/resource.h> // NOLINT
#include <sys/time.h> // NOLINT
#include <sys/types.h> // NOLINT
#include <unistd.h> // NOLINT
#include "platform/utils.h"
#include "vm/code_observers.h"
#include "vm/dart.h"
#include "vm/debuginfo.h"
#include "vm/isolate.h"
#include "vm/vtune.h"
#include "vm/zone.h"
namespace dart {
// Android CodeObservers.
DEFINE_FLAG(bool, generate_gdb_symbols, false,
"Generate symbols of generated dart functions for debugging with GDB");
DEFINE_FLAG(bool, generate_perf_events_symbols, false,
"Generate events symbols for profiling with perf");
class PerfCodeObserver : public CodeObserver {
public:
PerfCodeObserver() : out_file_(NULL) {
Dart_FileOpenCallback file_open = Isolate::file_open_callback();
if (file_open == NULL) {
return;
}
const char* format = "/tmp/perf-%ld.map";
intptr_t pid = getpid();
intptr_t len = OS::SNPrint(NULL, 0, format, pid);
char* filename = new char[len + 1];
OS::SNPrint(filename, len + 1, format, pid);
out_file_ = (*file_open)(filename, true);
}
~PerfCodeObserver() {
Dart_FileCloseCallback file_close = Isolate::file_close_callback();
if ((file_close == NULL) || (out_file_ == NULL)) {
return;
}
(*file_close)(out_file_);
}
virtual bool IsActive() const {
return FLAG_generate_perf_events_symbols && (out_file_ != NULL);
}
virtual void Notify(const char* name,
uword base,
uword prologue_offset,
uword size,
bool optimized) {
Dart_FileWriteCallback file_write = Isolate::file_write_callback();
if ((file_write == NULL) || (out_file_ == NULL)) {
return;
}
const char* format = "%" Px " %" Px " %s%s\n";
const char* marker = optimized ? "*" : "";
intptr_t len = OS::SNPrint(NULL, 0, format, base, size, marker, name);
char* buffer = Isolate::Current()->current_zone()->Alloc<char>(len + 1);
OS::SNPrint(buffer, len + 1, format, base, size, marker, name);
(*file_write)(buffer, len, out_file_);
}
private:
void* out_file_;
DISALLOW_COPY_AND_ASSIGN(PerfCodeObserver);
};
class GdbCodeObserver : public CodeObserver {
public:
GdbCodeObserver() { }
virtual bool IsActive() const {
return FLAG_generate_gdb_symbols;
}
virtual void Notify(const char* name,
uword base,
uword prologue_offset,
uword size,
bool optimized) {
if (prologue_offset > 0) {
// In order to ensure that gdb sees the first instruction of a function
// as the prologue sequence we register two symbols for the cases when
// the prologue sequence is not the first instruction:
// <name>_entry is used for code preceding the prologue sequence.
// <name> for rest of the code (first instruction is prologue sequence).
const char* kFormat = "%s_%s";
intptr_t len = OS::SNPrint(NULL, 0, kFormat, name, "entry");
char* pname = Isolate::Current()->current_zone()->Alloc<char>(len + 1);
OS::SNPrint(pname, (len + 1), kFormat, name, "entry");
DebugInfo::RegisterSection(pname, base, size);
DebugInfo::RegisterSection(name,
(base + prologue_offset),
(size - prologue_offset));
} else {
DebugInfo::RegisterSection(name, base, size);
}
}
private:
DISALLOW_COPY_AND_ASSIGN(GdbCodeObserver);
};
const char* OS::Name() {
return "android";
}
intptr_t OS::ProcessId() {
return static_cast<intptr_t>(getpid());
}
static bool LocalTime(int64_t seconds_since_epoch, tm* tm_result) {
time_t seconds = static_cast<time_t>(seconds_since_epoch);
if (seconds != seconds_since_epoch) return false;
struct tm* error_code = localtime_r(&seconds, tm_result);
return error_code != NULL;
}
const char* OS::GetTimeZoneName(int64_t seconds_since_epoch) {
tm decomposed;
bool succeeded = LocalTime(seconds_since_epoch, &decomposed);
// If unsuccessful, return an empty string like V8 does.
return (succeeded && (decomposed.tm_zone != NULL)) ? decomposed.tm_zone : "";
}
int OS::GetTimeZoneOffsetInSeconds(int64_t seconds_since_epoch) {
tm decomposed;
bool succeeded = LocalTime(seconds_since_epoch, &decomposed);
// Even if the offset was 24 hours it would still easily fit into 32 bits.
// If unsuccessful, return zero like V8 does.
return succeeded ? static_cast<int>(decomposed.tm_gmtoff) : 0;
}
int OS::GetLocalTimeZoneAdjustmentInSeconds() {
// TODO(floitsch): avoid excessive calls to tzset?
tzset();
// Even if the offset was 24 hours it would still easily fit into 32 bits.
// Note that Unix and Dart disagree on the sign.
return static_cast<int>(-timezone);
}
int64_t OS::GetCurrentTimeMillis() {
return GetCurrentTimeMicros() / 1000;
}
int64_t OS::GetCurrentTimeMicros() {
// gettimeofday has microsecond resolution.
struct timeval tv;
if (gettimeofday(&tv, NULL) < 0) {
UNREACHABLE();
return 0;
}
return (static_cast<int64_t>(tv.tv_sec) * 1000000) + tv.tv_usec;
}
void* OS::AlignedAllocate(intptr_t size, intptr_t alignment) {
const int kMinimumAlignment = 16;
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(alignment >= kMinimumAlignment);
void* p = memalign(alignment, size);
if (p == NULL) {
UNREACHABLE();
}
return p;
}
void OS::AlignedFree(void* ptr) {
free(ptr);
}
// TODO(5411554): May need to hoist these architecture dependent code
// into a architecture specific file e.g: os_ia32_linux.cc
intptr_t OS::ActivationFrameAlignment() {
#if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_X64) || \
defined(TARGET_ARCH_ARM64)
const int kMinimumAlignment = 16;
#elif defined(TARGET_ARCH_ARM)
const int kMinimumAlignment = 8;
#else
#error Unsupported architecture.
#endif
intptr_t alignment = kMinimumAlignment;
// TODO(5411554): Allow overriding default stack alignment for
// testing purposes.
// Flags::DebugIsInt("stackalign", &alignment);
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(alignment >= kMinimumAlignment);
return alignment;
}
intptr_t OS::PreferredCodeAlignment() {
#if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_X64) || \
defined(TARGET_ARCH_ARM64)
const int kMinimumAlignment = 16;
#elif defined(TARGET_ARCH_ARM)
const int kMinimumAlignment = 16;
#else
#error Unsupported architecture.
#endif
intptr_t alignment = kMinimumAlignment;
// TODO(5411554): Allow overriding default code alignment for
// testing purposes.
// Flags::DebugIsInt("codealign", &alignment);
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(alignment >= kMinimumAlignment);
ASSERT(alignment <= OS::kMaxPreferredCodeAlignment);
return alignment;
}
bool OS::AllowStackFrameIteratorFromAnotherThread() {
return false;
}
int OS::NumberOfAvailableProcessors() {
return sysconf(_SC_NPROCESSORS_ONLN);
}
void OS::Sleep(int64_t millis) {
int64_t micros = millis * kMicrosecondsPerMillisecond;
SleepMicros(micros);
}
void OS::SleepMicros(int64_t micros) {
struct timespec req; // requested.
struct timespec rem; // remainder.
int64_t seconds = micros / kMicrosecondsPerSecond;
micros = micros - seconds * kMicrosecondsPerSecond;
int64_t nanos = micros * kNanosecondsPerMicrosecond;
req.tv_sec = seconds;
req.tv_nsec = nanos;
while (true) {
int r = nanosleep(&req, &rem);
if (r == 0) {
break;
}
// We should only ever see an interrupt error.
ASSERT(errno == EINTR);
// Copy remainder into requested and repeat.
req = rem;
}
}
void OS::DebugBreak() {
UNIMPLEMENTED();
}
char* OS::StrNDup(const char* s, intptr_t n) {
return strndup(s, n);
}
uint16_t HostToBigEndian16(uint16_t value) {
return htobe16(value);
}
uint32_t HostToBigEndian32(uint32_t value) {
return htobe32(value);
}
uint64_t HostToBigEndian64(uint64_t value) {
return htobe64(value);
}
uint16_t HostToLittleEndian16(uint16_t value) {
return htole16(value);
}
uint32_t HostToLittleEndian32(uint32_t value) {
return htole32(value);
}
uint64_t HostToLittleEndian64(uint64_t value) {
return htole64(value);
}
void OS::Print(const char* format, ...) {
va_list args;
va_start(args, format);
VFPrint(stdout, format, args);
// Forward to the Android log for remote access.
__android_log_vprint(ANDROID_LOG_INFO, "DartVM", format, args);
va_end(args);
}
void OS::VFPrint(FILE* stream, const char* format, va_list args) {
vfprintf(stream, format, args);
fflush(stream);
}
int OS::SNPrint(char* str, size_t size, const char* format, ...) {
va_list args;
va_start(args, format);
int retval = VSNPrint(str, size, format, args);
va_end(args);
return retval;
}
int OS::VSNPrint(char* str, size_t size, const char* format, va_list args) {
int retval = vsnprintf(str, size, format, args);
if (retval < 0) {
FATAL1("Fatal error in OS::VSNPrint with format '%s'", format);
}
return retval;
}
bool OS::StringToInt64(const char* str, int64_t* value) {
ASSERT(str != NULL && strlen(str) > 0 && value != NULL);
int32_t base = 10;
char* endptr;
int i = 0;
if (str[0] == '-') {
i = 1;
}
if ((str[i] == '0') &&
(str[i + 1] == 'x' || str[i + 1] == 'X') &&
(str[i + 2] != '\0')) {
base = 16;
}
errno = 0;
*value = strtoll(str, &endptr, base);
return ((errno == 0) && (endptr != str) && (*endptr == 0));
}
void OS::RegisterCodeObservers() {
if (FLAG_generate_perf_events_symbols) {
CodeObservers::Register(new PerfCodeObserver);
}
if (FLAG_generate_gdb_symbols) {
CodeObservers::Register(new GdbCodeObserver);
}
#if defined(DART_VTUNE_SUPPORT)
CodeObservers::Register(new VTuneCodeObserver);
#endif
}
void OS::PrintErr(const char* format, ...) {
va_list args;
va_start(args, format);
VFPrint(stderr, format, args);
// Forward to the Android log for remote access.
__android_log_vprint(ANDROID_LOG_ERROR, "DartVM", format, args);
va_end(args);
}
void OS::InitOnce() {
// TODO(5411554): For now we check that initonce is called only once,
// Once there is more formal mechanism to call InitOnce we can move
// this check there.
static bool init_once_called = false;
ASSERT(init_once_called == false);
init_once_called = true;
}
void OS::Shutdown() {
}
void OS::Abort() {
abort();
}
void OS::Exit(int code) {
exit(code);
}
} // namespace dart
#endif // defined(TARGET_OS_ANDROID)