blob: 53394cf82eb4beda3bcd581482bc3bb36f8a0f71 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(TARGET_ARCH_MIPS)
#include "vm/assembler.h"
#include "vm/code_generator.h"
#include "vm/compiler.h"
#include "vm/dart_entry.h"
#include "vm/flow_graph_compiler.h"
#include "vm/heap.h"
#include "vm/instructions.h"
#include "vm/object_store.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/tags.h"
#define __ assembler->
namespace dart {
DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects.");
DEFINE_FLAG(bool,
use_slow_path,
false,
"Set to true for debugging & verifying the slow paths.");
DECLARE_FLAG(bool, trace_optimized_ic_calls);
// Input parameters:
// RA : return address.
// SP : address of last argument in argument array.
// SP + 4*S4 - 4 : address of first argument in argument array.
// SP + 4*S4 : address of return value.
// S5 : address of the runtime function to call.
// S4 : number of arguments to the call.
void StubCode::GenerateCallToRuntimeStub(Assembler* assembler) {
const intptr_t thread_offset = NativeArguments::thread_offset();
const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset();
const intptr_t argv_offset = NativeArguments::argv_offset();
const intptr_t retval_offset = NativeArguments::retval_offset();
__ SetPrologueOffset();
__ Comment("CallToRuntimeStub");
__ EnterStubFrame();
// Save exit frame information to enable stack walking as we are about
// to transition to Dart VM C++ code.
__ sw(FP, Address(THR, Thread::top_exit_frame_info_offset()));
#if defined(DEBUG)
{
Label ok;
// Check that we are always entering from Dart code.
__ lw(T0, Assembler::VMTagAddress());
__ BranchEqual(T0, Immediate(VMTag::kDartTagId), &ok);
__ Stop("Not coming from Dart code.");
__ Bind(&ok);
}
#endif
// Mark that the thread is executing VM code.
__ sw(S5, Assembler::VMTagAddress());
// Reserve space for arguments and align frame before entering C++ world.
// NativeArguments are passed in registers.
ASSERT(sizeof(NativeArguments) == 4 * kWordSize);
__ ReserveAlignedFrameSpace(4 * kWordSize); // Reserve space for arguments.
// Pass NativeArguments structure by value and call runtime.
// Registers A0, A1, A2, and A3 are used.
ASSERT(thread_offset == 0 * kWordSize);
// Set thread in NativeArgs.
__ mov(A0, THR);
// There are no runtime calls to closures, so we do not need to set the tag
// bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_.
ASSERT(argc_tag_offset == 1 * kWordSize);
__ mov(A1, S4); // Set argc in NativeArguments.
ASSERT(argv_offset == 2 * kWordSize);
__ sll(A2, S4, 2);
__ addu(A2, FP, A2); // Compute argv.
// Set argv in NativeArguments.
__ addiu(A2, A2, Immediate(kParamEndSlotFromFp * kWordSize));
// Call runtime or redirection via simulator.
// We defensively always jalr through T9 because it is sometimes required by
// the MIPS ABI.
__ mov(T9, S5);
__ jalr(T9);
ASSERT(retval_offset == 3 * kWordSize);
// Retval is next to 1st argument.
__ delay_slot()->addiu(A3, A2, Immediate(kWordSize));
__ Comment("CallToRuntimeStub return");
// Mark that the thread is executing Dart code.
__ LoadImmediate(A2, VMTag::kDartTagId);
__ sw(A2, Assembler::VMTagAddress());
// Reset exit frame information in Isolate structure.
__ sw(ZR, Address(THR, Thread::top_exit_frame_info_offset()));
__ LeaveStubFrameAndReturn();
}
// Print the stop message.
DEFINE_LEAF_RUNTIME_ENTRY(void, PrintStopMessage, 1, const char* message) {
OS::Print("Stop message: %s\n", message);
}
END_LEAF_RUNTIME_ENTRY
// Input parameters:
// A0 : stop message (const char*).
// Must preserve all registers.
void StubCode::GeneratePrintStopMessageStub(Assembler* assembler) {
__ EnterCallRuntimeFrame(0);
// Call the runtime leaf function. A0 already contains the parameter.
__ CallRuntime(kPrintStopMessageRuntimeEntry, 1);
__ LeaveCallRuntimeFrame();
__ Ret();
}
// Input parameters:
// RA : return address.
// SP : address of return value.
// T5 : address of the native function to call.
// A2 : address of first argument in argument array.
// A1 : argc_tag including number of arguments and function kind.
void StubCode::GenerateCallNativeCFunctionStub(Assembler* assembler) {
const intptr_t thread_offset = NativeArguments::thread_offset();
const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset();
const intptr_t argv_offset = NativeArguments::argv_offset();
const intptr_t retval_offset = NativeArguments::retval_offset();
__ SetPrologueOffset();
__ Comment("CallNativeCFunctionStub");
__ EnterStubFrame();
// Save exit frame information to enable stack walking as we are about
// to transition to native code.
__ sw(FP, Address(THR, Thread::top_exit_frame_info_offset()));
#if defined(DEBUG)
{
Label ok;
// Check that we are always entering from Dart code.
__ lw(T0, Assembler::VMTagAddress());
__ BranchEqual(T0, Immediate(VMTag::kDartTagId), &ok);
__ Stop("Not coming from Dart code.");
__ Bind(&ok);
}
#endif
// Mark that the thread is executing native code.
__ sw(T5, Assembler::VMTagAddress());
// Initialize NativeArguments structure and call native function.
// Registers A0, A1, A2, and A3 are used.
ASSERT(thread_offset == 0 * kWordSize);
// Set thread in NativeArgs.
__ mov(A0, THR);
// There are no native calls to closures, so we do not need to set the tag
// bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_.
ASSERT(argc_tag_offset == 1 * kWordSize);
// Set argc in NativeArguments: A1 already contains argc.
ASSERT(argv_offset == 2 * kWordSize);
// Set argv in NativeArguments: A2 already contains argv.
ASSERT(retval_offset == 3 * kWordSize);
// Set retval in NativeArgs.
__ addiu(A3, FP, Immediate(kCallerSpSlotFromFp * kWordSize));
// Passing the structure by value as in runtime calls would require changing
// Dart API for native functions.
// For now, space is reserved on the stack and we pass a pointer to it.
__ addiu(SP, SP, Immediate(-4 * kWordSize));
__ sw(A3, Address(SP, 3 * kWordSize));
__ sw(A2, Address(SP, 2 * kWordSize));
__ sw(A1, Address(SP, 1 * kWordSize));
__ sw(A0, Address(SP, 0 * kWordSize));
__ mov(A0, SP); // Pass the pointer to the NativeArguments.
__ mov(A1, T5); // Pass the function entrypoint.
__ ReserveAlignedFrameSpace(2 * kWordSize); // Just passing A0, A1.
// Call native wrapper function or redirection via simulator.
__ lw(T9, Address(THR, Thread::native_call_wrapper_entry_point_offset()));
__ jalr(T9);
__ Comment("CallNativeCFunctionStub return");
// Mark that the thread is executing Dart code.
__ LoadImmediate(A2, VMTag::kDartTagId);
__ sw(A2, Assembler::VMTagAddress());
// Reset exit frame information in Isolate structure.
__ sw(ZR, Address(THR, Thread::top_exit_frame_info_offset()));
__ LeaveStubFrameAndReturn();
}
// Input parameters:
// RA : return address.
// SP : address of return value.
// T5 : address of the native function to call.
// A2 : address of first argument in argument array.
// A1 : argc_tag including number of arguments and function kind.
void StubCode::GenerateCallBootstrapCFunctionStub(Assembler* assembler) {
const intptr_t thread_offset = NativeArguments::thread_offset();
const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset();
const intptr_t argv_offset = NativeArguments::argv_offset();
const intptr_t retval_offset = NativeArguments::retval_offset();
__ SetPrologueOffset();
__ Comment("CallNativeCFunctionStub");
__ EnterStubFrame();
// Save exit frame information to enable stack walking as we are about
// to transition to native code.
__ sw(FP, Address(THR, Thread::top_exit_frame_info_offset()));
#if defined(DEBUG)
{
Label ok;
// Check that we are always entering from Dart code.
__ lw(T0, Assembler::VMTagAddress());
__ BranchEqual(T0, Immediate(VMTag::kDartTagId), &ok);
__ Stop("Not coming from Dart code.");
__ Bind(&ok);
}
#endif
// Mark that the thread is executing native code.
__ sw(T5, Assembler::VMTagAddress());
// Initialize NativeArguments structure and call native function.
// Registers A0, A1, A2, and A3 are used.
ASSERT(thread_offset == 0 * kWordSize);
// Set thread in NativeArgs.
__ mov(A0, THR);
// There are no native calls to closures, so we do not need to set the tag
// bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_.
ASSERT(argc_tag_offset == 1 * kWordSize);
// Set argc in NativeArguments: A1 already contains argc.
ASSERT(argv_offset == 2 * kWordSize);
// Set argv in NativeArguments: A2 already contains argv.
ASSERT(retval_offset == 3 * kWordSize);
// Set retval in NativeArgs.
__ addiu(A3, FP, Immediate(kCallerSpSlotFromFp * kWordSize));
// Passing the structure by value as in runtime calls would require changing
// Dart API for native functions.
// For now, space is reserved on the stack and we pass a pointer to it.
__ addiu(SP, SP, Immediate(-4 * kWordSize));
__ sw(A3, Address(SP, 3 * kWordSize));
__ sw(A2, Address(SP, 2 * kWordSize));
__ sw(A1, Address(SP, 1 * kWordSize));
__ sw(A0, Address(SP, 0 * kWordSize));
__ mov(A0, SP); // Pass the pointer to the NativeArguments.
__ ReserveAlignedFrameSpace(kWordSize); // Just passing A0.
// Call native function or redirection via simulator.
// We defensively always jalr through T9 because it is sometimes required by
// the MIPS ABI.
__ mov(T9, T5);
__ jalr(T9);
__ Comment("CallNativeCFunctionStub return");
// Mark that the thread is executing Dart code.
__ LoadImmediate(A2, VMTag::kDartTagId);
__ sw(A2, Assembler::VMTagAddress());
// Reset exit frame information in Isolate structure.
__ sw(ZR, Address(THR, Thread::top_exit_frame_info_offset()));
__ LeaveStubFrameAndReturn();
}
// Input parameters:
// S4: arguments descriptor array.
void StubCode::GenerateCallStaticFunctionStub(Assembler* assembler) {
__ Comment("CallStaticFunctionStub");
__ EnterStubFrame();
// Setup space on stack for return value and preserve arguments descriptor.
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(S4, Address(SP, 1 * kWordSize));
__ sw(ZR, Address(SP, 0 * kWordSize));
__ CallRuntime(kPatchStaticCallRuntimeEntry, 0);
__ Comment("CallStaticFunctionStub return");
// Get Code object result and restore arguments descriptor array.
__ lw(CODE_REG, Address(SP, 0 * kWordSize));
__ lw(S4, Address(SP, 1 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
__ lw(T0, FieldAddress(CODE_REG, Code::entry_point_offset()));
// Remove the stub frame as we are about to jump to the dart function.
__ LeaveStubFrameAndReturn(T0);
}
// Called from a static call only when an invalid code has been entered
// (invalid because its function was optimized or deoptimized).
// S4: arguments descriptor array.
void StubCode::GenerateFixCallersTargetStub(Assembler* assembler) {
// Load code pointer to this stub from the thread:
// The one that is passed in, is not correct - it points to the code object
// that needs to be replaced.
__ lw(CODE_REG, Address(THR, Thread::fix_callers_target_code_offset()));
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Setup space on stack for return value and preserve arguments descriptor.
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(S4, Address(SP, 1 * kWordSize));
__ sw(ZR, Address(SP, 0 * kWordSize));
__ CallRuntime(kFixCallersTargetRuntimeEntry, 0);
// Get Code object result and restore arguments descriptor array.
__ lw(CODE_REG, Address(SP, 0 * kWordSize));
__ lw(S4, Address(SP, 1 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
// Jump to the dart function.
__ lw(T0, FieldAddress(CODE_REG, Code::entry_point_offset()));
// Remove the stub frame.
__ LeaveStubFrameAndReturn(T0);
}
// Called from object allocate instruction when the allocation stub has been
// disabled.
void StubCode::GenerateFixAllocationStubTargetStub(Assembler* assembler) {
// Load code pointer to this stub from the thread:
// The one that is passed in, is not correct - it points to the code object
// that needs to be replaced.
__ lw(CODE_REG, Address(THR, Thread::fix_allocation_stub_code_offset()));
__ EnterStubFrame();
// Setup space on stack for return value.
__ addiu(SP, SP, Immediate(-1 * kWordSize));
__ sw(ZR, Address(SP, 0 * kWordSize));
__ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0);
// Get Code object result.
__ lw(CODE_REG, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(1 * kWordSize));
// Jump to the dart function.
__ lw(T0, FieldAddress(CODE_REG, Code::entry_point_offset()));
// Remove the stub frame.
__ LeaveStubFrameAndReturn(T0);
}
// Input parameters:
// A1: Smi-tagged argument count, may be zero.
// FP[kParamEndSlotFromFp + 1]: Last argument.
static void PushArgumentsArray(Assembler* assembler) {
__ Comment("PushArgumentsArray");
// Allocate array to store arguments of caller.
__ LoadObject(A0, Object::null_object());
// A0: Null element type for raw Array.
// A1: Smi-tagged argument count, may be zero.
__ BranchLink(*StubCode::AllocateArray_entry());
__ Comment("PushArgumentsArray return");
// V0: newly allocated array.
// A1: Smi-tagged argument count, may be zero (was preserved by the stub).
__ Push(V0); // Array is in V0 and on top of stack.
__ sll(T1, A1, 1);
__ addu(T1, FP, T1);
__ AddImmediate(T1, kParamEndSlotFromFp * kWordSize);
// T1: address of first argument on stack.
// T2: address of first argument in array.
Label loop, loop_exit;
__ blez(A1, &loop_exit);
__ delay_slot()->addiu(T2, V0,
Immediate(Array::data_offset() - kHeapObjectTag));
__ Bind(&loop);
__ lw(T3, Address(T1));
__ addiu(A1, A1, Immediate(-Smi::RawValue(1)));
__ addiu(T1, T1, Immediate(-kWordSize));
__ addiu(T2, T2, Immediate(kWordSize));
__ bgez(A1, &loop);
__ delay_slot()->sw(T3, Address(T2, -kWordSize));
__ Bind(&loop_exit);
}
// Used by eager and lazy deoptimization. Preserve result in V0 if necessary.
// This stub translates optimized frame into unoptimized frame. The optimized
// frame can contain values in registers and on stack, the unoptimized
// frame contains all values on stack.
// Deoptimization occurs in following steps:
// - Push all registers that can contain values.
// - Call C routine to copy the stack and saved registers into temporary buffer.
// - Adjust caller's frame to correct unoptimized frame size.
// - Fill the unoptimized frame.
// - Materialize objects that require allocation (e.g. Double instances).
// GC can occur only after frame is fully rewritten.
// Stack after EnterFrame(...) below:
// +------------------+
// | Saved PP | <- TOS
// +------------------+
// | Saved CODE_REG |
// +------------------+
// | Saved FP | <- FP of stub
// +------------------+
// | Saved LR | (deoptimization point)
// +------------------+
// | Saved CODE_REG |
// +------------------+
// | ... | <- SP of optimized frame
//
// Parts of the code cannot GC, part of the code can GC.
static void GenerateDeoptimizationSequence(Assembler* assembler,
DeoptStubKind kind) {
const intptr_t kPushedRegistersSize =
kNumberOfCpuRegisters * kWordSize + kNumberOfFRegisters * kWordSize;
__ SetPrologueOffset();
__ Comment("GenerateDeoptimizationSequence");
// DeoptimizeCopyFrame expects a Dart frame.
__ EnterStubFrame(kPushedRegistersSize);
// The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry
// and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls.
const intptr_t saved_result_slot_from_fp =
kFirstLocalSlotFromFp + 1 - (kNumberOfCpuRegisters - V0);
const intptr_t saved_exception_slot_from_fp =
kFirstLocalSlotFromFp + 1 - (kNumberOfCpuRegisters - V0);
const intptr_t saved_stacktrace_slot_from_fp =
kFirstLocalSlotFromFp + 1 - (kNumberOfCpuRegisters - V1);
// Result in V0 is preserved as part of pushing all registers below.
// Push registers in their enumeration order: lowest register number at
// lowest address.
for (int i = 0; i < kNumberOfCpuRegisters; i++) {
const int slot = kNumberOfCpuRegisters - i;
Register reg = static_cast<Register>(i);
if (reg == CODE_REG) {
// Save the original value of CODE_REG pushed before invoking this stub
// instead of the value used to call this stub.
COMPILE_ASSERT(TMP < CODE_REG); // Assert TMP is pushed first.
__ lw(TMP, Address(FP, kCallerSpSlotFromFp * kWordSize));
__ sw(TMP, Address(SP, kPushedRegistersSize - slot * kWordSize));
} else {
__ sw(reg, Address(SP, kPushedRegistersSize - slot * kWordSize));
}
}
for (int i = 0; i < kNumberOfFRegisters; i++) {
// These go below the CPU registers.
const int slot = kNumberOfCpuRegisters + kNumberOfFRegisters - i;
FRegister reg = static_cast<FRegister>(i);
__ swc1(reg, Address(SP, kPushedRegistersSize - slot * kWordSize));
}
__ mov(A0, SP); // Pass address of saved registers block.
bool is_lazy =
(kind == kLazyDeoptFromReturn) || (kind == kLazyDeoptFromThrow);
__ LoadImmediate(A1, is_lazy ? 1 : 0);
__ ReserveAlignedFrameSpace(1 * kWordSize);
__ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry, 2);
// Result (V0) is stack-size (FP - SP) in bytes, incl. the return address.
if (kind == kLazyDeoptFromReturn) {
// Restore result into T1 temporarily.
__ lw(T1, Address(FP, saved_result_slot_from_fp * kWordSize));
} else if (kind == kLazyDeoptFromThrow) {
// Restore result into T1 temporarily.
__ lw(T1, Address(FP, saved_exception_slot_from_fp * kWordSize));
__ lw(T2, Address(FP, saved_stacktrace_slot_from_fp * kWordSize));
}
__ RestoreCodePointer();
__ LeaveDartFrame();
__ subu(SP, FP, V0);
// DeoptimizeFillFrame expects a Dart frame, i.e. EnterDartFrame(0), but there
// is no need to set the correct PC marker or load PP, since they get patched.
__ EnterStubFrame();
__ mov(A0, FP); // Get last FP address.
if (kind == kLazyDeoptFromReturn) {
__ Push(T1); // Preserve result as first local.
} else if (kind == kLazyDeoptFromThrow) {
__ Push(T1); // Preserve exception as first local.
__ Push(T2); // Preserve stacktrace as second local.
}
__ ReserveAlignedFrameSpace(1 * kWordSize);
__ CallRuntime(kDeoptimizeFillFrameRuntimeEntry, 1); // Pass last FP in A0.
if (kind == kLazyDeoptFromReturn) {
// Restore result into T1.
__ lw(T1, Address(FP, kFirstLocalSlotFromFp * kWordSize));
} else if (kind == kLazyDeoptFromThrow) {
// Restore result into T1.
__ lw(T1, Address(FP, kFirstLocalSlotFromFp * kWordSize));
__ lw(T2, Address(FP, (kFirstLocalSlotFromFp - 1) * kWordSize));
}
// Code above cannot cause GC.
__ RestoreCodePointer();
__ LeaveStubFrame();
// Frame is fully rewritten at this point and it is safe to perform a GC.
// Materialize any objects that were deferred by FillFrame because they
// require allocation.
// Enter stub frame with loading PP. The caller's PP is not materialized yet.
__ EnterStubFrame();
if (kind == kLazyDeoptFromReturn) {
__ Push(T1); // Preserve result, it will be GC-d here.
} else if (kind == kLazyDeoptFromThrow) {
__ Push(T1); // Preserve exception, it will be GC-d here.
__ Push(T2); // Preserve stacktrace, it will be GC-d here.
}
__ PushObject(Smi::ZoneHandle()); // Space for the result.
__ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0);
// Result tells stub how many bytes to remove from the expression stack
// of the bottom-most frame. They were used as materialization arguments.
__ Pop(T1);
if (kind == kLazyDeoptFromReturn) {
__ Pop(V0); // Restore result.
} else if (kind == kLazyDeoptFromThrow) {
__ Pop(V1); // Restore stacktrace.
__ Pop(V0); // Restore exception.
}
__ LeaveStubFrame();
// Remove materialization arguments.
__ SmiUntag(T1);
__ addu(SP, SP, T1);
// The caller is responsible for emitting the return instruction.
}
// V0: result, must be preserved
void StubCode::GenerateDeoptimizeLazyFromReturnStub(Assembler* assembler) {
// Push zap value instead of CODE_REG for lazy deopt.
__ LoadImmediate(TMP, kZapCodeReg);
__ Push(TMP);
// Return address for "call" to deopt stub.
__ LoadImmediate(RA, kZapReturnAddress);
__ lw(CODE_REG, Address(THR, Thread::lazy_deopt_from_return_stub_offset()));
GenerateDeoptimizationSequence(assembler, kLazyDeoptFromReturn);
__ Ret();
}
// V0: exception, must be preserved
// V1: stacktrace, must be preserved
void StubCode::GenerateDeoptimizeLazyFromThrowStub(Assembler* assembler) {
// Push zap value instead of CODE_REG for lazy deopt.
__ LoadImmediate(TMP, kZapCodeReg);
__ Push(TMP);
// Return address for "call" to deopt stub.
__ LoadImmediate(RA, kZapReturnAddress);
__ lw(CODE_REG, Address(THR, Thread::lazy_deopt_from_throw_stub_offset()));
GenerateDeoptimizationSequence(assembler, kLazyDeoptFromThrow);
__ Ret();
}
void StubCode::GenerateDeoptimizeStub(Assembler* assembler) {
GenerateDeoptimizationSequence(assembler, kEagerDeopt);
__ Ret();
}
static void GenerateDispatcherCode(Assembler* assembler,
Label* call_target_function) {
__ Comment("NoSuchMethodDispatch");
// When lazily generated invocation dispatchers are disabled, the
// miss-handler may return null.
__ BranchNotEqual(T0, Object::null_object(), call_target_function);
__ EnterStubFrame();
// Load the receiver.
__ lw(A1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ sll(TMP, A1, 1); // A1 is a Smi.
__ addu(TMP, FP, TMP);
__ lw(T6, Address(TMP, kParamEndSlotFromFp * kWordSize));
// Push space for the return value.
// Push the receiver.
// Push ICData/MegamorphicCache object.
// Push arguments descriptor array.
// Push original arguments array.
__ addiu(SP, SP, Immediate(-4 * kWordSize));
__ sw(ZR, Address(SP, 3 * kWordSize));
__ sw(T6, Address(SP, 2 * kWordSize));
__ sw(S5, Address(SP, 1 * kWordSize));
__ sw(S4, Address(SP, 0 * kWordSize));
// A1: Smi-tagged arguments array length.
PushArgumentsArray(assembler);
const intptr_t kNumArgs = 4;
__ CallRuntime(kInvokeNoSuchMethodDispatcherRuntimeEntry, kNumArgs);
__ lw(V0, Address(SP, 4 * kWordSize)); // Return value.
__ addiu(SP, SP, Immediate(5 * kWordSize));
__ LeaveStubFrame();
__ Ret();
}
void StubCode::GenerateMegamorphicMissStub(Assembler* assembler) {
__ EnterStubFrame();
// Load the receiver.
__ lw(T2, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ sll(T2, T2, 1); // T2 is a Smi.
__ addu(TMP, FP, T2);
__ lw(T6, Address(TMP, kParamEndSlotFromFp * kWordSize));
// Preserve IC data and arguments descriptor.
__ addiu(SP, SP, Immediate(-6 * kWordSize));
__ sw(S5, Address(SP, 5 * kWordSize));
__ sw(S4, Address(SP, 4 * kWordSize));
// Push space for the return value.
// Push the receiver.
// Push IC data object.
// Push arguments descriptor array.
__ sw(ZR, Address(SP, 3 * kWordSize));
__ sw(T6, Address(SP, 2 * kWordSize));
__ sw(S5, Address(SP, 1 * kWordSize));
__ sw(S4, Address(SP, 0 * kWordSize));
__ CallRuntime(kMegamorphicCacheMissHandlerRuntimeEntry, 3);
__ lw(T0, Address(SP, 3 * kWordSize)); // Get result function.
__ lw(S4, Address(SP, 4 * kWordSize)); // Restore argument descriptor.
__ lw(S5, Address(SP, 5 * kWordSize)); // Restore IC data.
__ addiu(SP, SP, Immediate(6 * kWordSize));
__ RestoreCodePointer();
__ LeaveStubFrame();
if (!FLAG_lazy_dispatchers) {
Label call_target_function;
GenerateDispatcherCode(assembler, &call_target_function);
__ Bind(&call_target_function);
}
__ lw(CODE_REG, FieldAddress(T0, Function::code_offset()));
__ lw(T2, FieldAddress(T0, Function::entry_point_offset()));
__ jr(T2);
}
// Called for inline allocation of arrays.
// Input parameters:
// RA: return address.
// A1: Array length as Smi (must be preserved).
// A0: array element type (either NULL or an instantiated type).
// NOTE: A1 cannot be clobbered here as the caller relies on it being saved.
// The newly allocated object is returned in V0.
void StubCode::GenerateAllocateArrayStub(Assembler* assembler) {
__ Comment("AllocateArrayStub");
Label slow_case;
// Compute the size to be allocated, it is based on the array length
// and is computed as:
// RoundedAllocationSize((array_length * kwordSize) + sizeof(RawArray)).
__ mov(T3, A1); // Array length.
// Check that length is a positive Smi.
__ andi(CMPRES1, T3, Immediate(kSmiTagMask));
if (FLAG_use_slow_path) {
__ b(&slow_case);
} else {
__ bne(CMPRES1, ZR, &slow_case);
}
__ bltz(T3, &slow_case);
// Check for maximum allowed length.
const intptr_t max_len =
reinterpret_cast<int32_t>(Smi::New(Array::kMaxElements));
__ BranchUnsignedGreater(T3, Immediate(max_len), &slow_case);
const intptr_t cid = kArrayCid;
NOT_IN_PRODUCT(__ MaybeTraceAllocation(kArrayCid, T4, &slow_case));
const intptr_t fixed_size = sizeof(RawArray) + kObjectAlignment - 1;
__ LoadImmediate(T2, fixed_size);
__ sll(T3, T3, 1); // T3 is a Smi.
__ addu(T2, T2, T3);
ASSERT(kSmiTagShift == 1);
__ LoadImmediate(T3, ~(kObjectAlignment - 1));
__ and_(T2, T2, T3);
// T2: Allocation size.
Heap::Space space = Heap::kNew;
__ lw(T3, Address(THR, Thread::heap_offset()));
// Potential new object start.
__ lw(T0, Address(T3, Heap::TopOffset(space)));
__ addu(T1, T0, T2); // Potential next object start.
__ BranchUnsignedLess(T1, T0, &slow_case); // Branch on unsigned overflow.
// Check if the allocation fits into the remaining space.
// T0: potential new object start.
// T1: potential next object start.
// T2: allocation size.
// T3: heap.
__ lw(T4, Address(T3, Heap::EndOffset(space)));
__ BranchUnsignedGreaterEqual(T1, T4, &slow_case);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
// T3: heap.
__ sw(T1, Address(T3, Heap::TopOffset(space)));
__ addiu(T0, T0, Immediate(kHeapObjectTag));
NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, T2, T4, space));
// Initialize the tags.
// T0: new object start as a tagged pointer.
// T1: new object end address.
// T2: allocation size.
{
Label overflow, done;
const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2;
__ BranchUnsignedGreater(T2, Immediate(RawObject::SizeTag::kMaxSizeTag),
&overflow);
__ b(&done);
__ delay_slot()->sll(T2, T2, shift);
__ Bind(&overflow);
__ mov(T2, ZR);
__ Bind(&done);
// Get the class index and insert it into the tags.
// T2: size and bit tags.
__ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid));
__ or_(T2, T2, TMP);
__ sw(T2, FieldAddress(T0, Array::tags_offset())); // Store tags.
}
// T0: new object start as a tagged pointer.
// T1: new object end address.
// Store the type argument field.
__ StoreIntoObjectNoBarrier(
T0, FieldAddress(T0, Array::type_arguments_offset()), A0);
// Set the length field.
__ StoreIntoObjectNoBarrier(T0, FieldAddress(T0, Array::length_offset()), A1);
__ LoadObject(T7, Object::null_object());
// Initialize all array elements to raw_null.
// T0: new object start as a tagged pointer.
// T1: new object end address.
// T2: iterator which initially points to the start of the variable
// data area to be initialized.
// T7: null.
__ AddImmediate(T2, T0, sizeof(RawArray) - kHeapObjectTag);
Label done;
Label init_loop;
__ Bind(&init_loop);
__ BranchUnsignedGreaterEqual(T2, T1, &done);
__ sw(T7, Address(T2, 0));
__ b(&init_loop);
__ delay_slot()->addiu(T2, T2, Immediate(kWordSize));
__ Bind(&done);
__ Ret(); // Returns the newly allocated object in V0.
__ delay_slot()->mov(V0, T0);
// Unable to allocate the array using the fast inline code, just call
// into the runtime.
__ Bind(&slow_case);
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Setup space on stack for return value.
// Push array length as Smi and element type.
__ addiu(SP, SP, Immediate(-3 * kWordSize));
__ sw(ZR, Address(SP, 2 * kWordSize));
__ sw(A1, Address(SP, 1 * kWordSize));
__ sw(A0, Address(SP, 0 * kWordSize));
__ CallRuntime(kAllocateArrayRuntimeEntry, 2);
__ Comment("AllocateArrayStub return");
// Pop arguments; result is popped in IP.
__ lw(V0, Address(SP, 2 * kWordSize));
__ lw(A1, Address(SP, 1 * kWordSize));
__ lw(A0, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(3 * kWordSize));
__ LeaveStubFrameAndReturn();
}
// Called when invoking Dart code from C++ (VM code).
// Input parameters:
// RA : points to return address.
// A0 : code object of the Dart function to call.
// A1 : arguments descriptor array.
// A2 : arguments array.
// A3 : current thread.
void StubCode::GenerateInvokeDartCodeStub(Assembler* assembler) {
// Save frame pointer coming in.
__ Comment("InvokeDartCodeStub");
__ EnterFrame();
// Push code object to PC marker slot.
__ lw(TMP, Address(A3, Thread::invoke_dart_code_stub_offset()));
__ Push(TMP);
// Save new context and C++ ABI callee-saved registers.
// The saved vm tag, top resource, and top exit frame info.
const intptr_t kPreservedSlots = 3;
const intptr_t kPreservedRegSpace =
kWordSize *
(kAbiPreservedCpuRegCount + kAbiPreservedFpuRegCount + kPreservedSlots);
__ addiu(SP, SP, Immediate(-kPreservedRegSpace));
for (int i = S0; i <= S7; i++) {
Register r = static_cast<Register>(i);
const intptr_t slot = i - S0 + kPreservedSlots;
__ sw(r, Address(SP, slot * kWordSize));
}
for (intptr_t i = kAbiFirstPreservedFpuReg; i <= kAbiLastPreservedFpuReg;
i++) {
FRegister r = static_cast<FRegister>(i);
const intptr_t slot = kAbiPreservedCpuRegCount + kPreservedSlots + i -
kAbiFirstPreservedFpuReg;
__ swc1(r, Address(SP, slot * kWordSize));
}
// We now load the pool pointer(PP) with a GC safe value as we are about
// to invoke dart code.
__ LoadImmediate(PP, 0);
// Set up THR, which caches the current thread in Dart code.
if (THR != A3) {
__ mov(THR, A3);
}
// Save the current VMTag on the stack.
__ lw(T1, Assembler::VMTagAddress());
__ sw(T1, Address(SP, 2 * kWordSize));
// Mark that the thread is executing Dart code.
__ LoadImmediate(T0, VMTag::kDartTagId);
__ sw(T0, Assembler::VMTagAddress());
// Save top resource and top exit frame info. Use T0 as a temporary register.
// StackFrameIterator reads the top exit frame info saved in this frame.
__ lw(T0, Address(THR, Thread::top_resource_offset()));
__ sw(ZR, Address(THR, Thread::top_resource_offset()));
__ sw(T0, Address(SP, 1 * kWordSize));
__ lw(T0, Address(THR, Thread::top_exit_frame_info_offset()));
__ sw(ZR, Address(THR, Thread::top_exit_frame_info_offset()));
// kExitLinkSlotFromEntryFp must be kept in sync with the code below.
ASSERT(kExitLinkSlotFromEntryFp == -24);
__ sw(T0, Address(SP, 0 * kWordSize));
// After the call, The stack pointer is restored to this location.
// Pushed S0-7, F20-31, T0, T0, T1 = 23.
// Load arguments descriptor array into S4, which is passed to Dart code.
__ lw(S4, Address(A1, VMHandles::kOffsetOfRawPtrInHandle));
// Load number of arguments into S5.
__ lw(T1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ SmiUntag(T1);
// Compute address of 'arguments array' data area into A2.
__ lw(A2, Address(A2, VMHandles::kOffsetOfRawPtrInHandle));
// Set up arguments for the Dart call.
Label push_arguments;
Label done_push_arguments;
__ beq(T1, ZR, &done_push_arguments); // check if there are arguments.
__ delay_slot()->addiu(A2, A2,
Immediate(Array::data_offset() - kHeapObjectTag));
__ mov(A1, ZR);
__ Bind(&push_arguments);
__ lw(A3, Address(A2));
__ Push(A3);
__ addiu(A1, A1, Immediate(1));
__ BranchSignedLess(A1, T1, &push_arguments);
__ delay_slot()->addiu(A2, A2, Immediate(kWordSize));
__ Bind(&done_push_arguments);
// Call the Dart code entrypoint.
// We are calling into Dart code, here, so there is no need to call through
// T9 to match the ABI.
__ lw(CODE_REG, Address(A0, VMHandles::kOffsetOfRawPtrInHandle));
__ lw(A0, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ jalr(A0); // S4 is the arguments descriptor array.
__ Comment("InvokeDartCodeStub return");
// Get rid of arguments pushed on the stack.
__ AddImmediate(SP, FP, kExitLinkSlotFromEntryFp * kWordSize);
// Restore the current VMTag from the stack.
__ lw(T1, Address(SP, 2 * kWordSize));
__ sw(T1, Assembler::VMTagAddress());
// Restore the saved top resource and top exit frame info back into the
// Isolate structure. Uses T0 as a temporary register for this.
__ lw(T0, Address(SP, 1 * kWordSize));
__ sw(T0, Address(THR, Thread::top_resource_offset()));
__ lw(T0, Address(SP, 0 * kWordSize));
__ sw(T0, Address(THR, Thread::top_exit_frame_info_offset()));
// Restore C++ ABI callee-saved registers.
for (int i = S0; i <= S7; i++) {
Register r = static_cast<Register>(i);
const intptr_t slot = i - S0 + kPreservedSlots;
__ lw(r, Address(SP, slot * kWordSize));
}
for (intptr_t i = kAbiFirstPreservedFpuReg; i <= kAbiLastPreservedFpuReg;
i++) {
FRegister r = static_cast<FRegister>(i);
const intptr_t slot = kAbiPreservedCpuRegCount + kPreservedSlots + i -
kAbiFirstPreservedFpuReg;
__ lwc1(r, Address(SP, slot * kWordSize));
}
__ addiu(SP, SP, Immediate(kPreservedRegSpace));
// Restore the frame pointer and return.
__ LeaveFrameAndReturn();
}
// Called for inline allocation of contexts.
// Input:
// T1: number of context variables.
// Output:
// V0: new allocated RawContext object.
void StubCode::GenerateAllocateContextStub(Assembler* assembler) {
__ Comment("AllocateContext");
if (FLAG_inline_alloc) {
Label slow_case;
// First compute the rounded instance size.
// T1: number of context variables.
intptr_t fixed_size = sizeof(RawContext) + kObjectAlignment - 1;
__ LoadImmediate(T2, fixed_size);
__ sll(T0, T1, 2);
__ addu(T2, T2, T0);
ASSERT(kSmiTagShift == 1);
__ LoadImmediate(T0, ~((kObjectAlignment)-1));
__ and_(T2, T2, T0);
NOT_IN_PRODUCT(__ MaybeTraceAllocation(kContextCid, T4, &slow_case));
// Now allocate the object.
// T1: number of context variables.
// T2: object size.
const intptr_t cid = kContextCid;
Heap::Space space = Heap::kNew;
__ lw(T5, Address(THR, Thread::heap_offset()));
__ lw(V0, Address(T5, Heap::TopOffset(space)));
__ addu(T3, T2, V0);
// Check if the allocation fits into the remaining space.
// V0: potential new object.
// T1: number of context variables.
// T2: object size.
// T3: potential next object start.
// T5: heap.
__ lw(CMPRES1, Address(T5, Heap::EndOffset(space)));
if (FLAG_use_slow_path) {
__ b(&slow_case);
} else {
__ BranchUnsignedGreaterEqual(T3, CMPRES1, &slow_case);
}
// Successfully allocated the object, now update top to point to
// next object start and initialize the object.
// V0: new object.
// T1: number of context variables.
// T2: object size.
// T3: next object start.
// T5: heap.
__ sw(T3, Address(T5, Heap::TopOffset(space)));
__ addiu(V0, V0, Immediate(kHeapObjectTag));
NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, T2, T5, space));
// Calculate the size tag.
// V0: new object.
// T1: number of context variables.
// T2: object size.
const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2;
__ LoadImmediate(TMP, RawObject::SizeTag::kMaxSizeTag);
__ sltu(CMPRES1, TMP, T2); // CMPRES1 = T2 > TMP ? 1 : 0.
__ movn(T2, ZR, CMPRES1); // T2 = CMPRES1 != 0 ? 0 : T2.
__ sll(TMP, T2, shift); // TMP = T2 << shift.
__ movz(T2, TMP, CMPRES1); // T2 = CMPRES1 == 0 ? TMP : T2.
// Get the class index and insert it into the tags.
// T2: size and bit tags.
__ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid));
__ or_(T2, T2, TMP);
__ sw(T2, FieldAddress(V0, Context::tags_offset()));
// Setup up number of context variables field.
// V0: new object.
// T1: number of context variables as integer value (not object).
__ sw(T1, FieldAddress(V0, Context::num_variables_offset()));
__ LoadObject(T7, Object::null_object());
// Initialize the context variables.
// V0: new object.
// T1: number of context variables.
Label loop, loop_exit;
__ blez(T1, &loop_exit);
// Setup the parent field.
__ delay_slot()->sw(T7, FieldAddress(V0, Context::parent_offset()));
__ AddImmediate(T3, V0, Context::variable_offset(0) - kHeapObjectTag);
__ sll(T1, T1, 2);
__ Bind(&loop);
__ addiu(T1, T1, Immediate(-kWordSize));
__ addu(T4, T3, T1);
__ bgtz(T1, &loop);
__ delay_slot()->sw(T7, Address(T4));
__ Bind(&loop_exit);
// Done allocating and initializing the context.
// V0: new object.
__ Ret();
__ Bind(&slow_case);
}
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Setup space on stack for return value.
__ SmiTag(T1);
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ LoadObject(TMP, Object::null_object());
__ sw(TMP, Address(SP, 1 * kWordSize)); // Store null.
__ sw(T1, Address(SP, 0 * kWordSize));
__ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context.
__ lw(V0, Address(SP, 1 * kWordSize)); // Get the new context.
__ addiu(SP, SP, Immediate(2 * kWordSize)); // Pop argument and return.
// V0: new object
// Restore the frame pointer.
__ LeaveStubFrameAndReturn();
}
// Helper stub to implement Assembler::StoreIntoObject.
// Input parameters:
// T0: Address (i.e. object) being stored into.
void StubCode::GenerateUpdateStoreBufferStub(Assembler* assembler) {
// Save values being destroyed.
__ Comment("UpdateStoreBufferStub");
__ addiu(SP, SP, Immediate(-3 * kWordSize));
__ sw(T3, Address(SP, 2 * kWordSize));
__ sw(T2, Address(SP, 1 * kWordSize));
__ sw(T1, Address(SP, 0 * kWordSize));
Label add_to_buffer;
// Check whether this object has already been remembered. Skip adding to the
// store buffer if the object is in the store buffer already.
// Spilled: T1, T2, T3.
// T0: Address being stored.
__ lw(T2, FieldAddress(T0, Object::tags_offset()));
__ andi(CMPRES1, T2, Immediate(1 << RawObject::kRememberedBit));
__ beq(CMPRES1, ZR, &add_to_buffer);
__ lw(T1, Address(SP, 0 * kWordSize));
__ lw(T2, Address(SP, 1 * kWordSize));
__ lw(T3, Address(SP, 2 * kWordSize));
__ addiu(SP, SP, Immediate(3 * kWordSize));
__ Ret();
__ Bind(&add_to_buffer);
// Atomically set the remembered bit of the object header.
Label retry;
__ Bind(&retry);
__ ll(T2, FieldAddress(T0, Object::tags_offset()));
__ ori(T2, T2, Immediate(1 << RawObject::kRememberedBit));
__ sc(T2, FieldAddress(T0, Object::tags_offset()));
// T2 = 1 on success, 0 on failure.
__ beq(T2, ZR, &retry);
// Load the StoreBuffer block out of the thread. Then load top_ out of the
// StoreBufferBlock and add the address to the pointers_.
__ lw(T1, Address(THR, Thread::store_buffer_block_offset()));
__ lw(T2, Address(T1, StoreBufferBlock::top_offset()));
__ sll(T3, T2, 2);
__ addu(T3, T1, T3);
__ sw(T0, Address(T3, StoreBufferBlock::pointers_offset()));
// Increment top_ and check for overflow.
// T2: top_
// T1: StoreBufferBlock
Label L;
__ addiu(T2, T2, Immediate(1));
__ sw(T2, Address(T1, StoreBufferBlock::top_offset()));
__ addiu(CMPRES1, T2, Immediate(-StoreBufferBlock::kSize));
// Restore values.
__ lw(T1, Address(SP, 0 * kWordSize));
__ lw(T2, Address(SP, 1 * kWordSize));
__ lw(T3, Address(SP, 2 * kWordSize));
__ beq(CMPRES1, ZR, &L);
__ delay_slot()->addiu(SP, SP, Immediate(3 * kWordSize));
__ Ret();
// Handle overflow: Call the runtime leaf function.
__ Bind(&L);
// Setup frame, push callee-saved registers.
__ EnterCallRuntimeFrame(1 * kWordSize);
__ mov(A0, THR);
__ CallRuntime(kStoreBufferBlockProcessRuntimeEntry, 1);
__ Comment("UpdateStoreBufferStub return");
// Restore callee-saved registers, tear down frame.
__ LeaveCallRuntimeFrame();
__ Ret();
}
// Called for inline allocation of objects.
// Input parameters:
// RA : return address.
// SP + 0 : type arguments object (only if class is parameterized).
void StubCode::GenerateAllocationStubForClass(Assembler* assembler,
const Class& cls) {
__ Comment("AllocationStubForClass");
// The generated code is different if the class is parameterized.
const bool is_cls_parameterized = cls.NumTypeArguments() > 0;
ASSERT(!is_cls_parameterized ||
(cls.type_arguments_field_offset() != Class::kNoTypeArguments));
// kInlineInstanceSize is a constant used as a threshold for determining
// when the object initialization should be done as a loop or as
// straight line code.
const int kInlineInstanceSize = 12;
const intptr_t instance_size = cls.instance_size();
ASSERT(instance_size > 0);
if (is_cls_parameterized) {
__ lw(T1, Address(SP, 0 * kWordSize));
// T1: type arguments.
}
Isolate* isolate = Isolate::Current();
if (FLAG_inline_alloc && Heap::IsAllocatableInNewSpace(instance_size) &&
!cls.TraceAllocation(isolate)) {
Label slow_case;
// Allocate the object and update top to point to
// next object start and initialize the allocated object.
// T1: instantiated type arguments (if is_cls_parameterized).
Heap::Space space = Heap::kNew;
__ lw(T5, Address(THR, Thread::heap_offset()));
__ lw(T2, Address(T5, Heap::TopOffset(space)));
__ LoadImmediate(T4, instance_size);
__ addu(T3, T2, T4);
// Check if the allocation fits into the remaining space.
// T2: potential new object start.
// T3: potential next object start.
// T5: heap.
__ lw(CMPRES1, Address(T5, Heap::EndOffset(space)));
if (FLAG_use_slow_path) {
__ b(&slow_case);
} else {
__ BranchUnsignedGreaterEqual(T3, CMPRES1, &slow_case);
}
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ sw(T3, Address(T5, Heap::TopOffset(space)));
NOT_IN_PRODUCT(__ UpdateAllocationStats(cls.id(), T5, space));
// T2: new object start.
// T3: next object start.
// T1: new object type arguments (if is_cls_parameterized).
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(instance_size, tags);
ASSERT(cls.id() != kIllegalCid);
tags = RawObject::ClassIdTag::update(cls.id(), tags);
__ LoadImmediate(T0, tags);
__ sw(T0, Address(T2, Instance::tags_offset()));
__ LoadObject(T7, Object::null_object());
// Initialize the remaining words of the object.
// T2: new object start.
// T3: next object start.
// T1: new object type arguments (if is_cls_parameterized).
// First try inlining the initialization without a loop.
if (instance_size < (kInlineInstanceSize * kWordSize)) {
// Check if the object contains any non-header fields.
// Small objects are initialized using a consecutive set of writes.
for (intptr_t current_offset = Instance::NextFieldOffset();
current_offset < instance_size; current_offset += kWordSize) {
__ sw(T7, Address(T2, current_offset));
}
} else {
__ addiu(T4, T2, Immediate(Instance::NextFieldOffset()));
// Loop until the whole object is initialized.
// T2: new object.
// T3: next object start.
// T4: next word to be initialized.
// T1: new object type arguments (if is_cls_parameterized).
Label loop, loop_exit;
__ BranchUnsignedGreaterEqual(T4, T3, &loop_exit);
__ Bind(&loop);
__ addiu(T4, T4, Immediate(kWordSize));
__ bne(T4, T3, &loop);
__ delay_slot()->sw(T7, Address(T4, -kWordSize));
__ Bind(&loop_exit);
}
if (is_cls_parameterized) {
// T1: new object type arguments.
// Set the type arguments in the new object.
__ sw(T1, Address(T2, cls.type_arguments_field_offset()));
}
// Done allocating and initializing the instance.
// T2: new object still missing its heap tag.
__ Ret();
__ delay_slot()->addiu(V0, T2, Immediate(kHeapObjectTag));
__ Bind(&slow_case);
}
// If is_cls_parameterized:
// T1: new object type arguments (instantiated or not).
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame(); // Uses pool pointer to pass cls to runtime.
__ LoadObject(TMP, cls);
__ addiu(SP, SP, Immediate(-3 * kWordSize));
// Space on stack for return value.
__ LoadObject(T7, Object::null_object());
__ sw(T7, Address(SP, 2 * kWordSize));
__ sw(TMP, Address(SP, 1 * kWordSize)); // Class of object to be allocated.
if (is_cls_parameterized) {
// Push type arguments of object to be allocated and of instantiator.
__ sw(T1, Address(SP, 0 * kWordSize));
} else {
// Push null type arguments.
__ sw(T7, Address(SP, 0 * kWordSize));
}
__ CallRuntime(kAllocateObjectRuntimeEntry, 2); // Allocate object.
__ Comment("AllocationStubForClass return");
// Pop result (newly allocated object).
__ lw(V0, Address(SP, 2 * kWordSize));
__ addiu(SP, SP, Immediate(3 * kWordSize)); // Pop arguments.
// V0: new object
// Restore the frame pointer and return.
__ LeaveStubFrameAndReturn(RA);
}
// Called for invoking "dynamic noSuchMethod(Invocation invocation)" function
// from the entry code of a dart function after an error in passed argument
// name or number is detected.
// Input parameters:
// RA : return address.
// SP : address of last argument.
// S4: arguments descriptor array.
void StubCode::GenerateCallClosureNoSuchMethodStub(Assembler* assembler) {
__ EnterStubFrame();
// Load the receiver.
__ lw(A1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ sll(TMP, A1, 1); // A1 is a Smi.
__ addu(TMP, FP, TMP);
__ lw(T6, Address(TMP, kParamEndSlotFromFp * kWordSize));
// Push space for the return value.
// Push the receiver.
// Push arguments descriptor array.
const intptr_t kNumArgs = 3;
__ addiu(SP, SP, Immediate(-kNumArgs * kWordSize));
__ sw(ZR, Address(SP, 2 * kWordSize));
__ sw(T6, Address(SP, 1 * kWordSize));
__ sw(S4, Address(SP, 0 * kWordSize));
// A1: Smi-tagged arguments array length.
PushArgumentsArray(assembler);
__ CallRuntime(kInvokeClosureNoSuchMethodRuntimeEntry, kNumArgs);
// noSuchMethod on closures always throws an error, so it will never return.
__ break_(0);
}
// T0: function object.
// S5: inline cache data object.
// Cannot use function object from ICData as it may be the inlined
// function and not the top-scope function.
void StubCode::GenerateOptimizedUsageCounterIncrement(Assembler* assembler) {
__ Comment("OptimizedUsageCounterIncrement");
Register ic_reg = S5;
Register func_reg = T0;
if (FLAG_trace_optimized_ic_calls) {
__ EnterStubFrame();
__ addiu(SP, SP, Immediate(-4 * kWordSize));
__ sw(T0, Address(SP, 3 * kWordSize));
__ sw(S5, Address(SP, 2 * kWordSize));
__ sw(ic_reg, Address(SP, 1 * kWordSize)); // Argument.
__ sw(func_reg, Address(SP, 0 * kWordSize)); // Argument.
__ CallRuntime(kTraceICCallRuntimeEntry, 2);
__ lw(S5, Address(SP, 2 * kWordSize));
__ lw(T0, Address(SP, 3 * kWordSize));
__ addiu(SP, SP, Immediate(4 * kWordSize)); // Discard argument;
__ LeaveStubFrame();
}
__ lw(T7, FieldAddress(func_reg, Function::usage_counter_offset()));
__ addiu(T7, T7, Immediate(1));
__ sw(T7, FieldAddress(func_reg, Function::usage_counter_offset()));
}
// Loads function into 'temp_reg'.
void StubCode::GenerateUsageCounterIncrement(Assembler* assembler,
Register temp_reg) {
if (FLAG_optimization_counter_threshold >= 0) {
__ Comment("UsageCounterIncrement");
Register ic_reg = S5;
Register func_reg = temp_reg;
ASSERT(temp_reg == T0);
__ Comment("Increment function counter");
__ lw(func_reg, FieldAddress(ic_reg, ICData::owner_offset()));
__ lw(T1, FieldAddress(func_reg, Function::usage_counter_offset()));
__ addiu(T1, T1, Immediate(1));
__ sw(T1, FieldAddress(func_reg, Function::usage_counter_offset()));
}
}
// Note: S5 must be preserved.
// Attempt a quick Smi operation for known operations ('kind'). The ICData
// must have been primed with a Smi/Smi check that will be used for counting
// the invocations.
static void EmitFastSmiOp(Assembler* assembler,
Token::Kind kind,
intptr_t num_args,
Label* not_smi_or_overflow) {
__ Comment("Fast Smi op");
ASSERT(num_args == 2);
__ lw(T0, Address(SP, 0 * kWordSize)); // Left.
__ lw(T1, Address(SP, 1 * kWordSize)); // Right.
__ or_(CMPRES1, T0, T1);
__ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask));
__ bne(CMPRES1, ZR, not_smi_or_overflow);
switch (kind) {
case Token::kADD: {
__ AdduDetectOverflow(V0, T1, T0, CMPRES1); // Add.
__ bltz(CMPRES1, not_smi_or_overflow); // Fall through on overflow.
break;
}
case Token::kSUB: {
__ SubuDetectOverflow(V0, T1, T0, CMPRES1); // Subtract.
__ bltz(CMPRES1, not_smi_or_overflow); // Fall through on overflow.
break;
}
case Token::kEQ: {
Label true_label, done;
__ beq(T1, T0, &true_label);
__ LoadObject(V0, Bool::False());
__ b(&done);
__ Bind(&true_label);
__ LoadObject(V0, Bool::True());
__ Bind(&done);
break;
}
default:
UNIMPLEMENTED();
}
// S5: IC data object (preserved).
__ lw(T0, FieldAddress(S5, ICData::ic_data_offset()));
// T0: ic_data_array with check entries: classes and target functions.
__ AddImmediate(T0, Array::data_offset() - kHeapObjectTag);
// T0: points directly to the first ic data array element.
#if defined(DEBUG)
// Check that first entry is for Smi/Smi.
Label error, ok;
const int32_t imm_smi_cid = reinterpret_cast<int32_t>(Smi::New(kSmiCid));
__ lw(T4, Address(T0));
__ BranchNotEqual(T4, Immediate(imm_smi_cid), &error);
__ lw(T4, Address(T0, kWordSize));
__ BranchEqual(T4, Immediate(imm_smi_cid), &ok);
__ Bind(&error);
__ Stop("Incorrect IC data");
__ Bind(&ok);
#endif
if (FLAG_optimization_counter_threshold >= 0) {
// Update counter.
const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize;
__ lw(T4, Address(T0, count_offset));
__ AddImmediateDetectOverflow(T7, T4, Smi::RawValue(1), T5, T6);
__ slt(CMPRES1, T5, ZR); // T5 is < 0 if there was overflow.
__ LoadImmediate(T4, Smi::RawValue(Smi::kMaxValue));
__ movz(T4, T7, CMPRES1);
__ sw(T4, Address(T0, count_offset));
}
__ Ret();
}
// Generate inline cache check for 'num_args'.
// RA: return address
// S5: Inline cache data object.
// Control flow:
// - If receiver is null -> jump to IC miss.
// - If receiver is Smi -> load Smi class.
// - If receiver is not-Smi -> load receiver's class.
// - Check if 'num_args' (including receiver) match any IC data group.
// - Match found -> jump to target.
// - Match not found -> jump to IC miss.
void StubCode::GenerateNArgsCheckInlineCacheStub(
Assembler* assembler,
intptr_t num_args,
const RuntimeEntry& handle_ic_miss,
Token::Kind kind,
bool optimized) {
__ Comment("NArgsCheckInlineCacheStub");
ASSERT(num_args > 0);
#if defined(DEBUG)
{
Label ok;
// Check that the IC data array has NumArgsTested() == num_args.
// 'NumArgsTested' is stored in the least significant bits of 'state_bits'.
__ lw(T0, FieldAddress(S5, ICData::state_bits_offset()));
ASSERT(ICData::NumArgsTestedShift() == 0); // No shift needed.
__ andi(T0, T0, Immediate(ICData::NumArgsTestedMask()));
__ BranchEqual(T0, Immediate(num_args), &ok);
__ Stop("Incorrect stub for IC data");
__ Bind(&ok);
}
#endif // DEBUG
Label stepping, done_stepping;
if (FLAG_support_debugger && !optimized) {
__ Comment("Check single stepping");
__ LoadIsolate(T0);
__ lbu(T0, Address(T0, Isolate::single_step_offset()));
__ BranchNotEqual(T0, Immediate(0), &stepping);
__ Bind(&done_stepping);
}
Label not_smi_or_overflow;
if (kind != Token::kILLEGAL) {
EmitFastSmiOp(assembler, kind, num_args, &not_smi_or_overflow);
}
__ Bind(&not_smi_or_overflow);
__ Comment("Extract ICData initial values and receiver cid");
// Load argument descriptor into S4.
__ lw(S4, FieldAddress(S5, ICData::arguments_descriptor_offset()));
// Preserve return address, since RA is needed for subroutine call.
__ mov(T2, RA);
// Loop that checks if there is an IC data match.
Label loop, update, test, found;
// S5: IC data object (preserved).
__ lw(T0, FieldAddress(S5, ICData::ic_data_offset()));
// T0: ic_data_array with check entries: classes and target functions.
__ AddImmediate(T0, Array::data_offset() - kHeapObjectTag);
// T0: points directly to the first ic data array element.
// Get the receiver's class ID (first read number of arguments from
// arguments descriptor array and then access the receiver from the stack).
__ lw(T1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ LoadImmediate(TMP, Smi::RawValue(1));
__ subu(T1, T1, TMP);
__ sll(T3, T1, 1); // T1 (argument_count - 1) is smi.
__ addu(T3, T3, SP);
__ lw(T3, Address(T3));
__ LoadTaggedClassIdMayBeSmi(T3, T3);
// T1: argument_count - 1 (smi).
// T3: receiver's class ID (smi).
__ b(&test);
__ delay_slot()->lw(T4, Address(T0)); // First class id (smi) to check.
__ Comment("ICData loop");
__ Bind(&loop);
for (int i = 0; i < num_args; i++) {
if (i > 0) {
// If not the first, load the next argument's class ID.
__ LoadImmediate(T3, Smi::RawValue(-i));
__ addu(T3, T1, T3);
__ sll(T3, T3, 1);
__ addu(T3, SP, T3);
__ lw(T3, Address(T3));
__ LoadTaggedClassIdMayBeSmi(T3, T3);
// T3: next argument class ID (smi).
__ lw(T4, Address(T0, i * kWordSize));
// T4: next class ID to check (smi).
}
if (i < (num_args - 1)) {
__ bne(T3, T4, &update); // Continue.
} else {
// Last check, all checks before matched.
Label skip;
__ bne(T3, T4, &skip);
__ b(&found); // Break.
__ delay_slot()->mov(RA, T2); // Restore return address if found.
__ Bind(&skip);
}
}
__ Bind(&update);
// Reload receiver class ID. It has not been destroyed when num_args == 1.
if (num_args > 1) {
__ sll(T3, T1, 1);
__ addu(T3, T3, SP);
__ lw(T3, Address(T3));
__ LoadTaggedClassIdMayBeSmi(T3, T3);
}
const intptr_t entry_size = ICData::TestEntryLengthFor(num_args) * kWordSize;
__ AddImmediate(T0, entry_size); // Next entry.
__ lw(T4, Address(T0)); // Next class ID.
__ Bind(&test);
__ BranchNotEqual(T4, Immediate(Smi::RawValue(kIllegalCid)), &loop); // Done?
__ Comment("IC miss");
// Restore return address.
__ mov(RA, T2);
// Compute address of arguments (first read number of arguments from
// arguments descriptor array and then compute address on the stack).
// T1: argument_count - 1 (smi).
__ sll(T1, T1, 1); // T1 is Smi.
__ addu(T1, SP, T1);
// T1: address of receiver.
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Preserve IC data object and arguments descriptor array and
// setup space on stack for result (target code object).
int num_slots = num_args + 4;
__ addiu(SP, SP, Immediate(-num_slots * kWordSize));
__ sw(S5, Address(SP, (num_slots - 1) * kWordSize));
__ sw(S4, Address(SP, (num_slots - 2) * kWordSize));
__ sw(ZR, Address(SP, (num_slots - 3) * kWordSize));
// Push call arguments.
for (intptr_t i = 0; i < num_args; i++) {
__ lw(TMP, Address(T1, -i * kWordSize));
__ sw(TMP, Address(SP, (num_slots - i - 4) * kWordSize));
}
// Pass IC data object.
__ sw(S5, Address(SP, (num_slots - num_args - 4) * kWordSize));
__ CallRuntime(handle_ic_miss, num_args + 1);
__ Comment("NArgsCheckInlineCacheStub return");
// Pop returned function object into T3.
// Restore arguments descriptor array and IC data array.
__ lw(T3, Address(SP, (num_slots - 3) * kWordSize));
__ lw(S4, Address(SP, (num_slots - 2) * kWordSize));
__ lw(S5, Address(SP, (num_slots - 1) * kWordSize));
// Remove the call arguments pushed earlier, including the IC data object
// and the arguments descriptor array.
__ addiu(SP, SP, Immediate(num_slots * kWordSize));
__ RestoreCodePointer();
__ LeaveStubFrame();
Label call_target_function;
if (!FLAG_lazy_dispatchers) {
__ mov(T0, T3);
GenerateDispatcherCode(assembler, &call_target_function);
} else {
__ b(&call_target_function);
}
__ Bind(&found);
__ Comment("Update caller's counter");
// T0: Pointer to an IC data check group.
const intptr_t target_offset = ICData::TargetIndexFor(num_args) * kWordSize;
const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize;
__ lw(T3, Address(T0, target_offset));
if (FLAG_optimization_counter_threshold >= 0) {
// Update counter.
__ lw(T4, Address(T0, count_offset));
__ AddImmediateDetectOverflow(T7, T4, Smi::RawValue(1), T5, T6);
__ slt(CMPRES1, T5, ZR); // T5 is < 0 if there was overflow.
__ LoadImmediate(T4, Smi::RawValue(Smi::kMaxValue));
__ movz(T4, T7, CMPRES1);
__ sw(T4, Address(T0, count_offset));
}
__ Comment("Call target");
__ Bind(&call_target_function);
// T0 <- T3: Target function.
__ mov(T0, T3);
Label is_compiled;
__ lw(T4, FieldAddress(T0, Function::entry_point_offset()));
__ lw(CODE_REG, FieldAddress(T0, Function::code_offset()));
__ jr(T4);
// Call single step callback in debugger.
if (FLAG_support_debugger && !optimized) {
__ Bind(&stepping);
__ EnterStubFrame();
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(S5, Address(SP, 1 * kWordSize)); // Preserve IC data.
__ sw(RA, Address(SP, 0 * kWordSize)); // Return address.
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ lw(RA, Address(SP, 0 * kWordSize));
__ lw(S5, Address(SP, 1 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
__ RestoreCodePointer();
__ LeaveStubFrame();
__ b(&done_stepping);
}
}
// Use inline cache data array to invoke the target or continue in inline
// cache miss handler. Stub for 1-argument check (receiver class).
// RA: Return address.
// S5: Inline cache data object.
// Inline cache data object structure:
// 0: function-name
// 1: N, number of arguments checked.
// 2 .. (length - 1): group of checks, each check containing:
// - N classes.
// - 1 target function.
void StubCode::GenerateOneArgCheckInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL);
}
void StubCode::GenerateTwoArgsCheckInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(assembler, 2,
kInlineCacheMissHandlerTwoArgsRuntimeEntry,
Token::kILLEGAL);
}
void StubCode::GenerateSmiAddInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kADD);
}
void StubCode::GenerateSmiSubInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kSUB);
}
void StubCode::GenerateSmiEqualInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kEQ);
}
void StubCode::GenerateOneArgOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(assembler, 1,
kInlineCacheMissHandlerOneArgRuntimeEntry,
Token::kILLEGAL, true /* optimized */);
}
void StubCode::GenerateTwoArgsOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(assembler, 2,
kInlineCacheMissHandlerTwoArgsRuntimeEntry,
Token::kILLEGAL, true /* optimized */);
}
// Intermediary stub between a static call and its target. ICData contains
// the target function and the call count.
// S5: ICData
void StubCode::GenerateZeroArgsUnoptimizedStaticCallStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, T0);
__ Comment("UnoptimizedStaticCallStub");
#if defined(DEBUG)
{
Label ok;
// Check that the IC data array has NumArgsTested() == 0.
// 'NumArgsTested' is stored in the least significant bits of 'state_bits'.
__ lw(T0, FieldAddress(S5, ICData::state_bits_offset()));
ASSERT(ICData::NumArgsTestedShift() == 0); // No shift needed.
__ andi(T0, T0, Immediate(ICData::NumArgsTestedMask()));
__ beq(T0, ZR, &ok);
__ Stop("Incorrect IC data for unoptimized static call");
__ Bind(&ok);
}
#endif // DEBUG
// Check single stepping.
Label stepping, done_stepping;
if (FLAG_support_debugger) {
__ LoadIsolate(T0);
__ lbu(T0, Address(T0, Isolate::single_step_offset()));
__ BranchNotEqual(T0, Immediate(0), &stepping);
__ Bind(&done_stepping);
}
// S5: IC data object (preserved).
__ lw(T0, FieldAddress(S5, ICData::ic_data_offset()));
// T0: ic_data_array with entries: target functions and count.
__ AddImmediate(T0, Array::data_offset() - kHeapObjectTag);
// T0: points directly to the first ic data array element.
const intptr_t target_offset = ICData::TargetIndexFor(0) * kWordSize;
const intptr_t count_offset = ICData::CountIndexFor(0) * kWordSize;
if (FLAG_optimization_counter_threshold >= 0) {
// Increment count for this call.
__ lw(T4, Address(T0, count_offset));
__ AddImmediateDetectOverflow(T7, T4, Smi::RawValue(1), T5, T6);
__ slt(CMPRES1, T5, ZR); // T5 is < 0 if there was overflow.
__ LoadImmediate(T4, Smi::RawValue(Smi::kMaxValue));
__ movz(T4, T7, CMPRES1);
__ sw(T4, Address(T0, count_offset));
}
// Load arguments descriptor into S4.
__ lw(S4, FieldAddress(S5, ICData::arguments_descriptor_offset()));
// Get function and call it, if possible.
__ lw(T0, Address(T0, target_offset));
__ lw(CODE_REG, FieldAddress(T0, Function::code_offset()));
__ lw(T4, FieldAddress(T0, Function::entry_point_offset()));
__ jr(T4);
// Call single step callback in debugger.
if (FLAG_support_debugger) {
__ Bind(&stepping);
__ EnterStubFrame();
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(S5, Address(SP, 1 * kWordSize)); // Preserve IC data.
__ sw(RA, Address(SP, 0 * kWordSize)); // Return address.
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ lw(RA, Address(SP, 0 * kWordSize));
__ lw(S5, Address(SP, 1 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
__ RestoreCodePointer();
__ LeaveStubFrame();
__ b(&done_stepping);
}
}
void StubCode::GenerateOneArgUnoptimizedStaticCallStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kStaticCallMissHandlerOneArgRuntimeEntry, Token::kILLEGAL);
}
void StubCode::GenerateTwoArgsUnoptimizedStaticCallStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL);
}
// Stub for compiling a function and jumping to the compiled code.
// S5: IC-Data (for methods).
// S4: Arguments descriptor.
// T0: Function.
void StubCode::GenerateLazyCompileStub(Assembler* assembler) {
__ EnterStubFrame();
__ addiu(SP, SP, Immediate(-3 * kWordSize));
__ sw(S5, Address(SP, 2 * kWordSize)); // Preserve IC data object.
__ sw(S4, Address(SP, 1 * kWordSize)); // Preserve args descriptor array.
__ sw(T0, Address(SP, 0 * kWordSize)); // Pass function.
__ CallRuntime(kCompileFunctionRuntimeEntry, 1);
__ lw(T0, Address(SP, 0 * kWordSize)); // Restore function.
__ lw(S4, Address(SP, 1 * kWordSize)); // Restore args descriptor array.
__ lw(S5, Address(SP, 2 * kWordSize)); // Restore IC data array.
__ addiu(SP, SP, Immediate(3 * kWordSize));
__ LeaveStubFrame();
__ lw(CODE_REG, FieldAddress(T0, Function::code_offset()));
__ lw(T2, FieldAddress(T0, Function::entry_point_offset()));
__ jr(T2);
}
// S5: Contains an ICData.
void StubCode::GenerateICCallBreakpointStub(Assembler* assembler) {
__ Comment("ICCallBreakpoint stub");
__ EnterStubFrame();
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(S5, Address(SP, 1 * kWordSize));
__ sw(ZR, Address(SP, 0 * kWordSize));
__ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0);
__ lw(S5, Address(SP, 1 * kWordSize));
__ lw(CODE_REG, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
__ LeaveStubFrame();
__ lw(T0, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ jr(T0);
}
void StubCode::GenerateRuntimeCallBreakpointStub(Assembler* assembler) {
__ Comment("RuntimeCallBreakpoint stub");
__ EnterStubFrame();
__ addiu(SP, SP, Immediate(-1 * kWordSize));
__ sw(ZR, Address(SP, 0 * kWordSize));
__ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0);
__ lw(CODE_REG, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(3 * kWordSize));
__ LeaveStubFrame();
__ lw(T0, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ jr(T0);
}
// Called only from unoptimized code. All relevant registers have been saved.
// RA: return address.
void StubCode::GenerateDebugStepCheckStub(Assembler* assembler) {
// Check single stepping.
Label stepping, done_stepping;
__ LoadIsolate(T0);
__ lbu(T0, Address(T0, Isolate::single_step_offset()));
__ BranchNotEqual(T0, Immediate(0), &stepping);
__ Bind(&done_stepping);
__ Ret();
// Call single step callback in debugger.
__ Bind(&stepping);
__ EnterStubFrame();
__ addiu(SP, SP, Immediate(-1 * kWordSize));
__ sw(RA, Address(SP, 0 * kWordSize)); // Return address.
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ lw(RA, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(1 * kWordSize));
__ LeaveStubFrame();
__ b(&done_stepping);
}
// Used to check class and type arguments. Arguments passed in registers:
// RA: return address.
// A0: instance (must be preserved).
// A1: instantiator type arguments or NULL.
// A2: cache array.
// Result in V0: null -> not found, otherwise result (true or false).
static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) {
__ Comment("SubtypeNTestCacheStub");
ASSERT((1 <= n) && (n <= 3));
if (n > 1) {
// Get instance type arguments.
__ LoadClass(T0, A0);
// Compute instance type arguments into T1.
Label has_no_type_arguments;
__ LoadObject(T1, Object::null_object());
__ lw(T2, FieldAddress(
T0, Class::type_arguments_field_offset_in_words_offset()));
__ BranchEqual(T2, Immediate(Class::kNoTypeArguments),
&has_no_type_arguments);
__ sll(T2, T2, 2);
__ addu(T2, A0, T2); // T2 <- A0 + T2 * 4
__ lw(T1, FieldAddress(T2, 0));
__ Bind(&has_no_type_arguments);
}
__ LoadClassId(T0, A0);
// A0: instance.
// A1: instantiator type arguments or NULL.
// A2: SubtypeTestCache.
// T0: instance class id.
// T1: instance type arguments (null if none), used only if n > 1.
__ lw(T2, FieldAddress(A2, SubtypeTestCache::cache_offset()));
__ AddImmediate(T2, Array::data_offset() - kHeapObjectTag);
__ LoadObject(T7, Object::null_object());
Label loop, found, not_found, next_iteration;
// T0: instance class id.
// T1: instance type arguments.
// T2: Entry start.
// T7: null.
__ SmiTag(T0);
__ BranchNotEqual(T0, Immediate(Smi::RawValue(kClosureCid)), &loop);
__ lw(T0, FieldAddress(A0, Closure::function_offset()));
// T0: instance class id as Smi or function.
__ Bind(&loop);
__ lw(T3,
Address(T2, kWordSize * SubtypeTestCache::kInstanceClassIdOrFunction));
__ beq(T3, T7, &not_found);
if (n == 1) {
__ beq(T3, T0, &found);
} else {
__ bne(T3, T0, &next_iteration);
__ lw(T3,
Address(T2, kWordSize * SubtypeTestCache::kInstanceTypeArguments));
if (n == 2) {
__ beq(T3, T1, &found);
} else {
__ bne(T3, T1, &next_iteration);
__ lw(T3, Address(T2, kWordSize *
SubtypeTestCache::kInstantiatorTypeArguments));
__ beq(T3, A1, &found);
}
}
__ Bind(&next_iteration);
__ b(&loop);
__ delay_slot()->addiu(
T2, T2, Immediate(kWordSize * SubtypeTestCache::kTestEntryLength));
// Fall through to not found.
__ Bind(&not_found);
__ Ret();
__ delay_slot()->mov(V0, T7);
__ Bind(&found);
__ Ret();
__ delay_slot()->lw(V0,
Address(T2, kWordSize * SubtypeTestCache::kTestResult));
}
// Used to check class and type arguments. Arguments passed in registers:
// RA: return address.
// A0: instance (must be preserved).
// A1: instantiator type arguments or NULL.
// A2: cache array.
// Result in V0: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype1TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 1);
}
// Used to check class and type arguments. Arguments passed in registers:
// RA: return address.
// A0: instance (must be preserved).
// A1: instantiator type arguments or NULL.
// A2: cache array.
// Result in V0: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype2TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 2);
}
// Used to check class and type arguments. Arguments passed in registers:
// RA: return address.
// A0: instance (must be preserved).
// A1: instantiator type arguments or NULL.
// A2: cache array.
// Result in V0: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype3TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 3);
}
// Return the current stack pointer address, used to stack alignment
// checks.
void StubCode::GenerateGetStackPointerStub(Assembler* assembler) {
__ Ret();
__ delay_slot()->mov(V0, SP);
}
// Jump to the exception or error handler.
// RA: return address.
// A0: program_counter.
// A1: stack_pointer.
// A2: frame_pointer.
// A3: thread.
// Does not return.
void StubCode::GenerateJumpToFrameStub(Assembler* assembler) {
ASSERT(kExceptionObjectReg == V0);
ASSERT(kStackTraceObjectReg == V1);
__ mov(FP, A2); // Frame_pointer.
__ mov(THR, A3); // Thread.
// Set tag.
__ LoadImmediate(A2, VMTag::kDartTagId);
__ sw(A2, Assembler::VMTagAddress());
// Clear top exit frame.
__ sw(ZR, Address(THR, Thread::top_exit_frame_info_offset()));
// Restore pool pointer.
__ RestoreCodePointer();
__ LoadPoolPointer();
__ jr(A0); // Jump to the program counter.
__ delay_slot()->mov(SP, A1); // Stack pointer.
}
// Run an exception handler. Execution comes from JumpToFrame
// stub or from the simulator.
//
// The arguments are stored in the Thread object.
// Does not return.
void StubCode::GenerateRunExceptionHandlerStub(Assembler* assembler) {
__ lw(A0, Address(THR, Thread::resume_pc_offset()));
__ LoadImmediate(A2, 0);
// Load the exception from the current thread.
Address exception_addr(THR, Thread::active_exception_offset());
__ lw(V0, exception_addr);
__ sw(A2, exception_addr);
// Load the stacktrace from the current thread.
Address stacktrace_addr(THR, Thread::active_stacktrace_offset());
__ lw(V1, stacktrace_addr);
__ jr(A0); // Jump to continuation point.
__ delay_slot()->sw(A2, stacktrace_addr);
}
// Deoptimize a frame on the call stack before rewinding.
// The arguments are stored in the Thread object.
// No result.
void StubCode::GenerateDeoptForRewindStub(Assembler* assembler) {
// Push zap value instead of CODE_REG.
__ LoadImmediate(TMP, kZapCodeReg);
__ Push(TMP);
// Load the deopt pc into RA.
__ lw(RA, Address(THR, Thread::resume_pc_offset()));
GenerateDeoptimizationSequence(assembler, kEagerDeopt);
// After we have deoptimized, jump to the correct frame.
__ EnterStubFrame();
__ CallRuntime(kRewindPostDeoptRuntimeEntry, 0);
__ LeaveStubFrame();
__ break_(0);
}
// Calls to the runtime to optimize the given function.
// T0: function to be reoptimized.
// S4: argument descriptor (preserved).
void StubCode::GenerateOptimizeFunctionStub(Assembler* assembler) {
__ Comment("OptimizeFunctionStub");
__ EnterStubFrame();
__ addiu(SP, SP, Immediate(-3 * kWordSize));
__ sw(S4, Address(SP, 2 * kWordSize));
// Setup space on stack for return value.
__ sw(ZR, Address(SP, 1 * kWordSize));
__ sw(T0, Address(SP, 0 * kWordSize));
__ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry, 1);
__ Comment("OptimizeFunctionStub return");
__ lw(T0, Address(SP, 1 * kWordSize)); // Get Function object
__ lw(S4, Address(SP, 2 * kWordSize)); // Restore argument descriptor.
__ addiu(SP, SP, Immediate(3 * kWordSize)); // Discard argument.
__ lw(CODE_REG, FieldAddress(T0, Function::code_offset()));
__ lw(T1, FieldAddress(T0, Function::entry_point_offset()));
__ LeaveStubFrameAndReturn(T1);
__ break_(0);
}
// Does identical check (object references are equal or not equal) with special
// checks for boxed numbers.
// Returns: CMPRES1 is zero if equal, non-zero otherwise.
// Note: A Mint cannot contain a value that would fit in Smi, a Bigint
// cannot contain a value that fits in Mint or Smi.
static void GenerateIdenticalWithNumberCheckStub(Assembler* assembler,
const Register left,
const Register right,
const Register temp1,
const Register temp2) {
__ Comment("IdenticalWithNumberCheckStub");
Label reference_compare, done, check_mint, check_bigint;
// If any of the arguments is Smi do reference compare.
__ andi(temp1, left, Immediate(kSmiTagMask));
__ beq(temp1, ZR, &reference_compare);
__ andi(temp1, right, Immediate(kSmiTagMask));
__ beq(temp1, ZR, &reference_compare);
// Value compare for two doubles.
__ LoadImmediate(temp1, kDoubleCid);
__ LoadClassId(temp2, left);
__ bne(temp1, temp2, &check_mint);
__ LoadClassId(temp2, right);
__ subu(CMPRES1, temp1, temp2);
__ bne(CMPRES1, ZR, &done);
// Double values bitwise compare.
__ lw(temp1, FieldAddress(left, Double::value_offset() + 0 * kWordSize));
__ lw(temp2, FieldAddress(right, Double::value_offset() + 0 * kWordSize));
__ subu(CMPRES1, temp1, temp2);
__ bne(CMPRES1, ZR, &done);
__ lw(temp1, FieldAddress(left, Double::value_offset() + 1 * kWordSize));
__ lw(temp2, FieldAddress(right, Double::value_offset() + 1 * kWordSize));
__ b(&done);
__ delay_slot()->subu(CMPRES1, temp1, temp2);
__ Bind(&check_mint);
__ LoadImmediate(temp1, kMintCid);
__ LoadClassId(temp2, left);
__ bne(temp1, temp2, &check_bigint);
__ LoadClassId(temp2, right);
__ subu(CMPRES1, temp1, temp2);
__ bne(CMPRES1, ZR, &done);
__ lw(temp1, FieldAddress(left, Mint::value_offset() + 0 * kWordSize));
__ lw(temp2, FieldAddress(right, Mint::value_offset() + 0 * kWordSize));
__ subu(CMPRES1, temp1, temp2);
__ bne(CMPRES1, ZR, &done);
__ lw(temp1, FieldAddress(left, Mint::value_offset() + 1 * kWordSize));
__ lw(temp2, FieldAddress(right, Mint::value_offset() + 1 * kWordSize));
__ b(&done);
__ delay_slot()->subu(CMPRES1, temp1, temp2);
__ Bind(&check_bigint);
__ LoadImmediate(temp1, kBigintCid);
__ LoadClassId(temp2, left);
__ bne(temp1, temp2, &reference_compare);
__ LoadClassId(temp2, right);
__ subu(CMPRES1, temp1, temp2);
__ bne(CMPRES1, ZR, &done);
__ EnterStubFrame();
__ ReserveAlignedFrameSpace(2 * kWordSize);
__ sw(left, Address(SP, 1 * kWordSize));
__ sw(right, Address(SP, 0 * kWordSize));
__ mov(A0, left);
__ mov(A1, right);
__ CallRuntime(kBigintCompareRuntimeEntry, 2);
__ Comment("IdenticalWithNumberCheckStub return");
// Result in V0, 0 means equal.
__ LeaveStubFrame();
__ b(&done);
__ delay_slot()->mov(CMPRES1, V0);
__ Bind(&reference_compare);
__ subu(CMPRES1, left, right);
__ Bind(&done);
// A branch or test after this comparison will check CMPRES1 == ZR.
}
// Called only from unoptimized code. All relevant registers have been saved.
// RA: return address.
// SP + 4: left operand.
// SP + 0: right operand.
// Returns: CMPRES1 is zero if equal, non-zero otherwise.
void StubCode::GenerateUnoptimizedIdenticalWithNumberCheckStub(
Assembler* assembler) {
// Check single stepping.
Label stepping, done_stepping;
if (FLAG_support_debugger) {
__ LoadIsolate(T0);
__ lbu(T0, Address(T0, Isolate::single_step_offset()));
__ BranchNotEqual(T0, Immediate(0), &stepping);
__ Bind(&done_stepping);
}
const Register temp1 = T2;
const Register temp2 = T3;
const Register left = T1;
const Register right = T0;
__ lw(left, Address(SP, 1 * kWordSize));
__ lw(right, Address(SP, 0 * kWordSize));
GenerateIdenticalWithNumberCheckStub(assembler, left, right, temp1, temp2);
__ Ret();
// Call single step callback in debugger.
if (FLAG_support_debugger) {
__ Bind(&stepping);
__ EnterStubFrame();
__ addiu(SP, SP, Immediate(-1 * kWordSize));
__ sw(RA, Address(SP, 0 * kWordSize)); // Return address.
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ lw(RA, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(1 * kWordSize));
__ RestoreCodePointer();
__ LeaveStubFrame();
__ b(&done_stepping);
}
}
// Called from optimized code only.
// SP + 4: left operand.
// SP + 0: right operand.
// Returns: CMPRES1 is zero if equal, non-zero otherwise.
void StubCode::GenerateOptimizedIdenticalWithNumberCheckStub(
Assembler* assembler) {
const Register temp1 = T2;
const Register temp2 = T3;
const Register left = T1;
const Register right = T0;
__ lw(left, Address(SP, 1 * kWordSize));
__ lw(right, Address(SP, 0 * kWordSize));
GenerateIdenticalWithNumberCheckStub(assembler, left, right, temp1, temp2);
__ Ret();
}
// Called from megamorphic calls.
// T0: receiver
// S5: MegamorphicCache (preserved)
// Passed to target:
// CODE_REG: target Code object
// S4: arguments descriptor
void StubCode::GenerateMegamorphicCallStub(Assembler* assembler) {
__ LoadTaggedClassIdMayBeSmi(T0, T0);
// T0: class ID of the receiver (smi).
__ lw(S4, FieldAddress(S5, MegamorphicCache::arguments_descriptor_offset()));
__ lw(T2, FieldAddress(S5, MegamorphicCache::buckets_offset()));
__ lw(T1, FieldAddress(S5, MegamorphicCache::mask_offset()));
// T2: cache buckets array.
// T1: mask.
__ LoadImmediate(TMP, MegamorphicCache::kSpreadFactor);
__ mult(TMP, T0);
__ mflo(T3);
// T3: probe.
Label loop, update, call_target_function;
__ b(&loop);
__ Bind(&update);
__ addiu(T3, T3, Immediate(Smi::RawValue(1)));
__ Bind(&loop);
__ and_(T3, T3, T1);
const intptr_t base = Array::data_offset();
// T3 is smi tagged, but table entries are two words, so LSL 2.
__ sll(TMP, T3, 2);
__ addu(TMP, T2, TMP);
__ lw(T4, FieldAddress(TMP, base));
ASSERT(kIllegalCid == 0);
__ beq(T4, ZR, &call_target_function);
__ bne(T4, T0, &update);
__ Bind(&call_target_function);
// Call the target found in the cache. For a class id match, this is a
// proper target for the given name and arguments descriptor. If the
// illegal class id was found, the target is a cache miss handler that can
// be invoked as a normal Dart function.
__ sll(T1, T3, 2);
__ addu(T1, T2, T1);
__ lw(T0, FieldAddress(T1, base + kWordSize));
__ lw(T1, FieldAddress(T0, Function::entry_point_offset()));
__ lw(CODE_REG, FieldAddress(T0, Function::code_offset()));
__ jr(T1);
}
// Called from switchable IC calls.
// T0: receiver
// S5: ICData (preserved)
// Passed to target:
// CODE_REG: target Code object
// S4: arguments descriptor
void StubCode::GenerateICCallThroughFunctionStub(Assembler* assembler) {
Label loop, found, miss;
__ lw(T6, FieldAddress(S5, ICData::ic_data_offset()));
__ lw(S4, FieldAddress(S5, ICData::arguments_descriptor_offset()));
__ AddImmediate(T6, T6, Array::data_offset() - kHeapObjectTag);
// T6: first IC entry.
__ LoadTaggedClassIdMayBeSmi(T1, T0);
// T1: receiver cid as Smi
__ Bind(&loop);
__ lw(T2, Address(T6, 0));
__ beq(T1, T2, &found);
ASSERT(Smi::RawValue(kIllegalCid) == 0);
__ beq(T2, ZR, &miss);
const intptr_t entry_length = ICData::TestEntryLengthFor(1) * kWordSize;
__ AddImmediate(T6, entry_length); // Next entry.
__ b(&loop);
__ Bind(&found);
const intptr_t target_offset = ICData::TargetIndexFor(1) * kWordSize;
__ lw(T0, Address(T6, target_offset));
__ lw(T1, FieldAddress(T0, Function::entry_point_offset()));
__ lw(CODE_REG, FieldAddress(T0, Function::code_offset()));
__ jr(T1);
__ Bind(&miss);
__ LoadIsolate(T2);
__ lw(CODE_REG, Address(T2, Isolate::ic_miss_code_offset()));
__ lw(T1, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ jr(T1);
}
void StubCode::GenerateICCallThroughCodeStub(Assembler* assembler) {
Label loop, found, miss;
__ lw(T6, FieldAddress(S5, ICData::ic_data_offset()));
__ lw(S4, FieldAddress(S5, ICData::arguments_descriptor_offset()));
__ AddImmediate(T6, T6, Array::data_offset() - kHeapObjectTag);
// T6: first IC entry.
__ LoadTaggedClassIdMayBeSmi(T1, T0);
// T1: receiver cid as Smi
__ Bind(&loop);
__ lw(T2, Address(T6, 0));
__ beq(T1, T2, &found);
ASSERT(Smi::RawValue(kIllegalCid) == 0);
__ beq(T2, ZR, &miss);
const intptr_t entry_length = ICData::TestEntryLengthFor(1) * kWordSize;
__ AddImmediate(T6, entry_length); // Next entry.
__ b(&loop);
__ Bind(&found);
const intptr_t code_offset = ICData::CodeIndexFor(1) * kWordSize;
const intptr_t entry_offset = ICData::EntryPointIndexFor(1) * kWordSize;
__ lw(T1, Address(T6, entry_offset));
__ lw(CODE_REG, Address(T6, code_offset));
__ jr(T1);
__ Bind(&miss);
__ LoadIsolate(T2);
__ lw(CODE_REG, Address(T2, Isolate::ic_miss_code_offset()));
__ lw(T1, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ jr(T1);
}
// Called from switchable IC calls.
// T0: receiver
// S5: SingleTargetCache
void StubCode::GenerateUnlinkedCallStub(Assembler* assembler) {
__ EnterStubFrame();
__ Push(T0); // Preserve receiver.
__ Push(ZR); // Result slot.
__ Push(T0); // Arg0: Receiver
__ Push(S5); // Arg1: UnlinkedCall
__ CallRuntime(kUnlinkedCallRuntimeEntry, 2);
__ Drop(2);
__ Pop(S5); // result = IC
__ Pop(T0); // Restore receiver.
__ LeaveStubFrame();
__ lw(CODE_REG, Address(THR, Thread::ic_lookup_through_code_stub_offset()));
__ lw(T1, FieldAddress(CODE_REG, Code::checked_entry_point_offset()));
__ jr(T1);
}
// Called from switchable IC calls.
// T0: receiver
// S5: SingleTargetCache
// Passed to target:
// CODE_REG: target Code object
void StubCode::GenerateSingleTargetCallStub(Assembler* assembler) {
Label miss;
__ LoadClassIdMayBeSmi(T1, T0);
__ lhu(T2, FieldAddress(S5, SingleTargetCache::lower_limit_offset()));
__ lhu(T3, FieldAddress(S5, SingleTargetCache::upper_limit_offset()));
__ BranchUnsignedLess(T1, T2, &miss);
__ BranchUnsignedGreater(T1, T3, &miss);
__ lw(T1, FieldAddress(S5, SingleTargetCache::entry_point_offset()));
__ lw(CODE_REG, FieldAddress(S5, SingleTargetCache::target_offset()));
__ jr(T1);
__ Bind(&miss);
__ EnterStubFrame();
__ Push(T0); // Preserve receiver.
__ Push(ZR); // Result slot.
__ Push(T0); // Arg0: Receiver
__ CallRuntime(kSingleTargetMissRuntimeEntry, 1);
__ Drop(1);
__ Pop(S5); // result = IC
__ Pop(T0); // Restore receiver.
__ LeaveStubFrame();
__ lw(CODE_REG, Address(THR, Thread::ic_lookup_through_code_stub_offset()));
__ lw(T1, FieldAddress(CODE_REG, Code::checked_entry_point_offset()));
__ jr(T1);
}
// Called from the monomorphic checked entry.
// T0: receiver
void StubCode::GenerateMonomorphicMissStub(Assembler* assembler) {
__ lw(CODE_REG, Address(THR, Thread::monomorphic_miss_stub_offset()));
__ EnterStubFrame();
__ Push(T0); // Preserve receiver.
__ Push(ZR); // Result slot.
__ Push(T0); // Arg0: Receiver
__ CallRuntime(kMonomorphicMissRuntimeEntry, 1);
__ Drop(1);
__ Pop(S5); // result = IC
__ Pop(T0); // Restore receiver.
__ LeaveStubFrame();
__ lw(CODE_REG, Address(THR, Thread::ic_lookup_through_code_stub_offset()));
__ lw(T1, FieldAddress(CODE_REG, Code::checked_entry_point_offset()));
__ jr(T1);
}
void StubCode::GenerateFrameAwaitingMaterializationStub(Assembler* assembler) {
__ break_(0);
}
} // namespace dart
#endif // defined TARGET_ARCH_MIPS