blob: 39248111c0b6d18d0cbbd5f77e3b43e58c21a006 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/flow_graph_builder.h"
#include "lib/invocation_mirror.h"
#include "vm/ast_printer.h"
#include "vm/bit_vector.h"
#include "vm/class_finalizer.h"
#include "vm/exceptions.h"
#include "vm/flags.h"
#include "vm/flow_graph.h"
#include "vm/flow_graph_compiler.h"
#include "vm/heap.h"
#include "vm/il_printer.h"
#include "vm/intermediate_language.h"
#include "vm/isolate.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/os.h"
#include "vm/parser.h"
#include "vm/report.h"
#include "vm/resolver.h"
#include "vm/scopes.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#include "vm/token.h"
#include "vm/zone.h"
namespace dart {
DEFINE_FLAG(bool, eliminate_type_checks, true,
"Eliminate type checks when allowed by static type analysis.");
DEFINE_FLAG(bool, print_ast, false, "Print abstract syntax tree.");
DEFINE_FLAG(bool, print_scopes, false, "Print scopes of local variables.");
DEFINE_FLAG(bool, trace_type_check_elimination, false,
"Trace type check elimination at compile time.");
DECLARE_FLAG(bool, enable_type_checks);
DECLARE_FLAG(int, optimization_counter_threshold);
DECLARE_FLAG(bool, warn_on_javascript_compatibility);
// Quick access to the locally defined isolate() method.
#define I (isolate())
// TODO(srdjan): Allow compiler to add constants as they are encountered in
// the compilation.
const double kCommonDoubleConstants[] =
{-1.0, -0.5, -0.1, 0.0, 0.1, 0.5, 1.0, 2.0, 4.0, 5.0,
10.0, 20.0, 30.0, 64.0, 255.0, NAN,
// From dart:math
2.718281828459045, 2.302585092994046, 0.6931471805599453,
1.4426950408889634, 0.4342944819032518, 3.1415926535897932,
0.7071067811865476, 1.4142135623730951};
uword FlowGraphBuilder::FindDoubleConstant(double value) {
intptr_t len = sizeof(kCommonDoubleConstants) / sizeof(double); // NOLINT
for (intptr_t i = 0; i < len; i++) {
if (Utils::DoublesBitEqual(value, kCommonDoubleConstants[i])) {
return reinterpret_cast<uword>(&kCommonDoubleConstants[i]);
}
}
return 0;
}
// Base class for a stack of enclosing statements of interest (e.g.,
// blocks (breakable) and loops (continuable)).
class NestedStatement : public ValueObject {
public:
FlowGraphBuilder* owner() const { return owner_; }
const SourceLabel* label() const { return label_; }
NestedStatement* outer() const { return outer_; }
JoinEntryInstr* break_target() const { return break_target_; }
virtual intptr_t ContextLevel() const;
virtual JoinEntryInstr* BreakTargetFor(SourceLabel* label);
virtual JoinEntryInstr* ContinueTargetFor(SourceLabel* label);
protected:
NestedStatement(FlowGraphBuilder* owner, const SourceLabel* label)
: owner_(owner),
label_(label),
outer_(owner->nesting_stack_),
break_target_(NULL),
try_index_(owner->try_index()) {
// Push on the owner's nesting stack.
owner->nesting_stack_ = this;
}
intptr_t try_index() const { return try_index_; }
virtual ~NestedStatement() {
// Pop from the owner's nesting stack.
ASSERT(owner_->nesting_stack_ == this);
owner_->nesting_stack_ = outer_;
}
private:
FlowGraphBuilder* owner_;
const SourceLabel* label_;
NestedStatement* outer_;
JoinEntryInstr* break_target_;
const intptr_t try_index_;
};
intptr_t NestedStatement::ContextLevel() const {
// Context level is determined by the innermost nested statement having one.
return (outer() == NULL) ? 0 : outer()->ContextLevel();
}
intptr_t FlowGraphBuilder::context_level() const {
return (nesting_stack() == NULL) ? 0 : nesting_stack()->ContextLevel();
}
JoinEntryInstr* NestedStatement::BreakTargetFor(SourceLabel* label) {
if (label != label_) return NULL;
if (break_target_ == NULL) {
break_target_ =
new(owner()->isolate()) JoinEntryInstr(owner()->AllocateBlockId(),
owner()->try_index());
}
return break_target_;
}
JoinEntryInstr* NestedStatement::ContinueTargetFor(SourceLabel* label) {
return NULL;
}
// A nested statement that has its own context level.
class NestedBlock : public NestedStatement {
public:
NestedBlock(FlowGraphBuilder* owner, SequenceNode* node)
: NestedStatement(owner, node->label()), scope_(node->scope()) {}
virtual intptr_t ContextLevel() const;
private:
LocalScope* scope_;
};
intptr_t NestedBlock::ContextLevel() const {
return ((scope_ == NULL) || (scope_->num_context_variables() == 0))
? NestedStatement::ContextLevel()
: scope_->context_level();
}
// A nested statement that can be the target of a continue as well as a
// break.
class NestedLoop : public NestedStatement {
public:
NestedLoop(FlowGraphBuilder* owner, SourceLabel* label)
: NestedStatement(owner, label), continue_target_(NULL) {
owner->IncrementLoopDepth();
}
virtual ~NestedLoop() {
owner()->DecrementLoopDepth();
}
JoinEntryInstr* continue_target() const { return continue_target_; }
virtual JoinEntryInstr* ContinueTargetFor(SourceLabel* label);
private:
JoinEntryInstr* continue_target_;
};
JoinEntryInstr* NestedLoop::ContinueTargetFor(SourceLabel* label) {
if (label != this->label()) return NULL;
if (continue_target_ == NULL) {
continue_target_ =
new(owner()->isolate()) JoinEntryInstr(owner()->AllocateBlockId(),
try_index());
}
return continue_target_;
}
// A nested switch which can be the target of a break if labeled, and whose
// cases can be the targets of continues.
class NestedSwitch : public NestedStatement {
public:
NestedSwitch(FlowGraphBuilder* owner, SwitchNode* node);
virtual JoinEntryInstr* ContinueTargetFor(SourceLabel* label);
private:
GrowableArray<SourceLabel*> case_labels_;
GrowableArray<JoinEntryInstr*> case_targets_;
};
NestedSwitch::NestedSwitch(FlowGraphBuilder* owner, SwitchNode* node)
: NestedStatement(owner, node->label()),
case_labels_(node->body()->length()),
case_targets_(node->body()->length()) {
SequenceNode* body = node->body();
for (intptr_t i = 0; i < body->length(); ++i) {
CaseNode* case_node = body->NodeAt(i)->AsCaseNode();
if (case_node != NULL) {
case_labels_.Add(case_node->label());
case_targets_.Add(NULL);
}
}
}
JoinEntryInstr* NestedSwitch::ContinueTargetFor(SourceLabel* label) {
// Allocate a join for a case clause that matches the label. This block
// is not necessarily targeted by a continue, but we always use a join in
// the graph anyway.
for (intptr_t i = 0; i < case_labels_.length(); ++i) {
if (label != case_labels_[i]) continue;
if (case_targets_[i] == NULL) {
case_targets_[i] =
new(owner()->isolate()) JoinEntryInstr(owner()->AllocateBlockId(),
try_index());
}
return case_targets_[i];
}
return NULL;
}
FlowGraphBuilder::FlowGraphBuilder(
ParsedFunction* parsed_function,
const ZoneGrowableArray<const ICData*>& ic_data_array,
InlineExitCollector* exit_collector,
intptr_t osr_id) :
parsed_function_(parsed_function),
ic_data_array_(ic_data_array),
num_copied_params_(parsed_function->num_copied_params()),
// All parameters are copied if any parameter is.
num_non_copied_params_((num_copied_params_ == 0)
? parsed_function->function().num_fixed_parameters()
: 0),
num_stack_locals_(parsed_function->num_stack_locals()),
exit_collector_(exit_collector),
guarded_fields_(new(I) ZoneGrowableArray<const Field*>()),
last_used_block_id_(0), // 0 is used for the graph entry.
try_index_(CatchClauseNode::kInvalidTryIndex),
catch_try_index_(CatchClauseNode::kInvalidTryIndex),
loop_depth_(0),
graph_entry_(NULL),
temp_count_(0),
args_pushed_(0),
nesting_stack_(NULL),
osr_id_(osr_id),
jump_count_(0),
await_joins_(new(I) ZoneGrowableArray<JoinEntryInstr*>()),
await_levels_(new(I) ZoneGrowableArray<intptr_t>()) { }
void FlowGraphBuilder::AddCatchEntry(CatchBlockEntryInstr* entry) {
graph_entry_->AddCatchEntry(entry);
}
void InlineExitCollector::PrepareGraphs(FlowGraph* callee_graph) {
ASSERT(callee_graph->graph_entry()->SuccessorCount() == 1);
ASSERT(callee_graph->max_block_id() > caller_graph_->max_block_id());
ASSERT(callee_graph->max_virtual_register_number() >
caller_graph_->max_virtual_register_number());
// Adjust the caller's maximum block id and current SSA temp index.
caller_graph_->set_max_block_id(callee_graph->max_block_id());
caller_graph_->set_current_ssa_temp_index(
callee_graph->max_virtual_register_number());
// Attach the outer environment on each instruction in the callee graph.
ASSERT(call_->env() != NULL);
// Scale the edge weights by the call count for the inlined function.
double scale_factor = static_cast<double>(call_->CallCount())
/ static_cast<double>(caller_graph_->graph_entry()->entry_count());
for (BlockIterator block_it = callee_graph->postorder_iterator();
!block_it.Done();
block_it.Advance()) {
BlockEntryInstr* block = block_it.Current();
if (block->IsTargetEntry()) {
block->AsTargetEntry()->adjust_edge_weight(scale_factor);
}
Instruction* instr = block;
for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) {
instr = it.Current();
// TODO(zerny): Avoid creating unnecessary environments. Note that some
// optimizations need deoptimization info for non-deoptable instructions,
// eg, LICM on GOTOs.
if (instr->env() != NULL) {
call_->env()->DeepCopyToOuter(callee_graph->isolate(), instr);
}
}
if (instr->IsGoto()) {
instr->AsGoto()->adjust_edge_weight(scale_factor);
}
}
}
void InlineExitCollector::AddExit(ReturnInstr* exit) {
Data data = { NULL, exit };
exits_.Add(data);
}
void InlineExitCollector::Union(const InlineExitCollector* other) {
// It doesn't make sense to combine different calls or calls from
// different graphs.
ASSERT(caller_graph_ == other->caller_graph_);
ASSERT(call_ == other->call_);
exits_.AddArray(other->exits_);
}
int InlineExitCollector::LowestBlockIdFirst(const Data* a, const Data* b) {
return (a->exit_block->block_id() - b->exit_block->block_id());
}
void InlineExitCollector::SortExits() {
// Assign block entries here because we did not necessarily know them when
// the return exit was added to the array.
for (int i = 0; i < exits_.length(); ++i) {
exits_[i].exit_block = exits_[i].exit_return->GetBlock();
}
exits_.Sort(LowestBlockIdFirst);
}
Definition* InlineExitCollector::JoinReturns(BlockEntryInstr** exit_block,
Instruction** last_instruction) {
// First sort the list of exits by block id (caching return instruction
// block entries as a side effect).
SortExits();
intptr_t num_exits = exits_.length();
if (num_exits == 1) {
ReturnAt(0)->UnuseAllInputs();
*exit_block = ExitBlockAt(0);
*last_instruction = LastInstructionAt(0);
return call_->HasUses() ? ValueAt(0)->definition() : NULL;
} else {
ASSERT(num_exits > 1);
// Create a join of the returns.
intptr_t join_id = caller_graph_->max_block_id() + 1;
caller_graph_->set_max_block_id(join_id);
JoinEntryInstr* join =
new(I) JoinEntryInstr(join_id, CatchClauseNode::kInvalidTryIndex);
join->InheritDeoptTargetAfter(isolate(), call_);
// The dominator set of the join is the intersection of the dominator
// sets of all the predecessors. If we keep the dominator sets ordered
// by height in the dominator tree, we can also get the immediate
// dominator of the join node from the intersection.
//
// block_dominators is the dominator set for each block, ordered from
// the immediate dominator to the root of the dominator tree. This is
// the order we collect them in (adding at the end).
//
// join_dominators is the join's dominators ordered from the root of the
// dominator tree to the immediate dominator. This order supports
// removing during intersection by truncating the list.
GrowableArray<BlockEntryInstr*> block_dominators;
GrowableArray<BlockEntryInstr*> join_dominators;
for (intptr_t i = 0; i < num_exits; ++i) {
// Add the control-flow edge.
GotoInstr* goto_instr = new(I) GotoInstr(join);
goto_instr->InheritDeoptTarget(isolate(), ReturnAt(i));
LastInstructionAt(i)->LinkTo(goto_instr);
ExitBlockAt(i)->set_last_instruction(LastInstructionAt(i)->next());
join->predecessors_.Add(ExitBlockAt(i));
// Collect the block's dominators.
block_dominators.Clear();
BlockEntryInstr* dominator = ExitBlockAt(i)->dominator();
while (dominator != NULL) {
block_dominators.Add(dominator);
dominator = dominator->dominator();
}
if (i == 0) {
// The initial dominator set is the first predecessor's dominator
// set. Reverse it.
for (intptr_t j = block_dominators.length() - 1; j >= 0; --j) {
join_dominators.Add(block_dominators[j]);
}
} else {
// Intersect the block's dominators with the join's dominators so far.
intptr_t last = block_dominators.length() - 1;
for (intptr_t j = 0; j < join_dominators.length(); ++j) {
intptr_t k = last - j; // Corresponding index in block_dominators.
if ((k < 0) || (join_dominators[j] != block_dominators[k])) {
// We either exhausted the dominators for this block before
// exhausting the current intersection, or else we found a block
// on the path from the root of the tree that is not in common.
// I.e., there cannot be an empty set of dominators.
ASSERT(j > 0);
join_dominators.TruncateTo(j);
break;
}
}
}
}
// The immediate dominator of the join is the last one in the ordered
// intersection.
join_dominators.Last()->AddDominatedBlock(join);
*exit_block = join;
*last_instruction = join;
// If the call has uses, create a phi of the returns.
if (call_->HasUses()) {
// Add a phi of the return values.
PhiInstr* phi = new(I) PhiInstr(join, num_exits);
phi->set_ssa_temp_index(caller_graph_->alloc_ssa_temp_index());
phi->mark_alive();
for (intptr_t i = 0; i < num_exits; ++i) {
ReturnAt(i)->RemoveEnvironment();
phi->SetInputAt(i, ValueAt(i));
}
join->InsertPhi(phi);
return phi;
} else {
// In the case that the result is unused, remove the return value uses
// from their definition's use list.
for (intptr_t i = 0; i < num_exits; ++i) {
ReturnAt(i)->UnuseAllInputs();
}
return NULL;
}
}
}
void InlineExitCollector::ReplaceCall(TargetEntryInstr* callee_entry) {
ASSERT(call_->previous() != NULL);
ASSERT(call_->next() != NULL);
BlockEntryInstr* call_block = call_->GetBlock();
// Insert the callee graph into the caller graph.
BlockEntryInstr* callee_exit = NULL;
Instruction* callee_last_instruction = NULL;
if (exits_.length() == 0) {
// Handle the case when there are no normal return exits from the callee
// (i.e. the callee unconditionally throws) by inserting an artificial
// branch (true === true).
// The true successor is the inlined body, the false successor
// goes to the rest of the caller graph. It is removed as unreachable code
// by the constant propagation.
TargetEntryInstr* false_block =
new(I) TargetEntryInstr(caller_graph_->allocate_block_id(),
call_block->try_index());
false_block->InheritDeoptTargetAfter(isolate(), call_);
false_block->LinkTo(call_->next());
call_block->ReplaceAsPredecessorWith(false_block);
ConstantInstr* true_const = caller_graph_->GetConstant(Bool::True());
BranchInstr* branch =
new(I) BranchInstr(
new(I) StrictCompareInstr(call_block->start_pos(),
Token::kEQ_STRICT,
new(I) Value(true_const),
new(I) Value(true_const),
false)); // No number check.
branch->InheritDeoptTarget(isolate(), call_);
*branch->true_successor_address() = callee_entry;
*branch->false_successor_address() = false_block;
call_->previous()->AppendInstruction(branch);
call_block->set_last_instruction(branch);
// Update dominator tree.
call_block->AddDominatedBlock(callee_entry);
call_block->AddDominatedBlock(false_block);
} else {
Definition* callee_result = JoinReturns(&callee_exit,
&callee_last_instruction);
if (callee_result != NULL) {
call_->ReplaceUsesWith(callee_result);
}
if (callee_last_instruction == callee_entry) {
// There are no instructions in the inlined function (e.g., it might be
// a return of a parameter or a return of a constant defined in the
// initial definitions).
call_->previous()->LinkTo(call_->next());
} else {
call_->previous()->LinkTo(callee_entry->next());
callee_last_instruction->LinkTo(call_->next());
}
if (callee_exit != callee_entry) {
// In case of control flow, locally update the predecessors, phis and
// dominator tree.
//
// Pictorially, the graph structure is:
//
// Bc : call_block Bi : callee_entry
// before_call inlined_head
// call ... other blocks ...
// after_call Be : callee_exit
// inlined_foot
// And becomes:
//
// Bc : call_block
// before_call
// inlined_head
// ... other blocks ...
// Be : callee_exit
// inlined_foot
// after_call
//
// For successors of 'after_call', the call block (Bc) is replaced as a
// predecessor by the callee exit (Be).
call_block->ReplaceAsPredecessorWith(callee_exit);
// For successors of 'inlined_head', the callee entry (Bi) is replaced
// as a predecessor by the call block (Bc).
callee_entry->ReplaceAsPredecessorWith(call_block);
// The callee exit is now the immediate dominator of blocks whose
// immediate dominator was the call block.
ASSERT(callee_exit->dominated_blocks().is_empty());
for (intptr_t i = 0; i < call_block->dominated_blocks().length(); ++i) {
BlockEntryInstr* block = call_block->dominated_blocks()[i];
callee_exit->AddDominatedBlock(block);
}
// The call block is now the immediate dominator of blocks whose
// immediate dominator was the callee entry.
call_block->ClearDominatedBlocks();
for (intptr_t i = 0; i < callee_entry->dominated_blocks().length(); ++i) {
BlockEntryInstr* block = callee_entry->dominated_blocks()[i];
call_block->AddDominatedBlock(block);
}
}
// Callee entry in not in the graph anymore. Remove it from use lists.
callee_entry->UnuseAllInputs();
}
// Neither call nor the graph entry (if present) are in the
// graph at this point. Remove them from use lists.
if (callee_entry->PredecessorCount() > 0) {
callee_entry->PredecessorAt(0)->AsGraphEntry()->UnuseAllInputs();
}
call_->UnuseAllInputs();
}
void EffectGraphVisitor::Append(const EffectGraphVisitor& other_fragment) {
ASSERT(is_open());
if (other_fragment.is_empty()) return;
if (is_empty()) {
entry_ = other_fragment.entry();
} else {
exit()->LinkTo(other_fragment.entry());
}
exit_ = other_fragment.exit();
}
Value* EffectGraphVisitor::Bind(Definition* definition) {
ASSERT(is_open());
owner()->DeallocateTemps(definition->InputCount());
owner()->add_args_pushed(-definition->ArgumentCount());
definition->set_temp_index(owner()->AllocateTemp());
if (is_empty()) {
entry_ = definition;
} else {
exit()->LinkTo(definition);
}
exit_ = definition;
return new(I) Value(definition);
}
void EffectGraphVisitor::Do(Definition* definition) {
ASSERT(is_open());
owner()->DeallocateTemps(definition->InputCount());
owner()->add_args_pushed(-definition->ArgumentCount());
if (is_empty()) {
entry_ = definition;
} else {
exit()->LinkTo(definition);
}
exit_ = definition;
}
void EffectGraphVisitor::AddInstruction(Instruction* instruction) {
ASSERT(is_open());
ASSERT(instruction->IsPushArgument() || !instruction->IsDefinition());
ASSERT(!instruction->IsBlockEntry());
owner()->DeallocateTemps(instruction->InputCount());
owner()->add_args_pushed(-instruction->ArgumentCount());
if (is_empty()) {
entry_ = exit_ = instruction;
} else {
exit()->LinkTo(instruction);
exit_ = instruction;
}
}
void EffectGraphVisitor::AddReturnExit(intptr_t token_pos, Value* value) {
ASSERT(is_open());
ReturnInstr* return_instr = new(I) ReturnInstr(token_pos, value);
AddInstruction(return_instr);
InlineExitCollector* exit_collector = owner()->exit_collector();
if (exit_collector != NULL) {
exit_collector->AddExit(return_instr);
}
CloseFragment();
}
void EffectGraphVisitor::Goto(JoinEntryInstr* join) {
ASSERT(is_open());
if (is_empty()) {
entry_ = new(I) GotoInstr(join);
} else {
exit()->Goto(join);
}
CloseFragment();
}
// Appends a graph fragment to a block entry instruction. Returns the entry
// instruction if the fragment was empty or else the exit of the fragment if
// it was non-empty (so NULL if the fragment is closed).
//
// Note that the fragment is no longer a valid fragment after calling this
// function -- the fragment is closed at its entry because the entry has a
// predecessor in the graph.
static Instruction* AppendFragment(BlockEntryInstr* entry,
const EffectGraphVisitor& fragment) {
if (fragment.is_empty()) return entry;
entry->LinkTo(fragment.entry());
return fragment.exit();
}
void EffectGraphVisitor::Join(const TestGraphVisitor& test_fragment,
const EffectGraphVisitor& true_fragment,
const EffectGraphVisitor& false_fragment) {
// We have: a test graph fragment with zero, one, or two available exits;
// and a pair of effect graph fragments with zero or one available exits.
// We want to append the branch and (if necessary) a join node to this
// graph fragment.
ASSERT(is_open());
// 1. Connect the test to this graph.
Append(test_fragment);
// 2. Connect the true and false bodies to the test and record their exits
// (if any).
BlockEntryInstr* true_entry = test_fragment.CreateTrueSuccessor();
Instruction* true_exit = AppendFragment(true_entry, true_fragment);
BlockEntryInstr* false_entry = test_fragment.CreateFalseSuccessor();
Instruction* false_exit = AppendFragment(false_entry, false_fragment);
// 3. Add a join or select one (or neither) of the arms as exit.
if (true_exit == NULL) {
exit_ = false_exit; // May be NULL.
} else if (false_exit == NULL) {
exit_ = true_exit;
} else {
JoinEntryInstr* join =
new(I) JoinEntryInstr(owner()->AllocateBlockId(), owner()->try_index());
true_exit->Goto(join);
false_exit->Goto(join);
exit_ = join;
}
}
void EffectGraphVisitor::TieLoop(
intptr_t token_pos,
const TestGraphVisitor& test_fragment,
const EffectGraphVisitor& body_fragment,
const EffectGraphVisitor& test_preamble_fragment) {
// We have: a test graph fragment with zero, one, or two available exits;
// and an effect graph fragment with zero or one available exits. We want
// to append the 'while loop' consisting of the test graph fragment as
// condition and the effect graph fragment as body.
ASSERT(is_open());
// 1. Connect the body to the test if it is reachable, and if so record
// its exit (if any).
BlockEntryInstr* body_entry = test_fragment.CreateTrueSuccessor();
Instruction* body_exit = AppendFragment(body_entry, body_fragment);
// 2. Connect the test to this graph, including the body if reachable and
// using a fresh join node if the body is reachable and has an open exit.
if (body_exit == NULL) {
Append(test_preamble_fragment);
Append(test_fragment);
} else {
JoinEntryInstr* join =
new(I) JoinEntryInstr(owner()->AllocateBlockId(), owner()->try_index());
CheckStackOverflowInstr* check =
new(I) CheckStackOverflowInstr(token_pos, owner()->loop_depth());
join->LinkTo(check);
if (!test_preamble_fragment.is_empty()) {
check->LinkTo(test_preamble_fragment.entry());
test_preamble_fragment.exit()->LinkTo(test_fragment.entry());
} else {
check->LinkTo(test_fragment.entry());
}
Goto(join);
body_exit->Goto(join);
}
// 3. Set the exit to the graph to be the false successor of the test, a
// fresh target node
exit_ = test_fragment.CreateFalseSuccessor();
}
PushArgumentInstr* EffectGraphVisitor::PushArgument(Value* value) {
owner_->add_args_pushed(1);
PushArgumentInstr* result = new(I) PushArgumentInstr(value);
AddInstruction(result);
return result;
}
Definition* EffectGraphVisitor::BuildStoreTemp(const LocalVariable& local,
Value* value) {
ASSERT(!local.is_captured());
return new(I) StoreLocalInstr(local, value);
}
Definition* EffectGraphVisitor::BuildStoreExprTemp(Value* value) {
return BuildStoreTemp(*owner()->parsed_function()->expression_temp_var(),
value);
}
Definition* EffectGraphVisitor::BuildLoadExprTemp() {
return BuildLoadLocal(*owner()->parsed_function()->expression_temp_var());
}
Definition* EffectGraphVisitor::BuildStoreLocal(const LocalVariable& local,
Value* value) {
if (local.is_captured()) {
LocalVariable* tmp_var = EnterTempLocalScope(value);
intptr_t delta =
owner()->context_level() - local.owner()->context_level();
ASSERT(delta >= 0);
Value* context = Bind(BuildCurrentContext());
while (delta-- > 0) {
context = Bind(new(I) LoadFieldInstr(
context, Context::parent_offset(), Type::ZoneHandle(I, Type::null()),
Scanner::kNoSourcePos));
}
Value* tmp_val = Bind(new(I) LoadLocalInstr(*tmp_var));
StoreInstanceFieldInstr* store =
new(I) StoreInstanceFieldInstr(Context::variable_offset(local.index()),
context,
tmp_val,
kEmitStoreBarrier,
Scanner::kNoSourcePos);
Do(store);
return ExitTempLocalScope(tmp_var);
} else {
return new(I) StoreLocalInstr(local, value);
}
}
Definition* EffectGraphVisitor::BuildLoadLocal(const LocalVariable& local) {
if (local.IsConst()) {
return new(I) ConstantInstr(*local.ConstValue());
} else if (local.is_captured()) {
intptr_t delta =
owner()->context_level() - local.owner()->context_level();
ASSERT(delta >= 0);
Value* context = Bind(BuildCurrentContext());
while (delta-- > 0) {
context = Bind(new(I) LoadFieldInstr(
context, Context::parent_offset(), Type::ZoneHandle(I, Type::null()),
Scanner::kNoSourcePos));
}
return new(I) LoadFieldInstr(context,
Context::variable_offset(local.index()),
local.type(),
Scanner::kNoSourcePos);
} else {
return new(I) LoadLocalInstr(local);
}
}
// Stores current context into the 'variable'
void EffectGraphVisitor::BuildSaveContext(const LocalVariable& variable) {
Value* context = Bind(BuildCurrentContext());
Do(BuildStoreLocal(variable, context));
}
// Loads context saved in 'context_variable' into the current context.
void EffectGraphVisitor::BuildRestoreContext(const LocalVariable& variable) {
Value* load_saved_context = Bind(BuildLoadLocal(variable));
Do(BuildStoreContext(load_saved_context));
}
Definition* EffectGraphVisitor::BuildStoreContext(Value* value) {
return new(I) StoreLocalInstr(
*owner()->parsed_function()->current_context_var(), value);
}
Definition* EffectGraphVisitor::BuildCurrentContext() {
return new(I) LoadLocalInstr(
*owner()->parsed_function()->current_context_var());
}
void TestGraphVisitor::ConnectBranchesTo(
const GrowableArray<TargetEntryInstr**>& branches,
JoinEntryInstr* join) const {
ASSERT(!branches.is_empty());
for (intptr_t i = 0; i < branches.length(); i++) {
TargetEntryInstr* target =
new(I) TargetEntryInstr(owner()->AllocateBlockId(),
owner()->try_index());
*(branches[i]) = target;
target->Goto(join);
}
}
void TestGraphVisitor::IfTrueGoto(JoinEntryInstr* join) const {
ConnectBranchesTo(true_successor_addresses_, join);
}
void TestGraphVisitor::IfFalseGoto(JoinEntryInstr* join) const {
ConnectBranchesTo(false_successor_addresses_, join);
}
BlockEntryInstr* TestGraphVisitor::CreateSuccessorFor(
const GrowableArray<TargetEntryInstr**>& branches) const {
ASSERT(!branches.is_empty());
if (branches.length() == 1) {
TargetEntryInstr* target =
new(I) TargetEntryInstr(owner()->AllocateBlockId(),
owner()->try_index());
*(branches[0]) = target;
return target;
}
JoinEntryInstr* join =
new(I) JoinEntryInstr(owner()->AllocateBlockId(), owner()->try_index());
ConnectBranchesTo(branches, join);
return join;
}
BlockEntryInstr* TestGraphVisitor::CreateTrueSuccessor() const {
return CreateSuccessorFor(true_successor_addresses_);
}
BlockEntryInstr* TestGraphVisitor::CreateFalseSuccessor() const {
return CreateSuccessorFor(false_successor_addresses_);
}
void TestGraphVisitor::ReturnValue(Value* value) {
if (FLAG_enable_type_checks) {
value = Bind(new(I) AssertBooleanInstr(condition_token_pos(), value));
}
Value* constant_true = Bind(new(I) ConstantInstr(Bool::True()));
StrictCompareInstr* comp =
new(I) StrictCompareInstr(condition_token_pos(),
Token::kEQ_STRICT,
value,
constant_true,
false); // No number check.
BranchInstr* branch = new(I) BranchInstr(comp);
AddInstruction(branch);
CloseFragment();
true_successor_addresses_.Add(branch->true_successor_address());
false_successor_addresses_.Add(branch->false_successor_address());
}
void TestGraphVisitor::MergeBranchWithComparison(ComparisonInstr* comp) {
BranchInstr* branch;
if (Token::IsStrictEqualityOperator(comp->kind())) {
ASSERT(comp->IsStrictCompare());
branch = new(I) BranchInstr(comp);
} else if (Token::IsEqualityOperator(comp->kind()) &&
(comp->left()->BindsToConstantNull() ||
comp->right()->BindsToConstantNull())) {
branch = new(I) BranchInstr(new(I) StrictCompareInstr(
comp->token_pos(),
(comp->kind() == Token::kEQ) ? Token::kEQ_STRICT : Token::kNE_STRICT,
comp->left(),
comp->right(),
false)); // No number check.
} else {
branch = new(I) BranchInstr(comp);
branch->set_is_checked(FLAG_enable_type_checks);
}
AddInstruction(branch);
CloseFragment();
true_successor_addresses_.Add(branch->true_successor_address());
false_successor_addresses_.Add(branch->false_successor_address());
}
void TestGraphVisitor::MergeBranchWithNegate(BooleanNegateInstr* neg) {
ASSERT(!FLAG_enable_type_checks);
Value* constant_true = Bind(new(I) ConstantInstr(Bool::True()));
StrictCompareInstr* comp =
new(I) StrictCompareInstr(condition_token_pos(),
Token::kNE_STRICT,
neg->value(),
constant_true,
false); // No number check.
BranchInstr* branch = new(I) BranchInstr(comp);
AddInstruction(branch);
CloseFragment();
true_successor_addresses_.Add(branch->true_successor_address());
false_successor_addresses_.Add(branch->false_successor_address());
}
void TestGraphVisitor::ReturnDefinition(Definition* definition) {
ComparisonInstr* comp = definition->AsComparison();
if (comp != NULL) {
MergeBranchWithComparison(comp);
return;
}
if (!FLAG_enable_type_checks) {
BooleanNegateInstr* neg = definition->AsBooleanNegate();
if (neg != NULL) {
MergeBranchWithNegate(neg);
return;
}
}
ReturnValue(Bind(definition));
}
// Special handling for AND/OR.
void TestGraphVisitor::VisitBinaryOpNode(BinaryOpNode* node) {
// Operators "&&" and "||" cannot be overloaded therefore do not call
// operator.
if ((node->kind() == Token::kAND) || (node->kind() == Token::kOR)) {
TestGraphVisitor for_left(owner(), node->left()->token_pos());
node->left()->Visit(&for_left);
TestGraphVisitor for_right(owner(), node->right()->token_pos());
node->right()->Visit(&for_right);
Append(for_left);
if (node->kind() == Token::kAND) {
AppendFragment(for_left.CreateTrueSuccessor(), for_right);
true_successor_addresses_.AddArray(for_right.true_successor_addresses_);
false_successor_addresses_.AddArray(for_left.false_successor_addresses_);
false_successor_addresses_.AddArray(for_right.false_successor_addresses_);
} else {
ASSERT(node->kind() == Token::kOR);
AppendFragment(for_left.CreateFalseSuccessor(), for_right);
false_successor_addresses_.AddArray(for_right.false_successor_addresses_);
true_successor_addresses_.AddArray(for_left.true_successor_addresses_);
true_successor_addresses_.AddArray(for_right.true_successor_addresses_);
}
CloseFragment();
return;
}
ValueGraphVisitor::VisitBinaryOpNode(node);
}
void EffectGraphVisitor::Bailout(const char* reason) const {
owner()->Bailout(reason);
}
void EffectGraphVisitor::InlineBailout(const char* reason) const {
owner()->parsed_function()->function().set_is_inlinable(false);
if (owner()->IsInlining()) owner()->Bailout(reason);
}
// <Statement> ::= Return { value: <Expression>
// inlined_finally_list: <InlinedFinally>* }
void EffectGraphVisitor::VisitReturnNode(ReturnNode* node) {
ValueGraphVisitor for_value(owner());
node->value()->Visit(&for_value);
Append(for_value);
Value* return_value = for_value.value();
if (node->inlined_finally_list_length() > 0) {
LocalVariable* temp = owner()->parsed_function()->finally_return_temp_var();
ASSERT(temp != NULL);
Do(BuildStoreLocal(*temp, return_value));
for (intptr_t i = 0; i < node->inlined_finally_list_length(); i++) {
InlineBailout("EffectGraphVisitor::VisitReturnNode (exception)");
EffectGraphVisitor for_effect(owner());
node->InlinedFinallyNodeAt(i)->Visit(&for_effect);
Append(for_effect);
if (!is_open()) {
return;
}
}
return_value = Bind(BuildLoadLocal(*temp));
}
// Call to stub that checks whether the debugger is in single
// step mode. This call must happen before the contexts are
// unchained so that captured variables can be inspected.
// No debugger check is done in native functions or for return
// statements for which there is no associated source position.
const Function& function = owner()->parsed_function()->function();
if ((node->token_pos() != Scanner::kNoSourcePos) && !function.is_native()) {
AddInstruction(new(I) DebugStepCheckInstr(node->token_pos(),
RawPcDescriptors::kRuntimeCall));
}
if (FLAG_enable_type_checks) {
const bool is_implicit_dynamic_getter =
(!function.is_static() &&
((function.kind() == RawFunction::kImplicitGetter) ||
(function.kind() == RawFunction::kImplicitStaticFinalGetter)));
// Implicit getters do not need a type check at return, unless they compute
// the initial value of a static field.
// The body of a constructor cannot modify the type of the
// constructed instance, which is passed in as an implicit parameter.
// However, factories may create an instance of the wrong type.
if (!is_implicit_dynamic_getter && !function.IsConstructor()) {
const AbstractType& dst_type =
AbstractType::ZoneHandle(I, function.result_type());
return_value = BuildAssignableValue(node->value()->token_pos(),
return_value,
dst_type,
Symbols::FunctionResult());
}
}
// Async functions contain two types of return statements:
// 1) Returns that should complete the completer once all finally blocks have
// been inlined (call: :async_completer.complete(return_value)). These
// returns end up returning null in the end.
// 2) "Continuation" returns that should not complete the completer but return
// the value.
//
// We distinguish those kinds of nodes via is_regular_return().
//
if (function.is_async_closure() &&
(node->return_type() == ReturnNode::kRegular)) {
// Temporary store the computed return value.
Do(BuildStoreExprTemp(return_value));
LocalVariable* rcv_var = node->scope()->LookupVariable(
Symbols::AsyncCompleter(), false);
ASSERT(rcv_var != NULL && rcv_var->is_captured());
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(2);
Value* rcv_value = Bind(BuildLoadLocal(*rcv_var));
arguments->Add(PushArgument(rcv_value));
Value* returned_value = Bind(BuildLoadExprTemp());
arguments->Add(PushArgument(returned_value));
InstanceCallInstr* call = new(I) InstanceCallInstr(
Scanner::kNoSourcePos,
Symbols::CompleterComplete(),
Token::kILLEGAL,
arguments,
Object::null_array(),
1,
owner()->ic_data_array());
Do(call);
// Rebind the return value for the actual return call to be null.
return_value = BuildNullValue();
}
intptr_t current_context_level = owner()->context_level();
ASSERT(current_context_level >= 0);
if (HasContextScope()) {
UnchainContexts(current_context_level);
}
AddReturnExit(node->token_pos(), return_value);
if (function.is_async_closure() &&
(node->return_type() == ReturnNode::kContinuationTarget)) {
JoinEntryInstr* const join = new(I) JoinEntryInstr(
owner()->AllocateBlockId(), owner()->try_index());
owner()->await_joins()->Add(join);
exit_ = join;
}
}
// <Expression> ::= Literal { literal: Instance }
void EffectGraphVisitor::VisitLiteralNode(LiteralNode* node) {
ReturnDefinition(new(I) ConstantInstr(node->literal()));
}
// Type nodes are used when a type is referenced as a literal. Type nodes
// can also be used for the right-hand side of instanceof comparisons,
// but they are handled specially in that context, not here.
void EffectGraphVisitor::VisitTypeNode(TypeNode* node) {
return;
}
void ValueGraphVisitor::VisitTypeNode(TypeNode* node) {
const AbstractType& type = node->type();
// Type may be malbounded, but not malformed.
ASSERT(type.IsFinalized() && !type.IsMalformed());
if (type.IsInstantiated()) {
ReturnDefinition(new(I) ConstantInstr(type));
} else {
const Class& instantiator_class = Class::ZoneHandle(
I, owner()->parsed_function()->function().Owner());
Value* instantiator_value = BuildInstantiatorTypeArguments(
node->token_pos(), instantiator_class, NULL);
ReturnDefinition(new(I) InstantiateTypeInstr(
node->token_pos(), type, instantiator_class, instantiator_value));
}
}
// Returns true if the type check can be skipped, for example, if the
// destination type is dynamic or if the compile type of the value is a subtype
// of the destination type.
bool EffectGraphVisitor::CanSkipTypeCheck(intptr_t token_pos,
Value* value,
const AbstractType& dst_type,
const String& dst_name) {
ASSERT(!dst_type.IsNull());
ASSERT(dst_type.IsFinalized());
// If the destination type is malformed or malbounded, a dynamic type error
// must be thrown at run time.
if (dst_type.IsMalformedOrMalbounded()) {
return false;
}
// Any type is more specific than the dynamic type and than the Object type.
if (dst_type.IsDynamicType() || dst_type.IsObjectType()) {
return true;
}
// Do not perform type check elimination if this optimization is turned off.
if (!FLAG_eliminate_type_checks) {
return false;
}
// If nothing is known about the value, as is the case for passed-in
// parameters, and since dst_type is not one of the tested cases above, then
// the type test cannot be eliminated.
if (value == NULL) {
return false;
}
const bool eliminated = value->Type()->IsAssignableTo(dst_type);
if (FLAG_trace_type_check_elimination) {
FlowGraphPrinter::PrintTypeCheck(*owner()->parsed_function(),
token_pos,
value,
dst_type,
dst_name,
eliminated);
}
return eliminated;
}
// <Expression> :: Assignable { expr: <Expression>
// type: AbstractType
// dst_name: String }
void EffectGraphVisitor::VisitAssignableNode(AssignableNode* node) {
ValueGraphVisitor for_value(owner());
node->expr()->Visit(&for_value);
Append(for_value);
Definition* checked_value;
if (CanSkipTypeCheck(node->expr()->token_pos(),
for_value.value(),
node->type(),
node->dst_name())) {
// Drop the value and 0 additional temporaries.
checked_value = new(I) DropTempsInstr(0, for_value.value());
} else {
checked_value = BuildAssertAssignable(node->expr()->token_pos(),
for_value.value(),
node->type(),
node->dst_name());
}
ReturnDefinition(checked_value);
}
void ValueGraphVisitor::VisitAssignableNode(AssignableNode* node) {
ValueGraphVisitor for_value(owner());
node->expr()->Visit(&for_value);
Append(for_value);
ReturnValue(BuildAssignableValue(node->expr()->token_pos(),
for_value.value(),
node->type(),
node->dst_name()));
}
// <Expression> :: BinaryOp { kind: Token::Kind
// left: <Expression>
// right: <Expression> }
void EffectGraphVisitor::VisitBinaryOpNode(BinaryOpNode* node) {
// Operators "&&" and "||" cannot be overloaded therefore do not call
// operator.
if ((node->kind() == Token::kAND) || (node->kind() == Token::kOR)) {
// See ValueGraphVisitor::VisitBinaryOpNode.
TestGraphVisitor for_left(owner(), node->left()->token_pos());
node->left()->Visit(&for_left);
EffectGraphVisitor empty(owner());
if (FLAG_enable_type_checks) {
ValueGraphVisitor for_right(owner());
node->right()->Visit(&for_right);
Value* right_value = for_right.value();
for_right.Do(new(I) AssertBooleanInstr(node->right()->token_pos(),
right_value));
if (node->kind() == Token::kAND) {
Join(for_left, for_right, empty);
} else {
Join(for_left, empty, for_right);
}
} else {
EffectGraphVisitor for_right(owner());
node->right()->Visit(&for_right);
if (node->kind() == Token::kAND) {
Join(for_left, for_right, empty);
} else {
Join(for_left, empty, for_right);
}
}
return;
}
ValueGraphVisitor for_left_value(owner());
node->left()->Visit(&for_left_value);
Append(for_left_value);
PushArgumentInstr* push_left = PushArgument(for_left_value.value());
ValueGraphVisitor for_right_value(owner());
node->right()->Visit(&for_right_value);
Append(for_right_value);
PushArgumentInstr* push_right = PushArgument(for_right_value.value());
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(2);
arguments->Add(push_left);
arguments->Add(push_right);
const String& name = String::ZoneHandle(I, Symbols::New(node->TokenName()));
const intptr_t kNumArgsChecked = 2;
InstanceCallInstr* call = new(I) InstanceCallInstr(node->token_pos(),
name,
node->kind(),
arguments,
Object::null_array(),
kNumArgsChecked,
owner()->ic_data_array());
ReturnDefinition(call);
}
// Special handling for AND/OR.
void ValueGraphVisitor::VisitBinaryOpNode(BinaryOpNode* node) {
// Operators "&&" and "||" cannot be overloaded therefore do not call
// operator.
if ((node->kind() == Token::kAND) || (node->kind() == Token::kOR)) {
// Implement short-circuit logic: do not evaluate right if evaluation
// of left is sufficient.
// AND: left ? right === true : false;
// OR: left ? true : right === true;
TestGraphVisitor for_test(owner(), node->left()->token_pos());
node->left()->Visit(&for_test);
ValueGraphVisitor for_right(owner());
node->right()->Visit(&for_right);
Value* right_value = for_right.value();
if (FLAG_enable_type_checks) {
right_value =
for_right.Bind(new(I) AssertBooleanInstr(node->right()->token_pos(),
right_value));
}
Value* constant_true = for_right.Bind(new(I) ConstantInstr(Bool::True()));
Value* compare =
for_right.Bind(new(I) StrictCompareInstr(node->token_pos(),
Token::kEQ_STRICT,
right_value,
constant_true,
false)); // No number check.
for_right.Do(BuildStoreExprTemp(compare));
if (node->kind() == Token::kAND) {
ValueGraphVisitor for_false(owner());
Value* constant_false =
for_false.Bind(new(I) ConstantInstr(Bool::False()));
for_false.Do(BuildStoreExprTemp(constant_false));
Join(for_test, for_right, for_false);
} else {
ASSERT(node->kind() == Token::kOR);
ValueGraphVisitor for_true(owner());
Value* constant_true = for_true.Bind(new(I) ConstantInstr(Bool::True()));
for_true.Do(BuildStoreExprTemp(constant_true));
Join(for_test, for_true, for_right);
}
ReturnDefinition(BuildLoadExprTemp());
return;
}
EffectGraphVisitor::VisitBinaryOpNode(node);
}
static const String& BinaryOpAndMaskName(BinaryOpNode* node) {
if (node->kind() == Token::kSHL) {
return Library::PrivateCoreLibName(Symbols::_leftShiftWithMask32());
}
UNIMPLEMENTED();
return String::ZoneHandle(Isolate::Current(), String::null());
}
// <Expression> :: BinaryOp { kind: Token::Kind
// left: <Expression>
// right: <Expression>
// mask32: constant }
void EffectGraphVisitor::VisitBinaryOpWithMask32Node(
BinaryOpWithMask32Node* node) {
ASSERT((node->kind() != Token::kAND) && (node->kind() != Token::kOR));
ValueGraphVisitor for_left_value(owner());
node->left()->Visit(&for_left_value);
Append(for_left_value);
PushArgumentInstr* push_left = PushArgument(for_left_value.value());
ValueGraphVisitor for_right_value(owner());
node->right()->Visit(&for_right_value);
Append(for_right_value);
PushArgumentInstr* push_right = PushArgument(for_right_value.value());
Value* mask_value = Bind(new(I) ConstantInstr(
Integer::ZoneHandle(I, Integer::New(node->mask32(), Heap::kOld))));
PushArgumentInstr* push_mask = PushArgument(mask_value);
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(3);
arguments->Add(push_left);
arguments->Add(push_right);
// Call to special method 'BinaryOpAndMaskName(node)'.
arguments->Add(push_mask);
const intptr_t kNumArgsChecked = 2;
InstanceCallInstr* call = new(I) InstanceCallInstr(node->token_pos(),
BinaryOpAndMaskName(node),
Token::kILLEGAL,
arguments,
Object::null_array(),
kNumArgsChecked,
owner()->ic_data_array());
ReturnDefinition(call);
}
void EffectGraphVisitor::BuildTypecheckPushArguments(
intptr_t token_pos,
PushArgumentInstr** push_instantiator_result,
PushArgumentInstr** push_instantiator_type_arguments_result) {
const Class& instantiator_class = Class::Handle(
I, owner()->parsed_function()->function().Owner());
// Since called only when type tested against is not instantiated.
ASSERT(instantiator_class.NumTypeParameters() > 0);
Value* instantiator_type_arguments = NULL;
Value* instantiator = BuildInstantiator(instantiator_class);
if (instantiator == NULL) {
// No instantiator when inside factory.
*push_instantiator_result = PushArgument(BuildNullValue());
instantiator_type_arguments =
BuildInstantiatorTypeArguments(token_pos, instantiator_class, NULL);
} else {
instantiator = Bind(BuildStoreExprTemp(instantiator));
*push_instantiator_result = PushArgument(instantiator);
Value* loaded = Bind(BuildLoadExprTemp());
instantiator_type_arguments =
BuildInstantiatorTypeArguments(token_pos, instantiator_class, loaded);
}
*push_instantiator_type_arguments_result =
PushArgument(instantiator_type_arguments);
}
void EffectGraphVisitor::BuildTypecheckArguments(
intptr_t token_pos,
Value** instantiator_result,
Value** instantiator_type_arguments_result) {
Value* instantiator = NULL;
Value* instantiator_type_arguments = NULL;
const Class& instantiator_class = Class::Handle(
I, owner()->parsed_function()->function().Owner());
// Since called only when type tested against is not instantiated.
ASSERT(instantiator_class.NumTypeParameters() > 0);
instantiator = BuildInstantiator(instantiator_class);
if (instantiator == NULL) {
// No instantiator when inside factory.
instantiator = BuildNullValue();
instantiator_type_arguments =
BuildInstantiatorTypeArguments(token_pos, instantiator_class, NULL);
} else {
// Preserve instantiator.
instantiator = Bind(BuildStoreExprTemp(instantiator));
Value* loaded = Bind(BuildLoadExprTemp());
instantiator_type_arguments =
BuildInstantiatorTypeArguments(token_pos, instantiator_class, loaded);
}
*instantiator_result = instantiator;
*instantiator_type_arguments_result = instantiator_type_arguments;
}
Value* EffectGraphVisitor::BuildNullValue() {
return Bind(new(I) ConstantInstr(Object::ZoneHandle(I, Object::null())));
}
// Used for testing incoming arguments.
AssertAssignableInstr* EffectGraphVisitor::BuildAssertAssignable(
intptr_t token_pos,
Value* value,
const AbstractType& dst_type,
const String& dst_name) {
// Build the type check computation.
Value* instantiator = NULL;
Value* instantiator_type_arguments = NULL;
if (dst_type.IsInstantiated()) {
instantiator = BuildNullValue();
instantiator_type_arguments = BuildNullValue();
} else {
BuildTypecheckArguments(token_pos,
&instantiator,
&instantiator_type_arguments);
}
const intptr_t deopt_id = Isolate::Current()->GetNextDeoptId();
return new(I) AssertAssignableInstr(token_pos,
value,
instantiator,
instantiator_type_arguments,
dst_type,
dst_name,
deopt_id);
}
void EffectGraphVisitor::BuildAwaitJump(LocalVariable* old_context,
LocalVariable* continuation_result,
LocalVariable* continuation_error,
const intptr_t old_ctx_level,
JoinEntryInstr* target) {
// Building a jump consists of the following actions:
// * Record the current continuation result in a temporary.
// * Restore the old context.
// * Overwrite the old context's continuation result with the temporary.
// * Append a Goto to the target's join.
ASSERT((continuation_result != NULL) && continuation_result->is_captured());
ASSERT((continuation_error != NULL) && continuation_error->is_captured());
ASSERT((old_context != NULL) && old_context->is_captured());
// Before restoring the continuation context we need to temporary save the
// result and error parameter.
LocalVariable* temp_result_var = EnterTempLocalScope(
Bind(BuildLoadLocal(*continuation_result)));
LocalVariable* temp_error_var = EnterTempLocalScope(
Bind(BuildLoadLocal(*continuation_error)));
// Restore the saved continuation context.
BuildRestoreContext(*old_context);
// Pass over the continuation result.
// FlowGraphBuilder is at top context level, but the await target has possibly
// been recorded in a nested context (old_ctx_level). We need to unroll
// manually here.
intptr_t delta = old_ctx_level -
continuation_result->owner()->context_level();
ASSERT(delta >= 0);
Value* context = Bind(BuildCurrentContext());
while (delta-- > 0) {
context = Bind(new(I) LoadFieldInstr(
context, Context::parent_offset(), Type::ZoneHandle(I, Type::null()),
Scanner::kNoSourcePos));
}
LocalVariable* temp_context_var = EnterTempLocalScope(context);
Value* context_val = Bind(new(I) LoadLocalInstr(*temp_context_var));
Value* store_val = Bind(new(I) LoadLocalInstr(*temp_result_var));
StoreInstanceFieldInstr* store = new(I) StoreInstanceFieldInstr(
Context::variable_offset(continuation_result->index()),
context_val,
store_val,
kEmitStoreBarrier,
Scanner::kNoSourcePos);
Do(store);
context_val = Bind(new(I) LoadLocalInstr(*temp_context_var));
store_val = Bind(new(I) LoadLocalInstr(*temp_error_var));
StoreInstanceFieldInstr* store2 = new(I) StoreInstanceFieldInstr(
Context::variable_offset(continuation_error->index()),
context_val,
store_val,
kEmitStoreBarrier,
Scanner::kNoSourcePos);
Do(store2);
Do(ExitTempLocalScope(temp_context_var));
Do(ExitTempLocalScope(temp_error_var));
Do(ExitTempLocalScope(temp_result_var));
// Goto saved join.
Goto(target);
}
// Used for type casts and to test assignments.
Value* EffectGraphVisitor::BuildAssignableValue(intptr_t token_pos,
Value* value,
const AbstractType& dst_type,
const String& dst_name) {
if (CanSkipTypeCheck(token_pos, value, dst_type, dst_name)) {
return value;
}
return Bind(BuildAssertAssignable(token_pos, value, dst_type, dst_name));
}
bool FlowGraphBuilder::WarnOnJSIntegralNumTypeTest(
AstNode* node, const AbstractType& type) const {
if (!(node->IsLiteralNode() && (type.IsIntType() || type.IsDoubleType()))) {
return false;
}
const Instance& instance = node->AsLiteralNode()->literal();
if (type.IsIntType()) {
if (instance.IsDouble()) {
const Double& double_instance = Double::Cast(instance);
double value = double_instance.value();
if (floor(value) == value) {
return true;
}
}
} else {
ASSERT(type.IsDoubleType());
if (instance.IsInteger()) {
return true;
}
}
return false;
}
void EffectGraphVisitor::BuildTypeTest(ComparisonNode* node) {
ASSERT(Token::IsTypeTestOperator(node->kind()));
const AbstractType& type = node->right()->AsTypeNode()->type();
ASSERT(type.IsFinalized() && !type.IsMalformedOrMalbounded());
const bool negate_result = (node->kind() == Token::kISNOT);
// All objects are instances of type T if Object type is a subtype of type T.
const Type& object_type = Type::Handle(I, Type::ObjectType());
if (type.IsInstantiated() && object_type.IsSubtypeOf(type, NULL)) {
// Must evaluate left side.
EffectGraphVisitor for_left_value(owner());
node->left()->Visit(&for_left_value);
Append(for_left_value);
ReturnDefinition(new(I) ConstantInstr(Bool::Get(!negate_result)));
return;
}
ValueGraphVisitor for_left_value(owner());
node->left()->Visit(&for_left_value);
Append(for_left_value);
PushArgumentInstr* push_left = PushArgument(for_left_value.value());
PushArgumentInstr* push_instantiator = NULL;
PushArgumentInstr* push_type_args = NULL;
if (type.IsInstantiated()) {
push_instantiator = PushArgument(BuildNullValue());
push_type_args = PushArgument(BuildNullValue());
} else {
BuildTypecheckPushArguments(node->token_pos(),
&push_instantiator,
&push_type_args);
}
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(5);
arguments->Add(push_left);
arguments->Add(push_instantiator);
arguments->Add(push_type_args);
ASSERT(!node->right()->AsTypeNode()->type().IsNull());
Value* type_arg = Bind(
new(I) ConstantInstr(node->right()->AsTypeNode()->type()));
arguments->Add(PushArgument(type_arg));
const Bool& negate = Bool::Get(node->kind() == Token::kISNOT);
Value* negate_arg = Bind(new(I) ConstantInstr(negate));
arguments->Add(PushArgument(negate_arg));
const intptr_t kNumArgsChecked = 1;
InstanceCallInstr* call = new(I) InstanceCallInstr(
node->token_pos(),
Library::PrivateCoreLibName(Symbols::_instanceOf()),
node->kind(),
arguments,
Object::null_array(), // No argument names.
kNumArgsChecked,
owner()->ic_data_array());
ReturnDefinition(call);
}
void EffectGraphVisitor::BuildTypeCast(ComparisonNode* node) {
ASSERT(Token::IsTypeCastOperator(node->kind()));
ASSERT(!node->right()->AsTypeNode()->type().IsNull());
const AbstractType& type = node->right()->AsTypeNode()->type();
ASSERT(type.IsFinalized() && !type.IsMalformed() && !type.IsMalbounded());
ValueGraphVisitor for_value(owner());
node->left()->Visit(&for_value);
Append(for_value);
const String& dst_name = String::ZoneHandle(
I, Symbols::New(Exceptions::kCastErrorDstName));
if (CanSkipTypeCheck(node->token_pos(),
for_value.value(),
type,
dst_name)) {
// Check for javascript compatibility.
// Do not skip type check if javascript compatibility warning is required.
if (!FLAG_warn_on_javascript_compatibility ||
!owner()->WarnOnJSIntegralNumTypeTest(node->left(), type)) {
ReturnValue(for_value.value());
return;
}
}
PushArgumentInstr* push_left = PushArgument(for_value.value());
PushArgumentInstr* push_instantiator = NULL;
PushArgumentInstr* push_type_args = NULL;
if (type.IsInstantiated()) {
push_instantiator = PushArgument(BuildNullValue());
push_type_args = PushArgument(BuildNullValue());
} else {
BuildTypecheckPushArguments(node->token_pos(),
&push_instantiator,
&push_type_args);
}
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(4);
arguments->Add(push_left);
arguments->Add(push_instantiator);
arguments->Add(push_type_args);
Value* type_arg = Bind(new(I) ConstantInstr(type));
arguments->Add(PushArgument(type_arg));
const intptr_t kNumArgsChecked = 1;
InstanceCallInstr* call = new(I) InstanceCallInstr(
node->token_pos(),
Library::PrivateCoreLibName(Symbols::_as()),
node->kind(),
arguments,
Object::null_array(), // No argument names.
kNumArgsChecked,
owner()->ic_data_array());
ReturnDefinition(call);
}
StrictCompareInstr* EffectGraphVisitor::BuildStrictCompare(AstNode* left,
AstNode* right,
Token::Kind kind,
intptr_t token_pos) {
ValueGraphVisitor for_left_value(owner());
left->Visit(&for_left_value);
Append(for_left_value);
ValueGraphVisitor for_right_value(owner());
right->Visit(&for_right_value);
Append(for_right_value);
StrictCompareInstr* comp = new(I) StrictCompareInstr(token_pos,
kind,
for_left_value.value(),
for_right_value.value(),
true); // Number check.
return comp;
}
// <Expression> :: Comparison { kind: Token::Kind
// left: <Expression>
// right: <Expression> }
void EffectGraphVisitor::VisitComparisonNode(ComparisonNode* node) {
if (Token::IsTypeTestOperator(node->kind())) {
BuildTypeTest(node);
return;
}
if (Token::IsTypeCastOperator(node->kind())) {
BuildTypeCast(node);
return;
}
if ((node->kind() == Token::kEQ_STRICT) ||
(node->kind() == Token::kNE_STRICT)) {
ReturnDefinition(BuildStrictCompare(node->left(), node->right(),
node->kind(), node->token_pos()));
return;
}
if ((node->kind() == Token::kEQ) || (node->kind() == Token::kNE)) {
// Eagerly fold null-comparisons.
LiteralNode* left_lit = node->left()->AsLiteralNode();
LiteralNode* right_lit = node->right()->AsLiteralNode();
if (((left_lit != NULL) && left_lit->literal().IsNull()) ||
((right_lit != NULL) && right_lit->literal().IsNull())) {
Token::Kind kind =
(node->kind() == Token::kEQ) ? Token::kEQ_STRICT : Token::kNE_STRICT;
StrictCompareInstr* compare =
BuildStrictCompare(node->left(), node->right(),
kind, node->token_pos());
ReturnDefinition(compare);
return;
}
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(2);
ValueGraphVisitor for_left_value(owner());
node->left()->Visit(&for_left_value);
Append(for_left_value);
PushArgumentInstr* push_left = PushArgument(for_left_value.value());
arguments->Add(push_left);
ValueGraphVisitor for_right_value(owner());
node->right()->Visit(&for_right_value);
Append(for_right_value);
PushArgumentInstr* push_right = PushArgument(for_right_value.value());
arguments->Add(push_right);
Definition* result = new(I) InstanceCallInstr(
node->token_pos(),
Symbols::EqualOperator(),
Token::kEQ, // Result is negated later for kNE.
arguments,
Object::null_array(),
2,
owner()->ic_data_array());
if (node->kind() == Token::kNE) {
if (FLAG_enable_type_checks) {
Value* value = Bind(result);
result = new(I) AssertBooleanInstr(node->token_pos(), value);
}
Value* value = Bind(result);
result = new(I) BooleanNegateInstr(value);
}
ReturnDefinition(result);
return;
}
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(2);
ValueGraphVisitor for_left_value(owner());
node->left()->Visit(&for_left_value);
Append(for_left_value);
PushArgumentInstr* push_left = PushArgument(for_left_value.value());
arguments->Add(push_left);
ValueGraphVisitor for_right_value(owner());
node->right()->Visit(&for_right_value);
Append(for_right_value);
PushArgumentInstr* push_right = PushArgument(for_right_value.value());
arguments->Add(push_right);
ASSERT(Token::IsRelationalOperator(node->kind()));
InstanceCallInstr* comp = new(I) InstanceCallInstr(
node->token_pos(),
String::ZoneHandle(I, Symbols::New(node->TokenName())),
node->kind(),
arguments,
Object::null_array(),
2,
owner()->ic_data_array());
ReturnDefinition(comp);
}
void EffectGraphVisitor::VisitUnaryOpNode(UnaryOpNode* node) {
// "!" cannot be overloaded, therefore do not call operator.
if (node->kind() == Token::kNOT) {
ValueGraphVisitor for_value(owner());
node->operand()->Visit(&for_value);
Append(for_value);
Value* value = for_value.value();
if (FLAG_enable_type_checks) {
value =
Bind(new(I) AssertBooleanInstr(node->operand()->token_pos(), value));
}
BooleanNegateInstr* negate = new(I) BooleanNegateInstr(value);
ReturnDefinition(negate);
return;
}
ValueGraphVisitor for_value(owner());
node->operand()->Visit(&for_value);
Append(for_value);
PushArgumentInstr* push_value = PushArgument(for_value.value());
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(1);
arguments->Add(push_value);
InstanceCallInstr* call = new(I) InstanceCallInstr(
node->token_pos(),
String::ZoneHandle(I, Symbols::New(node->TokenName())),
node->kind(),
arguments,
Object::null_array(),
1,
owner()->ic_data_array());
ReturnDefinition(call);
}
void EffectGraphVisitor::VisitConditionalExprNode(ConditionalExprNode* node) {
TestGraphVisitor for_test(owner(), node->condition()->token_pos());
node->condition()->Visit(&for_test);
// Translate the subexpressions for their effects.
EffectGraphVisitor for_true(owner());
node->true_expr()->Visit(&for_true);
EffectGraphVisitor for_false(owner());
node->false_expr()->Visit(&for_false);
Join(for_test, for_true, for_false);
}
void ValueGraphVisitor::VisitConditionalExprNode(ConditionalExprNode* node) {
TestGraphVisitor for_test(owner(), node->condition()->token_pos());
node->condition()->Visit(&for_test);
ValueGraphVisitor for_true(owner());
node->true_expr()->Visit(&for_true);
ASSERT(for_true.is_open());
for_true.Do(BuildStoreExprTemp(for_true.value()));
ValueGraphVisitor for_false(owner());
node->false_expr()->Visit(&for_false);
ASSERT(for_false.is_open());
for_false.Do(BuildStoreExprTemp(for_false.value()));
Join(for_test, for_true, for_false);
ReturnDefinition(BuildLoadExprTemp());
}
// <Statement> ::= If { condition: <Expression>
// true_branch: <Sequence>
// false_branch: <Sequence> }
void EffectGraphVisitor::VisitIfNode(IfNode* node) {
TestGraphVisitor for_test(owner(), node->condition()->token_pos());
node->condition()->Visit(&for_test);
EffectGraphVisitor for_true(owner());
EffectGraphVisitor for_false(owner());
node->true_branch()->Visit(&for_true);
// The for_false graph fragment will be empty (default graph fragment) if
// we do not call Visit.
if (node->false_branch() != NULL) node->false_branch()->Visit(&for_false);
Join(for_test, for_true, for_false);
}
void EffectGraphVisitor::VisitSwitchNode(SwitchNode* node) {
NestedSwitch nested_switch(owner(), node);
EffectGraphVisitor switch_body(owner());
node->body()->Visit(&switch_body);
Append(switch_body);
if (nested_switch.break_target() != NULL) {
if (is_open()) Goto(nested_switch.break_target());
exit_ = nested_switch.break_target();
}
}
// A case node contains zero or more case expressions, can contain default
// and a case statement body.
// Compose fragment as follows:
// - if no case expressions, must have default:
// a) target
// b) [ case-statements ]
//
// - if has 1 or more case statements
// a) target-0
// b) [ case-expression-0 ] -> (true-target-0, target-1)
// c) target-1
// d) [ case-expression-1 ] -> (true-target-1, exit-target)
// e) true-target-0 -> case-statements-join
// f) true-target-1 -> case-statements-join
// g) case-statements-join
// h) [ case-statements ] -> exit-join
// i) exit-target -> exit-join
// j) exit-join
//
// Note: The specification of switch/case is under discussion and may change
// drastically.
void EffectGraphVisitor::VisitCaseNode(CaseNode* node) {
const intptr_t len = node->case_expressions()->length();
// Create case statements instructions.
EffectGraphVisitor for_case_statements(owner());
// Compute the start of the statements fragment.
JoinEntryInstr* statement_start = NULL;
if (node->label() == NULL) {
statement_start = new(I) JoinEntryInstr(owner()->AllocateBlockId(),
owner()->try_index());
} else {
// The case nodes are nested inside a SequenceNode that is the body of a
// SwitchNode. The SwitchNode on the nesting stack contains the
// continue labels for all the case clauses.
statement_start =
owner()->nesting_stack()->outer()->ContinueTargetFor(node->label());
}
ASSERT(statement_start != NULL);
node->statements()->Visit(&for_case_statements);
Instruction* statement_exit =
AppendFragment(statement_start, for_case_statements);
if (is_open() && (len == 0)) {
ASSERT(node->contains_default());
// Default only case node.
Goto(statement_start);
exit_ = statement_exit;
return;
}
// Generate instructions for all case expressions.
TargetEntryInstr* next_target = NULL;
for (intptr_t i = 0; i < len; i++) {
AstNode* case_expr = node->case_expressions()->NodeAt(i);
TestGraphVisitor for_case_expression(owner(), case_expr->token_pos());
case_expr->Visit(&for_case_expression);
if (i == 0) {
// Append only the first one, everything else is connected from it.
Append(for_case_expression);
} else {
ASSERT(next_target != NULL);
AppendFragment(next_target, for_case_expression);
}
for_case_expression.IfTrueGoto(statement_start);
next_target = for_case_expression.CreateFalseSuccessor()->AsTargetEntry();
}
// Once a test fragment has been added, this fragment is closed.
ASSERT(!is_open());
Instruction* exit_instruction = NULL;
// Handle last (or only) case: false goes to exit or to statement if this
// node contains default.
if (len > 0) {
ASSERT(next_target != NULL);
if (node->contains_default()) {
// True and false go to statement start.
next_target->Goto(statement_start);
exit_instruction = statement_exit;
} else {
if (statement_exit != NULL) {
JoinEntryInstr* join = new(I) JoinEntryInstr(owner()->AllocateBlockId(),
owner()->try_index());
statement_exit->Goto(join);
next_target->Goto(join);
exit_instruction = join;
} else {
exit_instruction = next_target;
}
}
} else {
// A CaseNode without case expressions must contain default.
ASSERT(node->contains_default());
Goto(statement_start);
exit_instruction = statement_exit;
}
ASSERT(!is_open());
exit_ = exit_instruction;
}
// <Statement> ::= While { label: SourceLabel
// condition: <Expression>
// body: <Sequence> }
// The fragment is composed as follows:
// a) loop-join
// b) [ test_preamble ]?
// c) [ test ] -> (body-entry-target, loop-exit-target)
// d) body-entry-target
// e) [ body ] -> (continue-join)
// f) continue-join -> (loop-join)
// g) loop-exit-target
// h) break-join (optional)
void EffectGraphVisitor::VisitWhileNode(WhileNode* node) {
NestedLoop nested_loop(owner(), node->label());
EffectGraphVisitor for_preamble(owner());
if (node->condition_preamble() != NULL) {
node->condition_preamble()->Visit(&for_preamble);
}
TestGraphVisitor for_test(owner(), node->condition()->token_pos());
node->condition()->Visit(&for_test);
ASSERT(!for_test.is_empty()); // Language spec.
EffectGraphVisitor for_body(owner());
node->body()->Visit(&for_body);
// Labels are set after body traversal.
JoinEntryInstr* join = nested_loop.continue_target();
if (join != NULL) {
if (for_body.is_open()) for_body.Goto(join);
for_body.exit_ = join;
}
TieLoop(node->token_pos(), for_test, for_body, for_preamble);
join = nested_loop.break_target();
if (join != NULL) {
Goto(join);
exit_ = join;
}
}
// The fragment is composed as follows:
// a) body-entry-join
// b) [ body ]
// c) test-entry (continue-join or body-exit-target)
// d) [ test-entry ] -> (back-target, loop-exit-target)
// e) back-target -> (body-entry-join)
// f) loop-exit-target
// g) break-join
void EffectGraphVisitor::VisitDoWhileNode(DoWhileNode* node) {
NestedLoop nested_loop(owner(), node->label());
// Traverse the body first in order to generate continue and break labels.
EffectGraphVisitor for_body(owner());
node->body()->Visit(&for_body);
TestGraphVisitor for_test(owner(), node->condition()->token_pos());
node->condition()->Visit(&for_test);
ASSERT(is_open());
// Tie do-while loop (test is after the body).
JoinEntryInstr* body_entry_join =
new(I) JoinEntryInstr(owner()->AllocateBlockId(),
owner()->try_index());
Goto(body_entry_join);
Instruction* body_exit = AppendFragment(body_entry_join, for_body);
JoinEntryInstr* join = nested_loop.continue_target();
if ((body_exit != NULL) || (join != NULL)) {
if (join == NULL) {
join = new(I) JoinEntryInstr(owner()->AllocateBlockId(),
owner()->try_index());
}
CheckStackOverflowInstr* check = new(I) CheckStackOverflowInstr(
node->token_pos(), owner()->loop_depth());
join->LinkTo(check);
check->LinkTo(for_test.entry());
if (body_exit != NULL) {
body_exit->Goto(join);
}
}
for_test.IfTrueGoto(body_entry_join);
join = nested_loop.break_target();
if (join == NULL) {
exit_ = for_test.CreateFalseSuccessor();
} else {
for_test.IfFalseGoto(join);
exit_ = join;
}
}
// A ForNode can contain break and continue jumps. 'break' joins to
// ForNode exit, 'continue' joins at increment entry. The fragment is composed
// as follows:
// a) [ initializer ]
// b) loop-join
// c) [ test ] -> (body-entry-target, loop-exit-target)
// d) body-entry-target
// e) [ body ]
// f) continue-join (optional)
// g) [ increment ] -> (loop-join)
// h) loop-exit-target
// i) break-join
void EffectGraphVisitor::VisitForNode(ForNode* node) {
EffectGraphVisitor for_initializer(owner());
node->initializer()->Visit(&for_initializer);
Append(for_initializer);
ASSERT(is_open());
NestedLoop nested_loop(owner(), node->label());
// Compose body to set any jump labels.
EffectGraphVisitor for_body(owner());
node->body()->Visit(&for_body);
EffectGraphVisitor for_increment(owner());
node->increment()->Visit(&for_increment);
// Join the loop body and increment and then tie the loop.
JoinEntryInstr* continue_join = nested_loop.continue_target();
if ((continue_join != NULL) || for_body.is_open()) {
JoinEntryInstr* loop_entry =
new(I) JoinEntryInstr(owner()->AllocateBlockId(), owner()->try_index());
if (continue_join != NULL) {
if (for_body.is_open()) for_body.Goto(continue_join);
Instruction* current = AppendFragment(continue_join, for_increment);
current->Goto(loop_entry);
} else {
for_body.Append(for_increment);
for_body.Goto(loop_entry);
}
Goto(loop_entry);
exit_ = loop_entry;
AddInstruction(
new(I) CheckStackOverflowInstr(node->token_pos(),
owner()->loop_depth()));
}
if (node->condition() == NULL) {
// Endless loop, no test.
Append(for_body);
exit_ = nested_loop.break_target(); // May be NULL.
} else {
EffectGraphVisitor for_test_preamble(owner());
if (node->condition_preamble() != NULL) {
node->condition_preamble()->Visit(&for_test_preamble);
Append(for_test_preamble);
}
TestGraphVisitor for_test(owner(), node->condition()->token_pos());
node->condition()->Visit(&for_test);
Append(for_test);
BlockEntryInstr* body_entry = for_test.CreateTrueSuccessor();
AppendFragment(body_entry, for_body);
if (nested_loop.break_target() == NULL) {
exit_ = for_test.CreateFalseSuccessor();
} else {
for_test.IfFalseGoto(nested_loop.break_target());
exit_ = nested_loop.break_target();
}
}
}
void EffectGraphVisitor::VisitJumpNode(JumpNode* node) {
for (intptr_t i = 0; i < node->inlined_finally_list_length(); i++) {
EffectGraphVisitor for_effect(owner());
node->InlinedFinallyNodeAt(i)->Visit(&for_effect);
Append(for_effect);
if (!is_open()) return;
}
// Unchain the context(s) up to the outer context level of the scope which
// contains the destination label.
SourceLabel* label = node->label();
ASSERT(label->owner() != NULL);
int target_context_level = 0;
LocalScope* target_scope = label->owner();
if (target_scope->num_context_variables() > 0) {
// The scope of the target label allocates a context, therefore its outer
// scope is at a lower context level.
target_context_level = target_scope->context_level() - 1;
} else {
// The scope of the target label does not allocate a context, so its outer
// scope is at the same context level. Find it.
while ((target_scope != NULL) &&
(target_scope->num_context_variables() == 0)) {
target_scope = target_scope->parent();
}
if (target_scope != NULL) {
target_context_level = target_scope->context_level();
}
}
ASSERT(target_context_level >= 0);
intptr_t current_context_level = owner()->context_level();
ASSERT(current_context_level >= target_context_level);
UnchainContexts(current_context_level - target_context_level);
JoinEntryInstr* jump_target = NULL;
NestedStatement* current = owner()->nesting_stack();
while (current != NULL) {
jump_target = (node->kind() == Token::kBREAK)
? current->BreakTargetFor(node->label())
: current->ContinueTargetFor(node->label());
if (jump_target != NULL) break;
current = current->outer();
}
ASSERT(jump_target != NULL);
Goto(jump_target);
}
void EffectGraphVisitor::VisitArgumentListNode(ArgumentListNode* node) {
UNREACHABLE();
}
void EffectGraphVisitor::VisitAwaitNode(AwaitNode* node) {
// Await nodes are temporary during parsing.
UNREACHABLE();
}
void EffectGraphVisitor::VisitAwaitMarkerNode(AwaitMarkerNode* node) {
// We need to create a new await state which involves:
// * Increase the jump counter. Sanity check against the list of targets.
// * Save the current context for resuming.
ASSERT(node->scope() != NULL);
LocalVariable* jump_var = node->scope()->LookupVariable(
Symbols::AwaitJumpVar(), false);
LocalVariable* ctx_var = node->scope()->LookupVariable(
Symbols::AwaitContextVar(), false);
ASSERT((jump_var != NULL) && jump_var->is_captured());
ASSERT((ctx_var != NULL) && ctx_var->is_captured());
const intptr_t jump_count = owner()->next_await_counter();
ASSERT(jump_count >= 0);
// Sanity check that we always add a JoinEntryInstr before adding a new
// state.
ASSERT(jump_count == owner()->await_joins()->length());
// Store the counter in :await_jump_var.
Value* jump_val = Bind(new (I) ConstantInstr(
Smi::ZoneHandle(I, Smi::New(jump_count))));
Do(BuildStoreLocal(*jump_var, jump_val));
// Save the current context for resuming.
BuildSaveContext(*ctx_var);
owner()->await_levels()->Add(owner()->context_level());
}
intptr_t EffectGraphVisitor::GetCurrentTempLocalIndex() const {
return kFirstLocalSlotFromFp
- owner()->num_stack_locals()
- owner()->num_copied_params()
- owner()->args_pushed()
- owner()->temp_count() + 1;
}
LocalVariable* EffectGraphVisitor::EnterTempLocalScope(Value* value) {
Do(new(I) PushTempInstr(value));
owner()->AllocateTemp();
ASSERT(value->definition()->temp_index() == (owner()->temp_count() - 1));
intptr_t index = GetCurrentTempLocalIndex();
char name[64];
OS::SNPrint(name, 64, ":tmp_local%" Pd, index);
LocalVariable* var =
new(I) LocalVariable(0,
String::ZoneHandle(I, Symbols::New(name)),
*value->Type()->ToAbstractType());
var->set_index(index);
return var;
}
Definition* EffectGraphVisitor::ExitTempLocalScope(LocalVariable* var) {
Value* tmp = Bind(new(I) LoadLocalInstr(*var));
owner()->DeallocateTemps(1);
ASSERT(GetCurrentTempLocalIndex() == var->index());
return new(I) DropTempsInstr(1, tmp);
}
void EffectGraphVisitor::BuildLetTempExpressions(LetNode* node) {
intptr_t num_temps = node->num_temps();
for (intptr_t i = 0; i < num_temps; ++i) {
ValueGraphVisitor for_value(owner());
node->InitializerAt(i)->Visit(&for_value);
Append(for_value);
Value* temp_val = for_value.value();
node->TempAt(i)->set_index(GetCurrentTempLocalIndex());
Do(new(I) PushTempInstr(temp_val));
owner()->AllocateTemp();
}
}
void EffectGraphVisitor::VisitLetNode(LetNode* node) {
BuildLetTempExpressions(node);
// Visit body.
for (intptr_t i = 0; i < node->nodes().length(); ++i) {
EffectGraphVisitor for_effect(owner());
node->nodes()[i]->Visit(&for_effect);
Append(for_effect);
}
intptr_t num_temps = node->num_temps();
if (num_temps > 0) {
owner()->DeallocateTemps(num_temps);
Do(new(I) DropTempsInstr(num_temps));
}
}
void ValueGraphVisitor::VisitLetNode(LetNode* node) {
BuildLetTempExpressions(node);
// Visit body.
for (intptr_t i = 0; i < node->nodes().length() - 1; ++i) {
EffectGraphVisitor for_effect(owner());
node->nodes()[i]->Visit(&for_effect);
Append(for_effect);
}
// Visit the last body expression for value.
ValueGraphVisitor for_value(owner());
node->nodes().Last()->Visit(&for_value);
Append(for_value);
Value* result_value = for_value.value();
intptr_t num_temps = node->num_temps();
if (num_temps > 0) {
owner()->DeallocateTemps(num_temps);
ReturnDefinition(new(I) DropTempsInstr(num_temps, result_value));
} else {
ReturnValue(result_value);
}
}
void EffectGraphVisitor::VisitArrayNode(ArrayNode* node) {
const TypeArguments& type_args =
TypeArguments::ZoneHandle(I, node->type().arguments());
Value* element_type = BuildInstantiatedTypeArguments(node->token_pos(),
type_args);
Value* num_elements =
Bind(new(I) ConstantInstr(Smi::ZoneHandle(I, Smi::New(node->length()))));
CreateArrayInstr* create = new(I) CreateArrayInstr(node->token_pos(),
element_type,
num_elements);
Value* array_val = Bind(create);
{ LocalVariable* tmp_var = EnterTempLocalScope(array_val);
const intptr_t class_id = kArrayCid;
const intptr_t deopt_id = Isolate::kNoDeoptId;
for (int i = 0; i < node->length(); ++i) {
Value* array = Bind(new(I) LoadLocalInstr(*tmp_var));
Value* index =
Bind(new(I) ConstantInstr(Smi::ZoneHandle(I, Smi::New(i))));
ValueGraphVisitor for_value(owner());
node->ElementAt(i)->Visit(&for_value);
Append(for_value);
// No store barrier needed for constants.
const StoreBarrierType emit_store_barrier =
for_value.value()->BindsToConstant()
? kNoStoreBarrier
: kEmitStoreBarrier;
const intptr_t index_scale = Instance::ElementSizeFor(class_id);
StoreIndexedInstr* store = new(I) StoreIndexedInstr(
array, index, for_value.value(), emit_store_barrier,
index_scale, class_id, deopt_id, node->token_pos());
Do(store);
}
ReturnDefinition(ExitTempLocalScope(tmp_var));
}
}
void EffectGraphVisitor::VisitStringInterpolateNode(
StringInterpolateNode* node) {
ValueGraphVisitor for_argument(owner());
ArrayNode* arguments = node->value();
if (arguments->length() == 1) {
ZoneGrowableArray<PushArgumentInstr*>* values =
new(I) ZoneGrowableArray<PushArgumentInstr*>(1);
arguments->ElementAt(0)->Visit(&for_argument);
Append(for_argument);
PushArgumentInstr* push_arg = PushArgument(for_argument.value());
values->Add(push_arg);
const int kNumberOfArguments = 1;
const Array& kNoArgumentNames = Object::null_array();
const Class& cls =
Class::Handle(Library::LookupCoreClass(Symbols::StringBase()));
ASSERT(!cls.IsNull());
const Function& function = Function::ZoneHandle(
isolate(),
Resolver::ResolveStatic(
cls,
Library::PrivateCoreLibName(Symbols::InterpolateSingle()),
kNumberOfArguments,
kNoArgumentNames));
StaticCallInstr* call =
new(I) StaticCallInstr(node->token_pos(),
function,
kNoArgumentNames,
values,
owner()->ic_data_array());
ReturnDefinition(call);
return;
}
arguments->Visit(&for_argument);
Append(for_argument);
StringInterpolateInstr* instr =
new(I) StringInterpolateInstr(for_argument.value(), node->token_pos());
ReturnDefinition(instr);
}
void EffectGraphVisitor::VisitClosureNode(ClosureNode* node) {
const Function& function = node->function();
if (function.IsImplicitStaticClosureFunction()) {
const Instance& closure =
Instance::ZoneHandle(I, function.ImplicitStaticClosure());
ReturnDefinition(new(I) ConstantInstr(closure));
return;
}
const bool is_implicit = function.IsImplicitInstanceClosureFunction();
ASSERT(is_implicit || function.IsNonImplicitClosureFunction());
// The context scope may have already been set by the non-optimizing
// compiler. If it was not, set it here.
if (function.context_scope() == ContextScope::null()) {
ASSERT(!is_implicit);
const ContextScope& context_scope = ContextScope::ZoneHandle(
I, node->scope()->PreserveOuterScope(owner()->context_level()));
ASSERT(!function.HasCode());
ASSERT(function.context_scope() == ContextScope::null());
function.set_context_scope(context_scope);
const Class& cls = Class::Handle(
I, owner()->parsed_function()->function().Owner());
// The closure is now properly setup, add it to the lookup table.
// It is possible that the compiler creates more than one function
// object for the same closure, e.g. when inlining nodes from
// finally clauses. If we already have a function object for the
// same closure, do not add a second one. We compare the origin
// class, token position, and parent function to detect duplicates.
// Note that we can have two different closure object for the same
// source text representation of the closure: one with a non-closurized
// parent, and one with a closurized parent function.
const Function& found_func = Function::Handle(
I, cls.LookupClosureFunction(function.token_pos()));
if (found_func.IsNull() ||
(found_func.token_pos() != function.token_pos()) ||
(found_func.script() != function.script()) ||
(found_func.parent_function() != function.parent_function())) {
cls.AddClosureFunction(function);
}
}
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(1);
ASSERT(function.context_scope() != ContextScope::null());
// The function type of a closure may have type arguments. In that case,
// pass the type arguments of the instantiator.
const Class& cls = Class::ZoneHandle(I, function.signature_class());
ASSERT(!cls.IsNull());
const bool requires_type_arguments = cls.NumTypeArguments() > 0;
Value* type_arguments = NULL;
if (requires_type_arguments) {
ASSERT(cls.type_arguments_field_offset() ==
Closure::type_arguments_offset());
ASSERT(cls.instance_size() == Closure::InstanceSize());
const Class& instantiator_class = Class::Handle(
I, owner()->parsed_function()->function().Owner());
type_arguments = BuildInstantiatorTypeArguments(node->token_pos(),
instantiator_class,
NULL);
arguments->Add(PushArgument(type_arguments));
}
AllocateObjectInstr* alloc = new(I) AllocateObjectInstr(node->token_pos(),
cls,
arguments);
alloc->set_closure_function(function);
Value* closure_val = Bind(alloc);
{ LocalVariable* closure_tmp_var = EnterTempLocalScope(closure_val);
// Store function.
Value* closure_tmp_val = Bind(new(I) LoadLocalInstr(*closure_tmp_var));
Value* func_val =
Bind(new(I) ConstantInstr(Function::ZoneHandle(I, function.raw())));
Do(new(I) StoreInstanceFieldInstr(Closure::function_offset(),
closure_tmp_val,
func_val,
kEmitStoreBarrier,
node->token_pos()));
if (is_implicit) {
// Create new context containing the receiver.
const intptr_t kNumContextVariables = 1; // The receiver.
Value* allocated_context =
Bind(new(I) AllocateContextInstr(node->token_pos(),
kNumContextVariables));
{ LocalVariable* context_tmp_var = EnterTempLocalScope(allocated_context);
// Store receiver in context.
Value* context_tmp_val = Bind(new(I) LoadLocalInstr(*context_tmp_var));
ValueGraphVisitor for_receiver(owner());
node->receiver()->Visit(&for_receiver);
Append(for_receiver);
Value* receiver = for_receiver.value();
Do(new(I) StoreInstanceFieldInstr(Context::variable_offset(0),
context_tmp_val,
receiver,
kEmitStoreBarrier,
node->token_pos()));
// Store new context in closure.
closure_tmp_val = Bind(new(I) LoadLocalInstr(*closure_tmp_var));
context_tmp_val = Bind(new(I) LoadLocalInstr(*context_tmp_var));
Do(new(I) StoreInstanceFieldInstr(Closure::context_offset(),
closure_tmp_val,
context_tmp_val,
kEmitStoreBarrier,
node->token_pos()));
Do(ExitTempLocalScope(context_tmp_var));
}
} else {
// Store current context in closure.
closure_tmp_val = Bind(new(I) LoadLocalInstr(*closure_tmp_var));
Value* context = Bind(BuildCurrentContext());
Do(new(I) StoreInstanceFieldInstr(Closure::context_offset(),
closure_tmp_val,
context,
kEmitStoreBarrier,
node->token_pos()));
}
ReturnDefinition(ExitTempLocalScope(closure_tmp_var));
}
}
void EffectGraphVisitor::BuildPushArguments(
const ArgumentListNode& node,
ZoneGrowableArray<PushArgumentInstr*>* values) {
for (intptr_t i = 0; i < node.length(); ++i) {
ValueGraphVisitor for_argument(owner());
node.NodeAt(i)->Visit(&for_argument);
Append(for_argument);
PushArgumentInstr* push_arg = PushArgument(for_argument.value());
values->Add(push_arg);
}
}
void EffectGraphVisitor::VisitInstanceCallNode(InstanceCallNode* node) {
ValueGraphVisitor for_receiver(owner());
node->receiver()->Visit(&for_receiver);
Append(for_receiver);
PushArgumentInstr* push_receiver = PushArgument(for_receiver.value());
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(
node->arguments()->length() + 1);
arguments->Add(push_receiver);
BuildPushArguments(*node->arguments(), arguments);
InstanceCallInstr* call = new(I) InstanceCallInstr(
node->token_pos(),
node->function_name(),
Token::kILLEGAL,
arguments,
node->arguments()->names(),
1,
owner()->ic_data_array());
ReturnDefinition(call);
}
static intptr_t GetResultCidOfNativeFactory(const Function& function) {
const Class& function_class = Class::Handle(function.Owner());
if (function_class.library() == Library::TypedDataLibrary()) {
const String& function_name = String::Handle(function.name());
if (!String::EqualsIgnoringPrivateKey(function_name, Symbols::_New())) {
return kDynamicCid;
}
switch (function_class.id()) {
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
case kTypedDataFloat32x4ArrayCid:
case kTypedDataInt32x4ArrayCid:
return function_class.id();
default:
return kDynamicCid; // Unknown.
}
}
return kDynamicCid;
}
// <Expression> ::= StaticCall { function: Function
// arguments: <ArgumentList> }
void EffectGraphVisitor::VisitStaticCallNode(StaticCallNode* node) {
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(node->arguments()->length());
BuildPushArguments(*node->arguments(), arguments);
StaticCallInstr* call =
new(I) StaticCallInstr(node->token_pos(),
node->function(),
node->arguments()->names(),
arguments,
owner()->ic_data_array());
if (node->function().is_native()) {
const intptr_t result_cid = GetResultCidOfNativeFactory(node->function());
if (result_cid != kDynamicCid) {
call->set_result_cid(result_cid);
call->set_is_native_list_factory(true);
}
}
ReturnDefinition(call);
}
void EffectGraphVisitor::BuildClosureCall(
ClosureCallNode* node, bool result_needed) {
ValueGraphVisitor for_closure(owner());
node->closure()->Visit(&for_closure);
Append(for_closure);
LocalVariable* tmp_var = EnterTempLocalScope(for_closure.value());
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(node->arguments()->length());
Value* closure_val = Bind(new(I) LoadLocalInstr(*tmp_var));
PushArgumentInstr* push_closure = PushArgument(closure_val);
arguments->Add(push_closure);
BuildPushArguments(*node->arguments(), arguments);
closure_val = Bind(new(I) LoadLocalInstr(*tmp_var));
LoadFieldInstr* function_load = new(I) LoadFieldInstr(
closure_val,
Closure::function_offset(),
AbstractType::ZoneHandle(I, AbstractType::null()),
node->token_pos());
function_load->set_is_immutable(true);
Value* function_val = Bind(function_load);
Definition* closure_call =
new(I) ClosureCallInstr(function_val, node, arguments);
if (result_needed) {
Value* result = Bind(closure_call);
Do(new(I) StoreLocalInstr(*tmp_var, result));
} else {
Do(closure_call);
}
ReturnDefinition(ExitTempLocalScope(tmp_var));
}
void EffectGraphVisitor::VisitClosureCallNode(ClosureCallNode* node) {
BuildClosureCall(node, false);
}
void ValueGraphVisitor::VisitClosureCallNode(ClosureCallNode* node) {
BuildClosureCall(node, true);
}
void EffectGraphVisitor::VisitInitStaticFieldNode(InitStaticFieldNode* node) {
Value* field = Bind(new(I) ConstantInstr(node->field()));
AddInstruction(new(I) InitStaticFieldInstr(field, node->field()));
}
void EffectGraphVisitor::VisitCloneContextNode(CloneContextNode* node) {
Value* context = Bind(BuildCurrentContext());
Value* clone = Bind(new(I) CloneContextInstr(node->token_pos(), context));
Do(BuildStoreContext(clone));
}
Value* EffectGraphVisitor::BuildObjectAllocation(ConstructorCallNode* node) {
const Class& cls = Class::ZoneHandle(I, node->constructor().Owner());
const bool cls_is_parameterized = cls.NumTypeArguments() > 0;
ZoneGrowableArray<PushArgumentInstr*>* allocate_arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(
cls_is_parameterized ? 1 : 0);
if (cls_is_parameterized) {
Value* type_args = BuildInstantiatedTypeArguments(node->token_pos(),
node->type_arguments());
allocate_arguments->Add(PushArgument(type_args));
}
Definition* allocation = new(I) AllocateObjectInstr(
node->token_pos(),
Class::ZoneHandle(I, node->constructor().Owner()),
allocate_arguments);
return Bind(allocation);
}
void EffectGraphVisitor::BuildConstructorCall(
ConstructorCallNode* node,
PushArgumentInstr* push_alloc_value) {
Value* ctor_arg = Bind(new(I) ConstantInstr(
Smi::ZoneHandle(I, Smi::New(Function::kCtorPhaseAll))));
PushArgumentInstr* push_ctor_arg = PushArgument(ctor_arg);
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(2);
arguments->Add(push_alloc_value);
arguments->Add(push_ctor_arg);
BuildPushArguments(*node->arguments(), arguments);
Do(new(I) StaticCallInstr(node->token_pos(),
node->constructor(),
node->arguments()->names(),
arguments,
owner()->ic_data_array()));
}
static intptr_t GetResultCidOfListFactory(ConstructorCallNode* node) {
const Function& function = node->constructor();
const Class& function_class = Class::Handle(function.Owner());
if ((function_class.library() != Library::CoreLibrary()) &&
(function_class.library() != Library::TypedDataLibrary())) {
return kDynamicCid;
}
if (node->constructor().IsFactory()) {
if ((function_class.Name() == Symbols::List().raw()) &&
(function.name() == Symbols::ListFactory().raw())) {
// Special recognition of 'new List()' vs 'new List(n)'.
if (node->arguments()->length() == 0) {
return kGrowableObjectArrayCid;
}
return kArrayCid;
}
return FactoryRecognizer::ResultCid(function);
}
return kDynamicCid; // Not a known list constructor.
}
void EffectGraphVisitor::VisitConstructorCallNode(ConstructorCallNode* node) {
if (node->constructor().IsFactory()) {
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>();
PushArgumentInstr* push_type_arguments = PushArgument(
BuildInstantiatedTypeArguments(node->token_pos(),
node->type_arguments()));
arguments->Add(push_type_arguments);
ASSERT(arguments->length() == 1);
BuildPushArguments(*node->arguments(), arguments);
StaticCallInstr* call =
new(I) StaticCallInstr(node->token_pos(),
node->constructor(),
node->arguments()->names(),
arguments,
owner()->ic_data_array());
const intptr_t result_cid = GetResultCidOfListFactory(node);
if (result_cid != kDynamicCid) {
call->set_result_cid(result_cid);
call->set_is_known_list_constructor(true);
// Recognized fixed length array factory must have two arguments:
// (0) type-arguments, (1) length.
ASSERT(!LoadFieldInstr::IsFixedLengthArrayCid(result_cid) ||
arguments->length() == 2);
}
ReturnDefinition(call);
return;
}
// t_n contains the allocated and initialized object.
// t_n <- AllocateObject(class)
// t_n+1 <- ctor-arg
// t_n+2... <- constructor arguments start here
// StaticCall(constructor, t_n+1, t_n+2, ...)
// No need to preserve allocated value (simpler than in ValueGraphVisitor).
Value* allocated_value = BuildObjectAllocation(node);
PushArgumentInstr* push_allocated_value = PushArgument(allocated_value);
BuildConstructorCall(node, push_allocated_value);
}
Value* EffectGraphVisitor::BuildInstantiator(const Class& instantiator_class) {
ASSERT(instantiator_class.NumTypeParameters() > 0);
Function& outer_function =
Function::Handle(I, owner()->parsed_function()->function().raw());
while (outer_function.IsLocalFunction()) {
outer_function = outer_function.parent_function();
}
if (outer_function.IsFactory()) {
return NULL;
}
LocalVariable* instantiator = owner()->parsed_function()->instantiator();
ASSERT(instantiator != NULL);
Value* result = Bind(BuildLoadLocal(*instantiator));
return result;
}
// 'expression_temp_var' may not be used inside this method if 'instantiator'
// is not NULL.
Value* EffectGraphVisitor::BuildInstantiatorTypeArguments(
intptr_t token_pos,
const Class& instantiator_class,
Value* instantiator) {
if (instantiator_class.NumTypeParameters() == 0) {
// The type arguments are compile time constants.
TypeArguments& type_arguments =
TypeArguments::ZoneHandle(I, TypeArguments::null());
// Type is temporary. Only its type arguments are preserved.
Type& type = Type::Handle(
I,
Type::New(instantiator_class, type_arguments, token_pos, Heap::kNew));
type ^= ClassFinalizer::FinalizeType(
instantiator_class, type, ClassFinalizer::kFinalize);
ASSERT(!type.IsMalformedOrMalbounded());
type_arguments = type.arguments();
type_arguments = type_arguments.Canonicalize();
return Bind(new(I) ConstantInstr(type_arguments));
}
Function& outer_function =
Function::Handle(I, owner()->parsed_function()->function().raw());
while (outer_function.IsLocalFunction()) {
outer_function = outer_function.parent_function();
}
if (outer_function.IsFactory()) {
// No instantiator for factories.
ASSERT(instantiator == NULL);
LocalVariable* instantiator_var =
owner()->parsed_function()->instantiator();
ASSERT(instantiator_var != NULL);
return Bind(BuildLoadLocal(*instantiator_var));
}
if (instantiator == NULL) {
instantiator = BuildInstantiator(instantiator_class);
}
// The instantiator is the receiver of the caller, which is not a factory.
// The receiver cannot be null; extract its TypeArguments object.
// Note that in the factory case, the instantiator is the first parameter
// of the factory, i.e. already a TypeArguments object.
intptr_t type_arguments_field_offset =
instantiator_class.type_arguments_field_offset();
ASSERT(type_arguments_field_offset != Class::kNoTypeArguments);
return Bind(new(I) LoadFieldInstr(
instantiator,
type_arguments_field_offset,
Type::ZoneHandle(I, Type::null()), // Not an instance, no type.
Scanner::kNoSourcePos));
}
Value* EffectGraphVisitor::BuildInstantiatedTypeArguments(
intptr_t token_pos,
const TypeArguments& type_arguments) {
if (type_arguments.IsNull() || type_arguments.IsInstantiated()) {
return Bind(new(I) ConstantInstr(type_arguments));
}
// The type arguments are uninstantiated.
const Class& instantiator_class = Class::ZoneHandle(
I, owner()->parsed_function()->function().Owner());
Value* instantiator_value =
BuildInstantiatorTypeArguments(token_pos, instantiator_class, NULL);
const bool use_instantiator_type_args =
type_arguments.IsUninstantiatedIdentity() ||
type_arguments.CanShareInstantiatorTypeArguments(instantiator_class);
if (use_instantiator_type_args) {
return instantiator_value;
} else {
return Bind(new(I) InstantiateTypeArgumentsInstr(token_pos,
type_arguments,
instantiator_class,
instantiator_value));
}
}
void ValueGraphVisitor::VisitConstructorCallNode(ConstructorCallNode* node) {
if (node->constructor().IsFactory()) {
EffectGraphVisitor::VisitConstructorCallNode(node);
return;
}
// t_n contains the allocated and initialized object.
// t_n <- AllocateObject(class)
// t_n <- StoreLocal(temp, t_n);
// t_n+1 <- ctor-arg
// t_n+2... <- constructor arguments start here
// StaticCall(constructor, t_n, t_n+1, ...)
// tn <- LoadLocal(temp)
Value* allocate = BuildObjectAllocation(node);
{ LocalVariable* tmp_var = EnterTempLocalScope(allocate);
Value* allocated_tmp = Bind(new(I) LoadLocalInstr(*tmp_var));
PushArgumentInstr* push_allocated_value = PushArgument(allocated_tmp);
BuildConstructorCall(node, push_allocated_value);
ReturnDefinition(ExitTempLocalScope(tmp_var));
}
}
void EffectGraphVisitor::VisitInstanceGetterNode(InstanceGetterNode* node) {
ValueGraphVisitor for_receiver(owner());
node->receiver()->Visit(&for_receiver);
Append(for_receiver);
PushArgumentInstr* push_receiver = PushArgument(for_receiver.value());
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(1);
arguments->Add(push_receiver);
const String& name =
String::ZoneHandle(I, Field::GetterSymbol(node->field_name()));
InstanceCallInstr* call = new(I) InstanceCallInstr(
node->token_pos(),
name,
Token::kGET,
arguments, Object::null_array(),
1,
owner()->ic_data_array());
ReturnDefinition(call);
}
void EffectGraphVisitor::BuildInstanceSetterArguments(
InstanceSetterNode* node,
ZoneGrowableArray<PushArgumentInstr*>* arguments,
bool result_is_needed) {
ValueGraphVisitor for_receiver(owner());
node->receiver()->Visit(&for_receiver);
Append(for_receiver);
arguments->Add(PushArgument(for_receiver.value()));
ValueGraphVisitor for_value(owner());
node->value()->Visit(&for_value);
Append(for_value);
Value* value = NULL;
if (result_is_needed) {
value = Bind(BuildStoreExprTemp(for_value.value()));
} else {
value = for_value.value();
}
arguments->Add(PushArgument(value));
}
void EffectGraphVisitor::VisitInstanceSetterNode(InstanceSetterNode* node) {
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(2);
BuildInstanceSetterArguments(node, arguments, kResultNotNeeded);
const String& name =
String::ZoneHandle(I, Field::SetterSymbol(node->field_name()));
InstanceCallInstr* call = new(I) InstanceCallInstr(node->token_pos(),
name,
Token::kSET,
arguments,
Object::null_array(),
2, // Checked arg count.
owner()->ic_data_array());
ReturnDefinition(call);
}
void ValueGraphVisitor::VisitInstanceSetterNode(InstanceSetterNode* node) {
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(2);
BuildInstanceSetterArguments(node, arguments, kResultNeeded);
const String& name =
String::ZoneHandle(I, Field::SetterSymbol(node->field_name()));
Do(new(I) InstanceCallInstr(node->token_pos(),
name,
Token::kSET,
arguments,
Object::null_array(),
2, // Checked argument count.
owner()->ic_data_array()));
ReturnDefinition(BuildLoadExprTemp());
}
void EffectGraphVisitor::VisitStaticGetterNode(StaticGetterNode* node) {
const String& getter_name =
String::ZoneHandle(I, Field::GetterSymbol(node->field_name()));
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>();
Function& getter_function = Function::ZoneHandle(I, Function::null());
if (node->is_super_getter()) {
// Statically resolved instance getter, i.e. "super getter".
ASSERT(node->receiver() != NULL);
getter_function = Resolver::ResolveDynamicAnyArgs(node->cls(), getter_name);
if (getter_function.IsNull()) {
// Resolve and call noSuchMethod.
ArgumentListNode* arguments = new(I) ArgumentListNode(node->token_pos());
arguments->Add(node->receiver());
StaticCallInstr* call =
BuildStaticNoSuchMethodCall(node->cls(),
node->receiver(),
getter_name,
arguments,
false, // Don't save last argument.
true); // Super invocation.
ReturnDefinition(call);
return;
} else {
ValueGraphVisitor receiver_value(owner());
node->receiver()->Visit(&receiver_value);
Append(receiver_value);
arguments->Add(PushArgument(receiver_value.value()));
}
} else {
getter_function = node->cls().LookupStaticFunction(getter_name);
if (getter_function.IsNull()) {
// When the parser encounters a reference to a static field materialized
// only by a static setter, but no corresponding static getter, it creates
// a StaticGetterNode ast node referring to the non-existing static getter
// for the case this field reference appears in a left hand side
// expression (the parser has not distinguished between left and right
// hand side yet at this stage). If the parser establishes later that the
// field access is part of a left hand side expression, the
// StaticGetterNode is transformed into a StaticSetterNode referring to
// the existing static setter.
// However, if the field reference appears in a right hand side
// expression, no such transformation occurs and we land here with a
// StaticGetterNode missing a getter function, so we throw a
// NoSuchMethodError.
// Throw a NoSuchMethodError.
StaticCallInstr* call = BuildThrowNoSuchMethodError(
node->token_pos(),
node->cls(),
getter_name,
NULL, // No Arguments to getter.
InvocationMirror::EncodeType(
node->cls().IsTopLevel() ?
InvocationMirror::kTopLevel :
InvocationMirror::kStatic,
InvocationMirror::kGetter));
ReturnDefinition(call);
return;
}
}
ASSERT(!getter_function.IsNull());
StaticCallInstr* call = new(I) StaticCallInstr(
node->token_pos(),
getter_function,
Object::null_array(), // No names
arguments,
owner()->ic_data_array());
ReturnDefinition(call);
}
void EffectGraphVisitor::BuildStaticSetter(StaticSetterNode* node,
bool result_is_needed) {
const String& setter_name =
String::ZoneHandle(I, Field::SetterSymbol(node->field_name()));
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(1);
// A super setter is an instance setter whose setter function is
// resolved at compile time (in the caller instance getter's super class).
// Unlike a static getter, a super getter has a receiver parameter.
const bool is_super_setter = (node->receiver() != NULL);
Function& setter_function =
Function::ZoneHandle(I, is_super_setter
? Resolver::ResolveDynamicAnyArgs(node->cls(), setter_name)
: node->cls().LookupStaticFunction(setter_name));
StaticCallInstr* call;
if (setter_function.IsNull()) {
if (is_super_setter) {
ASSERT(node->receiver() != NULL);
// Resolve and call noSuchMethod.
ArgumentListNode* arguments = new(I) ArgumentListNode(node->token_pos());
arguments->Add(node->receiver());
arguments->Add(node->value());
call = BuildStaticNoSuchMethodCall(
node->cls(),
node->receiver(),
setter_name,
arguments,
result_is_needed, // Save last arg if result is needed.
true); // Super invocation.
} else {
// Throw a NoSuchMethodError.
ArgumentListNode* arguments = new(I) ArgumentListNode(node->token_pos());
arguments->Add(node->value());
call = BuildThrowNoSuchMethodError(
node->token_pos(),
node->cls(),
setter_name,
arguments, // Argument is the value passed to the setter.
InvocationMirror::EncodeType(
node->cls().IsTopLevel() ?
InvocationMirror::kTopLevel :
InvocationMirror::kStatic,
InvocationMirror::kSetter));
}
} else {
if (is_super_setter) {
// Add receiver of instance getter.
ValueGraphVisitor for_receiver(owner());
node->receiver()->Visit(&for_receiver);
Append(for_receiver);
arguments->Add(PushArgument(for_receiver.value()));
}
ValueGraphVisitor for_value(owner());
node->value()->Visit(&for_value);
Append(for_value);
Value* value = NULL;
if (result_is_needed) {
value = Bind(BuildStoreExprTemp(for_value.value()));
} else {
value = for_value.value();
}
arguments->Add(PushArgument(value));
call = new(I) StaticCallInstr(node->token_pos(),
setter_function,
Object::null_array(), // No names.
arguments,
owner()->ic_data_array());
}
if (result_is_needed) {
Do(call);
ReturnDefinition(BuildLoadExprTemp());
} else {
ReturnDefinition(call);
}
}
void EffectGraphVisitor::VisitStaticSetterNode(StaticSetterNode* node) {
BuildStaticSetter(node, false); // Result not needed.
}
void ValueGraphVisitor::VisitStaticSetterNode(StaticSetterNode* node) {
BuildStaticSetter(node, true); // Result needed.
}
static intptr_t OffsetForLengthGetter(MethodRecognizer::Kind kind) {
switch (kind) {
case MethodRecognizer::kObjectArrayLength:
case MethodRecognizer::kImmutableArrayLength:
return Array::length_offset();
case MethodRecognizer::kTypedDataLength:
// .length is defined in _TypedList which is the base class for internal
// and external typed data.
ASSERT(TypedData::length_offset() == ExternalTypedData::length_offset());
return TypedData::length_offset();
case MethodRecognizer::kGrowableArrayLength:
return GrowableObjectArray::length_offset();
default:
UNREACHABLE();
return 0;
}
}
LoadLocalInstr* EffectGraphVisitor::BuildLoadThisVar(LocalScope* scope) {
LocalVariable* receiver_var = scope->LookupVariable(Symbols::This(),
true); // Test only.
return new(I) LoadLocalInstr(*receiver_var);
}
void EffectGraphVisitor::VisitNativeBodyNode(NativeBodyNode* node) {
const Function& function = owner()->parsed_function()->function();
if (!function.IsClosureFunction()) {
MethodRecognizer::Kind kind = MethodRecognizer::RecognizeKind(function);
switch (kind) {
case MethodRecognizer::kObjectEquals: {
Value* receiver = Bind(BuildLoadThisVar(node->scope()));
LocalVariable* other_var =
node->scope()->LookupVariable(Symbols::Other(),
true); // Test only.
Value* other = Bind(new(I) LoadLocalInstr(*other_var));
// Receiver is not a number because numbers override equality.
const bool kNoNumberCheck = false;
StrictCompareInstr* compare =
new(I) StrictCompareInstr(node->token_pos(),
Token::kEQ_STRICT,
receiver,
other,
kNoNumberCheck);
return ReturnDefinition(compare);
}
case MethodRecognizer::kStringBaseLength:
case MethodRecognizer::kStringBaseIsEmpty: {
Value* receiver = Bind(BuildLoadThisVar(node->scope()));
// Treat length loads as mutable (i.e. affected by side effects) to
// avoid hoisting them since we can't hoist the preceding class-check.
// This is because of externalization of strings that affects their
// class-id.
LoadFieldInstr* load = new(I) LoadFieldInstr(
receiver,
String::length_offset(),
Type::ZoneHandle(I, Type::SmiType()),
node->token_pos());
load->set_result_cid(kSmiCid);
load->set_recognized_kind(MethodRecognizer::kStringBaseLength);
if (kind == MethodRecognizer::kStringBaseLength) {
return ReturnDefinition(load);
}
ASSERT(kind == MethodRecognizer::kStringBaseIsEmpty);
Value* zero_val = Bind(new(I) ConstantInstr(
Smi::ZoneHandle(I, Smi::New(0))));
Value* load_val = Bind(load);
StrictCompareInstr* compare =
new(I) StrictCompareInstr(node->token_pos(),
Token::kEQ_STRICT,
load_val,
zero_val,
false); // No number check.
return ReturnDefinition(compare);
}
case MethodRecognizer::kGrowableArrayLength:
case MethodRecognizer::kObjectArrayLength:
case MethodRecognizer::kImmutableArrayLength:
case MethodRecognizer::kTypedDataLength: {
Value* receiver = Bind(BuildLoadThisVar(node->scope()));
LoadFieldInstr* load = new(I) LoadFieldInstr(
receiver,
OffsetForLengthGetter(kind),
Type::ZoneHandle(I, Type::SmiType()),
node->token_pos());
load->set_is_immutable(kind != MethodRecognizer::kGrowableArrayLength);
load->set_result_cid(kSmiCid);
load->set_recognized_kind(kind);
return ReturnDefinition(load);
}
case MethodRecognizer::kClassIDgetID: {
LocalVariable* value_var =
node->scope()->LookupVariable(Symbols::Value(), true);
Value* value = Bind(new(I) LoadLocalInstr(*value_var));
LoadClassIdInstr* load = new(I) LoadClassIdInstr(value);
return ReturnDefinition(load);
}
case MethodRecognizer::kGrowableArrayCapacity: {
Value* receiver = Bind(BuildLoadThisVar(node->scope()));
LoadFieldInstr* data_load = new(I) LoadFieldInstr(
receiver,
Array::data_offset(),
Type::ZoneHandle(I, Type::DynamicType()),
node->token_pos());
data_load->set_result_cid(kArrayCid);
Value* data = Bind(data_load);
LoadFieldInstr* length_load = new(I) LoadFieldInstr(
data,
Array::length_offset(),
Type::ZoneHandle(I, Type::SmiType()),
node->token_pos());
length_load->set_result_cid(kSmiCid);
length_load->set_recognized_kind(MethodRecognizer::kObjectArrayLength);
return ReturnDefinition(length_load);
}
case MethodRecognizer::kObjectArrayAllocate: {
LocalVariable* type_args_parameter =
node->scope()->LookupVariable(Symbols::TypeArgumentsParameter(),
true);
Value* element_type = Bind(new(I) LoadLocalInstr(*type_args_parameter));
LocalVariable* length_parameter =
node->scope()->LookupVariable(Symbols::Length(), true);
Value* length = Bind(new(I) LoadLocalInstr(*length_parameter));
CreateArrayInstr* create_array =
new CreateArrayInstr(node->token_pos(), element_type, length);
return ReturnDefinition(create_array);
}
case MethodRecognizer::kBigint_getDigits: {
Value* receiver = Bind(BuildLoadThisVar(node->scope()));
LoadFieldInstr* load = new(I) LoadFieldInstr(
receiver,
Bigint::digits_offset(),
Type::ZoneHandle(I, Type::DynamicType()),
node->token_pos());
load->set_result_cid(kTypedDataUint32ArrayCid);
load->set_recognized_kind(kind);
return ReturnDefinition(load);
}
case MethodRecognizer::kBigint_getUsed: {
Value* receiver = Bind(BuildLoadThisVar(node->scope()));
LoadFieldInstr* load = new(I) LoadFieldInstr(
receiver,
Bigint::used_offset(),
Type::ZoneHandle(I, Type::SmiType()),
node->token_pos());
load->set_result_cid(kSmiCid);
load->set_recognized_kind(kind);
return ReturnDefinition(load);
}
case MethodRecognizer::kBigint_getNeg: {
Value* receiver = Bind(BuildLoadThisVar(node->scope()));
LoadFieldInstr* load = new(I) LoadFieldInstr(
receiver,
Bigint::neg_offset(),
Type::ZoneHandle(I, Type::BoolType()),
node->token_pos());
load->set_result_cid(kBoolCid);
load->set_recognized_kind(kind);
return ReturnDefinition(load);
}
default:
break;
}
}
InlineBailout("EffectGraphVisitor::VisitNativeBodyNode");
NativeCallInstr* native_call = new(I) NativeCallInstr(node);
ReturnDefinition(native_call);
}
void EffectGraphVisitor::VisitPrimaryNode(PrimaryNode* node) {
// PrimaryNodes are temporary during parsing.
UNREACHABLE();
}
// <Expression> ::= LoadLocal { local: LocalVariable }
void EffectGraphVisitor::VisitLoadLocalNode(LoadLocalNode* node) {
// Nothing to do.
}
void ValueGraphVisitor::VisitLoadLocalNode(LoadLocalNode* node) {
Definition* load = BuildLoadLocal(node->local());
ReturnDefinition(load);
}
// <Expression> ::= StoreLocal { local: LocalVariable
// value: <Expression> }
void EffectGraphVisitor::VisitStoreLocalNode(StoreLocalNode* node) {
// If the right hand side is an expression that does not contain
// a safe point for the debugger to stop, add an explicit stub
// call.
if (node->value()->IsLiteralNode() ||
node->value()->IsLoadLocalNode()) {
AddInstruction(new(I) DebugStepCheckInstr(
node->token_pos(), RawPcDescriptors::kRuntimeCall));
}
ValueGraphVisitor for_value(owner());
node->value()->Visit(&for_value);
Append(for_value);
Value* store_value = for_value.value();
if (FLAG_enable_type_checks) {
store_value = BuildAssignableValue(node->value()->token_pos(),
store_value,
node->local().type(),
node->local().name());
}
Definition* store = BuildStoreLocal(node->local(), store_value);
ReturnDefinition(store);
}
void EffectGraphVisitor::VisitLoadInstanceFieldNode(
LoadInstanceFieldNode* node) {
ValueGraphVisitor for_instance(owner());
node->instance()->Visit(&for_instance);
Append(for_instance);
LoadFieldInstr* load = new(I) LoadFieldInstr(
for_instance.value(),
&node->field(),
AbstractType::ZoneHandle(I, node->field().type()),
node->token_pos());
if (node->field().guarded_cid() != kIllegalCid) {
if (!node->field().is_nullable() ||
(node->field().guarded_cid() == kNullCid)) {
load->set_result_cid(node->field().guarded_cid());
}
FlowGraph::AddToGuardedFields(owner()->guarded_fields(), &node->field());
}
ReturnDefinition(load);
}
void EffectGraphVisitor::VisitStoreInstanceFieldNode(
StoreInstanceFieldNode* node) {
ValueGraphVisitor for_instance(owner());
node->instance()->Visit(&for_instance);
Append(for_instance);
ValueGraphVisitor for_value(owner());
node->value()->Visit(&for_value);
Append(for_value);
Value* store_value = for_value.value();
if (FLAG_enable_type_checks) {
const AbstractType& type =
AbstractType::ZoneHandle(I, node->field().type());
const String& dst_name = String::ZoneHandle(I, node->field().name());
store_value = BuildAssignableValue(node->value()->token_pos(),
store_value,
type,
dst_name);
}
store_value = Bind(BuildStoreExprTemp(store_value));
GuardFieldClassInstr* guard_field_class =
new(I) GuardFieldClassInstr(store_value,
node->field(),
I->GetNextDeoptId());
AddInstruction(guard_field_class);
store_value = Bind(BuildLoadExprTemp());
GuardFieldLengthInstr* guard_field_length =
new(I) GuardFieldLengthInstr(store_value,
node->field(),
I->GetNextDeoptId());
AddInstruction(guard_field_length);
store_value = Bind(BuildLoadExprTemp());
StoreInstanceFieldInstr* store =
new(I) StoreInstanceFieldInstr(node->field(),
for_instance.value(),
store_value,
kEmitStoreBarrier,
node->token_pos());
store->set_is_initialization(true); // Maybe initializing store.
ReturnDefinition(store);
}
void EffectGraphVisitor::VisitLoadStaticFieldNode(LoadStaticFieldNode* node) {
if (node->field().is_const()) {
ASSERT(node->field().value() != Object::sentinel().raw());
ASSERT(node->field().value() != Object::transition_sentinel().raw());
Definition* result =
new(I) ConstantInstr(Instance::ZoneHandle(I, node->field().value()));
return ReturnDefinition(result);
}
Value* field_value = Bind(new(I) ConstantInstr(node->field()));
LoadStaticFieldInstr* load = new(I) LoadStaticFieldInstr(field_value);
ReturnDefinition(load);
}
Definition* EffectGraphVisitor::BuildStoreStaticField(
StoreStaticFieldNode* node, bool result_is_needed) {
ValueGraphVisitor for_value(owner());
node->value()->Visit(&for_value);
Append(for_value);
Value* store_value = NULL;
if (result_is_needed) {
store_value = Bind(BuildStoreExprTemp(for_value.value()));
} else {
store_value = for_value.value();
}
StoreStaticFieldInstr* store =
new(I) StoreStaticFieldInstr(node->field(), store_value);
if (result_is_needed) {
Do(store);
return BuildLoadExprTemp();
} else {
return store;
}
}
void EffectGraphVisitor::VisitStoreStaticFieldNode(StoreStaticFieldNode* node) {
ReturnDefinition(BuildStoreStaticField(node, kResultNotNeeded));
}
void ValueGraphVisitor::VisitStoreStaticFieldNode(StoreStaticFieldNode* node) {
ReturnDefinition(BuildStoreStaticField(node, kResultNeeded));
}
void EffectGraphVisitor::VisitLoadIndexedNode(LoadIndexedNode* node) {
Function* super_function = NULL;
if (node->IsSuperLoad()) {
// Resolve the load indexed operator in the super class.
super_function = &Function::ZoneHandle(
I, Resolver::ResolveDynamicAnyArgs(node->super_class(),
Symbols::IndexToken()));
if (super_function->IsNull()) {
// Could not resolve super operator. Generate call noSuchMethod() of the
// super class instead.
ArgumentListNode* arguments = new(I) ArgumentListNode(node->token_pos());
arguments->Add(node->array());
arguments->Add(node->index_expr());
StaticCallInstr* call =
BuildStaticNoSuchMethodCall(node->super_class(),
node->array(),
Symbols::IndexToken(),
arguments,
false, // Don't save last arg.
true); // Super invocation.
ReturnDefinition(call);
return;
}
}
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(2);
ValueGraphVisitor for_array(owner());
node->array()->Visit(&for_array);
Append(for_array);
arguments->Add(PushArgument(for_array.value()));
ValueGraphVisitor for_index(owner());
node->index_expr()->Visit(&for_index);
Append(for_index);
arguments->Add(PushArgument(for_index.value()));
if (super_function != NULL) {
// Generate static call to super operator.
StaticCallInstr* load = new(I) StaticCallInstr(node->token_pos(),
*super_function,
Object::null_array(),
arguments,
owner()->ic_data_array());
ReturnDefinition(load);
} else {
// Generate dynamic call to index operator.
const intptr_t checked_argument_count = 1;
InstanceCallInstr* load = new(I) InstanceCallInstr(
node->token_pos(),
Symbols::IndexToken(),
Token::kINDEX,
arguments,
Object::null_array(),
checked_argument_count,
owner()->ic_data_array());
ReturnDefinition(load);
}
}
Definition* EffectGraphVisitor::BuildStoreIndexedValues(
StoreIndexedNode* node,
bool result_is_needed) {
Function* super_function = NULL;
if (node->IsSuperStore()) {
// Resolve the store indexed operator in the super class.
super_function = &Function::ZoneHandle(
I, Resolver::ResolveDynamicAnyArgs(node->super_class(),
Symbols::AssignIndexToken()));
if (super_function->IsNull()) {
// Could not resolve super operator. Generate call noSuchMethod() of the
// super class instead.
ArgumentListNode* arguments = new(I) ArgumentListNode(node->token_pos());
arguments->Add(node->array());
arguments->Add(node->index_expr());
arguments->Add(node->value());
StaticCallInstr* call = BuildStaticNoSuchMethodCall(
node->super_class(),
node->array(),
Symbols::AssignIndexToken(),
arguments,
result_is_needed, // Save last arg if result is needed.
true); // Super invocation.
if (result_is_needed) {
Do(call);
// BuildStaticNoSuchMethodCall stores the value in expression_temp.
return BuildLoadExprTemp();
} else {
return call;
}
}
}
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(3);
ValueGraphVisitor for_array(owner());
node->array()->Visit(&for_array);
Append(for_array);
arguments->Add(PushArgument(for_array.value()));
ValueGraphVisitor for_index(owner());
node->index_expr()->Visit(&for_index);
Append(for_index);
arguments->Add(PushArgument(for_index.value()));
ValueGraphVisitor for_value(owner());
node->value()->Visit(&for_value);
Append(for_value);
Value* value = NULL;
if (result_is_needed) {
value = Bind(BuildStoreExprTemp(for_value.value()));
} else {
value = for_value.value();
}
arguments->Add(PushArgument(value));
if (super_function != NULL) {
// Generate static call to super operator []=.
StaticCallInstr* store =
new(I) StaticCallInstr(node->token_pos(),
*super_function,
Object::null_array(),
arguments,
owner()->ic_data_array());
if (result_is_needed) {
Do(store);
return BuildLoadExprTemp();
} else {
return store;
}
} else {
// Generate dynamic call to operator []=.
const intptr_t checked_argument_count = 3;
const String& name =
String::ZoneHandle(I, Symbols::New(Token::Str(Token::kASSIGN_INDEX)));
InstanceCallInstr* store =
new(I) InstanceCallInstr(node->token_pos(),
name,
Token::kASSIGN_INDEX,
arguments,
Object::null_array(),
checked_argument_count,
owner()->ic_data_array());
if (result_is_needed) {
Do(store);
return BuildLoadExprTemp();
} else {
return store;
}
}
}
void EffectGraphVisitor::VisitStoreIndexedNode(StoreIndexedNode* node) {
ReturnDefinition(BuildStoreIndexedValues(node, kResultNotNeeded));
}
void ValueGraphVisitor::VisitStoreIndexedNode(StoreIndexedNode* node) {
ReturnDefinition(BuildStoreIndexedValues(node, kResultNeeded));
}
bool EffectGraphVisitor::HasContextScope() const {
const ContextScope& context_scope = ContextScope::Handle(
owner()->parsed_function()->function().context_scope());
return !context_scope.IsNull() && (context_scope.num_variables() > 0);
}
void EffectGraphVisitor::UnchainContexts(intptr_t n) {
if (n > 0) {
Value* context = Bind(BuildCurrentContext());
while (n-- > 0) {
context = Bind(
new(I) LoadFieldInstr(context,
Context::parent_offset(),
// Not an instance, no type.
Type::ZoneHandle(I, Type::null()),
Scanner::kNoSourcePos));
}
Do(BuildStoreContext(context));
}
}
// <Statement> ::= Sequence { scope: LocalScope
// nodes: <Statement>*
// label: SourceLabel }
void EffectGraphVisitor::VisitSequenceNode(SequenceNode* node) {
LocalScope* scope = node->scope();
const intptr_t num_context_variables =
(scope != NULL) ? scope->num_context_variables() : 0;
const bool is_top_level_sequence =
node == owner()->parsed_function()->node_sequence();
// The outermost function sequence cannot contain a label.
ASSERT((node->label() == NULL) || !is_top_level_sequence);
NestedBlock nested_block(owner(), node);
if (num_context_variables > 0) {
// The local scope declares variables that are captured.
// Allocate and chain a new context (Except don't chain when at the function
// entry if the function does not capture any variables from outer scopes).
Value* allocated_context =
Bind(new(I) AllocateContextInstr(node->token_pos(),
num_context_variables));
{ LocalVariable* tmp_var = EnterTempLocalScope(allocated_context);
if (HasContextScope() || !is_top_level_sequence) {
Value* tmp_val = Bind(new(I) LoadLocalInstr(*tmp_var));
Value* parent_context = Bind(BuildCurrentContext());
Do(new(I) StoreInstanceFieldInstr(Context::parent_offset(),
tmp_val,
parent_context,
kEmitStoreBarrier,
Scanner::kNoSourcePos));
}
Do(BuildStoreContext(Bind(ExitTempLocalScope(tmp_var))));
}
// If this node_sequence is the body of the function being compiled, copy
// the captured parameters from the frame into the context.
if (is_top_level_sequence) {
ASSERT(scope->context_level() == 1);
const Function& function = owner()->parsed_function()->function();
const int num_params = function.NumParameters();
int param_frame_index = (num_params == function.num_fixed_parameters()) ?
(kParamEndSlotFromFp + num_params) : kFirstLocalSlotFromFp;
for (int pos = 0; pos < num_params; param_frame_index--, pos++) {
const LocalVariable& parameter = *scope->VariableAt(pos);
ASSERT(parameter.owner() == scope);
if (parameter.is_captured()) {
// Create a temporary local describing the original position.
const String& temp_name = Symbols::TempParam();
LocalVariable* temp_local = new(I) LocalVariable(
0, // Token index.
temp_name,
Type::ZoneHandle(I, Type::DynamicType())); // Type.
temp_local->set_index(param_frame_index);
// Mark this local as captured parameter so that the optimizer
// correctly handles these when compiling try-catch: Captured
// parameters are not in the stack environment, therefore they
// must be skipped when emitting sync-code in try-blocks.
temp_local->set_is_captured_parameter(true);
// Copy parameter from local frame to current context.
Value* load = Bind(BuildLoadLocal(*temp_local));
Do(BuildStoreLocal(parameter, load));
// Write NULL to the source location to detect buggy accesses and
// allow GC of passed value if it gets overwritten by a new value in
// the function.
Value* null_constant = Bind(new(I) ConstantInstr(
Object::ZoneHandle(I, Object::null())));
Do(BuildStoreLocal(*temp_local, null_constant));
}
}
}
}
// This check may be deleted if the generated code is leaf.
// Native functions don't need a stack check at entry.
const Function& function = owner()->parsed_function()->function();
if (is_top_level_sequence && !function.is_native()) {
// Always allocate CheckOverflowInstr so that deopt-ids match regardless
// if we inline or not.
if (!function.IsImplicitGetterFunction() &&
!function.IsImplicitSetterFunction()) {
CheckStackOverflowInstr* check =
new(I) CheckStackOverflowInstr(function.token_pos(), 0);
// If we are inlining don't actually attach the stack check. We must still
// create the stack check in order to allocate a deopt id.
if (!owner()->IsInlining()) {
AddInstruction(check);
}
}
}
if (FLAG_enable_type_checks && is_top_level_sequence) {
const Function& function = owner()->parsed_function()->function();
const int num_params = function.NumParameters();
int pos = 0;
if (function.IsConstructor()) {
// Skip type checking of receiver and phase for constructor functions.
pos = 2;
} else if (function.IsFactory() || function.IsDynamicFunction()) {
// Skip type checking of type arguments for factory functions.
// Skip type checking of receiver for instance functions.
pos = 1;
}
while (pos < num_params) {
const LocalVariable& parameter = *scope->VariableAt(pos);
ASSERT(parameter.owner() == scope);
if (!CanSkipTypeCheck(parameter.token_pos(),
NULL,
parameter.type(),
parameter.name())) {
Value* parameter_value = Bind(BuildLoadLocal(parameter));
AssertAssignableInstr* assert_assignable =
BuildAssertAssignable(parameter.token_pos(),
parameter_value,
parameter.type(),
parameter.name());
parameter_value = Bind(assert_assignable);
// Store the type checked argument back to its corresponding local
// variable so that ssa renaming detects the dependency and makes use
// of the checked type in type propagation.
Do(BuildStoreLocal(parameter, parameter_value));
}
pos++;
}
}
// Continuation part:
// If this node sequence is the body of an async closure leave room for a
// preamble. The preamble is generated after visiting the body.
GotoInstr* preamble_start = NULL;
if (is_top_level_sequence &&
(owner()->parsed_function()->function().is_async_closure())) {
JoinEntryInstr* preamble_end = new(I) JoinEntryInstr(
owner()->AllocateBlockId(), owner()->try_index());
ASSERT(exit() != NULL);
exit()->Goto(preamble_end);
ASSERT(exit()->next()->IsGoto());
preamble_start = exit()->next()->AsGoto();
ASSERT(preamble_start->IsGoto());
exit_ = preamble_end;
}
intptr_t i = 0;
while (is_open() && (i < node->length())) {
EffectGraphVisitor for_effect(owner());
node->NodeAt(i++)->Visit(&for_effect);
Append(for_effect);
if (!is_open()) {
// E.g., because of a JumpNode.
break;
}
}
// Continuation part:
// After generating the CFG for the body we can create the preamble because we
// know exactly how many continuation states we need.
if (is_top_level_sequence &&
(owner()->parsed_function()->function().is_async_closure())) {
ASSERT(preamble_start != NULL);
// We are at the top level. Fetch the corresponding scope.
LocalScope* top_scope = node->scope();
LocalVariable* jump_var = top_scope->LookupVariable(
Symbols::AwaitJumpVar(), false);
ASSERT(jump_var != NULL && jump_var->is_captured());
Instruction* saved_entry = entry_;
Instruction* saved_exit = exit_;
entry_ = NULL;
exit_ = NULL;
LoadLocalNode* load_jump_count = new(I) LoadLocalNode(
Scanner::kNoSourcePos, jump_var);
ComparisonNode* check_jump_count;
const intptr_t num_await_states = owner()->await_joins()->length();
LocalVariable* old_context = top_scope->LookupVariable(
Symbols::AwaitContextVar(), false);
LocalVariable* continuation_result = top_scope->LookupVariable(
Symbols::AsyncOperationParam(), false);
LocalVariable* continuation_error = top_scope->LookupVariable(
Symbols::AsyncOperationErrorParam(), false);
for (intptr_t i = 0; i < num_await_states; i++) {
check_jump_count = new(I) ComparisonNode(
Scanner::kNoSourcePos,
Token::kEQ,
load_jump_count,
new(I) LiteralNode(
Scanner::kNoSourcePos, Smi::ZoneHandle(I, Smi::New(i))));
TestGraphVisitor for_test(owner(), Scanner::kNoSourcePos);
check_jump_count->Visit(&for_test);
EffectGraphVisitor for_true(owner());
EffectGraphVisitor for_false(owner());
for_true.BuildAwaitJump(old_context,
continuation_result,
continuation_error,
(*owner()->await_levels())[i],
(*owner()->await_joins())[i]);
Join(for_test, for_true, for_false);
if (i == 0) {
// Manually link up the preamble start.
preamble_start->previous()->set_next(for_test.entry());
for_test.entry()->set_previous(preamble_start->previous());
}
if (i == (num_await_states - 1)) {
// Link up preamble end.
if (exit_ == NULL) {
exit_ = preamble_start;
} else {
exit_->LinkTo(preamble_start);
}
}
}
entry_ = saved_entry;
exit_ = saved_exit;
}
if (is_open() &&
(num_context_variables > 0) &&
(HasContextScope() || !is_top_level_sequence)) {
UnchainContexts(1);
}
// If this node sequence is labeled, a break out of the sequence will have
// taken care of unchaining the context.
if (nested_block.break_target() != NULL) {
if (is_open()) Goto(nested_block.break_target());
exit_ = nested_block.break_target();
}
}
void EffectGraphVisitor::VisitCatchClauseNode(CatchClauseNode* node) {
InlineBailout("EffectGraphVisitor::VisitCatchClauseNode (exception)");
// Restores current context from local variable ':saved_context'.
BuildRestoreContext(node->context_var());
EffectGraphVisitor for_catch(owner());
node->VisitChildren(&for_catch);
Append(for_catch);
}
void EffectGraphVisitor::VisitTryCatchNode(TryCatchNode* node) {
InlineBailout("EffectGraphVisitor::VisitTryCatchNode (exception)");
intptr_t original_handler_index = owner()->try_index();
const intptr_t try_handler_index = node->try_index();
ASSERT(try_handler_index != original_handler_index);
owner()->set_try_index(try_handler_index);
// Preserve current context into local variable '%saved_context'.
BuildSaveContext(node->context_var());
EffectGraphVisitor for_try(owner());
node->try_block()->Visit(&for_try);
if (for_try.is_open()) {
JoinEntryInstr* after_try =
new(I) JoinEntryInstr(owner()->AllocateBlockId(),
original_handler_index);
for_try.Goto(after_try);
for_try.exit_ = after_try;
}
JoinEntryInstr* try_entry =
new(I) JoinEntryInstr(owner()->AllocateBlockId(), try_handler_index);
Goto(try_entry);
AppendFragment(try_entry, for_try);
exit_ = for_try.exit_;
// We are done generating code for the try block.
owner()->set_try_index(original_handler_index);
CatchClauseNode* catch_block = node->catch_block();
SequenceNode* finally_block = node->finally_block();
// If there is a finally block, it is the handler for code in the catch
// block.
const intptr_t catch_handler_index = (finally_block == NULL)
? original_handler_index
: catch_block->catch_handler_index();
const intptr_t prev_catch_try_index = owner()->catch_try_index();
owner()->set_try_index(catch_handler_index);
owner()->set_catch_try_index(try_handler_index);
EffectGraphVisitor for_catch(owner());
catch_block->Visit(&for_catch);
owner()->set_catch_try_index(prev_catch_try_index);
// NOTE: The implicit variables ':saved_context', ':exception_var'
// and ':stacktrace_var' can never be captured variables.
ASSERT(!catch_block->exception_var().is_captured());
ASSERT(!catch_block->stacktrace_var().is_captured());
CatchBlockEntryInstr* catch_entry =
new(I) CatchBlockEntryInstr(owner()->AllocateBlockId(),
catch_handler_index,
catch_block->handler_types(),
try_handler_index,
catch_block->exception_var(),
catch_block->stacktrace_var(),
catch_block->needs_stacktrace());
owner()->AddCatchEntry(catch_entry);
AppendFragment(catch_entry, for_catch);
if (for_catch.is_open()) {
JoinEntryInstr* join = new(I) JoinEntryInstr(owner()->AllocateBlockId(),
original_handler_index);
for_catch.Goto(join);
if (is_open()) Goto(join);
exit_ = join;
}
if (finally_block != NULL) {
// Create a handler for the code in the catch block, containing the
// code in the finally block.
owner()->set_try_index(original_handler_index);
EffectGraphVisitor for_finally(owner());
for_finally.BuildRestoreContext(catch_block->context_var());
finally_block->Visit(&for_finally);
if (for_finally.is_open()) {
// Rethrow the exception. Manually build the graph for rethrow.
Value* exception = for_finally.Bind(
for_finally.BuildLoadLocal(catch_block->exception_var()));
for_finally.PushArgument(exception);
Value* stacktrace = for_finally.Bind(
for_finally.BuildLoadLocal(catch_block->stacktrace_var()));
for_finally.PushArgument(stacktrace);
for_finally.AddInstruction(
new(I) ReThrowInstr(catch_block->token_pos(), catch_handler_index));
for_finally.CloseFragment();
}
ASSERT(!for_finally.is_open());
const Array& types = Array::ZoneHandle(I, Array::New(1, Heap::kOld));
types.SetAt(0, Type::Handle(I, Type::DynamicType()));
CatchBlockEntryInstr* finally_entry =
new(I) CatchBlockEntryInstr(owner()->AllocateBlockId(),
original_handler_index,
types,
catch_handler_index,
catch_block->exception_var(),
catch_block->stacktrace_var(),
catch_block->needs_stacktrace());
owner()->AddCatchEntry(finally_entry);
AppendFragment(finally_entry, for_finally);
}
// Generate code for the finally block if one exists.
if ((finally_block != NULL) && is_open()) {
EffectGraphVisitor for_finally_block(owner());
finally_block->Visit(&for_finally_block);
Append(for_finally_block);
}
}
// Looks up dynamic method noSuchMethod in target_class
// (including its super class chain) and builds a static call to it.
StaticCallInstr* EffectGraphVisitor::BuildStaticNoSuchMethodCall(
const Class& target_class,
AstNode* receiver,
const String& method_name,
ArgumentListNode* method_arguments,
bool save_last_arg,
bool is_super_invocation) {
intptr_t args_pos = method_arguments->token_pos();
LocalVariable* temp = NULL;
if (save_last_arg) {
temp = owner()->parsed_function()->EnsureExpressionTemp();
}
ArgumentListNode* args =
Parser::BuildNoSuchMethodArguments(args_pos,
method_name,
*method_arguments,
temp,
is_super_invocation);
const Function& no_such_method_func = Function::ZoneHandle(I,
Resolver::ResolveDynamicAnyArgs(target_class, Symbols::NoSuchMethod()));
// We are guaranteed to find noSuchMethod of class Object.
ASSERT(!no_such_method_func.IsNull());
ZoneGrowableArray<PushArgumentInstr*>* push_arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>(2);
BuildPushArguments(*args, push_arguments);
return new(I) StaticCallInstr(args_pos,
no_such_method_func,
Object::null_array(),
push_arguments,
owner()->ic_data_array());
}
StaticCallInstr* EffectGraphVisitor::BuildThrowNoSuchMethodError(
intptr_t token_pos,
const Class& function_class,
const String& function_name,
ArgumentListNode* function_arguments,
int invocation_type) {
ZoneGrowableArray<PushArgumentInstr*>* arguments =
new(I) ZoneGrowableArray<PushArgumentInstr*>();
// Object receiver, actually a class literal of the unresolved method's owner.
Type& type = Type::ZoneHandle(
I,
Type::New(function_class,
TypeArguments::Handle(I, TypeArguments::null()),
token_pos,
Heap::kOld));
type ^= ClassFinalizer::FinalizeType(
function_class, type, ClassFinalizer::kCanonicalize);
Value* receiver_value = Bind(new(I) ConstantInstr(type));
arguments->Add(PushArgument(receiver_value));
// String memberName.
const String& member_name =
String::ZoneHandle(I, Symbols::New(function_name));
Value* member_name_value = Bind(new(I) ConstantInstr(member_name));
arguments->Add(PushArgument(member_name_value));
// Smi invocation_type.
Value* invocation_type_value = Bind(new(I) ConstantInstr(
Smi::ZoneHandle(I, Smi::New(invocation_type))));
arguments->Add(PushArgument(invocation_type_value));
// List arguments.
if (function_arguments == NULL) {
Value* arguments_value = Bind(
new(I) ConstantInstr(Array::ZoneHandle(I, Array::null())));
arguments->Add(PushArgument(arguments_value));
} else {
ValueGraphVisitor array_val(owner());
ArrayNode* array =
new(I) ArrayNode(token_pos, Type::ZoneHandle(I, Type::ArrayType()),
function_arguments->nodes());
array->Visit(&array_val);
Append(array_val);
arguments->Add(PushArgument(array_val.value()));
}
// List argumentNames.
ConstantInstr* cinstr = new(I) ConstantInstr(
(function_arguments == NULL) ? Array::ZoneHandle(I, Array::null())
: function_arguments->names());
Value* argument_names_value = Bind(cinstr);
arguments->Add(PushArgument(argument_names_value));
// List existingArgumentNames.
Value* existing_argument_names_value =
Bind(new(I) ConstantInstr(Array::ZoneHandle(I, Array::null())));
arguments->Add(PushArgument(existing_argument_names_value));
// Resolve and call NoSuchMethodError._throwNew.
const Library& core_lib = Library::Handle(I, Library::CoreLibrary());
const Class& cls = Class::Handle(
I, core_lib.LookupClass(Symbols::NoSuchMethodError()));
ASSERT(!cls.IsNull());
const Function& func = Function::ZoneHandle(
I,
Resolver::ResolveStatic(cls,
Library::PrivateCoreLibName(Symbols::ThrowNew()),
arguments->length(),
Object::null_array()));
ASSERT(!func.IsNull());
return new(I) StaticCallInstr(token_pos,
func,
Object::null_array(), // No names.
arguments,
owner()->ic_data_array());
}
void EffectGraphVisitor::BuildThrowNode(ThrowNode* node) {
ValueGraphVisitor for_exception(owner());
node->exception()->Visit(&for_exception);
Append(for_exception);
PushArgument(for_exception.value());
Instruction* instr = NULL;
if (node->stacktrace() == NULL) {
instr = new(I) ThrowInstr(node->token_pos());
} else {
ValueGraphVisitor for_stack_trace(owner());
node->stacktrace()->Visit(&for_stack_trace);
Append(for_stack_trace);
PushArgument(for_stack_trace.value());
instr = new(I) ReThrowInstr(node->token_pos(), owner()->catch_try_index());
}
AddInstruction(instr);
}
void EffectGraphVisitor::VisitThrowNode(ThrowNode* node) {
BuildThrowNode(node);
CloseFragment();
}
// A throw cannot be part of an expression, however, the parser may replace
// certain expression nodes with a throw. In that case generate a literal null
// so that the fragment is not closed in the middle of an expression.
void ValueGraphVisitor::VisitThrowNode(ThrowNode* node) {
BuildThrowNode(node);
ReturnDefinition(new(I) ConstantInstr(
Instance::ZoneHandle(I, Instance::null())));
}
void EffectGraphVisitor::VisitInlinedFinallyNode(InlinedFinallyNode* node) {
InlineBailout("EffectGraphVisitor::VisitInlinedFinallyNode (exception)");
const intptr_t try_index = owner()->try_index();
if (try_index >= 0) {
// We are about to generate code for an inlined finally block. Exceptions
// thrown in this block of code should be treated as though they are
// thrown not from the current try block but the outer try block if any.
intptr_t outer_try_index = node->try_index();
owner()->set_try_index(outer_try_index);
}
BuildRestoreContext(node->context_var());
JoinEntryInstr* finally_entry =
new(I) JoinEntryInstr(owner()->AllocateBlockId(), owner()->try_index());
EffectGraphVisitor for_finally_block(owner());
node->finally_block()->Visit(&for_finally_block);
if (try_index >= 0) {
owner()->set_try_index(try_index);
}
if (for_finally_block.is_open()) {
JoinEntryInstr* after_finally =
new(I) JoinEntryInstr(owner()->AllocateBlockId(), owner()->try_index());
for_finally_block.Goto(after_finally);
for_finally_block.exit_ = after_finally;
}
Goto(finally_entry);
AppendFragment(finally_entry, for_finally_block);
exit_ = for_finally_block.exit_;
}
FlowGraph* FlowGraphBuilder::BuildGraph() {
if (FLAG_print_ast) {
// Print the function ast before IL generation.
AstPrinter::PrintFunctionNodes(*parsed_function());
}
if (FLAG_print_scopes) {
AstPrinter::PrintFunctionScope(*parsed_function());
}
TargetEntryInstr* normal_entry =
new(I) TargetEntryInstr(AllocateBlockId(),
CatchClauseNode::kInvalidTryIndex);
graph_entry_ =
new(I) GraphEntryInstr(parsed_function(), normal_entry, osr_id_);
EffectGraphVisitor for_effect(this);
parsed_function()->node_sequence()->Visit(&for_effect);
AppendFragment(normal_entry, for_effect);
// Check that the graph is properly terminated.
ASSERT(!for_effect.is_open());
// When compiling for OSR, use a depth first search to prune instructions
// unreachable from the OSR entry. Catch entries are always considered
// reachable, even if they become unreachable after OSR.
if (osr_id_ != Isolate::kNoDeoptId) {
PruneUnreachable();
}
FlowGraph* graph = new(I) FlowGraph(*this, graph_entry_, last_used_block_id_);
return graph;
}
void FlowGraphBuilder::PruneUnreachable() {
ASSERT(osr_id_ != Isolate::kNoDeoptId);
BitVector* block_marks = new(I) BitVector(I, last_used_block_id_ + 1);
bool found = graph_entry_->PruneUnreachable(this, graph_entry_, NULL, osr_id_,
block_marks);
ASSERT(found);
}
void FlowGraphBuilder::Bailout(const char* reason) const {
const Function& function = parsed_function_->function();
Report::MessageF(Report::kBailout,
Script::Handle(function.script()),
function.token_pos(),
"FlowGraphBuilder Bailout: %s %s",
String::Handle(function.name()).ToCString(),
reason);
UNREACHABLE();
}
} // namespace dart