blob: e16256c0d09f4cec7eafc01ca4222787d29e7ee7 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM.
#if defined(TARGET_ARCH_ARM)
#include "vm/flow_graph_compiler.h"
#include "vm/ast_printer.h"
#include "vm/compiler.h"
#include "vm/cpu.h"
#include "vm/dart_entry.h"
#include "vm/deopt_instructions.h"
#include "vm/il_printer.h"
#include "vm/instructions.h"
#include "vm/locations.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
namespace dart {
DEFINE_FLAG(bool, trap_on_deoptimization, false, "Trap on deoptimization.");
DEFINE_FLAG(bool, unbox_mints, true, "Optimize 64-bit integer arithmetic.");
DEFINE_FLAG(bool, unbox_doubles, true, "Optimize double arithmetic.");
DECLARE_FLAG(bool, enable_simd_inline);
FlowGraphCompiler::~FlowGraphCompiler() {
// BlockInfos are zone-allocated, so their destructors are not called.
// Verify the labels explicitly here.
for (int i = 0; i < block_info_.length(); ++i) {
ASSERT(!block_info_[i]->jump_label()->IsLinked());
}
}
bool FlowGraphCompiler::SupportsUnboxedDoubles() {
return TargetCPUFeatures::vfp_supported() && FLAG_unbox_doubles;
}
bool FlowGraphCompiler::SupportsUnboxedMints() {
return FLAG_unbox_mints;
}
bool FlowGraphCompiler::SupportsUnboxedSimd128() {
return TargetCPUFeatures::neon_supported() && FLAG_enable_simd_inline;
}
bool FlowGraphCompiler::SupportsHardwareDivision() {
return TargetCPUFeatures::can_divide();
}
bool FlowGraphCompiler::CanConvertUnboxedMintToDouble() {
// ARM does not have a short instruction sequence for converting int64 to
// double.
return false;
}
void FlowGraphCompiler::EnterIntrinsicMode() {
ASSERT(!intrinsic_mode());
intrinsic_mode_ = true;
ASSERT(!assembler()->constant_pool_allowed());
}
void FlowGraphCompiler::ExitIntrinsicMode() {
ASSERT(intrinsic_mode());
intrinsic_mode_ = false;
}
RawTypedData* CompilerDeoptInfo::CreateDeoptInfo(FlowGraphCompiler* compiler,
DeoptInfoBuilder* builder,
const Array& deopt_table) {
if (deopt_env_ == NULL) {
++builder->current_info_number_;
return TypedData::null();
}
intptr_t stack_height = compiler->StackSize();
AllocateIncomingParametersRecursive(deopt_env_, &stack_height);
intptr_t slot_ix = 0;
Environment* current = deopt_env_;
// Emit all kMaterializeObject instructions describing objects to be
// materialized on the deoptimization as a prefix to the deoptimization info.
EmitMaterializations(deopt_env_, builder);
// The real frame starts here.
builder->MarkFrameStart();
Zone* zone = compiler->zone();
builder->AddPp(current->function(), slot_ix++);
builder->AddPcMarker(Function::ZoneHandle(zone), slot_ix++);
builder->AddCallerFp(slot_ix++);
builder->AddReturnAddress(current->function(), deopt_id(), slot_ix++);
// Emit all values that are needed for materialization as a part of the
// expression stack for the bottom-most frame. This guarantees that GC
// will be able to find them during materialization.
slot_ix = builder->EmitMaterializationArguments(slot_ix);
// For the innermost environment, set outgoing arguments and the locals.
for (intptr_t i = current->Length() - 1;
i >= current->fixed_parameter_count(); i--) {
builder->AddCopy(current->ValueAt(i), current->LocationAt(i), slot_ix++);
}
Environment* previous = current;
current = current->outer();
while (current != NULL) {
builder->AddPp(current->function(), slot_ix++);
builder->AddPcMarker(previous->function(), slot_ix++);
builder->AddCallerFp(slot_ix++);
// For any outer environment the deopt id is that of the call instruction
// which is recorded in the outer environment.
builder->AddReturnAddress(current->function(),
Thread::ToDeoptAfter(current->deopt_id()),
slot_ix++);
// The values of outgoing arguments can be changed from the inlined call so
// we must read them from the previous environment.
for (intptr_t i = previous->fixed_parameter_count() - 1; i >= 0; i--) {
builder->AddCopy(previous->ValueAt(i), previous->LocationAt(i),
slot_ix++);
}
// Set the locals, note that outgoing arguments are not in the environment.
for (intptr_t i = current->Length() - 1;
i >= current->fixed_parameter_count(); i--) {
builder->AddCopy(current->ValueAt(i), current->LocationAt(i), slot_ix++);
}
// Iterate on the outer environment.
previous = current;
current = current->outer();
}
// The previous pointer is now the outermost environment.
ASSERT(previous != NULL);
// Set slots for the outermost environment.
builder->AddCallerPp(slot_ix++);
builder->AddPcMarker(previous->function(), slot_ix++);
builder->AddCallerFp(slot_ix++);
builder->AddCallerPc(slot_ix++);
// For the outermost environment, set the incoming arguments.
for (intptr_t i = previous->fixed_parameter_count() - 1; i >= 0; i--) {
builder->AddCopy(previous->ValueAt(i), previous->LocationAt(i), slot_ix++);
}
return builder->CreateDeoptInfo(deopt_table);
}
void CompilerDeoptInfoWithStub::GenerateCode(FlowGraphCompiler* compiler,
intptr_t stub_ix) {
// Calls do not need stubs, they share a deoptimization trampoline.
ASSERT(reason() != ICData::kDeoptAtCall);
Assembler* assembler = compiler->assembler();
#define __ assembler->
__ Comment("%s", Name());
__ Bind(entry_label());
if (FLAG_trap_on_deoptimization) {
__ bkpt(0);
}
ASSERT(deopt_env() != NULL);
// LR may be live. It will be clobbered by BranchLink, so cache it in IP.
// It will be restored at the top of the deoptimization stub, specifically in
// GenerateDeoptimizationSequence in stub_code_arm.cc.
__ Push(CODE_REG);
__ mov(IP, Operand(LR));
__ BranchLink(*StubCode::Deoptimize_entry());
set_pc_offset(assembler->CodeSize());
#undef __
}
#define __ assembler()->
// Fall through if bool_register contains null.
void FlowGraphCompiler::GenerateBoolToJump(Register bool_register,
Label* is_true,
Label* is_false) {
Label fall_through;
__ CompareObject(bool_register, Object::null_object());
__ b(&fall_through, EQ);
__ CompareObject(bool_register, Bool::True());
__ b(is_true, EQ);
__ b(is_false);
__ Bind(&fall_through);
}
// R0: instance (must be preserved).
// R1: instantiator type arguments (if used).
RawSubtypeTestCache* FlowGraphCompiler::GenerateCallSubtypeTestStub(
TypeTestStubKind test_kind,
Register instance_reg,
Register type_arguments_reg,
Register temp_reg,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
ASSERT(instance_reg == R0);
ASSERT(temp_reg == kNoRegister); // Unused on ARM.
const SubtypeTestCache& type_test_cache =
SubtypeTestCache::ZoneHandle(zone(), SubtypeTestCache::New());
__ LoadUniqueObject(R2, type_test_cache);
if (test_kind == kTestTypeOneArg) {
ASSERT(type_arguments_reg == kNoRegister);
__ LoadObject(R1, Object::null_object());
__ BranchLink(*StubCode::Subtype1TestCache_entry());
} else if (test_kind == kTestTypeTwoArgs) {
ASSERT(type_arguments_reg == kNoRegister);
__ LoadObject(R1, Object::null_object());
__ BranchLink(*StubCode::Subtype2TestCache_entry());
} else if (test_kind == kTestTypeThreeArgs) {
ASSERT(type_arguments_reg == R1);
__ BranchLink(*StubCode::Subtype3TestCache_entry());
} else {
UNREACHABLE();
}
// Result is in R1: null -> not found, otherwise Bool::True or Bool::False.
GenerateBoolToJump(R1, is_instance_lbl, is_not_instance_lbl);
return type_test_cache.raw();
}
// Jumps to labels 'is_instance' or 'is_not_instance' respectively, if
// type test is conclusive, otherwise fallthrough if a type test could not
// be completed.
// R0: instance being type checked (preserved).
// Clobbers R2.
RawSubtypeTestCache*
FlowGraphCompiler::GenerateInstantiatedTypeWithArgumentsTest(
TokenPosition token_pos,
const AbstractType& type,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("InstantiatedTypeWithArgumentsTest");
ASSERT(type.IsInstantiated());
const Class& type_class = Class::ZoneHandle(zone(), type.type_class());
ASSERT(type.IsFunctionType() || (type_class.NumTypeArguments() > 0));
const Register kInstanceReg = R0;
Error& bound_error = Error::Handle(zone());
const Type& int_type = Type::Handle(zone(), Type::IntType());
const bool smi_is_ok =
int_type.IsSubtypeOf(type, &bound_error, NULL, Heap::kOld);
// Malformed type should have been handled at graph construction time.
ASSERT(smi_is_ok || bound_error.IsNull());
__ tst(kInstanceReg, Operand(kSmiTagMask));
if (smi_is_ok) {
__ b(is_instance_lbl, EQ);
} else {
__ b(is_not_instance_lbl, EQ);
}
// A function type test requires checking the function signature.
if (!type.IsFunctionType()) {
const intptr_t num_type_args = type_class.NumTypeArguments();
const intptr_t num_type_params = type_class.NumTypeParameters();
const intptr_t from_index = num_type_args - num_type_params;
const TypeArguments& type_arguments =
TypeArguments::ZoneHandle(zone(), type.arguments());
const bool is_raw_type = type_arguments.IsNull() ||
type_arguments.IsRaw(from_index, num_type_params);
if (is_raw_type) {
const Register kClassIdReg = R2;
// dynamic type argument, check only classes.
__ LoadClassId(kClassIdReg, kInstanceReg);
__ CompareImmediate(kClassIdReg, type_class.id());
__ b(is_instance_lbl, EQ);
// List is a very common case.
if (IsListClass(type_class)) {
GenerateListTypeCheck(kClassIdReg, is_instance_lbl);
}
return GenerateSubtype1TestCacheLookup(
token_pos, type_class, is_instance_lbl, is_not_instance_lbl);
}
// If one type argument only, check if type argument is Object or dynamic.
if (type_arguments.Length() == 1) {
const AbstractType& tp_argument =
AbstractType::ZoneHandle(zone(), type_arguments.TypeAt(0));
ASSERT(!tp_argument.IsMalformed());
if (tp_argument.IsType()) {
ASSERT(tp_argument.HasResolvedTypeClass());
// Check if type argument is dynamic or Object.
const Type& object_type = Type::Handle(zone(), Type::ObjectType());
if (object_type.IsSubtypeOf(tp_argument, NULL, NULL, Heap::kOld)) {
// Instance class test only necessary.
return GenerateSubtype1TestCacheLookup(
token_pos, type_class, is_instance_lbl, is_not_instance_lbl);
}
}
}
}
// Regular subtype test cache involving instance's type arguments.
const Register kTypeArgumentsReg = kNoRegister;
const Register kTempReg = kNoRegister;
// R0: instance (must be preserved).
return GenerateCallSubtypeTestStub(kTestTypeTwoArgs, kInstanceReg,
kTypeArgumentsReg, kTempReg,
is_instance_lbl, is_not_instance_lbl);
}
void FlowGraphCompiler::CheckClassIds(Register class_id_reg,
const GrowableArray<intptr_t>& class_ids,
Label* is_equal_lbl,
Label* is_not_equal_lbl) {
for (intptr_t i = 0; i < class_ids.length(); i++) {
__ CompareImmediate(class_id_reg, class_ids[i]);
__ b(is_equal_lbl, EQ);
}
__ b(is_not_equal_lbl);
}
// Testing against an instantiated type with no arguments, without
// SubtypeTestCache.
// R0: instance being type checked (preserved).
// Clobbers R2, R3.
// Returns true if there is a fallthrough.
bool FlowGraphCompiler::GenerateInstantiatedTypeNoArgumentsTest(
TokenPosition token_pos,
const AbstractType& type,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("InstantiatedTypeNoArgumentsTest");
ASSERT(type.IsInstantiated());
if (type.IsFunctionType()) {
// Fallthrough.
return true;
}
const Class& type_class = Class::Handle(zone(), type.type_class());
ASSERT(type_class.NumTypeArguments() == 0);
const Register kInstanceReg = R0;
__ tst(kInstanceReg, Operand(kSmiTagMask));
// If instance is Smi, check directly.
const Class& smi_class = Class::Handle(zone(), Smi::Class());
if (smi_class.IsSubtypeOf(TypeArguments::Handle(zone()), type_class,
TypeArguments::Handle(zone()), NULL, NULL,
Heap::kOld)) {
__ b(is_instance_lbl, EQ);
} else {
__ b(is_not_instance_lbl, EQ);
}
const Register kClassIdReg = R2;
__ LoadClassId(kClassIdReg, kInstanceReg);
// See ClassFinalizer::ResolveSuperTypeAndInterfaces for list of restricted
// interfaces.
// Bool interface can be implemented only by core class Bool.
if (type.IsBoolType()) {
__ CompareImmediate(kClassIdReg, kBoolCid);
__ b(is_instance_lbl, EQ);
__ b(is_not_instance_lbl);
return false;
}
// Custom checking for numbers (Smi, Mint, Bigint and Double).
// Note that instance is not Smi (checked above).
if (type.IsNumberType() || type.IsIntType() || type.IsDoubleType()) {
GenerateNumberTypeCheck(kClassIdReg, type, is_instance_lbl,
is_not_instance_lbl);
return false;
}
if (type.IsStringType()) {
GenerateStringTypeCheck(kClassIdReg, is_instance_lbl, is_not_instance_lbl);
return false;
}
if (type.IsDartFunctionType()) {
// Check if instance is a closure.
__ CompareImmediate(kClassIdReg, kClosureCid);
__ b(is_instance_lbl, EQ);
return true; // Fall through
}
// Compare if the classes are equal.
if (!type_class.is_abstract()) {
__ CompareImmediate(kClassIdReg, type_class.id());
__ b(is_instance_lbl, EQ);
}
// Otherwise fallthrough.
return true;
}
// Uses SubtypeTestCache to store instance class and result.
// R0: instance to test.
// Clobbers R1-R4,R9.
// Immediate class test already done.
// TODO(srdjan): Implement a quicker subtype check, as type test
// arrays can grow too high, but they may be useful when optimizing
// code (type-feedback).
RawSubtypeTestCache* FlowGraphCompiler::GenerateSubtype1TestCacheLookup(
TokenPosition token_pos,
const Class& type_class,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("Subtype1TestCacheLookup");
const Register kInstanceReg = R0;
__ LoadClass(R1, kInstanceReg, R2);
// R1: instance class.
// Check immediate superclass equality.
__ ldr(R2, FieldAddress(R1, Class::super_type_offset()));
__ ldr(R2, FieldAddress(R2, Type::type_class_id_offset()));
__ CompareImmediate(R2, Smi::RawValue(type_class.id()));
__ b(is_instance_lbl, EQ);
const Register kTypeArgumentsReg = kNoRegister;
const Register kTempReg = kNoRegister;
return GenerateCallSubtypeTestStub(kTestTypeOneArg, kInstanceReg,
kTypeArgumentsReg, kTempReg,
is_instance_lbl, is_not_instance_lbl);
}
// Generates inlined check if 'type' is a type parameter or type itself
// R0: instance (preserved).
RawSubtypeTestCache* FlowGraphCompiler::GenerateUninstantiatedTypeTest(
TokenPosition token_pos,
const AbstractType& type,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("UninstantiatedTypeTest");
ASSERT(!type.IsInstantiated());
// Skip check if destination is a dynamic type.
if (type.IsTypeParameter()) {
const TypeParameter& type_param = TypeParameter::Cast(type);
// Load instantiator type arguments on stack.
__ ldr(R1, Address(SP, 0)); // Get instantiator type arguments.
// R1: instantiator type arguments.
// Check if type arguments are null, i.e. equivalent to vector of dynamic.
__ CompareObject(R1, Object::null_object());
__ b(is_instance_lbl, EQ);
__ ldr(R2,
FieldAddress(R1, TypeArguments::type_at_offset(type_param.index())));
// R2: concrete type of type.
// Check if type argument is dynamic.
__ CompareObject(R2, Object::dynamic_type());
__ b(is_instance_lbl, EQ);
__ CompareObject(R2, Type::ZoneHandle(zone(), Type::ObjectType()));
__ b(is_instance_lbl, EQ);
// For Smi check quickly against int and num interfaces.
Label not_smi;
__ tst(R0, Operand(kSmiTagMask)); // Value is Smi?
__ b(&not_smi, NE);
__ CompareObject(R2, Type::ZoneHandle(zone(), Type::IntType()));
__ b(is_instance_lbl, EQ);
__ CompareObject(R2, Type::ZoneHandle(zone(), Type::Number()));
__ b(is_instance_lbl, EQ);
// Smi must be handled in runtime.
Label fall_through;
__ b(&fall_through);
__ Bind(&not_smi);
// R1: instantiator type arguments.
// R0: instance.
const Register kInstanceReg = R0;
const Register kTypeArgumentsReg = R1;
const Register kTempReg = kNoRegister;
const SubtypeTestCache& type_test_cache = SubtypeTestCache::ZoneHandle(
zone(), GenerateCallSubtypeTestStub(
kTestTypeThreeArgs, kInstanceReg, kTypeArgumentsReg,
kTempReg, is_instance_lbl, is_not_instance_lbl));
__ Bind(&fall_through);
return type_test_cache.raw();
}
if (type.IsType()) {
const Register kInstanceReg = R0;
const Register kTypeArgumentsReg = R1;
__ tst(kInstanceReg, Operand(kSmiTagMask)); // Is instance Smi?
__ b(is_not_instance_lbl, EQ);
__ ldr(kTypeArgumentsReg, Address(SP, 0)); // Instantiator type args.
// Uninstantiated type class is known at compile time, but the type
// arguments are determined at runtime by the instantiator.
const Register kTempReg = kNoRegister;
return GenerateCallSubtypeTestStub(kTestTypeThreeArgs, kInstanceReg,
kTypeArgumentsReg, kTempReg,
is_instance_lbl, is_not_instance_lbl);
}
return SubtypeTestCache::null();
}
// Inputs:
// - R0: instance being type checked (preserved).
// - R1: optional instantiator type arguments (preserved).
// Clobbers R2, R3.
// Returns:
// - preserved instance in R0 and optional instantiator type arguments in R1.
// Note that this inlined code must be followed by the runtime_call code, as it
// may fall through to it. Otherwise, this inline code will jump to the label
// is_instance or to the label is_not_instance.
RawSubtypeTestCache* FlowGraphCompiler::GenerateInlineInstanceof(
TokenPosition token_pos,
const AbstractType& type,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
__ Comment("InlineInstanceof");
if (type.IsVoidType()) {
// A non-null value is returned from a void function, which will result in a
// type error. A null value is handled prior to executing this inline code.
return SubtypeTestCache::null();
}
if (type.IsInstantiated()) {
const Class& type_class = Class::ZoneHandle(zone(), type.type_class());
// A class equality check is only applicable with a dst type (not a
// function type) of a non-parameterized class or with a raw dst type of
// a parameterized class.
if (type.IsFunctionType() || (type_class.NumTypeArguments() > 0)) {
return GenerateInstantiatedTypeWithArgumentsTest(
token_pos, type, is_instance_lbl, is_not_instance_lbl);
// Fall through to runtime call.
}
const bool has_fall_through = GenerateInstantiatedTypeNoArgumentsTest(
token_pos, type, is_instance_lbl, is_not_instance_lbl);
if (has_fall_through) {
// If test non-conclusive so far, try the inlined type-test cache.
// 'type' is known at compile time.
return GenerateSubtype1TestCacheLookup(
token_pos, type_class, is_instance_lbl, is_not_instance_lbl);
} else {
return SubtypeTestCache::null();
}
}
return GenerateUninstantiatedTypeTest(token_pos, type, is_instance_lbl,
is_not_instance_lbl);
}
// If instanceof type test cannot be performed successfully at compile time and
// therefore eliminated, optimize it by adding inlined tests for:
// - NULL -> return type == Null (type is not Object or dynamic).
// - Smi -> compile time subtype check (only if dst class is not parameterized).
// - Class equality (only if class is not parameterized).
// Inputs:
// - R0: object.
// - R1: instantiator type arguments or raw_null.
// Returns:
// - true or false in R0.
void FlowGraphCompiler::GenerateInstanceOf(TokenPosition token_pos,
intptr_t deopt_id,
const AbstractType& type,
bool negate_result,
LocationSummary* locs) {
ASSERT(type.IsFinalized() && !type.IsMalformed() && !type.IsMalbounded());
ASSERT(!type.IsObjectType() && !type.IsDynamicType());
// Preserve instantiator type arguments (R1).
__ Push(R1);
Label is_instance, is_not_instance;
// If type is instantiated and non-parameterized, we can inline code
// checking whether the tested instance is a Smi.
if (type.IsInstantiated()) {
// A null object is only an instance of Null, Object, and dynamic.
// Object and dynamic have already been checked above (if the type is
// instantiated). So we can return false here if the instance is null,
// unless the type is Null (and if the type is instantiated).
// We can only inline this null check if the type is instantiated at compile
// time, since an uninstantiated type at compile time could be Null, Object,
// or dynamic at run time.
__ CompareObject(R0, Object::null_object());
__ b(type.IsNullType() ? &is_instance : &is_not_instance, EQ);
}
// Generate inline instanceof test.
SubtypeTestCache& test_cache = SubtypeTestCache::ZoneHandle(zone());
test_cache =
GenerateInlineInstanceof(token_pos, type, &is_instance, &is_not_instance);
// test_cache is null if there is no fall-through.
Label done;
if (!test_cache.IsNull()) {
// Generate runtime call.
// Load instantiator type arguments (R1).
__ ldr(R1, Address(SP, 0 * kWordSize));
__ PushObject(Object::null_object()); // Make room for the result.
__ Push(R0); // Push the instance.
__ PushObject(type); // Push the type.
__ Push(R1); // Push instantiator type arguments (R1).
__ LoadUniqueObject(R0, test_cache);
__ Push(R0);
GenerateRuntimeCall(token_pos, deopt_id, kInstanceofRuntimeEntry, 4, locs);
// Pop the parameters supplied to the runtime entry. The result of the
// instanceof runtime call will be left as the result of the operation.
__ Drop(4);
if (negate_result) {
__ Pop(R1);
__ LoadObject(R0, Bool::True());
__ cmp(R1, Operand(R0));
__ b(&done, NE);
__ LoadObject(R0, Bool::False());
} else {
__ Pop(R0);
}
__ b(&done);
}
__ Bind(&is_not_instance);
__ LoadObject(R0, Bool::Get(negate_result));
__ b(&done);
__ Bind(&is_instance);
__ LoadObject(R0, Bool::Get(!negate_result));
__ Bind(&done);
// Remove instantiator type arguments (R1).
__ Drop(1);
}
// Optimize assignable type check by adding inlined tests for:
// - NULL -> return NULL.
// - Smi -> compile time subtype check (only if dst class is not parameterized).
// - Class equality (only if class is not parameterized).
// Inputs:
// - R0: instance being type checked.
// - R1: instantiator type arguments or raw_null.
// Returns:
// - object in R0 for successful assignable check (or throws TypeError).
// Performance notes: positive checks must be quick, negative checks can be slow
// as they throw an exception.
void FlowGraphCompiler::GenerateAssertAssignable(TokenPosition token_pos,
intptr_t deopt_id,
const AbstractType& dst_type,
const String& dst_name,
LocationSummary* locs) {
ASSERT(!token_pos.IsClassifying());
ASSERT(!dst_type.IsNull());
ASSERT(dst_type.IsFinalized());
// Assignable check is skipped in FlowGraphBuilder, not here.
ASSERT(dst_type.IsMalformedOrMalbounded() ||
(!dst_type.IsDynamicType() && !dst_type.IsObjectType()));
// Preserve instantiator type arguments (R1).
__ Push(R1);
// A null object is always assignable and is returned as result.
Label is_assignable, runtime_call;
__ CompareObject(R0, Object::null_object());
__ b(&is_assignable, EQ);
// Generate throw new TypeError() if the type is malformed or malbounded.
if (dst_type.IsMalformedOrMalbounded()) {
__ PushObject(Object::null_object()); // Make room for the result.
__ Push(R0); // Push the source object.
__ PushObject(dst_name); // Push the name of the destination.
__ PushObject(dst_type); // Push the type of the destination.
GenerateRuntimeCall(token_pos, deopt_id, kBadTypeErrorRuntimeEntry, 3,
locs);
// We should never return here.
__ bkpt(0);
__ Bind(&is_assignable); // For a null object.
// Restore instantiator type arguments (R1).
__ Pop(R1);
return;
}
// Generate inline type check, linking to runtime call if not assignable.
SubtypeTestCache& test_cache = SubtypeTestCache::ZoneHandle(zone());
test_cache = GenerateInlineInstanceof(token_pos, dst_type, &is_assignable,
&runtime_call);
__ Bind(&runtime_call);
// Load instantiator type arguments (R1).
__ ldr(R1, Address(SP, 0 * kWordSize));
__ PushObject(Object::null_object()); // Make room for the result.
__ Push(R0); // Push the source object.
__ PushObject(dst_type); // Push the type of the destination.
__ Push(R1); // Push instantiator type arguments (R1).
__ PushObject(dst_name); // Push the name of the destination.
__ LoadUniqueObject(R0, test_cache);
__ Push(R0);
GenerateRuntimeCall(token_pos, deopt_id, kTypeCheckRuntimeEntry, 5, locs);
// Pop the parameters supplied to the runtime entry. The result of the
// type check runtime call is the checked value.
__ Drop(5);
__ Pop(R0);
__ Bind(&is_assignable);
// Restore instantiator type arguments (R1).
__ Pop(R1);
}
void FlowGraphCompiler::EmitInstructionEpilogue(Instruction* instr) {
if (is_optimizing()) {
return;
}
Definition* defn = instr->AsDefinition();
if ((defn != NULL) && defn->HasTemp()) {
__ Push(defn->locs()->out(0).reg());
}
}
// Input parameters:
// R4: arguments descriptor array.
void FlowGraphCompiler::CopyParameters() {
__ Comment("Copy parameters");
const Function& function = parsed_function().function();
LocalScope* scope = parsed_function().node_sequence()->scope();
const int num_fixed_params = function.num_fixed_parameters();
const int num_opt_pos_params = function.NumOptionalPositionalParameters();
const int num_opt_named_params = function.NumOptionalNamedParameters();
const int num_params =
num_fixed_params + num_opt_pos_params + num_opt_named_params;
ASSERT(function.NumParameters() == num_params);
ASSERT(parsed_function().first_parameter_index() == kFirstLocalSlotFromFp);
// Check that min_num_pos_args <= num_pos_args <= max_num_pos_args,
// where num_pos_args is the number of positional arguments passed in.
const int min_num_pos_args = num_fixed_params;
const int max_num_pos_args = num_fixed_params + num_opt_pos_params;
__ ldr(R6, FieldAddress(R4, ArgumentsDescriptor::positional_count_offset()));
// Check that min_num_pos_args <= num_pos_args.
Label wrong_num_arguments;
__ CompareImmediate(R6, Smi::RawValue(min_num_pos_args));
__ b(&wrong_num_arguments, LT);
// Check that num_pos_args <= max_num_pos_args.
__ CompareImmediate(R6, Smi::RawValue(max_num_pos_args));
__ b(&wrong_num_arguments, GT);
// Copy positional arguments.
// Argument i passed at fp[kParamEndSlotFromFp + num_args - i] is copied
// to fp[kFirstLocalSlotFromFp - i].
__ ldr(NOTFP, FieldAddress(R4, ArgumentsDescriptor::count_offset()));
// Since NOTFP and R6 are Smi, use LSL 1 instead of LSL 2.
// Let NOTFP point to the last passed positional argument, i.e. to
// fp[kParamEndSlotFromFp + num_args - (num_pos_args - 1)].
__ sub(NOTFP, NOTFP, Operand(R6));
__ add(NOTFP, FP, Operand(NOTFP, LSL, 1));
__ add(NOTFP, NOTFP, Operand((kParamEndSlotFromFp + 1) * kWordSize));
// Let R8 point to the last copied positional argument, i.e. to
// fp[kFirstLocalSlotFromFp - (num_pos_args - 1)].
__ AddImmediate(R8, FP, (kFirstLocalSlotFromFp + 1) * kWordSize);
__ sub(R8, R8, Operand(R6, LSL, 1)); // R6 is a Smi.
__ SmiUntag(R6);
Label loop, loop_condition;
__ b(&loop_condition);
// We do not use the final allocation index of the variable here, i.e.
// scope->VariableAt(i)->index(), because captured variables still need
// to be copied to the context that is not yet allocated.
const Address argument_addr(NOTFP, R6, LSL, 2);
const Address copy_addr(R8, R6, LSL, 2);
__ Bind(&loop);
__ ldr(IP, argument_addr);
__ str(IP, copy_addr);
__ Bind(&loop_condition);
__ subs(R6, R6, Operand(1));
__ b(&loop, PL);
// Copy or initialize optional named arguments.
Label all_arguments_processed;
#ifdef DEBUG
const bool check_correct_named_args = true;
#else
const bool check_correct_named_args = function.IsClosureFunction();
#endif
if (num_opt_named_params > 0) {
// Start by alphabetically sorting the names of the optional parameters.
LocalVariable** opt_param = new LocalVariable*[num_opt_named_params];
int* opt_param_position = new int[num_opt_named_params];
for (int pos = num_fixed_params; pos < num_params; pos++) {
LocalVariable* parameter = scope->VariableAt(pos);
const String& opt_param_name = parameter->name();
int i = pos - num_fixed_params;
while (--i >= 0) {
LocalVariable* param_i = opt_param[i];
const intptr_t result = opt_param_name.CompareTo(param_i->name());
ASSERT(result != 0);
if (result > 0) break;
opt_param[i + 1] = opt_param[i];
opt_param_position[i + 1] = opt_param_position[i];
}
opt_param[i + 1] = parameter;
opt_param_position[i + 1] = pos;
}
// Generate code handling each optional parameter in alphabetical order.
__ ldr(NOTFP, FieldAddress(R4, ArgumentsDescriptor::count_offset()));
// Let NOTFP point to the first passed argument, i.e. to
// fp[kParamEndSlotFromFp + num_args - 0]; num_args (NOTFP) is Smi.
__ add(NOTFP, FP, Operand(NOTFP, LSL, 1));
__ AddImmediate(NOTFP, NOTFP, kParamEndSlotFromFp * kWordSize);
// Let R8 point to the entry of the first named argument.
__ add(R8, R4, Operand(ArgumentsDescriptor::first_named_entry_offset() -
kHeapObjectTag));
for (int i = 0; i < num_opt_named_params; i++) {
Label load_default_value, assign_optional_parameter;
const int param_pos = opt_param_position[i];
// Check if this named parameter was passed in.
// Load R9 with the name of the argument.
__ ldr(R9, Address(R8, ArgumentsDescriptor::name_offset()));
ASSERT(opt_param[i]->name().IsSymbol());
__ CompareObject(R9, opt_param[i]->name());
__ b(&load_default_value, NE);
// Load R9 with passed-in argument at provided arg_pos, i.e. at
// fp[kParamEndSlotFromFp + num_args - arg_pos].
__ ldr(R9, Address(R8, ArgumentsDescriptor::position_offset()));
// R9 is arg_pos as Smi.
// Point to next named entry.
__ add(R8, R8, Operand(ArgumentsDescriptor::named_entry_size()));
__ rsb(R9, R9, Operand(0));
Address argument_addr(NOTFP, R9, LSL, 1); // R9 is a negative Smi.
__ ldr(R9, argument_addr);
__ b(&assign_optional_parameter);
__ Bind(&load_default_value);
// Load R9 with default argument.
const Instance& value = parsed_function().DefaultParameterValueAt(
param_pos - num_fixed_params);
__ LoadObject(R9, value);
__ Bind(&assign_optional_parameter);
// Assign R9 to fp[kFirstLocalSlotFromFp - param_pos].
// We do not use the final allocation index of the variable here, i.e.
// scope->VariableAt(i)->index(), because captured variables still need
// to be copied to the context that is not yet allocated.
const intptr_t computed_param_pos = kFirstLocalSlotFromFp - param_pos;
const Address param_addr(FP, computed_param_pos * kWordSize);
__ str(R9, param_addr);
}
delete[] opt_param;
delete[] opt_param_position;
if (check_correct_named_args) {
// Check that R8 now points to the null terminator in the arguments
// descriptor.
__ ldr(R9, Address(R8, 0));
__ CompareObject(R9, Object::null_object());
__ b(&all_arguments_processed, EQ);
}
} else {
ASSERT(num_opt_pos_params > 0);
__ ldr(R6,
FieldAddress(R4, ArgumentsDescriptor::positional_count_offset()));
__ SmiUntag(R6);
for (int i = 0; i < num_opt_pos_params; i++) {
Label next_parameter;
// Handle this optional positional parameter only if k or fewer positional
// arguments have been passed, where k is param_pos, the position of this
// optional parameter in the formal parameter list.
const int param_pos = num_fixed_params + i;
__ CompareImmediate(R6, param_pos);
__ b(&next_parameter, GT);
// Load R9 with default argument.
const Object& value = parsed_function().DefaultParameterValueAt(i);
__ LoadObject(R9, value);
// Assign R9 to fp[kFirstLocalSlotFromFp - param_pos].
// We do not use the final allocation index of the variable here, i.e.
// scope->VariableAt(i)->index(), because captured variables still need
// to be copied to the context that is not yet allocated.
const intptr_t computed_param_pos = kFirstLocalSlotFromFp - param_pos;
const Address param_addr(FP, computed_param_pos * kWordSize);
__ str(R9, param_addr);
__ Bind(&next_parameter);
}
if (check_correct_named_args) {
__ ldr(NOTFP, FieldAddress(R4, ArgumentsDescriptor::count_offset()));
__ SmiUntag(NOTFP);
// Check that R6 equals NOTFP, i.e. no named arguments passed.
__ cmp(R6, Operand(NOTFP));
__ b(&all_arguments_processed, EQ);
}
}
__ Bind(&wrong_num_arguments);
if (function.IsClosureFunction()) {
__ LeaveDartFrame(kKeepCalleePP); // The arguments are still on the stack.
__ Branch(*StubCode::CallClosureNoSuchMethod_entry());
// The noSuchMethod call may return to the caller, but not here.
} else if (check_correct_named_args) {
__ Stop("Wrong arguments");
}
__ Bind(&all_arguments_processed);
// Nullify originally passed arguments only after they have been copied and
// checked, otherwise noSuchMethod would not see their original values.
// This step can be skipped in case we decide that formal parameters are
// implicitly final, since garbage collecting the unmodified value is not
// an issue anymore.
// R4 : arguments descriptor array.
__ ldr(R6, FieldAddress(R4, ArgumentsDescriptor::count_offset()));
__ SmiUntag(R6);
__ add(NOTFP, FP, Operand((kParamEndSlotFromFp + 1) * kWordSize));
const Address original_argument_addr(NOTFP, R6, LSL, 2);
__ LoadObject(IP, Object::null_object());
Label null_args_loop, null_args_loop_condition;
__ b(&null_args_loop_condition);
__ Bind(&null_args_loop);
__ str(IP, original_argument_addr);
__ Bind(&null_args_loop_condition);
__ subs(R6, R6, Operand(1));
__ b(&null_args_loop, PL);
}
void FlowGraphCompiler::GenerateInlinedGetter(intptr_t offset) {
// LR: return address.
// SP: receiver.
// Sequence node has one return node, its input is load field node.
__ Comment("Inlined Getter");
__ ldr(R0, Address(SP, 0 * kWordSize));
__ LoadFieldFromOffset(kWord, R0, R0, offset);
__ Ret();
}
void FlowGraphCompiler::GenerateInlinedSetter(intptr_t offset) {
// LR: return address.
// SP+1: receiver.
// SP+0: value.
// Sequence node has one store node and one return NULL node.
__ Comment("Inlined Setter");
__ ldr(R0, Address(SP, 1 * kWordSize)); // Receiver.
__ ldr(R1, Address(SP, 0 * kWordSize)); // Value.
__ StoreIntoObjectOffset(R0, offset, R1);
__ LoadObject(R0, Object::null_object());
__ Ret();
}
static const Register new_pp = NOTFP;
void FlowGraphCompiler::EmitFrameEntry() {
const Function& function = parsed_function().function();
if (CanOptimizeFunction() && function.IsOptimizable() &&
(!is_optimizing() || may_reoptimize())) {
__ Comment("Invocation Count Check");
const Register function_reg = R8;
// The pool pointer is not setup before entering the Dart frame.
// Temporarily setup pool pointer for this dart function.
__ LoadPoolPointer(new_pp);
// Load function object from object pool.
__ LoadFunctionFromCalleePool(function_reg, function, new_pp);
__ ldr(R3, FieldAddress(function_reg, Function::usage_counter_offset()));
// Reoptimization of an optimized function is triggered by counting in
// IC stubs, but not at the entry of the function.
if (!is_optimizing()) {
__ add(R3, R3, Operand(1));
__ str(R3, FieldAddress(function_reg, Function::usage_counter_offset()));
}
__ CompareImmediate(R3, GetOptimizationThreshold());
ASSERT(function_reg == R8);
__ Branch(*StubCode::OptimizeFunction_entry(), kNotPatchable, new_pp, GE);
}
__ Comment("Enter frame");
if (flow_graph().IsCompiledForOsr()) {
intptr_t extra_slots = StackSize() - flow_graph().num_stack_locals() -
flow_graph().num_copied_params();
ASSERT(extra_slots >= 0);
__ EnterOsrFrame(extra_slots * kWordSize);
} else {
ASSERT(StackSize() >= 0);
__ EnterDartFrame(StackSize() * kWordSize);
}
}
// Input parameters:
// LR: return address.
// SP: address of last argument.
// FP: caller's frame pointer.
// PP: caller's pool pointer.
// R9: ic-data.
// R4: arguments descriptor array.
void FlowGraphCompiler::CompileGraph() {
InitCompiler();
const Function& function = parsed_function().function();
#ifdef DART_PRECOMPILER
if (function.IsDynamicFunction()) {
__ MonomorphicCheckedEntry();
}
#endif // DART_PRECOMPILER
if (TryIntrinsify()) {
// Skip regular code generation.
return;
}
EmitFrameEntry();
ASSERT(assembler()->constant_pool_allowed());
const int num_fixed_params = function.num_fixed_parameters();
const int num_copied_params = parsed_function().num_copied_params();
const int num_locals = parsed_function().num_stack_locals();
// We check the number of passed arguments when we have to copy them due to
// the presence of optional parameters.
// No such checking code is generated if only fixed parameters are declared,
// unless we are in debug mode or unless we are compiling a closure.
if (num_copied_params == 0) {
const bool check_arguments =
function.IsClosureFunction() && !flow_graph().IsCompiledForOsr();
if (check_arguments) {
__ Comment("Check argument count");
// Check that exactly num_fixed arguments are passed in.
Label correct_num_arguments, wrong_num_arguments;
__ ldr(R0, FieldAddress(R4, ArgumentsDescriptor::count_offset()));
__ CompareImmediate(R0, Smi::RawValue(num_fixed_params));
__ b(&wrong_num_arguments, NE);
__ ldr(R1,
FieldAddress(R4, ArgumentsDescriptor::positional_count_offset()));
__ cmp(R0, Operand(R1));
__ b(&correct_num_arguments, EQ);
__ Bind(&wrong_num_arguments);
ASSERT(assembler()->constant_pool_allowed());
__ LeaveDartFrame(kKeepCalleePP); // Arguments are still on the stack.
__ Branch(*StubCode::CallClosureNoSuchMethod_entry());
// The noSuchMethod call may return to the caller, but not here.
__ Bind(&correct_num_arguments);
}
} else if (!flow_graph().IsCompiledForOsr()) {
CopyParameters();
}
if (function.IsClosureFunction() && !flow_graph().IsCompiledForOsr()) {
// Load context from the closure object (first argument).
LocalScope* scope = parsed_function().node_sequence()->scope();
LocalVariable* closure_parameter = scope->VariableAt(0);
__ ldr(CTX, Address(FP, closure_parameter->index() * kWordSize));
__ ldr(CTX, FieldAddress(CTX, Closure::context_offset()));
}
// In unoptimized code, initialize (non-argument) stack allocated slots to
// null.
if (!is_optimizing()) {
ASSERT(num_locals > 0); // There is always at least context_var.
__ Comment("Initialize spill slots");
const intptr_t slot_base = parsed_function().first_stack_local_index();
const intptr_t context_index =
parsed_function().current_context_var()->index();
if (num_locals > 1) {
__ LoadObject(R0, Object::null_object());
}
for (intptr_t i = 0; i < num_locals; ++i) {
// Subtract index i (locals lie at lower addresses than FP).
if (((slot_base - i) == context_index)) {
if (function.IsClosureFunction()) {
__ StoreToOffset(kWord, CTX, FP, (slot_base - i) * kWordSize);
} else {
const Context& empty_context = Context::ZoneHandle(
zone(), isolate()->object_store()->empty_context());
__ LoadObject(R1, empty_context);
__ StoreToOffset(kWord, R1, FP, (slot_base - i) * kWordSize);
}
} else {
ASSERT(num_locals > 1);
__ StoreToOffset(kWord, R0, FP, (slot_base - i) * kWordSize);
}
}
}
EndCodeSourceRange(TokenPosition::kDartCodePrologue);
VisitBlocks();
__ bkpt(0);
ASSERT(assembler()->constant_pool_allowed());
GenerateDeferredCode();
}
void FlowGraphCompiler::GenerateCall(TokenPosition token_pos,
const StubEntry& stub_entry,
RawPcDescriptors::Kind kind,
LocationSummary* locs) {
__ BranchLink(stub_entry);
AddCurrentDescriptor(kind, Thread::kNoDeoptId, token_pos);
RecordSafepoint(locs);
}
void FlowGraphCompiler::GeneratePatchableCall(TokenPosition token_pos,
const StubEntry& stub_entry,
RawPcDescriptors::Kind kind,
LocationSummary* locs) {
__ BranchLinkPatchable(stub_entry);
AddCurrentDescriptor(kind, Thread::kNoDeoptId, token_pos);
RecordSafepoint(locs);
}
void FlowGraphCompiler::GenerateDartCall(intptr_t deopt_id,
TokenPosition token_pos,
const StubEntry& stub_entry,
RawPcDescriptors::Kind kind,
LocationSummary* locs) {
__ BranchLinkPatchable(stub_entry);
AddCurrentDescriptor(kind, deopt_id, token_pos);
RecordSafepoint(locs);
// Marks either the continuation point in unoptimized code or the
// deoptimization point in optimized code, after call.
const intptr_t deopt_id_after = Thread::ToDeoptAfter(deopt_id);
if (is_optimizing()) {
AddDeoptIndexAtCall(deopt_id_after);
} else {
// Add deoptimization continuation point after the call and before the
// arguments are removed.
AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id_after, token_pos);
}
}
void FlowGraphCompiler::GenerateStaticDartCall(intptr_t deopt_id,
TokenPosition token_pos,
const StubEntry& stub_entry,
RawPcDescriptors::Kind kind,
LocationSummary* locs,
const Function& target) {
// Call sites to the same target can share object pool entries. These
// call sites are never patched for breakpoints: the function is deoptimized
// and the unoptimized code with IC calls for static calls is patched instead.
ASSERT(is_optimizing());
__ BranchLinkWithEquivalence(stub_entry, target);
AddCurrentDescriptor(kind, deopt_id, token_pos);
RecordSafepoint(locs);
// Marks either the continuation point in unoptimized code or the
// deoptimization point in optimized code, after call.
const intptr_t deopt_id_after = Thread::ToDeoptAfter(deopt_id);
if (is_optimizing()) {
AddDeoptIndexAtCall(deopt_id_after);
} else {
// Add deoptimization continuation point after the call and before the
// arguments are removed.
AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id_after, token_pos);
}
AddStaticCallTarget(target);
}
void FlowGraphCompiler::GenerateRuntimeCall(TokenPosition token_pos,
intptr_t deopt_id,
const RuntimeEntry& entry,
intptr_t argument_count,
LocationSummary* locs) {
__ CallRuntime(entry, argument_count);
AddCurrentDescriptor(RawPcDescriptors::kOther, deopt_id, token_pos);
RecordSafepoint(locs);
if (deopt_id != Thread::kNoDeoptId) {
// Marks either the continuation point in unoptimized code or the
// deoptimization point in optimized code, after call.
const intptr_t deopt_id_after = Thread::ToDeoptAfter(deopt_id);
if (is_optimizing()) {
AddDeoptIndexAtCall(deopt_id_after);
} else {
// Add deoptimization continuation point after the call and before the
// arguments are removed.
AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id_after, token_pos);
}
}
}
void FlowGraphCompiler::EmitEdgeCounter(intptr_t edge_id) {
// We do not check for overflow when incrementing the edge counter. The
// function should normally be optimized long before the counter can
// overflow; and though we do not reset the counters when we optimize or
// deoptimize, there is a bound on the number of
// optimization/deoptimization cycles we will attempt.
ASSERT(!edge_counters_array_.IsNull());
ASSERT(assembler_->constant_pool_allowed());
__ Comment("Edge counter");
__ LoadObject(R0, edge_counters_array_);
#if defined(DEBUG)
bool old_use_far_branches = assembler_->use_far_branches();
assembler_->set_use_far_branches(true);
#endif // DEBUG
__ LoadFieldFromOffset(kWord, R1, R0, Array::element_offset(edge_id));
__ add(R1, R1, Operand(Smi::RawValue(1)));
__ StoreIntoObjectNoBarrierOffset(R0, Array::element_offset(edge_id), R1);
#if defined(DEBUG)
assembler_->set_use_far_branches(old_use_far_branches);
#endif // DEBUG
}
void FlowGraphCompiler::EmitOptimizedInstanceCall(const StubEntry& stub_entry,
const ICData& ic_data,
intptr_t argument_count,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs) {
ASSERT(Array::Handle(zone(), ic_data.arguments_descriptor()).Length() > 0);
// Each ICData propagated from unoptimized to optimized code contains the
// function that corresponds to the Dart function of that IC call. Due
// to inlining in optimized code, that function may not correspond to the
// top-level function (parsed_function().function()) which could be
// reoptimized and which counter needs to be incremented.
// Pass the function explicitly, it is used in IC stub.
__ LoadObject(R8, parsed_function().function());
__ LoadUniqueObject(R9, ic_data);
GenerateDartCall(deopt_id, token_pos, stub_entry, RawPcDescriptors::kIcCall,
locs);
__ Drop(argument_count);
}
void FlowGraphCompiler::EmitInstanceCall(const StubEntry& stub_entry,
const ICData& ic_data,
intptr_t argument_count,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs) {
ASSERT(Array::Handle(zone(), ic_data.arguments_descriptor()).Length() > 0);
__ LoadUniqueObject(R9, ic_data);
GenerateDartCall(deopt_id, token_pos, stub_entry, RawPcDescriptors::kIcCall,
locs);
__ Drop(argument_count);
}
void FlowGraphCompiler::EmitMegamorphicInstanceCall(
const ICData& ic_data,
intptr_t argument_count,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs,
intptr_t try_index,
intptr_t slow_path_argument_count) {
const String& name = String::Handle(zone(), ic_data.target_name());
const Array& arguments_descriptor =
Array::ZoneHandle(zone(), ic_data.arguments_descriptor());
ASSERT(!arguments_descriptor.IsNull() && (arguments_descriptor.Length() > 0));
const MegamorphicCache& cache = MegamorphicCache::ZoneHandle(
zone(),
MegamorphicCacheTable::Lookup(isolate(), name, arguments_descriptor));
__ Comment("MegamorphicCall");
// Load receiver into R0.
__ LoadFromOffset(kWord, R0, SP, (argument_count - 1) * kWordSize);
Label done;
if (ShouldInlineSmiStringHashCode(ic_data)) {
Label megamorphic_call;
__ Comment("Inlined get:hashCode for Smi and OneByteString");
__ tst(R0, Operand(kSmiTagMask));
__ b(&done, EQ); // Is Smi (result is receiver).
// Use R9 (cache for megamorphic call) as scratch.
__ CompareClassId(R0, kOneByteStringCid, R9);
__ b(&megamorphic_call, NE);
__ mov(R9, Operand(R0)); // Preserve receiver in R9.
__ ldr(R0, FieldAddress(R0, String::hash_offset()));
ASSERT(Smi::New(0) == 0);
__ cmp(R0, Operand(0));
__ b(&done, NE); // Return if already computed.
__ mov(R0, Operand(R9)); // Restore receiver in R0.
__ Bind(&megamorphic_call);
__ Comment("Slow case: megamorphic call");
}
__ LoadObject(R9, cache);
__ ldr(LR, Address(THR, Thread::megamorphic_call_checked_entry_offset()));
__ blx(LR);
__ Bind(&done);
RecordSafepoint(locs, slow_path_argument_count);
const intptr_t deopt_id_after = Thread::ToDeoptAfter(deopt_id);
if (FLAG_precompiled_mode) {
// Megamorphic calls may occur in slow path stubs.
// If valid use try_index argument.
if (try_index == CatchClauseNode::kInvalidTryIndex) {
try_index = CurrentTryIndex();
}
pc_descriptors_list()->AddDescriptor(
RawPcDescriptors::kOther, assembler()->CodeSize(), Thread::kNoDeoptId,
token_pos, try_index);
} else if (is_optimizing()) {
AddCurrentDescriptor(RawPcDescriptors::kOther, Thread::kNoDeoptId,
token_pos);
AddDeoptIndexAtCall(deopt_id_after);
} else {
AddCurrentDescriptor(RawPcDescriptors::kOther, Thread::kNoDeoptId,
token_pos);
// Add deoptimization continuation point after the call and before the
// arguments are removed.
AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id_after, token_pos);
}
__ Drop(argument_count);
}
void FlowGraphCompiler::EmitSwitchableInstanceCall(const ICData& ic_data,
intptr_t argument_count,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs) {
ASSERT(ic_data.NumArgsTested() == 1);
const Code& initial_stub =
Code::ZoneHandle(StubCode::ICCallThroughFunction_entry()->code());
__ Comment("SwitchableCall");
__ LoadFromOffset(kWord, R0, SP, (argument_count - 1) * kWordSize);
__ LoadUniqueObject(CODE_REG, initial_stub);
__ ldr(LR, FieldAddress(CODE_REG, Code::checked_entry_point_offset()));
__ LoadUniqueObject(R9, ic_data);
__ blx(LR);
AddCurrentDescriptor(RawPcDescriptors::kOther, Thread::kNoDeoptId, token_pos);
RecordSafepoint(locs);
const intptr_t deopt_id_after = Thread::ToDeoptAfter(deopt_id);
if (is_optimizing()) {
AddDeoptIndexAtCall(deopt_id_after);
} else {
// Add deoptimization continuation point after the call and before the
// arguments are removed.
AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id_after, token_pos);
}
__ Drop(argument_count);
}
void FlowGraphCompiler::EmitUnoptimizedStaticCall(intptr_t argument_count,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs,
const ICData& ic_data) {
const StubEntry* stub_entry =
StubCode::UnoptimizedStaticCallEntry(ic_data.NumArgsTested());
__ LoadObject(R9, ic_data);
GenerateDartCall(deopt_id, token_pos, *stub_entry,
RawPcDescriptors::kUnoptStaticCall, locs);
__ Drop(argument_count);
}
void FlowGraphCompiler::EmitOptimizedStaticCall(
const Function& function,
const Array& arguments_descriptor,
intptr_t argument_count,
intptr_t deopt_id,
TokenPosition token_pos,
LocationSummary* locs) {
ASSERT(!function.IsClosureFunction());
if (function.HasOptionalParameters()) {
__ LoadObject(R4, arguments_descriptor);
} else {
__ LoadImmediate(R4, 0); // GC safe smi zero because of stub.
}
// Do not use the code from the function, but let the code be patched so that
// we can record the outgoing edges to other code.
GenerateStaticDartCall(deopt_id, token_pos,
*StubCode::CallStaticFunction_entry(),
RawPcDescriptors::kOther, locs, function);
__ Drop(argument_count);
}
Condition FlowGraphCompiler::EmitEqualityRegConstCompare(
Register reg,
const Object& obj,
bool needs_number_check,
TokenPosition token_pos) {
if (needs_number_check) {
ASSERT(!obj.IsMint() && !obj.IsDouble() && !obj.IsBigint());
__ Push(reg);
__ PushObject(obj);
if (is_optimizing()) {
__ BranchLinkPatchable(
*StubCode::OptimizedIdenticalWithNumberCheck_entry());
} else {
__ BranchLinkPatchable(
*StubCode::UnoptimizedIdenticalWithNumberCheck_entry());
}
if (token_pos.IsReal()) {
AddCurrentDescriptor(RawPcDescriptors::kRuntimeCall, Thread::kNoDeoptId,
token_pos);
}
// Stub returns result in flags (result of a cmp, we need Z computed).
__ Drop(1); // Discard constant.
__ Pop(reg); // Restore 'reg'.
} else {
__ CompareObject(reg, obj);
}
return EQ;
}
Condition FlowGraphCompiler::EmitEqualityRegRegCompare(
Register left,
Register right,
bool needs_number_check,
TokenPosition token_pos) {
if (needs_number_check) {
__ Push(left);
__ Push(right);
if (is_optimizing()) {
__ BranchLinkPatchable(
*StubCode::OptimizedIdenticalWithNumberCheck_entry());
} else {
__ BranchLinkPatchable(
*StubCode::UnoptimizedIdenticalWithNumberCheck_entry());
}
if (token_pos.IsReal()) {
AddCurrentDescriptor(RawPcDescriptors::kRuntimeCall, Thread::kNoDeoptId,
token_pos);
}
// Stub returns result in flags (result of a cmp, we need Z computed).
__ Pop(right);
__ Pop(left);
} else {
__ cmp(left, Operand(right));
}
return EQ;
}
// This function must be in sync with FlowGraphCompiler::RecordSafepoint and
// FlowGraphCompiler::SlowPathEnvironmentFor.
void FlowGraphCompiler::SaveLiveRegisters(LocationSummary* locs) {
#if defined(DEBUG)
locs->CheckWritableInputs();
ClobberDeadTempRegisters(locs);
#endif
// TODO(vegorov): consider saving only caller save (volatile) registers.
const intptr_t fpu_regs_count = locs->live_registers()->FpuRegisterCount();
if (fpu_regs_count > 0) {
__ AddImmediate(SP, -(fpu_regs_count * kFpuRegisterSize));
// Store fpu registers with the lowest register number at the lowest
// address.
intptr_t offset = 0;
for (intptr_t i = 0; i < kNumberOfFpuRegisters; ++i) {
QRegister fpu_reg = static_cast<QRegister>(i);
if (locs->live_registers()->ContainsFpuRegister(fpu_reg)) {
DRegister d1 = EvenDRegisterOf(fpu_reg);
DRegister d2 = OddDRegisterOf(fpu_reg);
// TODO(regis): merge stores using vstmd instruction.
__ vstrd(d1, Address(SP, offset));
__ vstrd(d2, Address(SP, offset + 2 * kWordSize));
offset += kFpuRegisterSize;
}
}
ASSERT(offset == (fpu_regs_count * kFpuRegisterSize));
}
// The order in which the registers are pushed must match the order
// in which the registers are encoded in the safe point's stack map.
// NOTE: This matches the order of ARM's multi-register push.
RegList reg_list = 0;
for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; --i) {
Register reg = static_cast<Register>(i);
if (locs->live_registers()->ContainsRegister(reg)) {
reg_list |= (1 << reg);
}
}
if (reg_list != 0) {
__ PushList(reg_list);
}
}
void FlowGraphCompiler::RestoreLiveRegisters(LocationSummary* locs) {
RegList reg_list = 0;
for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; --i) {
Register reg = static_cast<Register>(i);
if (locs->live_registers()->ContainsRegister(reg)) {
reg_list |= (1 << reg);
}
}
if (reg_list != 0) {
__ PopList(reg_list);
}
const intptr_t fpu_regs_count = locs->live_registers()->FpuRegisterCount();
if (fpu_regs_count > 0) {
// Fpu registers have the lowest register number at the lowest address.
intptr_t offset = 0;
for (intptr_t i = 0; i < kNumberOfFpuRegisters; ++i) {
QRegister fpu_reg = static_cast<QRegister>(i);
if (locs->live_registers()->ContainsFpuRegister(fpu_reg)) {
DRegister d1 = EvenDRegisterOf(fpu_reg);
DRegister d2 = OddDRegisterOf(fpu_reg);
// TODO(regis): merge loads using vldmd instruction.
__ vldrd(d1, Address(SP, offset));
__ vldrd(d2, Address(SP, offset + 2 * kWordSize));
offset += kFpuRegisterSize;
}
}
ASSERT(offset == (fpu_regs_count * kFpuRegisterSize));
__ AddImmediate(SP, offset);
}
}
#if defined(DEBUG)
void FlowGraphCompiler::ClobberDeadTempRegisters(LocationSummary* locs) {
// Clobber temporaries that have not been manually preserved.
for (intptr_t i = 0; i < locs->temp_count(); ++i) {
Location tmp = locs->temp(i);
// TODO(zerny): clobber non-live temporary FPU registers.
if (tmp.IsRegister() &&
!locs->live_registers()->ContainsRegister(tmp.reg())) {
__ mov(tmp.reg(), Operand(0xf7));
}
}
}
#endif
void FlowGraphCompiler::EmitTestAndCall(const ICData& ic_data,
intptr_t argument_count,
const Array& argument_names,
Label* failed,
Label* match_found,
intptr_t deopt_id,
TokenPosition token_index,
LocationSummary* locs,
bool complete) {
ASSERT(is_optimizing());
__ Comment("EmitTestAndCall");
const Array& arguments_descriptor = Array::ZoneHandle(
zone(), ArgumentsDescriptor::New(argument_count, argument_names));
// Load receiver into R0.
__ LoadFromOffset(kWord, R0, SP, (argument_count - 1) * kWordSize);
__ LoadObject(R4, arguments_descriptor);
const bool kFirstCheckIsSmi = ic_data.GetReceiverClassIdAt(0) == kSmiCid;
const intptr_t kNumChecks = ic_data.NumberOfChecks();
ASSERT(!ic_data.IsNull() && (kNumChecks > 0));
Label after_smi_test;
if (kFirstCheckIsSmi) {
__ tst(R0, Operand(kSmiTagMask));
// Jump if receiver is not Smi.
if (kNumChecks == 1) {
__ b(failed, NE);
} else {
__ b(&after_smi_test, NE);
}
// Do not use the code from the function, but let the code be patched so
// that we can record the outgoing edges to other code.
const Function& function =
Function::ZoneHandle(zone(), ic_data.GetTargetAt(0));
GenerateStaticDartCall(deopt_id, token_index,
*StubCode::CallStaticFunction_entry(),
RawPcDescriptors::kOther, locs, function);
__ Drop(argument_count);
if (kNumChecks > 1) {
__ b(match_found);
}
} else {
// Receiver is Smi, but Smi is not a valid class therefore fail.
// (Smi class must be first in the list).
if (!complete) {
__ tst(R0, Operand(kSmiTagMask));
__ b(failed, EQ);
}
}
__ Bind(&after_smi_test);
ASSERT(!ic_data.IsNull() && (kNumChecks > 0));
GrowableArray<CidTarget> sorted(kNumChecks);
SortICDataByCount(ic_data, &sorted, /* drop_smi = */ true);
// Value is not Smi,
const intptr_t kSortedLen = sorted.length();
// If kSortedLen is 0 then only a Smi check was needed; the Smi check above
// will fail if there was only one check and receiver is not Smi.
if (kSortedLen == 0) return;
__ LoadClassId(R2, R0);
for (intptr_t i = 0; i < kSortedLen; i++) {
const bool kIsLastCheck = (i == (kSortedLen - 1));
ASSERT(sorted[i].cid != kSmiCid);
Label next_test;
if (!complete) {
__ CompareImmediate(R2, sorted[i].cid);
if (kIsLastCheck) {
__ b(failed, NE);
} else {
__ b(&next_test, NE);
}
} else {
if (!kIsLastCheck) {
__ CompareImmediate(R2, sorted[i].cid);
__ b(&next_test, NE);
}
}
// Do not use the code from the function, but let the code be patched so
// that we can record the outgoing edges to other code.
const Function& function = *sorted[i].target;
GenerateStaticDartCall(deopt_id, token_index,
*StubCode::CallStaticFunction_entry(),
RawPcDescriptors::kOther, locs, function);
__ Drop(argument_count);
if (!kIsLastCheck) {
__ b(match_found);
}
__ Bind(&next_test);
}
}
#undef __
#define __ compiler_->assembler()->
void ParallelMoveResolver::EmitMove(int index) {
MoveOperands* move = moves_[index];
const Location source = move->src();
const Location destination = move->dest();
if (source.IsRegister()) {
if (destination.IsRegister()) {
__ mov(destination.reg(), Operand(source.reg()));
} else {
ASSERT(destination.IsStackSlot());
const intptr_t dest_offset = destination.ToStackSlotOffset();
__ StoreToOffset(kWord, source.reg(), destination.base_reg(),
dest_offset);
}
} else if (source.IsStackSlot()) {
if (destination.IsRegister()) {
const intptr_t source_offset = source.ToStackSlotOffset();
__ LoadFromOffset(kWord, destination.reg(), source.base_reg(),
source_offset);
} else {
ASSERT(destination.IsStackSlot());
const intptr_t source_offset = source.ToStackSlotOffset();
const intptr_t dest_offset = destination.ToStackSlotOffset();
__ LoadFromOffset(kWord, TMP, source.base_reg(), source_offset);
__ StoreToOffset(kWord, TMP, destination.base_reg(), dest_offset);
}
} else if (source.IsFpuRegister()) {
if (destination.IsFpuRegister()) {
if (TargetCPUFeatures::neon_supported()) {
__ vmovq(destination.fpu_reg(), source.fpu_reg());
} else {
// If we're not inlining simd values, then only the even numbered D
// register will have anything in them.
__ vmovd(EvenDRegisterOf(destination.fpu_reg()),
EvenDRegisterOf(source.fpu_reg()));
}
} else {
if (destination.IsDoubleStackSlot()) {
const intptr_t dest_offset = destination.ToStackSlotOffset();
DRegister src = EvenDRegisterOf(source.fpu_reg());
__ StoreDToOffset(src, destination.base_reg(), dest_offset);
} else {
ASSERT(destination.IsQuadStackSlot());
const intptr_t dest_offset = destination.ToStackSlotOffset();
const DRegister dsrc0 = EvenDRegisterOf(source.fpu_reg());
__ StoreMultipleDToOffset(dsrc0, 2, destination.base_reg(),
dest_offset);
}
}
} else if (source.IsDoubleStackSlot()) {
if (destination.IsFpuRegister()) {
const intptr_t source_offset = source.ToStackSlotOffset();
const DRegister dst = EvenDRegisterOf(destination.fpu_reg());
__ LoadDFromOffset(dst, source.base_reg(), source_offset);
} else {
ASSERT(destination.IsDoubleStackSlot());
const intptr_t source_offset = source.ToStackSlotOffset();
const intptr_t dest_offset = destination.ToStackSlotOffset();
__ LoadDFromOffset(DTMP, source.base_reg(), source_offset);
__ StoreDToOffset(DTMP, destination.base_reg(), dest_offset);
}
} else if (source.IsQuadStackSlot()) {
if (destination.IsFpuRegister()) {
const intptr_t source_offset = source.ToStackSlotOffset();
const DRegister dst0 = EvenDRegisterOf(destination.fpu_reg());
__ LoadMultipleDFromOffset(dst0, 2, source.base_reg(), source_offset);
} else {
ASSERT(destination.IsQuadStackSlot());
const intptr_t source_offset = source.ToStackSlotOffset();
const intptr_t dest_offset = destination.ToStackSlotOffset();
const DRegister dtmp0 = DTMP;
__ LoadMultipleDFromOffset(dtmp0, 2, source.base_reg(), source_offset);
__ StoreMultipleDToOffset(dtmp0, 2, destination.base_reg(), dest_offset);
}
} else {
ASSERT(source.IsConstant());
const Object& constant = source.constant();
if (destination.IsRegister()) {
if (source.constant_instruction()->representation() == kUnboxedInt32) {
__ LoadImmediate(destination.reg(), Smi::Cast(constant).Value());
} else {
__ LoadObject(destination.reg(), constant);
}
} else if (destination.IsFpuRegister()) {
const DRegister dst = EvenDRegisterOf(destination.fpu_reg());
if (Utils::DoublesBitEqual(Double::Cast(constant).value(), 0.0) &&
TargetCPUFeatures::neon_supported()) {
QRegister qdst = destination.fpu_reg();
__ veorq(qdst, qdst, qdst);
} else {
__ LoadObject(TMP, constant);
__ AddImmediate(TMP, TMP, Double::value_offset() - kHeapObjectTag);
__ vldrd(dst, Address(TMP, 0));
}
} else if (destination.IsDoubleStackSlot()) {
if (Utils::DoublesBitEqual(Double::Cast(constant).value(), 0.0) &&
TargetCPUFeatures::neon_supported()) {
__ veorq(QTMP, QTMP, QTMP);
} else {
__ LoadObject(TMP, constant);
__ AddImmediate(TMP, TMP, Double::value_offset() - kHeapObjectTag);
__ vldrd(DTMP, Address(TMP, 0));
}
const intptr_t dest_offset = destination.ToStackSlotOffset();
__ StoreDToOffset(DTMP, destination.base_reg(), dest_offset);
} else {
ASSERT(destination.IsStackSlot());
const intptr_t dest_offset = destination.ToStackSlotOffset();
if (source.constant_instruction()->representation() == kUnboxedInt32) {
__ LoadImmediate(TMP, Smi::Cast(constant).Value());
} else {
__ LoadObject(TMP, constant);
}
__ StoreToOffset(kWord, TMP, destination.base_reg(), dest_offset);
}
}
move->Eliminate();
}
void ParallelMoveResolver::EmitSwap(int index) {
MoveOperands* move = moves_[index];
const Location source = move->src();
const Location destination = move->dest();
if (source.IsRegister() && destination.IsRegister()) {
ASSERT(source.reg() != IP);
ASSERT(destination.reg() != IP);
__ mov(IP, Operand(source.reg()));
__ mov(source.reg(), Operand(destination.reg()));
__ mov(destination.reg(), Operand(IP));
} else if (source.IsRegister() && destination.IsStackSlot()) {
Exchange(source.reg(), destination.base_reg(),
destination.ToStackSlotOffset());
} else if (source.IsStackSlot() && destination.IsRegister()) {
Exchange(destination.reg(), source.base_reg(), source.ToStackSlotOffset());
} else if (source.IsStackSlot() && destination.IsStackSlot()) {
Exchange(source.base_reg(), source.ToStackSlotOffset(),
destination.base_reg(), destination.ToStackSlotOffset());
} else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
if (TargetCPUFeatures::neon_supported()) {
const QRegister dst = destination.fpu_reg();
const QRegister src = source.fpu_reg();
__ vmovq(QTMP, src);
__ vmovq(src, dst);
__ vmovq(dst, QTMP);
} else {
const DRegister dst = EvenDRegisterOf(destination.fpu_reg());
const DRegister src = EvenDRegisterOf(source.fpu_reg());
__ vmovd(DTMP, src);
__ vmovd(src, dst);
__ vmovd(dst, DTMP);
}
} else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
ASSERT(destination.IsDoubleStackSlot() || destination.IsQuadStackSlot() ||
source.IsDoubleStackSlot() || source.IsQuadStackSlot());
bool double_width =
destination.IsDoubleStackSlot() || source.IsDoubleStackSlot();
QRegister qreg =
source.IsFpuRegister() ? source.fpu_reg() : destination.fpu_reg();
DRegister reg = EvenDRegisterOf(qreg);
Register base_reg =
source.IsFpuRegister() ? destination.base_reg() : source.base_reg();
const intptr_t slot_offset = source.IsFpuRegister()
? destination.ToStackSlotOffset()
: source.ToStackSlotOffset();
if (double_width) {
__ LoadDFromOffset(DTMP, base_reg, slot_offset);
__ StoreDToOffset(reg, base_reg, slot_offset);
__ vmovd(reg, DTMP);
} else {
__ LoadMultipleDFromOffset(DTMP, 2, base_reg, slot_offset);
__ StoreMultipleDToOffset(reg, 2, base_reg, slot_offset);
__ vmovq(qreg, QTMP);
}
} else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
const intptr_t source_offset = source.ToStackSlotOffset();
const intptr_t dest_offset = destination.ToStackSlotOffset();
ScratchFpuRegisterScope ensure_scratch(this, kNoQRegister);
DRegister scratch = EvenDRegisterOf(ensure_scratch.reg());
__ LoadDFromOffset(DTMP, source.base_reg(), source_offset);
__ LoadDFromOffset(scratch, destination.base_reg(), dest_offset);
__ StoreDToOffset(DTMP, destination.base_reg(), dest_offset);
__ StoreDToOffset(scratch, destination.base_reg(), source_offset);
} else if (source.IsQuadStackSlot() && destination.IsQuadStackSlot()) {
const intptr_t source_offset = source.ToStackSlotOffset();
const intptr_t dest_offset = destination.ToStackSlotOffset();
ScratchFpuRegisterScope ensure_scratch(this, kNoQRegister);
DRegister scratch = EvenDRegisterOf(ensure_scratch.reg());
__ LoadMultipleDFromOffset(DTMP, 2, source.base_reg(), source_offset);
__ LoadMultipleDFromOffset(scratch, 2, destination.base_reg(), dest_offset);
__ StoreMultipleDToOffset(DTMP, 2, destination.base_reg(), dest_offset);
__ StoreMultipleDToOffset(scratch, 2, destination.base_reg(),
source_offset);
} else {
UNREACHABLE();
}
// The swap of source and destination has executed a move from source to
// destination.
move->Eliminate();
// Any unperformed (including pending) move with a source of either
// this move's source or destination needs to have their source
// changed to reflect the state of affairs after the swap.
for (int i = 0; i < moves_.length(); ++i) {
const MoveOperands& other_move = *moves_[i];
if (other_move.Blocks(source)) {
moves_[i]->set_src(destination);
} else if (other_move.Blocks(destination)) {
moves_[i]->set_src(source);
}
}
}
void ParallelMoveResolver::MoveMemoryToMemory(const Address& dst,
const Address& src) {
UNREACHABLE();
}
void ParallelMoveResolver::StoreObject(const Address& dst, const Object& obj) {
UNREACHABLE();
}
// Do not call or implement this function. Instead, use the form below that
// uses an offset from the frame pointer instead of an Address.
void ParallelMoveResolver::Exchange(Register reg, const Address& mem) {
UNREACHABLE();
}
// Do not call or implement this function. Instead, use the form below that
// uses offsets from the frame pointer instead of Addresses.
void ParallelMoveResolver::Exchange(const Address& mem1, const Address& mem2) {
UNREACHABLE();
}
void ParallelMoveResolver::Exchange(Register reg,
Register base_reg,
intptr_t stack_offset) {
ScratchRegisterScope tmp(this, reg);
__ mov(tmp.reg(), Operand(reg));
__ LoadFromOffset(kWord, reg, base_reg, stack_offset);
__ StoreToOffset(kWord, tmp.reg(), base_reg, stack_offset);
}
void ParallelMoveResolver::Exchange(Register base_reg1,
intptr_t stack_offset1,
Register base_reg2,
intptr_t stack_offset2) {
ScratchRegisterScope tmp1(this, kNoRegister);
ScratchRegisterScope tmp2(this, tmp1.reg());
__ LoadFromOffset(kWord, tmp1.reg(), base_reg1, stack_offset1);
__ LoadFromOffset(kWord, tmp2.reg(), base_reg2, stack_offset2);
__ StoreToOffset(kWord, tmp1.reg(), base_reg2, stack_offset2);
__ StoreToOffset(kWord, tmp2.reg(), base_reg1, stack_offset1);
}
void ParallelMoveResolver::SpillScratch(Register reg) {
__ Push(reg);
}
void ParallelMoveResolver::RestoreScratch(Register reg) {
__ Pop(reg);
}
void ParallelMoveResolver::SpillFpuScratch(FpuRegister reg) {
DRegister dreg = EvenDRegisterOf(reg);
__ vstrd(dreg, Address(SP, -kDoubleSize, Address::PreIndex));
}
void ParallelMoveResolver::RestoreFpuScratch(FpuRegister reg) {
DRegister dreg = EvenDRegisterOf(reg);
__ vldrd(dreg, Address(SP, kDoubleSize, Address::PostIndex));
}
#undef __
} // namespace dart
#endif // defined TARGET_ARCH_ARM