blob: 49ec2477e19b132b0033d078f664a68787d0c207 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "platform/globals.h"
#if defined(TARGET_OS_MACOS)
#include "bin/eventhandler.h"
#include <errno.h> // NOLINT
#include <pthread.h> // NOLINT
#include <stdio.h> // NOLINT
#include <string.h> // NOLINT
#include <sys/event.h> // NOLINT
#include <unistd.h> // NOLINT
#include <fcntl.h> // NOLINT
#include "bin/dartutils.h"
#include "bin/fdutils.h"
#include "bin/log.h"
#include "bin/thread.h"
#include "bin/utils.h"
#include "platform/hashmap.h"
#include "platform/utils.h"
namespace dart {
namespace bin {
static const int kInterruptMessageSize = sizeof(InterruptMessage);
static const int kInfinityTimeout = -1;
static const int kTimerId = -1;
static const int kShutdownId = -2;
bool SocketData::HasReadEvent() {
return (mask_ & (1 << kInEvent)) != 0;
}
bool SocketData::HasWriteEvent() {
return (mask_ & (1 << kOutEvent)) != 0;
}
// Unregister the file descriptor for a SocketData structure with kqueue.
static void RemoveFromKqueue(intptr_t kqueue_fd_, SocketData* sd) {
if (!sd->tracked_by_kqueue()) return;
static const intptr_t kMaxChanges = 2;
struct kevent events[kMaxChanges];
EV_SET(events, sd->fd(), EVFILT_READ, EV_DELETE, 0, 0, NULL);
VOID_NO_RETRY_EXPECTED(kevent(kqueue_fd_, events, 1, NULL, 0, NULL));
EV_SET(events, sd->fd(), EVFILT_WRITE, EV_DELETE, 0, 0, NULL);
VOID_NO_RETRY_EXPECTED(kevent(kqueue_fd_, events, 1, NULL, 0, NULL));
sd->set_tracked_by_kqueue(false);
}
// Update the kqueue registration for SocketData structure to reflect
// the events currently of interest.
static void AddToKqueue(intptr_t kqueue_fd_, SocketData* sd) {
ASSERT(!sd->tracked_by_kqueue());
static const intptr_t kMaxChanges = 2;
intptr_t changes = 0;
struct kevent events[kMaxChanges];
int flags = EV_ADD;
if (!sd->IsListeningSocket()) {
flags |= EV_CLEAR;
}
// Register or unregister READ filter if needed.
if (sd->HasReadEvent()) {
EV_SET(events + changes,
sd->fd(),
EVFILT_READ,
flags,
0,
0,
sd);
++changes;
}
// Register or unregister WRITE filter if needed.
if (sd->HasWriteEvent()) {
EV_SET(events + changes,
sd->fd(),
EVFILT_WRITE,
flags,
0,
0,
sd);
++changes;
}
ASSERT(changes > 0);
ASSERT(changes <= kMaxChanges);
int status =
NO_RETRY_EXPECTED(kevent(kqueue_fd_, events, changes, NULL, 0, NULL));
if (status == -1) {
// kQueue does not accept the file descriptor. It could be due to
// already closed file descriptor, or unuspported devices, such
// as /dev/null. In such case, mark the file descriptor as closed,
// so dart will handle it accordingly.
DartUtils::PostInt32(sd->port(), 1 << kCloseEvent);
} else {
sd->set_tracked_by_kqueue(true);
}
}
EventHandlerImplementation::EventHandlerImplementation()
: socket_map_(&HashMap::SamePointerValue, 16) {
intptr_t result;
result = NO_RETRY_EXPECTED(pipe(interrupt_fds_));
if (result != 0) {
FATAL("Pipe creation failed");
}
FDUtils::SetNonBlocking(interrupt_fds_[0]);
FDUtils::SetCloseOnExec(interrupt_fds_[0]);
FDUtils::SetCloseOnExec(interrupt_fds_[1]);
shutdown_ = false;
kqueue_fd_ = NO_RETRY_EXPECTED(kqueue());
if (kqueue_fd_ == -1) {
FATAL("Failed creating kqueue");
}
FDUtils::SetCloseOnExec(kqueue_fd_);
// Register the interrupt_fd with the kqueue.
struct kevent event;
EV_SET(&event, interrupt_fds_[0], EVFILT_READ, EV_ADD, 0, 0, NULL);
int status = NO_RETRY_EXPECTED(kevent(kqueue_fd_, &event, 1, NULL, 0, NULL));
if (status == -1) {
const int kBufferSize = 1024;
char error_message[kBufferSize];
strerror_r(errno, error_message, kBufferSize);
FATAL1("Failed adding interrupt fd to kqueue: %s\n", error_message);
}
}
EventHandlerImplementation::~EventHandlerImplementation() {
VOID_TEMP_FAILURE_RETRY(close(kqueue_fd_));
VOID_TEMP_FAILURE_RETRY(close(interrupt_fds_[0]));
VOID_TEMP_FAILURE_RETRY(close(interrupt_fds_[1]));
}
SocketData* EventHandlerImplementation::GetSocketData(intptr_t fd) {
ASSERT(fd >= 0);
HashMap::Entry* entry = socket_map_.Lookup(
GetHashmapKeyFromFd(fd), GetHashmapHashFromFd(fd), true);
ASSERT(entry != NULL);
SocketData* sd = reinterpret_cast<SocketData*>(entry->value);
if (sd == NULL) {
// If there is no data in the hash map for this file descriptor a
// new SocketData for the file descriptor is inserted.
sd = new SocketData(fd);
entry->value = sd;
}
ASSERT(fd == sd->fd());
return sd;
}
void EventHandlerImplementation::WakeupHandler(intptr_t id,
Dart_Port dart_port,
int64_t data) {
InterruptMessage msg;
msg.id = id;
msg.dart_port = dart_port;
msg.data = data;
// WriteToBlocking will write up to 512 bytes atomically, and since our msg
// is smaller than 512, we don't need a thread lock.
ASSERT(kInterruptMessageSize < PIPE_BUF);
intptr_t result =
FDUtils::WriteToBlocking(interrupt_fds_[1], &msg, kInterruptMessageSize);
if (result != kInterruptMessageSize) {
if (result == -1) {
perror("Interrupt message failure:");
}
FATAL1("Interrupt message failure. Wrote %" Pd " bytes.", result);
}
}
void EventHandlerImplementation::HandleInterruptFd() {
const intptr_t MAX_MESSAGES = kInterruptMessageSize;
InterruptMessage msg[MAX_MESSAGES];
ssize_t bytes = TEMP_FAILURE_RETRY(
read(interrupt_fds_[0], msg, MAX_MESSAGES * kInterruptMessageSize));
for (ssize_t i = 0; i < bytes / kInterruptMessageSize; i++) {
if (msg[i].id == kTimerId) {
timeout_queue_.UpdateTimeout(msg[i].dart_port, msg[i].data);
} else if (msg[i].id == kShutdownId) {
shutdown_ = true;
} else {
SocketData* sd = GetSocketData(msg[i].id);
if (IS_COMMAND(msg[i].data, kShutdownReadCommand)) {
// Close the socket for reading.
shutdown(sd->fd(), SHUT_RD);
} else if (IS_COMMAND(msg[i].data, kShutdownWriteCommand)) {
// Close the socket for writing.
shutdown(sd->fd(), SHUT_WR);
} else if (IS_COMMAND(msg[i].data, kCloseCommand)) {
// Close the socket and free system resources.
RemoveFromKqueue(kqueue_fd_, sd);
intptr_t fd = sd->fd();
VOID_TEMP_FAILURE_RETRY(close(fd));
socket_map_.Remove(GetHashmapKeyFromFd(fd), GetHashmapHashFromFd(fd));
delete sd;
DartUtils::PostInt32(msg[i].dart_port, 1 << kDestroyedEvent);
} else if (IS_COMMAND(msg[i].data, kReturnTokenCommand)) {
int count = TOKEN_COUNT(msg[i].data);
for (int i = 0; i < count; i++) {
if (sd->ReturnToken()) {
AddToKqueue(kqueue_fd_, sd);
}
}
} else {
ASSERT_NO_COMMAND(msg[i].data);
// Setup events to wait for.
ASSERT((msg[i].data > 0) && (msg[i].data < kIntptrMax));
ASSERT(sd->port() == 0);
sd->SetPortAndMask(msg[i].dart_port,
static_cast<intptr_t>(msg[i].data));
AddToKqueue(kqueue_fd_, sd);
}
}
}
}
#ifdef DEBUG_KQUEUE
static void PrintEventMask(intptr_t fd, struct kevent* event) {
Log::Print("%d ", static_cast<int>(fd));
Log::Print("filter=0x%x:", event->filter);
if (event->filter == EVFILT_READ) Log::Print("EVFILT_READ ");
if (event->filter == EVFILT_WRITE) Log::Print("EVFILT_WRITE ");
Log::Print("flags: %x: ", event->flags);
if ((event->flags & EV_EOF) != 0) Log::Print("EV_EOF ");
if ((event->flags & EV_ERROR) != 0) Log::Print("EV_ERROR ");
if ((event->flags & EV_CLEAR) != 0) Log::Print("EV_CLEAR ");
if ((event->flags & EV_ADD) != 0) Log::Print("EV_ADD ");
if ((event->flags & EV_DELETE) != 0) Log::Print("EV_DELETE ");
Log::Print("- fflags: %d ", event->fflags);
Log::Print("- data: %ld ", event->data);
Log::Print("(available %d) ",
static_cast<int>(FDUtils::AvailableBytes(fd)));
Log::Print("\n");
}
#endif
intptr_t EventHandlerImplementation::GetEvents(struct kevent* event,
SocketData* sd) {
#ifdef DEBUG_KQUEUE
PrintEventMask(sd->fd(), event);
#endif
intptr_t event_mask = 0;
if (sd->IsListeningSocket()) {
// On a listening socket the READ event means that there are
// connections ready to be accepted.
if (event->filter == EVFILT_READ) {
if ((event->flags & EV_EOF) != 0) {
if (event->fflags != 0) {
event_mask |= (1 << kErrorEvent);
} else {
event_mask |= (1 << kCloseEvent);
}
}
if (event_mask == 0) event_mask |= (1 << kInEvent);
} else {
UNREACHABLE();
}
} else {
// Prioritize data events over close and error events.
if (event->filter == EVFILT_READ) {
event_mask = (1 << kInEvent);
if ((event->flags & EV_EOF) != 0) {
if (event->fflags != 0) {
event_mask = (1 << kErrorEvent);
} else {
event_mask |= (1 << kCloseEvent);
}
}
} else if (event->filter == EVFILT_WRITE) {
event_mask |= (1 << kOutEvent);
if ((event->flags & EV_EOF) != 0) {
if (event->fflags != 0) {
event_mask = (1 << kErrorEvent);
}
}
} else {
UNREACHABLE();
}
}
return event_mask;
}
void EventHandlerImplementation::HandleEvents(struct kevent* events,
int size) {
bool interrupt_seen = false;
for (int i = 0; i < size; i++) {
// If flag EV_ERROR is set it indicates an error in kevent processing.
if ((events[i].flags & EV_ERROR) != 0) {
const int kBufferSize = 1024;
char error_message[kBufferSize];
strerror_r(events[i].data, error_message, kBufferSize);
FATAL1("kevent failed %s\n", error_message);
}
if (events[i].udata == NULL) {
interrupt_seen = true;
} else {
SocketData* sd = reinterpret_cast<SocketData*>(events[i].udata);
intptr_t event_mask = GetEvents(events + i, sd);
if (event_mask != 0) {
if (sd->TakeToken()) {
// Took last token, remove from epoll.
RemoveFromKqueue(kqueue_fd_, sd);
}
Dart_Port port = sd->port();
ASSERT(port != 0);
DartUtils::PostInt32(port, event_mask);
}
}
}
if (interrupt_seen) {
// Handle after socket events, so we avoid closing a socket before we handle
// the current events.
HandleInterruptFd();
}
}
int64_t EventHandlerImplementation::GetTimeout() {
if (!timeout_queue_.HasTimeout()) {
return kInfinityTimeout;
}
int64_t millis = timeout_queue_.CurrentTimeout() -
TimerUtils::GetCurrentTimeMilliseconds();
return (millis < 0) ? 0 : millis;
}
void EventHandlerImplementation::HandleTimeout() {
if (timeout_queue_.HasTimeout()) {
int64_t millis = timeout_queue_.CurrentTimeout() -
TimerUtils::GetCurrentTimeMilliseconds();
if (millis <= 0) {
DartUtils::PostNull(timeout_queue_.CurrentPort());
timeout_queue_.RemoveCurrent();
}
}
}
void EventHandlerImplementation::EventHandlerEntry(uword args) {
static const intptr_t kMaxEvents = 16;
struct kevent events[kMaxEvents];
EventHandler* handler = reinterpret_cast<EventHandler*>(args);
EventHandlerImplementation* handler_impl = &handler->delegate_;
ASSERT(handler_impl != NULL);
while (!handler_impl->shutdown_) {
int64_t millis = handler_impl->GetTimeout();
ASSERT(millis == kInfinityTimeout || millis >= 0);
if (millis > kMaxInt32) millis = kMaxInt32;
// NULL pointer timespec for infinite timeout.
ASSERT(kInfinityTimeout < 0);
struct timespec* timeout = NULL;
struct timespec ts;
if (millis >= 0) {
int32_t millis32 = static_cast<int32_t>(millis);
int32_t secs = millis32 / 1000;
ts.tv_sec = secs;
ts.tv_nsec = (millis32 - (secs * 1000)) * 1000000;
timeout = &ts;
}
// We have to use TEMP_FAILURE_RETRY for mac, as kevent can modify the
// current sigmask.
intptr_t result = TEMP_FAILURE_RETRY(
kevent(handler_impl->kqueue_fd_, NULL, 0, events, kMaxEvents, timeout));
if (result == -1) {
const int kBufferSize = 1024;
char error_message[kBufferSize];
strerror_r(errno, error_message, kBufferSize);
FATAL1("kevent failed %s\n", error_message);
} else {
handler_impl->HandleTimeout();
handler_impl->HandleEvents(events, result);
}
}
delete handler;
}
void EventHandlerImplementation::Start(EventHandler* handler) {
int result =
Thread::Start(&EventHandlerImplementation::EventHandlerEntry,
reinterpret_cast<uword>(handler));
if (result != 0) {
FATAL1("Failed to start event handler thread %d", result);
}
}
void EventHandlerImplementation::Shutdown() {
SendData(kShutdownId, 0, 0);
}
void EventHandlerImplementation::SendData(intptr_t id,
Dart_Port dart_port,
int64_t data) {
WakeupHandler(id, dart_port, data);
}
void* EventHandlerImplementation::GetHashmapKeyFromFd(intptr_t fd) {
// The hashmap does not support keys with value 0.
return reinterpret_cast<void*>(fd + 1);
}
uint32_t EventHandlerImplementation::GetHashmapHashFromFd(intptr_t fd) {
// The hashmap does not support keys with value 0.
return dart::Utils::WordHash(fd + 1);
}
} // namespace bin
} // namespace dart
#endif // defined(TARGET_OS_MACOS)