blob: 20e0e9ec5a4b564e626115aca041dd20cbd2a8ed [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "platform/globals.h"
#if defined(TARGET_OS_ANDROID)
#include "platform/thread.h"
#include <errno.h> // NOLINT
#include <sys/time.h> // NOLINT
#include "platform/assert.h"
namespace dart {
#define VALIDATE_PTHREAD_RESULT(result) \
if (result != 0) { \
const int kBufferSize = 1024; \
char error_message[kBufferSize]; \
strerror_r(result, error_message, kBufferSize); \
FATAL2("pthread error: %d (%s)", result, error_message); \
}
#ifdef DEBUG
#define RETURN_ON_PTHREAD_FAILURE(result) \
if (result != 0) { \
const int kBufferSize = 1024; \
char error_message[kBufferSize]; \
strerror_r(result, error_message, kBufferSize); \
fprintf(stderr, "%s:%d: pthread error: %d (%s)\n", \
__FILE__, __LINE__, result, error_message); \
return result; \
}
#else
#define RETURN_ON_PTHREAD_FAILURE(result) \
if (result != 0) return result;
#endif
static void ComputeTimeSpec(struct timespec* ts, int64_t millis) {
int64_t secs = millis / kMillisecondsPerSecond;
int64_t nanos =
(millis - (secs * kMillisecondsPerSecond)) * kNanosecondsPerMillisecond;
int result = clock_gettime(CLOCK_MONOTONIC, ts);
ASSERT(result == 0);
ts->tv_sec += secs;
ts->tv_nsec += nanos;
if (ts->tv_nsec >= kNanosecondsPerSecond) {
ts->tv_sec += 1;
ts->tv_nsec -= kNanosecondsPerSecond;
}
}
class ThreadStartData {
public:
ThreadStartData(Thread::ThreadStartFunction function,
uword parameter)
: function_(function), parameter_(parameter) {}
Thread::ThreadStartFunction function() const { return function_; }
uword parameter() const { return parameter_; }
private:
Thread::ThreadStartFunction function_;
uword parameter_;
DISALLOW_COPY_AND_ASSIGN(ThreadStartData);
};
// Dispatch to the thread start function provided by the caller. This trampoline
// is used to ensure that the thread is properly destroyed if the thread just
// exits.
static void* ThreadStart(void* data_ptr) {
ThreadStartData* data = reinterpret_cast<ThreadStartData*>(data_ptr);
Thread::ThreadStartFunction function = data->function();
uword parameter = data->parameter();
delete data;
// Call the supplied thread start function handing it its parameters.
function(parameter);
return NULL;
}
int Thread::Start(ThreadStartFunction function, uword parameter) {
pthread_attr_t attr;
int result = pthread_attr_init(&attr);
RETURN_ON_PTHREAD_FAILURE(result);
result = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
RETURN_ON_PTHREAD_FAILURE(result);
result = pthread_attr_setstacksize(&attr, Thread::GetMaxStackSize());
RETURN_ON_PTHREAD_FAILURE(result);
ThreadStartData* data = new ThreadStartData(function, parameter);
pthread_t tid;
result = pthread_create(&tid, &attr, ThreadStart, data);
RETURN_ON_PTHREAD_FAILURE(result);
result = pthread_attr_destroy(&attr);
RETURN_ON_PTHREAD_FAILURE(result);
return 0;
}
ThreadLocalKey Thread::kUnsetThreadLocalKey = static_cast<pthread_key_t>(-1);
ThreadLocalKey Thread::CreateThreadLocal() {
pthread_key_t key = kUnsetThreadLocalKey;
int result = pthread_key_create(&key, NULL);
VALIDATE_PTHREAD_RESULT(result);
ASSERT(key != kUnsetThreadLocalKey);
return key;
}
void Thread::DeleteThreadLocal(ThreadLocalKey key) {
ASSERT(key != kUnsetThreadLocalKey);
int result = pthread_key_delete(key);
VALIDATE_PTHREAD_RESULT(result);
}
void Thread::SetThreadLocal(ThreadLocalKey key, uword value) {
ASSERT(key != kUnsetThreadLocalKey);
int result = pthread_setspecific(key, reinterpret_cast<void*>(value));
VALIDATE_PTHREAD_RESULT(result);
}
intptr_t Thread::GetMaxStackSize() {
const int kStackSize = (128 * kWordSize * KB);
return kStackSize;
}
Mutex::Mutex() {
pthread_mutexattr_t attr;
int result = pthread_mutexattr_init(&attr);
VALIDATE_PTHREAD_RESULT(result);
#if defined(DEBUG)
result = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
VALIDATE_PTHREAD_RESULT(result);
#endif // defined(DEBUG)
result = pthread_mutex_init(data_.mutex(), &attr);
// Verify that creating a pthread_mutex succeeded.
VALIDATE_PTHREAD_RESULT(result);
result = pthread_mutexattr_destroy(&attr);
VALIDATE_PTHREAD_RESULT(result);
}
Mutex::~Mutex() {
int result = pthread_mutex_destroy(data_.mutex());
// Verify that the pthread_mutex was destroyed.
VALIDATE_PTHREAD_RESULT(result);
}
void Mutex::Lock() {
int result = pthread_mutex_lock(data_.mutex());
// Specifically check for dead lock to help debugging.
ASSERT(result != EDEADLK);
ASSERT(result == 0); // Verify no other errors.
// TODO(iposva): Do we need to track lock owners?
}
bool Mutex::TryLock() {
int result = pthread_mutex_trylock(data_.mutex());
// Return false if the lock is busy and locking failed.
if (result == EBUSY) {
return false;
}
ASSERT(result == 0); // Verify no other errors.
// TODO(iposva): Do we need to track lock owners?
return true;
}
void Mutex::Unlock() {
// TODO(iposva): Do we need to track lock owners?
int result = pthread_mutex_unlock(data_.mutex());
// Specifically check for wrong thread unlocking to aid debugging.
ASSERT(result != EPERM);
ASSERT(result == 0); // Verify no other errors.
}
Monitor::Monitor() {
pthread_mutexattr_t mutex_attr;
int result = pthread_mutexattr_init(&mutex_attr);
VALIDATE_PTHREAD_RESULT(result);
#if defined(DEBUG)
result = pthread_mutexattr_settype(&mutex_attr, PTHREAD_MUTEX_ERRORCHECK);
VALIDATE_PTHREAD_RESULT(result);
#endif // defined(DEBUG)
result = pthread_mutex_init(data_.mutex(), &mutex_attr);
VALIDATE_PTHREAD_RESULT(result);
result = pthread_mutexattr_destroy(&mutex_attr);
VALIDATE_PTHREAD_RESULT(result);
pthread_condattr_t cond_attr;
result = pthread_condattr_init(&cond_attr);
VALIDATE_PTHREAD_RESULT(result);
result = pthread_cond_init(data_.cond(), &cond_attr);
VALIDATE_PTHREAD_RESULT(result);
result = pthread_condattr_destroy(&cond_attr);
VALIDATE_PTHREAD_RESULT(result);
}
Monitor::~Monitor() {
int result = pthread_mutex_destroy(data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
result = pthread_cond_destroy(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
void Monitor::Enter() {
int result = pthread_mutex_lock(data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
// TODO(iposva): Do we need to track lock owners?
}
void Monitor::Exit() {
// TODO(iposva): Do we need to track lock owners?
int result = pthread_mutex_unlock(data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
}
Monitor::WaitResult Monitor::Wait(int64_t millis) {
// TODO(iposva): Do we need to track lock owners?
Monitor::WaitResult retval = kNotified;
if (millis == 0) {
// Wait forever.
int result = pthread_cond_wait(data_.cond(), data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
} else {
struct timespec ts;
ComputeTimeSpec(&ts, millis);
int result = pthread_cond_timedwait_monotonic(
data_.cond(), data_.mutex(), &ts);
ASSERT((result == 0) || (result == ETIMEDOUT));
if (result == ETIMEDOUT) {
retval = kTimedOut;
}
}
return retval;
}
void Monitor::Notify() {
// TODO(iposva): Do we need to track lock owners?
int result = pthread_cond_signal(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
void Monitor::NotifyAll() {
// TODO(iposva): Do we need to track lock owners?
int result = pthread_cond_broadcast(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
} // namespace dart
#endif // defined(TARGET_OS_ANDROID)