blob: 91a420c44c7af447ee456e371f13ffbb8fcbb0ce [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/object_graph.h"
#include "vm/dart.h"
#include "vm/growable_array.h"
#include "vm/isolate.h"
#include "vm/object.h"
#include "vm/raw_object.h"
#include "vm/visitor.h"
namespace dart {
// The state of a pre-order, depth-first traversal of an object graph.
// When a node is visited, *all* its children are pushed to the stack at once.
// We insert a sentinel between the node and its children on the stack, to
// remember that the node has been visited. The node is kept on the stack while
// its children are processed, to give the visitor a complete chain of parents.
//
// TODO(koda): Potential optimizations:
// - Use tag bits for compact Node and sentinel representations.
class ObjectGraph::Stack : public ObjectPointerVisitor {
public:
explicit Stack(Isolate* isolate)
: ObjectPointerVisitor(isolate), data_(kInitialCapacity) { }
// Marks and pushes. Used to initialize this stack with roots.
virtual void VisitPointers(RawObject** first, RawObject** last) {
for (RawObject** current = first; current <= last; ++current) {
if ((*current)->IsHeapObject() && !(*current)->IsMarked()) {
(*current)->SetMarkBit();
Node node;
node.ptr = current;
node.obj = *current;
data_.Add(node);
}
}
}
// Traverses the object graph from the current state.
void TraverseGraph(ObjectGraph::Visitor* visitor) {
while (!data_.is_empty()) {
Node node = data_.Last();
if (node.ptr == kSentinel) {
data_.RemoveLast();
// The node below the sentinel has already been visited.
data_.RemoveLast();
continue;
}
RawObject* obj = node.obj;
ASSERT(obj->IsHeapObject());
Node sentinel;
sentinel.ptr = kSentinel;
data_.Add(sentinel);
StackIterator it(this, data_.length() - 2);
switch (visitor->VisitObject(&it)) {
case ObjectGraph::Visitor::kProceed:
obj->VisitPointers(this);
break;
case ObjectGraph::Visitor::kBacktrack:
break;
case ObjectGraph::Visitor::kAbort:
return;
}
}
}
private:
struct Node {
RawObject** ptr; // kSentinel for the sentinel node.
RawObject* obj;
};
static RawObject** const kSentinel;
static const intptr_t kInitialCapacity = 1024;
static const intptr_t kNoParent = -1;
intptr_t Parent(intptr_t index) const {
// The parent is just below the next sentinel.
for (intptr_t i = index; i >= 1; --i) {
if (data_[i].ptr == kSentinel) {
return i - 1;
}
}
return kNoParent;
}
GrowableArray<Node> data_;
friend class StackIterator;
DISALLOW_COPY_AND_ASSIGN(Stack);
};
RawObject** const ObjectGraph::Stack::kSentinel = NULL;
RawObject* ObjectGraph::StackIterator::Get() const {
return stack_->data_[index_].obj;
}
bool ObjectGraph::StackIterator::MoveToParent() {
intptr_t parent = stack_->Parent(index_);
if (parent == Stack::kNoParent) {
return false;
} else {
index_ = parent;
return true;
}
}
intptr_t ObjectGraph::StackIterator::OffsetFromParentInWords() const {
intptr_t parent_index = stack_->Parent(index_);
if (parent_index == Stack::kNoParent) {
return -1;
}
Stack::Node parent = stack_->data_[parent_index];
uword parent_start = RawObject::ToAddr(parent.obj);
Stack::Node child = stack_->data_[index_];
ASSERT(child.obj == *child.ptr);
uword child_ptr_addr = reinterpret_cast<uword>(child.ptr);
intptr_t offset = child_ptr_addr - parent_start;
if (offset > 0 && offset < parent.obj->Size()) {
ASSERT(Utils::IsAligned(offset, kWordSize));
return offset >> kWordSizeLog2;
} else {
// Some internal VM objects visit pointers not contained within the parent.
// For instance, RawCode::VisitCodePointers visits pointers in instructions.
ASSERT(!parent.obj->IsDartInstance());
return -1;
}
}
class Unmarker : public ObjectVisitor {
public:
explicit Unmarker(Isolate* isolate) : ObjectVisitor(isolate) { }
void VisitObject(RawObject* obj) {
if (obj->IsMarked()) {
obj->ClearMarkBit();
}
}
static void UnmarkAll(Isolate* isolate) {
Unmarker unmarker(isolate);
isolate->heap()->IterateObjects(&unmarker);
}
private:
DISALLOW_COPY_AND_ASSIGN(Unmarker);
};
ObjectGraph::ObjectGraph(Isolate* isolate)
: StackResource(isolate) {
// The VM isolate has all its objects pre-marked, so iterating over it
// would be a no-op.
ASSERT(isolate != Dart::vm_isolate());
isolate->heap()->WriteProtectCode(false);
}
ObjectGraph::~ObjectGraph() {
isolate()->heap()->WriteProtectCode(true);
}
void ObjectGraph::IterateObjects(ObjectGraph::Visitor* visitor) {
NoGCScope no_gc_scope_;
Stack stack(isolate());
isolate()->VisitObjectPointers(&stack, false, false);
stack.TraverseGraph(visitor);
Unmarker::UnmarkAll(isolate());
}
void ObjectGraph::IterateObjectsFrom(const Object& root,
ObjectGraph::Visitor* visitor) {
NoGCScope no_gc_scope_;
Stack stack(isolate());
RawObject* root_raw = root.raw();
stack.VisitPointer(&root_raw);
stack.TraverseGraph(visitor);
// TODO(koda): Optimize if we only visited a small subgraph.
Unmarker::UnmarkAll(isolate());
}
class SizeVisitor : public ObjectGraph::Visitor {
public:
SizeVisitor() : size_(0) { }
intptr_t size() const { return size_; }
virtual bool ShouldSkip(RawObject* obj) const { return false; }
virtual Direction VisitObject(ObjectGraph::StackIterator* it) {
RawObject* obj = it->Get();
if (ShouldSkip(obj)) {
return kBacktrack;
}
size_ += obj->Size();
return kProceed;
}
private:
intptr_t size_;
};
class SizeExcludingObjectVisitor : public SizeVisitor {
public:
explicit SizeExcludingObjectVisitor(const Object& skip) : skip_(skip) { }
virtual bool ShouldSkip(RawObject* obj) const { return obj == skip_.raw(); }
private:
const Object& skip_;
};
class SizeExcludingClassVisitor : public SizeVisitor {
public:
explicit SizeExcludingClassVisitor(intptr_t skip) : skip_(skip) { }
virtual bool ShouldSkip(RawObject* obj) const {
return obj->GetClassId() == skip_;
}
private:
const intptr_t skip_;
};
intptr_t ObjectGraph::SizeRetainedByInstance(const Object& obj) {
SizeVisitor total;
IterateObjects(&total);
intptr_t size_total = total.size();
SizeExcludingObjectVisitor excluding_obj(obj);
IterateObjects(&excluding_obj);
intptr_t size_excluding_obj = excluding_obj.size();
return size_total - size_excluding_obj;
}
intptr_t ObjectGraph::SizeRetainedByClass(intptr_t class_id) {
SizeVisitor total;
IterateObjects(&total);
intptr_t size_total = total.size();
SizeExcludingClassVisitor excluding_class(class_id);
IterateObjects(&excluding_class);
intptr_t size_excluding_class = excluding_class.size();
return size_total - size_excluding_class;
}
class RetainingPathVisitor : public ObjectGraph::Visitor {
public:
// We cannot use a GrowableObjectArray, since we must not trigger GC.
RetainingPathVisitor(RawObject* obj, const Array& path)
: obj_(obj), path_(path), length_(0) {
ASSERT(Isolate::Current()->no_gc_scope_depth() != 0);
}
intptr_t length() const { return length_; }
virtual Direction VisitObject(ObjectGraph::StackIterator* it) {
if (it->Get() != obj_) {
return kProceed;
} else {
HANDLESCOPE(Isolate::Current());
Object& current = Object::Handle();
Smi& offset_from_parent = Smi::Handle();
do {
intptr_t obj_index = length_ * 2;
intptr_t offset_index = obj_index + 1;
if (!path_.IsNull() && offset_index < path_.Length()) {
current = it->Get();
path_.SetAt(obj_index, current);
offset_from_parent = Smi::New(it->OffsetFromParentInWords());
path_.SetAt(offset_index, offset_from_parent);
}
++length_;
} while (it->MoveToParent());
return kAbort;
}
}
private:
RawObject* obj_;
const Array& path_;
intptr_t length_;
};
intptr_t ObjectGraph::RetainingPath(Object* obj, const Array& path) {
NoGCScope no_gc_scope_;
// To break the trivial path, the handle 'obj' is temporarily cleared during
// the search, but restored before returning.
RawObject* raw = obj->raw();
*obj = Object::null();
RetainingPathVisitor visitor(raw, path);
IterateObjects(&visitor);
*obj = raw;
return visitor.length();
}
class InboundReferencesVisitor : public ObjectVisitor,
public ObjectPointerVisitor {
public:
// We cannot use a GrowableObjectArray, since we must not trigger GC.
InboundReferencesVisitor(Isolate* isolate,
RawObject* target,
const Array& references,
Object* scratch)
: ObjectVisitor(isolate), ObjectPointerVisitor(isolate), source_(NULL),
target_(target), references_(references), scratch_(scratch), length_(0) {
ASSERT(Isolate::Current()->no_gc_scope_depth() != 0);
}
intptr_t length() const { return length_; }
virtual void VisitObject(RawObject* raw_obj) {
source_ = raw_obj;
raw_obj->VisitPointers(this);
}
virtual void VisitPointers(RawObject** first, RawObject** last) {
for (RawObject** current_ptr = first; current_ptr <= last; current_ptr++) {
RawObject* current_obj = *current_ptr;
if (current_obj == target_) {
intptr_t obj_index = length_ * 2;
intptr_t offset_index = obj_index + 1;
if (!references_.IsNull() && offset_index < references_.Length()) {
*scratch_ = source_;
references_.SetAt(obj_index, *scratch_);
*scratch_ = Smi::New(0);
uword source_start = RawObject::ToAddr(source_);
uword current_ptr_addr = reinterpret_cast<uword>(current_ptr);
intptr_t offset = current_ptr_addr - source_start;
if (offset > 0 && offset < source_->Size()) {
ASSERT(Utils::IsAligned(offset, kWordSize));
*scratch_ = Smi::New(offset >> kWordSizeLog2);
} else {
// Some internal VM objects visit pointers not contained within the
// parent. For instance, RawCode::VisitCodePointers visits pointers
// in instructions.
ASSERT(!source_->IsDartInstance());
*scratch_ = Smi::New(-1);
}
references_.SetAt(offset_index, *scratch_);
}
++length_;
}
}
}
private:
RawObject* source_;
RawObject* target_;
const Array& references_;
Object* scratch_;
intptr_t length_;
};
intptr_t ObjectGraph::InboundReferences(Object* obj, const Array& references) {
Object& scratch = Object::Handle();
NoGCScope no_gc_scope_;
InboundReferencesVisitor visitor(isolate(), obj->raw(), references, &scratch);
isolate()->heap()->IterateObjects(&visitor);
return visitor.length();
}
} // namespace dart