blob: 00df26bf9fafd3e72a4b6daabbfb796444a8335f [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM.
#if defined(TARGET_ARCH_ARM)
#include "vm/intermediate_language.h"
#include "vm/dart_entry.h"
#include "vm/flow_graph_compiler.h"
#include "vm/locations.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/simulator.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#define __ compiler->assembler()->
namespace dart {
DECLARE_FLAG(int, optimization_counter_threshold);
DECLARE_FLAG(bool, propagate_ic_data);
DECLARE_FLAG(bool, use_osr);
// Generic summary for call instructions that have all arguments pushed
// on the stack and return the result in a fixed register R0.
LocationSummary* Instruction::MakeCallSummary() {
LocationSummary* result = new LocationSummary(0, 0, LocationSummary::kCall);
result->set_out(Location::RegisterLocation(R0));
return result;
}
LocationSummary* PushArgumentInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps= 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::AnyOrConstant(value()));
return locs;
}
void PushArgumentInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// In SSA mode, we need an explicit push. Nothing to do in non-SSA mode
// where PushArgument is handled by BindInstr::EmitNativeCode.
if (compiler->is_optimizing()) {
Location value = locs()->in(0);
if (value.IsRegister()) {
__ Push(value.reg());
} else if (value.IsConstant()) {
__ PushObject(value.constant());
} else {
ASSERT(value.IsStackSlot());
const intptr_t value_offset = value.ToStackSlotOffset();
__ LoadFromOffset(kWord, IP, FP, value_offset);
__ Push(IP);
}
}
}
LocationSummary* ReturnInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterLocation(R0));
return locs;
}
// Attempt optimized compilation at return instruction instead of at the entry.
// The entry needs to be patchable, no inlined objects are allowed in the area
// that will be overwritten by the patch instructions: a branch macro sequence.
void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->in(0).reg();
ASSERT(result == R0);
#if defined(DEBUG)
// TODO(srdjan): Fix for functions with finally clause.
// A finally clause may leave a previously pushed return value if it
// has its own return instruction. Method that have finally are currently
// not optimized.
if (!compiler->HasFinally()) {
Label stack_ok;
__ Comment("Stack Check");
const intptr_t fp_sp_dist =
(kFirstLocalSlotFromFp + 1 - compiler->StackSize()) * kWordSize;
ASSERT(fp_sp_dist <= 0);
__ sub(R2, SP, ShifterOperand(FP));
__ CompareImmediate(R2, fp_sp_dist);
__ b(&stack_ok, EQ);
__ bkpt(0);
__ Bind(&stack_ok);
}
#endif
__ LeaveDartFrame();
__ Ret();
// No need to generate NOP instructions so that the debugger can patch the
// return pattern (3 instructions) with a call to the debug stub (also 3
// instructions).
compiler->AddCurrentDescriptor(PcDescriptors::kReturn,
Isolate::kNoDeoptId,
token_pos());
}
bool IfThenElseInstr::IsSupported() {
return false;
}
bool IfThenElseInstr::Supports(ComparisonInstr* comparison,
Value* v1,
Value* v2) {
UNREACHABLE();
return false;
}
LocationSummary* IfThenElseInstr::MakeLocationSummary() const {
UNREACHABLE();
return NULL;
}
void IfThenElseInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNREACHABLE();
}
LocationSummary* ClosureCallInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* result =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
result->set_out(Location::RegisterLocation(R0));
result->set_temp(0, Location::RegisterLocation(R4)); // Arg. descriptor.
return result;
}
void ClosureCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The arguments to the stub include the closure, as does the arguments
// descriptor.
Register temp_reg = locs()->temp(0).reg();
int argument_count = ArgumentCount();
const Array& arguments_descriptor =
Array::ZoneHandle(ArgumentsDescriptor::New(argument_count,
argument_names()));
__ LoadObject(temp_reg, arguments_descriptor);
ASSERT(temp_reg == R4);
compiler->GenerateDartCall(deopt_id(),
token_pos(),
&StubCode::CallClosureFunctionLabel(),
PcDescriptors::kClosureCall,
locs());
__ Drop(argument_count);
}
LocationSummary* LoadLocalInstr::MakeLocationSummary() const {
return LocationSummary::Make(0,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out().reg();
__ LoadFromOffset(kWord, result, FP, local().index() * kWordSize);
}
LocationSummary* StoreLocalInstr::MakeLocationSummary() const {
return LocationSummary::Make(1,
Location::SameAsFirstInput(),
LocationSummary::kNoCall);
}
void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register result = locs()->out().reg();
ASSERT(result == value); // Assert that register assignment is correct.
__ str(value, Address(FP, local().index() * kWordSize));
}
LocationSummary* ConstantInstr::MakeLocationSummary() const {
return LocationSummary::Make(0,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The register allocator drops constant definitions that have no uses.
if (!locs()->out().IsInvalid()) {
Register result = locs()->out().reg();
__ LoadObject(result, value());
}
}
LocationSummary* AssertAssignableInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R0)); // Value.
summary->set_in(1, Location::RegisterLocation(R2)); // Instantiator.
summary->set_in(2, Location::RegisterLocation(R1)); // Type arguments.
summary->set_out(Location::RegisterLocation(R0));
return summary;
}
LocationSummary* AssertBooleanInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R0));
locs->set_out(Location::RegisterLocation(R0));
return locs;
}
static void EmitAssertBoolean(Register reg,
intptr_t token_pos,
intptr_t deopt_id,
LocationSummary* locs,
FlowGraphCompiler* compiler) {
// Check that the type of the value is allowed in conditional context.
// Call the runtime if the object is not bool::true or bool::false.
ASSERT(locs->always_calls());
Label done;
__ CompareObject(reg, Bool::True());
__ b(&done, EQ);
__ CompareObject(reg, Bool::False());
__ b(&done, EQ);
__ Push(reg); // Push the source object.
compiler->GenerateCallRuntime(token_pos,
deopt_id,
kConditionTypeErrorRuntimeEntry,
1,
locs);
// We should never return here.
__ bkpt(0);
__ Bind(&done);
}
void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register obj = locs()->in(0).reg();
Register result = locs()->out().reg();
EmitAssertBoolean(obj, token_pos(), deopt_id(), locs(), compiler);
ASSERT(obj == result);
}
static Condition TokenKindToSmiCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQ;
case Token::kNE: return NE;
case Token::kLT: return LT;
case Token::kGT: return GT;
case Token::kLTE: return LE;
case Token::kGTE: return GE;
default:
UNREACHABLE();
return VS;
}
}
LocationSummary* EqualityCompareInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
if (operation_cid() == kMintCid) {
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (operation_cid() == kDoubleCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (operation_cid() == kSmiCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
locs->set_out(Location::RequiresRegister());
return locs;
}
if (IsCheckedStrictEqual()) {
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_in(1, Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (IsPolymorphic()) {
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R1));
locs->set_in(1, Location::RegisterLocation(R0));
locs->set_temp(0, Location::RegisterLocation(R5));
locs->set_out(Location::RegisterLocation(R0));
return locs;
}
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R1));
locs->set_in(1, Location::RegisterLocation(R0));
locs->set_temp(0, Location::RegisterLocation(R5));
locs->set_out(Location::RegisterLocation(R0));
return locs;
}
static void EmitEqualityAsInstanceCall(FlowGraphCompiler* compiler,
intptr_t deopt_id,
intptr_t token_pos,
Token::Kind kind,
LocationSummary* locs,
const ICData& original_ic_data) {
if (!compiler->is_optimizing()) {
compiler->AddCurrentDescriptor(PcDescriptors::kDeopt,
deopt_id,
token_pos);
}
const int kNumberOfArguments = 2;
const Array& kNoArgumentNames = Object::null_array();
const int kNumArgumentsChecked = 2;
Label check_identity;
__ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null()));
__ ldm(IA, SP, (1 << R0) | (1 << R1));
__ cmp(R1, ShifterOperand(IP));
__ b(&check_identity, EQ);
__ cmp(R0, ShifterOperand(IP));
__ b(&check_identity, EQ);
ICData& equality_ic_data = ICData::ZoneHandle();
if (compiler->is_optimizing() && FLAG_propagate_ic_data) {
ASSERT(!original_ic_data.IsNull());
if (original_ic_data.NumberOfChecks() == 0) {
// IC call for reoptimization populates original ICData.
equality_ic_data = original_ic_data.raw();
} else {
// Megamorphic call.
equality_ic_data = original_ic_data.AsUnaryClassChecks();
}
} else {
const Array& arguments_descriptor =
Array::Handle(ArgumentsDescriptor::New(kNumberOfArguments,
kNoArgumentNames));
equality_ic_data = ICData::New(compiler->parsed_function().function(),
Symbols::EqualOperator(),
arguments_descriptor,
deopt_id,
kNumArgumentsChecked);
}
compiler->GenerateInstanceCall(deopt_id,
token_pos,
kNumberOfArguments,
kNoArgumentNames,
locs,
equality_ic_data);
Label check_ne;
__ b(&check_ne);
__ Bind(&check_identity);
Label equality_done;
if (compiler->is_optimizing()) {
// No need to update IC data.
__ PopList((1 << R0) | (1 << R1));
__ cmp(R0, ShifterOperand(R1));
__ LoadObject(R0, Bool::Get(kind != Token::kEQ), NE);
__ LoadObject(R0, Bool::Get(kind == Token::kEQ), EQ);
if (kind == Token::kNE) {
// Skip not-equal result conversion.
__ b(&equality_done);
}
} else {
// Call stub, load IC data in register. The stub will update ICData if
// necessary.
Register ic_data_reg = locs->temp(0).reg();
ASSERT(ic_data_reg == R5); // Stub depends on it.
__ LoadObject(ic_data_reg, equality_ic_data);
// Pass left in R1 and right in R0.
compiler->GenerateCall(token_pos,
&StubCode::EqualityWithNullArgLabel(),
PcDescriptors::kRuntimeCall,
locs);
__ Drop(2);
}
__ Bind(&check_ne);
if (kind == Token::kNE) {
// Negate the condition: true label returns false and vice versa.
__ CompareObject(R0, Bool::True());
__ LoadObject(R0, Bool::True(), NE);
__ LoadObject(R0, Bool::False(), EQ);
}
__ Bind(&equality_done);
}
static void LoadValueCid(FlowGraphCompiler* compiler,
Register value_cid_reg,
Register value_reg,
Label* value_is_smi = NULL) {
Label done;
if (value_is_smi == NULL) {
__ mov(value_cid_reg, ShifterOperand(kSmiCid));
}
__ tst(value_reg, ShifterOperand(kSmiTagMask));
if (value_is_smi == NULL) {
__ b(&done, EQ);
} else {
__ b(value_is_smi, EQ);
}
__ LoadClassId(value_cid_reg, value_reg);
__ Bind(&done);
}
static Condition NegateCondition(Condition condition) {
switch (condition) {
case EQ: return NE;
case NE: return EQ;
case LT: return GE;
case LE: return GT;
case GT: return LE;
case GE: return LT;
case CC: return CS;
case LS: return HI;
case HI: return LS;
case CS: return CC;
default:
UNREACHABLE();
return EQ;
}
}
// R1: left, also on stack.
// R0: right, also on stack.
static void EmitEqualityAsPolymorphicCall(FlowGraphCompiler* compiler,
const ICData& orig_ic_data,
LocationSummary* locs,
BranchInstr* branch,
Token::Kind kind,
intptr_t deopt_id,
intptr_t token_pos) {
ASSERT((kind == Token::kEQ) || (kind == Token::kNE));
const ICData& ic_data = ICData::Handle(orig_ic_data.AsUnaryClassChecks());
ASSERT(ic_data.NumberOfChecks() > 0);
ASSERT(ic_data.num_args_tested() == 1);
Label* deopt = compiler->AddDeoptStub(deopt_id, kDeoptEquality);
Register left = locs->in(0).reg();
Register right = locs->in(1).reg();
ASSERT(left == R1);
ASSERT(right == R0);
Register temp = locs->temp(0).reg();
LoadValueCid(compiler, temp, left,
(ic_data.GetReceiverClassIdAt(0) == kSmiCid) ? NULL : deopt);
// 'temp' contains class-id of the left argument.
ObjectStore* object_store = Isolate::Current()->object_store();
Condition cond = TokenKindToSmiCondition(kind);
Label done;
const intptr_t len = ic_data.NumberOfChecks();
for (intptr_t i = 0; i < len; i++) {
// Assert that the Smi is at position 0, if at all.
ASSERT((ic_data.GetReceiverClassIdAt(i) != kSmiCid) || (i == 0));
Label next_test;
__ CompareImmediate(temp, ic_data.GetReceiverClassIdAt(i));
if (i < len - 1) {
__ b(&next_test, NE);
} else {
__ b(deopt, NE);
}
const Function& target = Function::ZoneHandle(ic_data.GetTargetAt(i));
if (target.Owner() == object_store->object_class()) {
// Object.== is same as ===.
__ Drop(2);
__ cmp(left, ShifterOperand(right));
if (branch != NULL) {
branch->EmitBranchOnCondition(compiler, cond);
} else {
Register result = locs->out().reg();
__ LoadObject(result, Bool::True(), cond);
__ LoadObject(result, Bool::False(), NegateCondition(cond));
}
} else {
const int kNumberOfArguments = 2;
const Array& kNoArgumentNames = Object::null_array();
compiler->GenerateStaticCall(deopt_id,
token_pos,
target,
kNumberOfArguments,
kNoArgumentNames,
locs);
if (branch == NULL) {
if (kind == Token::kNE) {
__ CompareObject(R0, Bool::True());
__ LoadObject(R0, Bool::True(), NE);
__ LoadObject(R0, Bool::False(), EQ);
}
} else {
if (branch->is_checked()) {
EmitAssertBoolean(R0, token_pos, deopt_id, locs, compiler);
}
__ CompareObject(R0, Bool::True());
branch->EmitBranchOnCondition(compiler, cond);
}
}
if (i < len - 1) {
__ b(&done);
__ Bind(&next_test);
}
}
__ Bind(&done);
}
// Emit code when ICData's targets are all Object == (which is ===).
static void EmitCheckedStrictEqual(FlowGraphCompiler* compiler,
const ICData& orig_ic_data,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch,
intptr_t deopt_id) {
ASSERT((kind == Token::kEQ) || (kind == Token::kNE));
Register left = locs.in(0).reg();
Register right = locs.in(1).reg();
Register temp = locs.temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id, kDeoptEquality);
__ tst(left, ShifterOperand(kSmiTagMask));
__ b(deopt, EQ);
// 'left' is not Smi.
Label identity_compare;
__ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null()));
__ cmp(right, ShifterOperand(IP));
__ b(&identity_compare, EQ);
__ cmp(left, ShifterOperand(IP));
__ b(&identity_compare, EQ);
__ LoadClassId(temp, left);
const ICData& ic_data = ICData::Handle(orig_ic_data.AsUnaryClassChecks());
const intptr_t len = ic_data.NumberOfChecks();
for (intptr_t i = 0; i < len; i++) {
__ CompareImmediate(temp, ic_data.GetReceiverClassIdAt(i));
if (i == (len - 1)) {
__ b(deopt, NE);
} else {
__ b(&identity_compare, EQ);
}
}
__ Bind(&identity_compare);
__ cmp(left, ShifterOperand(right));
if (branch == NULL) {
Register result = locs.out().reg();
__ LoadObject(result, Bool::Get(kind == Token::kEQ), EQ);
__ LoadObject(result, Bool::Get(kind != Token::kEQ), NE);
} else {
Condition cond = TokenKindToSmiCondition(kind);
branch->EmitBranchOnCondition(compiler, cond);
}
}
// First test if receiver is NULL, in which case === is applied.
// If type feedback was provided (lists of <class-id, target>), do a
// type by type check (either === or static call to the operator.
static void EmitGenericEqualityCompare(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind,
BranchInstr* branch,
const ICData& ic_data,
intptr_t deopt_id,
intptr_t token_pos) {
ASSERT((kind == Token::kEQ) || (kind == Token::kNE));
ASSERT(!ic_data.IsNull() && (ic_data.NumberOfChecks() > 0));
Register left = locs->in(0).reg();
Register right = locs->in(1).reg();
Label done, identity_compare, non_null_compare;
__ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null()));
__ cmp(right, ShifterOperand(IP));
__ b(&identity_compare, EQ);
__ cmp(left, ShifterOperand(IP));
__ b(&non_null_compare, NE);
// Comparison with NULL is "===".
__ Bind(&identity_compare);
__ cmp(left, ShifterOperand(right));
Condition cond = TokenKindToSmiCondition(kind);
if (branch != NULL) {
branch->EmitBranchOnCondition(compiler, cond);
} else {
Register result = locs->out().reg();
Label load_true;
__ b(&load_true, cond);
__ LoadObject(result, Bool::False());
__ b(&done);
__ Bind(&load_true);
__ LoadObject(result, Bool::True());
}
__ b(&done);
__ Bind(&non_null_compare); // Receiver is not null.
ASSERT(left == R1);
ASSERT(right == R0);
__ PushList((1 << R0) | (1 << R1));
EmitEqualityAsPolymorphicCall(compiler, ic_data, locs, branch, kind,
deopt_id, token_pos);
__ Bind(&done);
}
static Condition FlipCondition(Condition condition) {
switch (condition) {
case EQ: return EQ;
case NE: return NE;
case LT: return GT;
case LE: return GE;
case GT: return LT;
case GE: return LE;
case CC: return HI;
case LS: return CS;
case HI: return CC;
case CS: return LS;
default:
UNREACHABLE();
return EQ;
}
}
static void EmitSmiComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch) {
Location left = locs.in(0);
Location right = locs.in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
Condition true_condition = TokenKindToSmiCondition(kind);
if (left.IsConstant()) {
__ CompareObject(right.reg(), left.constant());
true_condition = FlipCondition(true_condition);
} else if (right.IsConstant()) {
__ CompareObject(left.reg(), right.constant());
} else {
__ cmp(left.reg(), ShifterOperand(right.reg()));
}
if (branch != NULL) {
branch->EmitBranchOnCondition(compiler, true_condition);
} else {
Register result = locs.out().reg();
__ LoadObject(result, Bool::True(), true_condition);
__ LoadObject(result, Bool::False(), NegateCondition(true_condition));
}
}
static void EmitUnboxedMintEqualityOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch) {
UNIMPLEMENTED();
}
static void EmitUnboxedMintComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch) {
UNIMPLEMENTED();
}
static Condition TokenKindToDoubleCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQ;
case Token::kNE: return NE;
case Token::kLT: return LT;
case Token::kGT: return GT;
case Token::kLTE: return LE;
case Token::kGTE: return GE;
default:
UNREACHABLE();
return VS;
}
}
static void EmitDoubleComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch) {
QRegister left = locs.in(0).fpu_reg();
QRegister right = locs.in(1).fpu_reg();
Condition true_condition = TokenKindToDoubleCondition(kind);
if (branch != NULL) {
compiler->EmitDoubleCompareBranch(
true_condition, left, right, branch);
} else {
compiler->EmitDoubleCompareBool(
true_condition, left, right, locs.out().reg());
}
}
void EqualityCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT((kind() == Token::kNE) || (kind() == Token::kEQ));
BranchInstr* kNoBranch = NULL;
if (operation_cid() == kSmiCid) {
EmitSmiComparisonOp(compiler, *locs(), kind(), kNoBranch);
return;
}
if (operation_cid() == kMintCid) {
EmitUnboxedMintEqualityOp(compiler, *locs(), kind(), kNoBranch);
return;
}
if (operation_cid() == kDoubleCid) {
EmitDoubleComparisonOp(compiler, *locs(), kind(), kNoBranch);
return;
}
if (IsCheckedStrictEqual()) {
EmitCheckedStrictEqual(compiler, *ic_data(), *locs(), kind(), kNoBranch,
deopt_id());
return;
}
if (IsPolymorphic()) {
EmitGenericEqualityCompare(compiler, locs(), kind(), kNoBranch, *ic_data(),
deopt_id(), token_pos());
return;
}
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
ASSERT(left == R1);
ASSERT(right == R0);
__ PushList((1 << R0) | (1 << R1));
EmitEqualityAsInstanceCall(compiler,
deopt_id(),
token_pos(),
kind(),
locs(),
*ic_data());
ASSERT(locs()->out().reg() == R0);
}
void EqualityCompareInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
ASSERT((kind() == Token::kNE) || (kind() == Token::kEQ));
if (operation_cid() == kSmiCid) {
// Deoptimizes if both arguments not Smi.
EmitSmiComparisonOp(compiler, *locs(), kind(), branch);
return;
}
if (operation_cid() == kMintCid) {
EmitUnboxedMintEqualityOp(compiler, *locs(), kind(), branch);
return;
}
if (operation_cid() == kDoubleCid) {
EmitDoubleComparisonOp(compiler, *locs(), kind(), branch);
return;
}
if (IsCheckedStrictEqual()) {
EmitCheckedStrictEqual(compiler, *ic_data(), *locs(), kind(), branch,
deopt_id());
return;
}
if (IsPolymorphic()) {
EmitGenericEqualityCompare(compiler, locs(), kind(), branch, *ic_data(),
deopt_id(), token_pos());
return;
}
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
ASSERT(left == R1);
ASSERT(right == R0);
__ PushList((1 << R0) | (1 << R1));
EmitEqualityAsInstanceCall(compiler,
deopt_id(),
token_pos(),
Token::kEQ, // kNE reverse occurs at branch.
locs(),
*ic_data());
if (branch->is_checked()) {
EmitAssertBoolean(R0, token_pos(), deopt_id(), locs(), compiler);
}
Condition branch_condition = (kind() == Token::kNE) ? NE : EQ;
__ CompareObject(R0, Bool::True());
branch->EmitBranchOnCondition(compiler, branch_condition);
}
LocationSummary* RelationalOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (operation_cid() == kMintCid) {
const intptr_t kNumTemps = 2;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_temp(1, Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (operation_cid() == kDoubleCid) {
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
ASSERT(operation_cid() == kSmiCid);
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
summary->set_in(1, summary->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
summary->set_out(Location::RequiresRegister());
return summary;
}
void RelationalOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (operation_cid() == kSmiCid) {
EmitSmiComparisonOp(compiler, *locs(), kind(), NULL);
return;
}
if (operation_cid() == kMintCid) {
EmitUnboxedMintComparisonOp(compiler, *locs(), kind(), NULL);
return;
}
ASSERT(operation_cid() == kDoubleCid);
EmitDoubleComparisonOp(compiler, *locs(), kind(), NULL);
}
void RelationalOpInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
if (operation_cid() == kSmiCid) {
EmitSmiComparisonOp(compiler, *locs(), kind(), branch);
return;
}
if (operation_cid() == kMintCid) {
EmitUnboxedMintComparisonOp(compiler, *locs(), kind(), branch);
return;
}
ASSERT(operation_cid() == kDoubleCid);
EmitDoubleComparisonOp(compiler, *locs(), kind(), branch);
}
LocationSummary* NativeCallInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 3;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(R1));
locs->set_temp(1, Location::RegisterLocation(R2));
locs->set_temp(2, Location::RegisterLocation(R5));
locs->set_out(Location::RegisterLocation(R0));
return locs;
}
void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == R1);
ASSERT(locs()->temp(1).reg() == R2);
ASSERT(locs()->temp(2).reg() == R5);
Register result = locs()->out().reg();
// Push the result place holder initialized to NULL.
__ PushObject(Object::ZoneHandle());
// Pass a pointer to the first argument in R2.
if (!function().HasOptionalParameters()) {
__ AddImmediate(R2, FP, (kParamEndSlotFromFp +
function().NumParameters()) * kWordSize);
} else {
__ AddImmediate(R2, FP, kFirstLocalSlotFromFp * kWordSize);
}
// Compute the effective address. When running under the simulator,
// this is a redirection address that forces the simulator to call
// into the runtime system.
uword entry = reinterpret_cast<uword>(native_c_function());
const ExternalLabel* stub_entry;
if (is_bootstrap_native()) {
stub_entry = &StubCode::CallBootstrapCFunctionLabel();
#if defined(USING_SIMULATOR)
entry = Simulator::RedirectExternalReference(
entry, Simulator::kBootstrapNativeCall, function().NumParameters());
#endif
} else {
// In the case of non bootstrap native methods the CallNativeCFunction
// stub generates the redirection address when running under the simulator
// and hence we do not change 'entry' here.
stub_entry = &StubCode::CallNativeCFunctionLabel();
}
__ LoadImmediate(R5, entry);
__ LoadImmediate(R1, NativeArguments::ComputeArgcTag(function()));
compiler->GenerateCall(token_pos(),
stub_entry,
PcDescriptors::kOther,
locs());
__ Pop(result);
}
LocationSummary* StringFromCharCodeInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
// TODO(fschneider): Allow immediate operands for the char code.
return LocationSummary::Make(kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void StringFromCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register char_code = locs()->in(0).reg();
Register result = locs()->out().reg();
__ LoadImmediate(result,
reinterpret_cast<uword>(Symbols::PredefinedAddress()));
__ AddImmediate(result, Symbols::kNullCharCodeSymbolOffset * kWordSize);
__ ldr(result, Address(result, char_code, LSL, 1)); // Char code is a smi.
}
LocationSummary* LoadUntaggedInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadUntaggedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register object = locs()->in(0).reg();
Register result = locs()->out().reg();
__ LoadFromOffset(kWord, result, object, offset() - kHeapObjectTag);
}
LocationSummary* LoadClassIdInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register object = locs()->in(0).reg();
Register result = locs()->out().reg();
Label load, done;
__ tst(object, ShifterOperand(kSmiTagMask));
__ b(&load, NE);
__ LoadImmediate(result, Smi::RawValue(kSmiCid));
__ b(&done);
__ Bind(&load);
__ LoadClassId(result, object);
__ SmiTag(result);
__ Bind(&done);
}
CompileType LoadIndexedInstr::ComputeType() const {
switch (class_id_) {
case kArrayCid:
case kImmutableArrayCid:
return CompileType::Dynamic();
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return CompileType::FromCid(kDoubleCid);
case kTypedDataFloat32x4ArrayCid:
return CompileType::FromCid(kFloat32x4Cid);
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kOneByteStringCid:
case kTwoByteStringCid:
return CompileType::FromCid(kSmiCid);
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
// Result can be Smi or Mint when boxed.
// Instruction can deoptimize if we optimistically assumed that the result
// fits into Smi.
return CanDeoptimize() ? CompileType::FromCid(kSmiCid)
: CompileType::Int();
default:
UNREACHABLE();
return CompileType::Dynamic();
}
}
Representation LoadIndexedInstr::representation() const {
switch (class_id_) {
case kArrayCid:
case kImmutableArrayCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kOneByteStringCid:
case kTwoByteStringCid:
return kTagged;
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
// Instruction can deoptimize if we optimistically assumed that the result
// fits into Smi.
return CanDeoptimize() ? kTagged : kUnboxedMint;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
default:
UNREACHABLE();
return kTagged;
}
}
LocationSummary* LoadIndexedInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// The smi index is either untagged (element size == 1), or it is left smi
// tagged (for all element sizes > 1).
// TODO(regis): Revisit and see if the index can be immediate.
locs->set_in(1, Location::WritableRegister());
if (representation() == kUnboxedDouble) {
locs->set_out(Location::RequiresFpuRegister());
} else {
locs->set_out(Location::RequiresRegister());
}
return locs;
}
void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register array = locs()->in(0).reg();
Location index = locs()->in(1);
Address element_address(kNoRegister, 0);
ASSERT(index.IsRegister()); // TODO(regis): Revisit.
// Note that index is expected smi-tagged, (i.e, times 2) for all arrays
// with index scale factor > 1. E.g., for Uint8Array and OneByteString the
// index is expected to be untagged before accessing.
ASSERT(kSmiTagShift == 1);
switch (index_scale()) {
case 1: {
__ SmiUntag(index.reg());
break;
}
case 2: {
break;
}
case 4: {
__ mov(index.reg(), ShifterOperand(index.reg(), LSL, 1));
break;
}
case 8: {
__ mov(index.reg(), ShifterOperand(index.reg(), LSL, 2));
break;
}
case 16: {
__ mov(index.reg(), ShifterOperand(index.reg(), LSL, 3));
break;
}
default:
UNREACHABLE();
}
if (!IsExternal()) {
ASSERT(this->array()->definition()->representation() == kTagged);
__ AddImmediate(index.reg(),
FlowGraphCompiler::DataOffsetFor(class_id()) - kHeapObjectTag);
}
element_address = Address(array, index.reg(), LSL, 0);
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedMint) ||
(representation() == kUnboxedFloat32x4)) {
QRegister result = locs()->out().fpu_reg();
DRegister dresult0 = EvenDRegisterOf(result);
DRegister dresult1 = OddDRegisterOf(result);
switch (class_id()) {
case kTypedDataInt32ArrayCid:
UNIMPLEMENTED();
break;
case kTypedDataUint32ArrayCid:
UNIMPLEMENTED();
break;
case kTypedDataFloat32ArrayCid:
// Load single precision float and promote to double.
// vldrs does not support indexed addressing.
__ add(index.reg(), index.reg(), ShifterOperand(array));
element_address = Address(index.reg(), 0);
__ vldrs(STMP, element_address);
__ vcvtds(dresult0, STMP);
break;
case kTypedDataFloat64ArrayCid:
// vldrd does not support indexed addressing.
__ add(index.reg(), index.reg(), ShifterOperand(array));
element_address = Address(index.reg(), 0);
__ vldrd(dresult0, element_address);
break;
case kTypedDataFloat32x4ArrayCid:
__ add(index.reg(), index.reg(), ShifterOperand(array));
__ LoadDFromOffset(dresult0, index.reg(), 0);
__ LoadDFromOffset(dresult1, index.reg(), 2*kWordSize);
break;
}
return;
}
Register result = locs()->out().reg();
switch (class_id()) {
case kTypedDataInt8ArrayCid:
ASSERT(index_scale() == 1);
__ ldrsb(result, element_address);
__ SmiTag(result);
break;
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
ASSERT(index_scale() == 1);
__ ldrb(result, element_address);
__ SmiTag(result);
break;
case kTypedDataInt16ArrayCid:
__ ldrsh(result, element_address);
__ SmiTag(result);
break;
case kTypedDataUint16ArrayCid:
case kTwoByteStringCid:
__ ldrh(result, element_address);
__ SmiTag(result);
break;
case kTypedDataInt32ArrayCid: {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptInt32Load);
__ ldr(result, element_address);
// Verify that the signed value in 'result' can fit inside a Smi.
__ CompareImmediate(result, 0xC0000000);
__ b(deopt, MI);
__ SmiTag(result);
}
break;
case kTypedDataUint32ArrayCid: {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptUint32Load);
__ ldr(result, element_address);
// Verify that the unsigned value in 'result' can fit inside a Smi.
__ tst(result, ShifterOperand(0xC0000000));
__ b(deopt, NE);
__ SmiTag(result);
}
break;
default:
ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid));
__ ldr(result, element_address);
break;
}
}
Representation StoreIndexedInstr::RequiredInputRepresentation(
intptr_t idx) const {
// Array can be a Dart object or a pointer to external data.
if (idx == 0) return kNoRepresentation; // Flexible input representation.
if (idx == 1) return kTagged; // Index is a smi.
ASSERT(idx == 2);
switch (class_id_) {
case kArrayCid:
case kOneByteStringCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
return kTagged;
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
return value()->IsSmiValue() ? kTagged : kUnboxedMint;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
default:
UNREACHABLE();
return kTagged;
}
}
LocationSummary* StoreIndexedInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// The smi index is either untagged (element size == 1), or it is left smi
// tagged (for all element sizes > 1).
// TODO(regis): Revisit and see if the index can be immediate.
locs->set_in(1, Location::WritableRegister());
switch (class_id()) {
case kArrayCid:
locs->set_in(2, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
break;
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
locs->set_in(2, Location::WritableRegister());
break;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid: // TODO(srdjan): Support Float64 constants.
case kTypedDataFloat32x4ArrayCid:
locs->set_in(2, Location::RequiresFpuRegister());
break;
default:
UNREACHABLE();
return NULL;
}
return locs;
}
void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register array = locs()->in(0).reg();
Location index = locs()->in(1);
Address element_address(kNoRegister, 0);
ASSERT(index.IsRegister()); // TODO(regis): Revisit.
// Note that index is expected smi-tagged, (i.e, times 2) for all arrays
// with index scale factor > 1. E.g., for Uint8Array and OneByteString the
// index is expected to be untagged before accessing.
ASSERT(kSmiTagShift == 1);
switch (index_scale()) {
case 1: {
__ SmiUntag(index.reg());
break;
}
case 2: {
break;
}
case 4: {
__ mov(index.reg(), ShifterOperand(index.reg(), LSL, 1));
break;
}
case 8: {
__ mov(index.reg(), ShifterOperand(index.reg(), LSL, 2));
break;
}
case 16: {
__ mov(index.reg(), ShifterOperand(index.reg(), LSL, 3));
break;
}
default:
UNREACHABLE();
}
if (!IsExternal()) {
ASSERT(this->array()->definition()->representation() == kTagged);
__ AddImmediate(index.reg(),
FlowGraphCompiler::DataOffsetFor(class_id()) - kHeapObjectTag);
}
element_address = Address(array, index.reg(), LSL, 0);
switch (class_id()) {
case kArrayCid:
if (ShouldEmitStoreBarrier()) {
Register value = locs()->in(2).reg();
__ StoreIntoObject(array, element_address, value);
} else if (locs()->in(2).IsConstant()) {
const Object& constant = locs()->in(2).constant();
__ StoreIntoObjectNoBarrier(array, element_address, constant);
} else {
Register value = locs()->in(2).reg();
__ StoreIntoObjectNoBarrier(array, element_address, value);
}
break;
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kOneByteStringCid: {
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
__ LoadImmediate(IP, static_cast<int8_t>(constant.Value()));
__ strb(IP, element_address);
} else {
Register value = locs()->in(2).reg();
__ SmiUntag(value);
__ strb(value, element_address);
}
break;
}
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ClampedArrayCid: {
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
intptr_t value = constant.Value();
// Clamp to 0x0 or 0xFF respectively.
if (value > 0xFF) {
value = 0xFF;
} else if (value < 0) {
value = 0;
}
__ LoadImmediate(IP, static_cast<int8_t>(value));
__ strb(IP, element_address);
} else {
Register value = locs()->in(2).reg();
Label store_value;
__ SmiUntag(value);
__ cmp(value, ShifterOperand(0xFF));
// Clamp to 0x00 or 0xFF respectively.
__ b(&store_value, LS);
__ mov(value, ShifterOperand(0x00), LE);
__ mov(value, ShifterOperand(0xFF), GT);
__ Bind(&store_value);
__ strb(value, element_address);
}
break;
}
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid: {
Register value = locs()->in(2).reg();
__ SmiUntag(value);
__ strh(value, element_address);
break;
}
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid: {
if (value()->IsSmiValue()) {
ASSERT(RequiredInputRepresentation(2) == kTagged);
Register value = locs()->in(2).reg();
__ SmiUntag(value);
__ str(value, element_address);
} else {
UNIMPLEMENTED();
}
break;
}
case kTypedDataFloat32ArrayCid: {
DRegister in2 = EvenDRegisterOf(locs()->in(2).fpu_reg());
// Convert to single precision.
__ vcvtsd(STMP, in2);
// Store.
__ add(index.reg(), index.reg(), ShifterOperand(array));
__ StoreSToOffset(STMP, index.reg(), 0);
break;
}
case kTypedDataFloat64ArrayCid: {
DRegister in2 = EvenDRegisterOf(locs()->in(2).fpu_reg());
__ add(index.reg(), index.reg(), ShifterOperand(array));
__ StoreDToOffset(in2, index.reg(), 0);
break;
}
case kTypedDataFloat32x4ArrayCid: {
QRegister in = locs()->in(2).fpu_reg();
DRegister din0 = EvenDRegisterOf(in);
DRegister din1 = OddDRegisterOf(in);
__ add(index.reg(), index.reg(), ShifterOperand(array));
__ StoreDToOffset(din0, index.reg(), 0);
__ StoreDToOffset(din1, index.reg(), 2*kWordSize);
break;
}
default:
UNREACHABLE();
}
}
LocationSummary* GuardFieldInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, 0, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
const bool field_has_length = field().needs_length_check();
summary->AddTemp(Location::RequiresRegister());
summary->AddTemp(Location::RequiresRegister());
const bool need_field_temp_reg =
field_has_length || (field().guarded_cid() == kIllegalCid);
if (need_field_temp_reg) {
summary->AddTemp(Location::RequiresRegister());
}
return summary;
}
void GuardFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t field_cid = field().guarded_cid();
const intptr_t nullability = field().is_nullable() ? kNullCid : kIllegalCid;
const intptr_t field_length = field().guarded_list_length();
const bool field_has_length = field().needs_length_check();
const bool needs_field_temp_reg =
field_has_length || (field().guarded_cid() == kIllegalCid);
if (field_has_length) {
// Currently, we should only see final fields that remember length.
ASSERT(field().is_final());
}
if (field_cid == kDynamicCid) {
ASSERT(!compiler->is_optimizing());
return; // Nothing to emit.
}
const intptr_t value_cid = value()->Type()->ToCid();
Register value_reg = locs()->in(0).reg();
Register value_cid_reg = locs()->temp(0).reg();
Register temp_reg = locs()->temp(1).reg();
Register field_reg = needs_field_temp_reg ?
locs()->temp(locs()->temp_count() - 1).reg() : kNoRegister;
Label ok, fail_label;
Label* deopt = compiler->is_optimizing() ?
compiler->AddDeoptStub(deopt_id(), kDeoptGuardField) : NULL;
Label* fail = (deopt != NULL) ? deopt : &fail_label;
const bool ok_is_fall_through = (deopt != NULL);
if (!compiler->is_optimizing() || (field_cid == kIllegalCid)) {
if (!compiler->is_optimizing() && (field_reg == kNoRegister)) {
// Currently we can't have different location summaries for optimized
// and non-optimized code. So instead we manually pick up a register
// that is known to be free because we know how non-optimizing compiler
// allocates registers.
field_reg = R2;
ASSERT((field_reg != value_reg) && (field_reg != value_cid_reg));
}
__ LoadObject(field_reg, Field::ZoneHandle(field().raw()));
FieldAddress field_cid_operand(field_reg, Field::guarded_cid_offset());
FieldAddress field_nullability_operand(
field_reg, Field::is_nullable_offset());
FieldAddress field_length_operand(
field_reg, Field::guarded_list_length_offset());
ASSERT(value_cid_reg != kNoRegister);
ASSERT((value_cid_reg != value_reg) && (field_reg != value_cid_reg));
if (value_cid == kDynamicCid) {
LoadValueCid(compiler, value_cid_reg, value_reg);
Label skip_length_check;
__ ldr(IP, field_cid_operand);
__ cmp(value_cid_reg, ShifterOperand(IP));
__ b(&skip_length_check, NE);
if (field_has_length) {
ASSERT(temp_reg != kNoRegister);
// Field guard may have remembered list length, check it.
if ((field_cid == kArrayCid) || (field_cid == kImmutableArrayCid)) {
__ ldr(temp_reg,
FieldAddress(value_reg, Array::length_offset()));
__ CompareImmediate(temp_reg, Smi::RawValue(field_length));
} else if (RawObject::IsTypedDataClassId(field_cid)) {
__ ldr(temp_reg,
FieldAddress(value_reg, TypedData::length_offset()));
__ CompareImmediate(temp_reg, Smi::RawValue(field_length));
} else {
ASSERT(field_cid == kIllegalCid);
ASSERT(field_length == Field::kUnknownFixedLength);
// At compile time we do not know the type of the field nor its
// length. At execution time we may have set the class id and
// list length so we compare the guarded length with the
// list length here, without this check the list length could change
// without triggering a deoptimization.
Label check_array, length_compared, no_fixed_length;
// If length is negative the length guard is either disabled or
// has not been initialized, either way it is safe to skip the
// length check.
__ ldr(IP, field_length_operand);
__ CompareImmediate(IP, 0);
__ b(&skip_length_check, LT);
__ CompareImmediate(value_cid_reg, kNullCid);
__ b(&no_fixed_length, EQ);
// Check for typed data array.
__ CompareImmediate(value_cid_reg, kTypedDataFloat32x4ArrayCid);
__ b(&no_fixed_length, GT);
__ CompareImmediate(value_cid_reg, kTypedDataInt8ArrayCid);
// Could still be a regular array.
__ b(&check_array, LT);
__ ldr(temp_reg,
FieldAddress(value_reg, TypedData::length_offset()));
__ ldr(IP, field_length_operand);
__ cmp(temp_reg, ShifterOperand(IP));
__ b(&length_compared);
// Check for regular array.
__ Bind(&check_array);
__ CompareImmediate(value_cid_reg, kImmutableArrayCid);
__ b(&no_fixed_length, GT);
__ CompareImmediate(value_cid_reg, kArrayCid);
__ b(&no_fixed_length, LT);
__ ldr(temp_reg,
FieldAddress(value_reg, Array::length_offset()));
__ ldr(IP, field_length_operand);
__ cmp(temp_reg, ShifterOperand(IP));
__ b(&length_compared);
__ Bind(&no_fixed_length);
__ b(fail);
__ Bind(&length_compared);
// Following branch cannot not occur, fall through.
}
__ b(fail, NE);
}
__ Bind(&skip_length_check);
__ ldr(IP, field_nullability_operand);
__ cmp(value_cid_reg, ShifterOperand(IP));
} else if (value_cid == kNullCid) {
__ ldr(value_cid_reg, field_nullability_operand);
__ CompareImmediate(value_cid_reg, value_cid);
} else {
Label skip_length_check;
__ ldr(value_cid_reg, field_cid_operand);
__ CompareImmediate(value_cid_reg, value_cid);
__ b(&skip_length_check, NE);
if (field_has_length) {
ASSERT(value_cid_reg != kNoRegister);
ASSERT(temp_reg != kNoRegister);
if ((value_cid == kArrayCid) || (value_cid == kImmutableArrayCid)) {
__ ldr(temp_reg,
FieldAddress(value_reg, Array::length_offset()));
__ CompareImmediate(temp_reg, Smi::RawValue(field_length));
} else if (RawObject::IsTypedDataClassId(value_cid)) {
__ ldr(temp_reg,
FieldAddress(value_reg, TypedData::length_offset()));
__ CompareImmediate(temp_reg, Smi::RawValue(field_length));
} else if (field_cid != kIllegalCid) {
ASSERT(field_cid != value_cid);
ASSERT(field_length >= 0);
// Field has a known class id and length. At compile time it is
// known that the value's class id is not a fixed length list.
__ b(fail);
} else {
ASSERT(field_cid == kIllegalCid);
ASSERT(field_length == Field::kUnknownFixedLength);
// Following jump cannot not occur, fall through.
}
__ b(fail, NE);
}
// Not identical, possibly null.
__ Bind(&skip_length_check);
}
__ b(&ok, EQ);
__ ldr(IP, field_cid_operand);
__ CompareImmediate(IP, kIllegalCid);
__ b(fail, NE);
if (value_cid == kDynamicCid) {
__ str(value_cid_reg, field_cid_operand);
__ str(value_cid_reg, field_nullability_operand);
if (field_has_length) {
Label check_array, length_set, no_fixed_length;
__ CompareImmediate(value_cid_reg, kNullCid);
__ b(&no_fixed_length, EQ);
// Check for typed data array.
__ CompareImmediate(value_cid_reg, kTypedDataFloat32x4ArrayCid);
__ b(&no_fixed_length, GT);
__ CompareImmediate(value_cid_reg, kTypedDataInt8ArrayCid);
// Could still be a regular array.
__ b(&check_array, LT);
// Destroy value_cid_reg (safe because we are finished with it).
__ ldr(value_cid_reg,
FieldAddress(value_reg, TypedData::length_offset()));
__ str(value_cid_reg, field_length_operand);
__ b(&length_set); // Updated field length typed data array.
// Check for regular array.
__ Bind(&check_array);
__ CompareImmediate(value_cid_reg, kImmutableArrayCid);
__ b(&no_fixed_length, GT);
__ CompareImmediate(value_cid_reg, kArrayCid);
__ b(&no_fixed_length, LT);
// Destroy value_cid_reg (safe because we are finished with it).
__ ldr(value_cid_reg,
FieldAddress(value_reg, Array::length_offset()));
__ str(value_cid_reg, field_length_operand);
// Updated field length from regular array.
__ b(&length_set);
__ Bind(&no_fixed_length);
__ LoadImmediate(IP, Smi::RawValue(Field::kNoFixedLength));
__ str(IP, field_length_operand);
__ Bind(&length_set);
}
} else {
__ LoadImmediate(IP, value_cid);
__ str(IP, field_cid_operand);
__ str(IP, field_nullability_operand);
if (field_has_length) {
if ((value_cid == kArrayCid) || (value_cid == kImmutableArrayCid)) {
// Destroy value_cid_reg (safe because we are finished with it).
__ ldr(value_cid_reg,
FieldAddress(value_reg, Array::length_offset()));
__ str(value_cid_reg, field_length_operand);
} else if (RawObject::IsTypedDataClassId(value_cid)) {
// Destroy value_cid_reg (safe because we are finished with it).
__ ldr(value_cid_reg,
FieldAddress(value_reg, TypedData::length_offset()));
__ str(value_cid_reg, field_length_operand);
} else {
__ LoadImmediate(IP, Smi::RawValue(Field::kNoFixedLength));
__ str(IP, field_length_operand);
}
}
}
if (!ok_is_fall_through) {
__ b(&ok);
}
} else {
if (field_reg != kNoRegister) {
__ LoadObject(field_reg, Field::ZoneHandle(field().raw()));
}
if (value_cid == kDynamicCid) {
// Field's guarded class id is fixed by value's class id is not known.
__ tst(value_reg, ShifterOperand(kSmiTagMask));
if (field_cid != kSmiCid) {
__ b(fail, EQ);
__ LoadClassId(value_cid_reg, value_reg);
__ CompareImmediate(value_cid_reg, field_cid);
}
if (field_has_length) {
__ b(fail, NE);
// Classes are same, perform guarded list length check.
ASSERT(field_reg != kNoRegister);
ASSERT(value_cid_reg != kNoRegister);
FieldAddress field_length_operand(
field_reg, Field::guarded_list_length_offset());
if ((field_cid == kArrayCid) || (field_cid == kImmutableArrayCid)) {
// Destroy value_cid_reg (safe because we are finished with it).
__ ldr(value_cid_reg,
FieldAddress(value_reg, Array::length_offset()));
} else if (RawObject::IsTypedDataClassId(field_cid)) {
// Destroy value_cid_reg (safe because we are finished with it).
__ ldr(value_cid_reg,
FieldAddress(value_reg, TypedData::length_offset()));
}
__ ldr(IP, field_length_operand);
__ cmp(value_cid_reg, ShifterOperand(IP));
}
if (field().is_nullable() && (field_cid != kNullCid)) {
__ b(&ok, EQ);
__ CompareImmediate(value_reg,
reinterpret_cast<intptr_t>(Object::null()));
}
if (ok_is_fall_through) {
__ b(fail, NE);
} else {
__ b(&ok, EQ);
}
} else {
// Both value's and field's class id is known.
if ((value_cid != field_cid) && (value_cid != nullability)) {
if (ok_is_fall_through) {
__ b(fail);
}
} else if (field_has_length && (value_cid == field_cid)) {
ASSERT(value_cid_reg != kNoRegister);
if ((field_cid == kArrayCid) || (field_cid == kImmutableArrayCid)) {
// Destroy value_cid_reg (safe because we are finished with it).
__ ldr(value_cid_reg,
FieldAddress(value_reg, Array::length_offset()));
} else if (RawObject::IsTypedDataClassId(field_cid)) {
// Destroy value_cid_reg (safe because we are finished with it).
__ ldr(value_cid_reg,
FieldAddress(value_reg, TypedData::length_offset()));
}
__ CompareImmediate(value_cid_reg, field_length);
if (ok_is_fall_through) {
__ b(fail, NE);
}
} else {
// Nothing to emit.
ASSERT(!compiler->is_optimizing());
return;
}
}
}
if (deopt == NULL) {
ASSERT(!compiler->is_optimizing());
__ Bind(fail);
__ ldr(IP, FieldAddress(field_reg, Field::guarded_cid_offset()));
__ CompareImmediate(IP, kDynamicCid);
__ b(&ok, EQ);
__ Push(field_reg);
__ Push(value_reg);
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
}
__ Bind(&ok);
}
LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
return summary;
}
void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register instance_reg = locs()->in(0).reg();
if (ShouldEmitStoreBarrier()) {
Register value_reg = locs()->in(1).reg();
__ StoreIntoObject(instance_reg,
FieldAddress(instance_reg, field().Offset()),
value_reg,
CanValueBeSmi());
} else {
if (locs()->in(1).IsConstant()) {
__ StoreIntoObjectNoBarrier(
instance_reg,
FieldAddress(instance_reg, field().Offset()),
locs()->in(1).constant());
} else {
Register value_reg = locs()->in(1).reg();
__ StoreIntoObjectNoBarrier(instance_reg,
FieldAddress(instance_reg, field().Offset()), value_reg);
}
}
}
LocationSummary* LoadStaticFieldInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
// When the parser is building an implicit static getter for optimization,
// it can generate a function body where deoptimization ids do not line up
// with the unoptimized code.
//
// This is safe only so long as LoadStaticFieldInstr cannot deoptimize.
void LoadStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register field = locs()->in(0).reg();
Register result = locs()->out().reg();
__ LoadFromOffset(kWord, result,
field, Field::value_offset() - kHeapObjectTag);
}
LocationSummary* StoreStaticFieldInstr::MakeLocationSummary() const {
LocationSummary* locs = new LocationSummary(1, 1, LocationSummary::kNoCall);
locs->set_in(0, value()->NeedsStoreBuffer() ? Location::WritableRegister()
: Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
return locs;
}
void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
__ LoadObject(temp, field());
if (this->value()->NeedsStoreBuffer()) {
__ StoreIntoObject(temp,
FieldAddress(temp, Field::value_offset()), value, CanValueBeSmi());
} else {
__ StoreIntoObjectNoBarrier(
temp, FieldAddress(temp, Field::value_offset()), value);
}
}
LocationSummary* InstanceOfInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R0));
summary->set_in(1, Location::RegisterLocation(R2));
summary->set_in(2, Location::RegisterLocation(R1));
summary->set_out(Location::RegisterLocation(R0));
return summary;
}
void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).reg() == R0); // Value.
ASSERT(locs()->in(1).reg() == R2); // Instantiator.
ASSERT(locs()->in(2).reg() == R1); // Instantiator type arguments.
compiler->GenerateInstanceOf(token_pos(),
deopt_id(),
type(),
negate_result(),
locs());
ASSERT(locs()->out().reg() == R0);
}
LocationSummary* CreateArrayInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R1));
locs->set_out(Location::RegisterLocation(R0));
return locs;
}
void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Allocate the array. R2 = length, R1 = element type.
ASSERT(locs()->in(0).reg() == R1);
__ LoadImmediate(R2, Smi::RawValue(num_elements()));
compiler->GenerateCall(token_pos(),
&StubCode::AllocateArrayLabel(),
PcDescriptors::kOther,
locs());
ASSERT(locs()->out().reg() == R0);
}
LocationSummary*
AllocateObjectWithBoundsCheckInstr::MakeLocationSummary() const {
return MakeCallSummary();
}
void AllocateObjectWithBoundsCheckInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
compiler->GenerateCallRuntime(token_pos(),
deopt_id(),
kAllocateObjectWithBoundsCheckRuntimeEntry,
3,
locs());
__ Drop(3);
ASSERT(locs()->out().reg() == R0);
__ Pop(R0); // Pop new instance.
}
LocationSummary* LoadFieldInstr::MakeLocationSummary() const {
return LocationSummary::Make(1,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register instance_reg = locs()->in(0).reg();
Register result_reg = locs()->out().reg();
__ LoadFromOffset(kWord, result_reg,
instance_reg, offset_in_bytes() - kHeapObjectTag);
}
LocationSummary* InstantiateTypeInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R0));
locs->set_out(Location::RegisterLocation(R0));
return locs;
}
void InstantiateTypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
Register result_reg = locs()->out().reg();
// 'instantiator_reg' is the instantiator AbstractTypeArguments object
// (or null).
// A runtime call to instantiate the type is required.
__ PushObject(Object::ZoneHandle()); // Make room for the result.
__ PushObject(type());
__ Push(instantiator_reg); // Push instantiator type arguments.
compiler->GenerateCallRuntime(token_pos(),
deopt_id(),
kInstantiateTypeRuntimeEntry,
2,
locs());
__ Drop(2); // Drop instantiator and uninstantiated type.
__ Pop(result_reg); // Pop instantiated type.
ASSERT(instantiator_reg == result_reg);
}
LocationSummary* InstantiateTypeArgumentsInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R0));
locs->set_out(Location::RegisterLocation(R0));
return locs;
}
void InstantiateTypeArgumentsInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
Register result_reg = locs()->out().reg();
// 'instantiator_reg' is the instantiator AbstractTypeArguments object
// (or null).
ASSERT(!type_arguments().IsUninstantiatedIdentity() &&
!type_arguments().CanShareInstantiatorTypeArguments(
instantiator_class()));
// If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments.
Label type_arguments_instantiated;
const intptr_t len = type_arguments().Length();
if (type_arguments().IsRawInstantiatedRaw(len)) {
__ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null()));
__ cmp(instantiator_reg, ShifterOperand(IP));
__ b(&type_arguments_instantiated, EQ);
}
// Instantiate non-null type arguments.
// A runtime call to instantiate the type arguments is required.
__ PushObject(Object::ZoneHandle()); // Make room for the result.
__ PushObject(type_arguments());
__ Push(instantiator_reg); // Push instantiator type arguments.
compiler->GenerateCallRuntime(token_pos(),
deopt_id(),
kInstantiateTypeArgumentsRuntimeEntry,
2,
locs());
__ Drop(2); // Drop instantiator and uninstantiated type arguments.
__ Pop(result_reg); // Pop instantiated type arguments.
__ Bind(&type_arguments_instantiated);
ASSERT(instantiator_reg == result_reg);
}
LocationSummary*
ExtractConstructorTypeArgumentsInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_out(Location::SameAsFirstInput());
return locs;
}
void ExtractConstructorTypeArgumentsInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
Register result_reg = locs()->out().reg();
ASSERT(instantiator_reg == result_reg);
// instantiator_reg is the instantiator type argument vector, i.e. an
// AbstractTypeArguments object (or null).
ASSERT(!type_arguments().IsUninstantiatedIdentity() &&
!type_arguments().CanShareInstantiatorTypeArguments(
instantiator_class()));
// If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments.
Label type_arguments_instantiated;
ASSERT(type_arguments().IsRawInstantiatedRaw(type_arguments().Length()));
__ CompareImmediate(instantiator_reg,
reinterpret_cast<intptr_t>(Object::null()));
__ b(&type_arguments_instantiated, EQ);
// Instantiate non-null type arguments.
// In the non-factory case, we rely on the allocation stub to
// instantiate the type arguments.
__ LoadObject(result_reg, type_arguments());
// result_reg: uninstantiated type arguments.
__ Bind(&type_arguments_instantiated);
// result_reg: uninstantiated or instantiated type arguments.
}
LocationSummary*
ExtractConstructorInstantiatorInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_out(Location::SameAsFirstInput());
return locs;
}
void ExtractConstructorInstantiatorInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
ASSERT(locs()->out().reg() == instantiator_reg);
// instantiator_reg is the instantiator AbstractTypeArguments object
// (or null).
ASSERT(!type_arguments().IsUninstantiatedIdentity() &&
!type_arguments().CanShareInstantiatorTypeArguments(
instantiator_class()));
// If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments and do not pass the instantiator.
ASSERT(type_arguments().IsRawInstantiatedRaw(type_arguments().Length()));
Label instantiator_not_null;
__ CompareImmediate(instantiator_reg,
reinterpret_cast<intptr_t>(Object::null()));
__ b(&instantiator_not_null, NE);
// Null was used in VisitExtractConstructorTypeArguments as the
// instantiated type arguments, no proper instantiator needed.
__ LoadImmediate(instantiator_reg,
Smi::RawValue(StubCode::kNoInstantiator));
__ Bind(&instantiator_not_null);
// instantiator_reg: instantiator or kNoInstantiator.
}
LocationSummary* AllocateContextInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(R1));
locs->set_out(Location::RegisterLocation(R0));
return locs;
}
void AllocateContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == R1);
ASSERT(locs()->out().reg() == R0);
__ LoadImmediate(R1, num_context_variables());
const ExternalLabel label("alloc_context",
StubCode::AllocateContextEntryPoint());
compiler->GenerateCall(token_pos(),
&label,
PcDescriptors::kOther,
locs());
}
LocationSummary* CloneContextInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R0));
locs->set_out(Location::RegisterLocation(R0));
return locs;
}
void CloneContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register context_value = locs()->in(0).reg();
Register result = locs()->out().reg();
__ PushObject(Object::ZoneHandle()); // Make room for the result.
__ Push(context_value);
compiler->GenerateCallRuntime(token_pos(),
deopt_id(),
kCloneContextRuntimeEntry,
1,
locs());
__ Drop(1); // Remove argument.
__ Pop(result); // Get result (cloned context).
}
LocationSummary* CatchBlockEntryInstr::MakeLocationSummary() const {
UNREACHABLE();
return NULL;
}
void CatchBlockEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(compiler->GetJumpLabel(this));
compiler->AddExceptionHandler(catch_try_index(),
try_index(),
compiler->assembler()->CodeSize(),
catch_handler_types_,
needs_stacktrace());
// Restore the pool pointer.
__ LoadPoolPointer();
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// Restore SP from FP as we are coming from a throw and the code for
// popping arguments has not been run.
const intptr_t fp_sp_dist =
(kFirstLocalSlotFromFp + 1 - compiler->StackSize()) * kWordSize;
ASSERT(fp_sp_dist <= 0);
__ AddImmediate(SP, FP, fp_sp_dist);
// Restore stack and initialize the two exception variables:
// exception and stack trace variables.
__ StoreToOffset(kWord, kExceptionObjectReg,
FP, exception_var().index() * kWordSize);
__ StoreToOffset(kWord, kStackTraceObjectReg,
FP, stacktrace_var().index() * kWordSize);
}
LocationSummary* CheckStackOverflowInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
class CheckStackOverflowSlowPath : public SlowPathCode {
public:
explicit CheckStackOverflowSlowPath(CheckStackOverflowInstr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("CheckStackOverflowSlowPath");
__ Bind(entry_label());
compiler->SaveLiveRegisters(instruction_->locs());
// pending_deoptimization_env_ is needed to generate a runtime call that
// may throw an exception.
ASSERT(compiler->pending_deoptimization_env_ == NULL);
compiler->pending_deoptimization_env_ = instruction_->env();
compiler->GenerateCallRuntime(instruction_->token_pos(),
instruction_->deopt_id(),
kStackOverflowRuntimeEntry,
0,
instruction_->locs());
if (FLAG_use_osr && !compiler->is_optimizing() && instruction_->in_loop()) {
// In unoptimized code, record loop stack checks as possible OSR entries.
compiler->AddCurrentDescriptor(PcDescriptors::kOsrEntry,
instruction_->deopt_id(),
0); // No token position.
}
compiler->pending_deoptimization_env_ = NULL;
compiler->RestoreLiveRegisters(instruction_->locs());
__ b(exit_label());
}
private:
CheckStackOverflowInstr* instruction_;
};
void CheckStackOverflowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
CheckStackOverflowSlowPath* slow_path = new CheckStackOverflowSlowPath(this);
compiler->AddSlowPathCode(slow_path);
__ LoadImmediate(IP, Isolate::Current()->stack_limit_address());
__ ldr(IP, Address(IP));
__ cmp(SP, ShifterOperand(IP));
__ b(slow_path->entry_label(), LS);
if (compiler->CanOSRFunction() && in_loop()) {
Register temp = locs()->temp(0).reg();
// In unoptimized code check the usage counter to trigger OSR at loop
// stack checks. Use progressively higher thresholds for more deeply
// nested loops to attempt to hit outer loops with OSR when possible.
__ LoadObject(temp, compiler->parsed_function().function());
intptr_t threshold =
FLAG_optimization_counter_threshold * (loop_depth() + 1);
__ ldr(temp, FieldAddress(temp, Function::usage_counter_offset()));
__ CompareImmediate(temp, threshold);
__ b(slow_path->entry_label(), GE);
}
__ Bind(slow_path->exit_label());
}
static void EmitSmiShiftLeft(FlowGraphCompiler* compiler,
BinarySmiOpInstr* shift_left) {
const bool is_truncating = shift_left->is_truncating();
const LocationSummary& locs = *shift_left->locs();
Register left = locs.in(0).reg();
Register result = locs.out().reg();
Label* deopt = shift_left->CanDeoptimize() ?
compiler->AddDeoptStub(shift_left->deopt_id(), kDeoptBinarySmiOp) : NULL;
if (locs.in(1).IsConstant()) {
const Object& constant = locs.in(1).constant();
ASSERT(constant.IsSmi());
// Immediate shift operation takes 5 bits for the count.
const intptr_t kCountLimit = 0x1F;
const intptr_t value = Smi::Cast(constant).Value();
if (value == 0) {
__ MoveRegister(result, left);
} else if ((value < 0) || (value >= kCountLimit)) {
// This condition may not be known earlier in some cases because
// of constant propagation, inlining, etc.
if ((value >= kCountLimit) && is_truncating) {
__ mov(result, ShifterOperand(0));
} else {
// Result is Mint or exception.
__ b(deopt);
}
} else {
if (!is_truncating) {
// Check for overflow (preserve left).
__ Lsl(IP, left, value);
__ cmp(left, ShifterOperand(IP, ASR, value));
__ b(deopt, NE); // Overflow.
}
// Shift for result now we know there is no overflow.
__ Lsl(result, left, value);
}
return;
}
// Right (locs.in(1)) is not constant.
Register right = locs.in(1).reg();
Range* right_range = shift_left->right()->definition()->range();
if (shift_left->left()->BindsToConstant() && !is_truncating) {
// TODO(srdjan): Implement code below for is_truncating().
// If left is constant, we know the maximal allowed size for right.
const Object& obj = shift_left->left()->BoundConstant();
if (obj.IsSmi()) {
const intptr_t left_int = Smi::Cast(obj).Value();
if (left_int == 0) {
__ cmp(right, ShifterOperand(0));
__ b(deopt, MI);
__ mov(result, ShifterOperand(0));
return;
}
const intptr_t max_right = kSmiBits - Utils::HighestBit(left_int);
const bool right_needs_check =
(right_range == NULL) ||
!right_range->IsWithin(0, max_right - 1);
if (right_needs_check) {
__ cmp(right,
ShifterOperand(reinterpret_cast<int32_t>(Smi::New(max_right))));
__ b(deopt, CS);
}
__ Asr(IP, right, kSmiTagSize); // SmiUntag right into IP.
__ Lsl(result, left, IP);
}
return;
}
const bool right_needs_check =
(right_range == NULL) || !right_range->IsWithin(0, (Smi::kBits - 1));
if (is_truncating) {
if (right_needs_check) {
const bool right_may_be_negative =
(right_range == NULL) ||
!right_range->IsWithin(0, RangeBoundary::kPlusInfinity);
if (right_may_be_negative) {
ASSERT(shift_left->CanDeoptimize());
__ cmp(right, ShifterOperand(0));
__ b(deopt, MI);
}
__ cmp(right,
ShifterOperand(reinterpret_cast<int32_t>(Smi::New(Smi::kBits))));
__ mov(result, ShifterOperand(0), CS);
__ Asr(IP, right, kSmiTagSize, CC); // SmiUntag right into IP if CC.
__ Lsl(result, left, IP, CC);
} else {
__ Asr(IP, right, kSmiTagSize); // SmiUntag right into IP.
__ Lsl(result, left, IP);
}
} else {
if (right_needs_check) {
ASSERT(shift_left->CanDeoptimize());
__ cmp(right,
ShifterOperand(reinterpret_cast<int32_t>(Smi::New(Smi::kBits))));
__ b(deopt, CS);
}
// Left is not a constant.
// Check if count too large for handling it inlined.
__ Asr(IP, right, kSmiTagSize); // SmiUntag right into IP.
// Overflow test (preserve left, right, and IP);
Register temp = locs.temp(0).reg();
__ Lsl(temp, left, IP);
__ cmp(left, ShifterOperand(temp, ASR, IP));
__ b(deopt, NE); // Overflow.
// Shift for result now we know there is no overflow.
__ Lsl(result, left, IP);
}
}
LocationSummary* BinarySmiOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (op_kind() == Token::kTRUNCDIV) {
summary->set_in(0, Location::RequiresRegister());
if (RightIsPowerOfTwoConstant()) {
ConstantInstr* right_constant = right()->definition()->AsConstant();
summary->set_in(1, Location::Constant(right_constant->value()));
summary->AddTemp(Location::RequiresRegister());
} else {
summary->set_in(1, Location::RequiresRegister());
summary->AddTemp(Location::RequiresRegister());
summary->AddTemp(Location::RequiresFpuRegister());
}
summary->set_out(Location::RequiresRegister());
return summary;
}
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RegisterOrSmiConstant(right()));
if (((op_kind() == Token::kSHL) && !is_truncating()) ||
(op_kind() == Token::kSHR)) {
summary->AddTemp(Location::RequiresRegister());
}
// We make use of 3-operand instructions by not requiring result register
// to be identical to first input register as on Intel.
summary->set_out(Location::RequiresRegister());
return summary;
}
void BinarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (op_kind() == Token::kSHL) {
EmitSmiShiftLeft(compiler, this);
return;
}
ASSERT(!is_truncating());
Register left = locs()->in(0).reg();
Register result = locs()->out().reg();
Label* deopt = NULL;
if (CanDeoptimize()) {
deopt = compiler->AddDeoptStub(deopt_id(), kDeoptBinarySmiOp);
}
if (locs()->in(1).IsConstant()) {
const Object& constant = locs()->in(1).constant();
ASSERT(constant.IsSmi());
int32_t imm = reinterpret_cast<int32_t>(constant.raw());
switch (op_kind()) {
case Token::kSUB: {
imm = -imm; // TODO(regis): What if deopt != NULL && imm == 0x80000000?
// Fall through.
}
case Token::kADD: {
if (deopt == NULL) {
__ AddImmediate(result, left, imm);
} else {
__ AddImmediateSetFlags(result, left, imm);
__ b(deopt, VS);
}
break;
}
case Token::kMUL: {
// Keep left value tagged and untag right value.
const intptr_t value = Smi::Cast(constant).Value();
if (deopt == NULL) {
if (value == 2) {
__ mov(result, ShifterOperand(left, LSL, 1));
} else {
__ LoadImmediate(IP, value);
__ mul(result, left, IP);
}
} else {
if (value == 2) {
__ mov(IP, ShifterOperand(left, ASR, 31)); // IP = sign of left.
__ mov(result, ShifterOperand(left, LSL, 1));
} else {
__ LoadImmediate(IP, value);
__ smull(result, IP, left, IP);
}
// IP: result bits 32..63.
__ cmp(IP, ShifterOperand(result, ASR, 31));
__ b(deopt, NE);
}
break;
}
case Token::kTRUNCDIV: {
const intptr_t value = Smi::Cast(constant).Value();
if (value == 1) {
__ MoveRegister(result, left);
break;
} else if (value == -1) {
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot negate the result.
__ CompareImmediate(left, 0x80000000);
__ b(deopt, EQ);
__ rsb(result, left, ShifterOperand(0));
break;
}
ASSERT(Utils::IsPowerOfTwo(Utils::Abs(value)));
const intptr_t shift_count =
Utils::ShiftForPowerOfTwo(Utils::Abs(value)) + kSmiTagSize;
ASSERT(kSmiTagSize == 1);
__ mov(IP, ShifterOperand(left, ASR, 31));
ASSERT(shift_count > 1); // 1, -1 case handled above.
Register temp = locs()->temp(0).reg();
__ add(temp, left, ShifterOperand(IP, LSR, 32 - shift_count));
ASSERT(shift_count > 0);
__ mov(result, ShifterOperand(temp, ASR, shift_count));
if (value < 0) {
__ rsb(result, result, ShifterOperand(0));
}
__ SmiTag(result);
break;
}
case Token::kBIT_AND: {
// No overflow check.
ShifterOperand shifter_op;
if (ShifterOperand::CanHold(imm, &shifter_op)) {
__ and_(result, left, shifter_op);
} else {
// TODO(regis): Try to use bic.
__ LoadImmediate(IP, imm);
__ and_(result, left, ShifterOperand(IP));
}
break;
}
case Token::kBIT_OR: {
// No overflow check.
ShifterOperand shifter_op;
if (ShifterOperand::CanHold(imm, &shifter_op)) {
__ orr(result, left, shifter_op);
} else {
// TODO(regis): Try to use orn.
__ LoadImmediate(IP, imm);
__ orr(result, left, ShifterOperand(IP));
}
break;
}
case Token::kBIT_XOR: {
// No overflow check.
ShifterOperand shifter_op;
if (ShifterOperand::CanHold(imm, &shifter_op)) {
__ eor(result, left, shifter_op);
} else {
__ LoadImmediate(IP, imm);
__ eor(result, left, ShifterOperand(IP));
}
break;
}
case Token::kSHR: {
// sarl operation masks the count to 5 bits.
const intptr_t kCountLimit = 0x1F;
intptr_t value = Smi::Cast(constant).Value();
if (value == 0) {
// TODO(vegorov): should be handled outside.
__ MoveRegister(result, left);
break;
} else if (value < 0) {
// TODO(vegorov): should be handled outside.
__ b(deopt);
break;
}
value = value + kSmiTagSize;
if (value >= kCountLimit) value = kCountLimit;
__ Asr(result, left, value);
__ SmiTag(result);
break;
}
default:
UNREACHABLE();
break;
}
return;
}
Register right = locs()->in(1).reg();
switch (op_kind()) {
case Token::kADD: {
if (deopt == NULL) {
__ add(result, left, ShifterOperand(right));
} else {
__ adds(result, left, ShifterOperand(right));
__ b(deopt, VS);
}
break;
}
case Token::kSUB: {
if (deopt == NULL) {
__ sub(result, left, ShifterOperand(right));
} else {
__ subs(result, left, ShifterOperand(right));
__ b(deopt, VS);
}
break;
}
case Token::kMUL: {
__ Asr(IP, left, kSmiTagSize); // SmiUntag left into IP.
if (deopt == NULL) {
__ mul(result, IP, right);
} else {
__ smull(result, IP, IP, right);
// IP: result bits 32..63.
__ cmp(IP, ShifterOperand(result, ASR, 31));
__ b(deopt, NE);
}
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ and_(result, left, ShifterOperand(right));
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orr(result, left, ShifterOperand(right));
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ eor(result, left, ShifterOperand(right));
break;
}
case Token::kTRUNCDIV: {
// Handle divide by zero in runtime.
__ cmp(right, ShifterOperand(0));
__ b(deopt, EQ);
Register temp = locs()->temp(0).reg();
DRegister dtemp = EvenDRegisterOf(locs()->temp(1).fpu_reg());
__ Asr(temp, left, kSmiTagSize); // SmiUntag left into temp.
__ Asr(IP, right, kSmiTagSize); // SmiUntag right into IP.
__ IntegerDivide(result, temp, IP, dtemp, DTMP);
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot tag the result.
__ CompareImmediate(result, 0x40000000);
__ b(deopt, EQ);
__ SmiTag(result);
break;
}
case Token::kSHR: {
if (CanDeoptimize()) {
__ CompareImmediate(right, 0);
__ b(deopt, LT);
}
__ Asr(IP, right, kSmiTagSize); // SmiUntag right into IP.
// sarl operation masks the count to 5 bits.
const intptr_t kCountLimit = 0x1F;
Range* right_range = this->right()->definition()->range();
if ((right_range == NULL) ||
!right_range->IsWithin(RangeBoundary::kMinusInfinity, kCountLimit)) {
__ CompareImmediate(IP, kCountLimit);
__ LoadImmediate(IP, kCountLimit, GT);
}
Register temp = locs()->temp(0).reg();
__ Asr(temp, left, kSmiTagSize); // SmiUntag left into temp.
__ Asr(result, temp, IP);
__ SmiTag(result);
break;
}
case Token::kDIV: {
// Dispatches to 'Double./'.
// TODO(srdjan): Implement as conversion to double and double division.
UNREACHABLE();
break;
}
case Token::kMOD: {
// TODO(srdjan): Implement.
UNREACHABLE();
break;
}
case Token::kOR:
case Token::kAND: {
// Flow graph builder has dissected this operation to guarantee correct
// behavior (short-circuit evaluation).
UNREACHABLE();
break;
}
default:
UNREACHABLE();
break;
}
}
LocationSummary* CheckEitherNonSmiInstr::MakeLocationSummary() const {
intptr_t left_cid = left()->Type()->ToCid();
intptr_t right_cid = right()->Type()->ToCid();
ASSERT((left_cid != kDoubleCid) && (right_cid != kDoubleCid));
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
return summary;
}
void CheckEitherNonSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptBinaryDoubleOp);
intptr_t left_cid = left()->Type()->ToCid();
intptr_t right_cid = right()->Type()->ToCid();
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
if (left_cid == kSmiCid) {
__ tst(right, ShifterOperand(kSmiTagMask));
} else if (right_cid == kSmiCid) {
__ tst(left, ShifterOperand(kSmiTagMask));
} else {
__ orr(IP, left, ShifterOperand(right));
__ tst(IP, ShifterOperand(kSmiTagMask));
}
__ b(deopt, EQ);
}
LocationSummary* BoxDoubleInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
class BoxDoubleSlowPath : public SlowPathCode {
public:
explicit BoxDoubleSlowPath(BoxDoubleInstr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("BoxDoubleSlowPath");
__ Bind(entry_label());
const Class& double_class = compiler->double_class();
const Code& stub =
Code::Handle(StubCode::GetAllocationStubForClass(double_class));
const ExternalLabel label(double_class.ToCString(), stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(locs->out());
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kDummyTokenIndex, // No token position.
&label,
PcDescriptors::kOther,
locs);
__ MoveRegister(locs->out().reg(), R0);
compiler->RestoreLiveRegisters(locs);
__ b(exit_label());
}
private:
BoxDoubleInstr* instruction_;
};
void BoxDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxDoubleSlowPath* slow_path = new BoxDoubleSlowPath(this);
compiler->AddSlowPathCode(slow_path);
const Register out_reg = locs()->out().reg();
const DRegister value = EvenDRegisterOf(locs()->in(0).fpu_reg());
__ TryAllocate(compiler->double_class(),
slow_path->entry_label(),
out_reg);
__ Bind(slow_path->exit_label());
__ StoreDToOffset(value, out_reg, Double::value_offset() - kHeapObjectTag);
}
LocationSummary* UnboxDoubleInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t value_cid = value()->Type()->ToCid();
const bool needs_temp = ((value_cid != kSmiCid) && (value_cid != kDoubleCid));
const bool needs_writable_input = (value_cid == kSmiCid);
const intptr_t kNumTemps = needs_temp ? 1 : 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, needs_writable_input
? Location::WritableRegister()
: Location::RequiresRegister());
if (needs_temp) summary->set_temp(0, Location::RequiresRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void UnboxDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->Type()->ToCid();
const Register value = locs()->in(0).reg();
const DRegister result = EvenDRegisterOf(locs()->out().fpu_reg());
if (value_cid == kDoubleCid) {
__ LoadDFromOffset(result, value, Double::value_offset() - kHeapObjectTag);
} else if (value_cid == kSmiCid) {
__ SmiUntag(value); // Untag input before conversion.
__ vmovsr(STMP, value);
__ vcvtdi(result, STMP);
} else {
Label* deopt = compiler->AddDeoptStub(deopt_id_, kDeoptBinaryDoubleOp);
Register temp = locs()->temp(0).reg();
Label is_smi, done;
__ tst(value, ShifterOperand(kSmiTagMask));
__ b(&is_smi, EQ);
__ CompareClassId(value, kDoubleCid, temp);
__ b(deopt, NE);
__ LoadDFromOffset(result, value, Double::value_offset() - kHeapObjectTag);
__ b(&done);
__ Bind(&is_smi);
// TODO(regis): Why do we preserve value here but not above?
__ mov(IP, ShifterOperand(value, ASR, 1)); // Copy and untag.
__ vmovsr(STMP, IP);
__ vcvtdi(result, STMP);
__ Bind(&done);
}
}
LocationSummary* BoxFloat32x4Instr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
class BoxFloat32x4SlowPath : public SlowPathCode {
public:
explicit BoxFloat32x4SlowPath(BoxFloat32x4Instr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("BoxFloat32x4SlowPath");
__ Bind(entry_label());
const Class& float32x4_class = compiler->float32x4_class();
const Code& stub =
Code::Handle(StubCode::GetAllocationStubForClass(float32x4_class));
const ExternalLabel label(float32x4_class.ToCString(), stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(locs->out());
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kDummyTokenIndex, // No token position.
&label,
PcDescriptors::kOther,
locs);
__ mov(locs->out().reg(), ShifterOperand(R0));
compiler->RestoreLiveRegisters(locs);
__ b(exit_label());
}
private:
BoxFloat32x4Instr* instruction_;
};
void BoxFloat32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxFloat32x4SlowPath* slow_path = new BoxFloat32x4SlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register out_reg = locs()->out().reg();
QRegister value = locs()->in(0).fpu_reg();
DRegister value_even = EvenDRegisterOf(value);
DRegister value_odd = OddDRegisterOf(value);
__ TryAllocate(compiler->float32x4_class(),
slow_path->entry_label(),
out_reg);
__ Bind(slow_path->exit_label());
__ StoreDToOffset(value_even, out_reg,
Float32x4::value_offset() - kHeapObjectTag);
__ StoreDToOffset(value_odd, out_reg,
Float32x4::value_offset() + 2*kWordSize - kHeapObjectTag);
}
LocationSummary* UnboxFloat32x4Instr::MakeLocationSummary() const {
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = value_cid == kFloat32x4Cid ? 0 : 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (kNumTemps > 0) {
ASSERT(kNumTemps == 1);
summary->set_temp(0, Location::RequiresRegister());
}
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void UnboxFloat32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->Type()->ToCid();
const Register value = locs()->in(0).reg();
const QRegister result = locs()->out().fpu_reg();
if (value_cid != kFloat32x4Cid) {
const Register temp = locs()->temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id_, kDeoptCheckClass);
__ tst(value, ShifterOperand(kSmiTagMask));
__ b(deopt, EQ);
__ CompareClassId(value, kFloat32x4Cid, temp);
__ b(deopt, NE);
}
const DRegister result_even = EvenDRegisterOf(result);
const DRegister result_odd = OddDRegisterOf(result);
__ LoadDFromOffset(result_even, value,
Float32x4::value_offset() - kHeapObjectTag);
__ LoadDFromOffset(result_odd, value,
Float32x4::value_offset() + 2*kWordSize - kHeapObjectTag);
}
LocationSummary* BoxUint32x4Instr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
class BoxUint32x4SlowPath : public SlowPathCode {
public:
explicit BoxUint32x4SlowPath(BoxUint32x4Instr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("BoxUint32x4SlowPath");
__ Bind(entry_label());
const Class& uint32x4_class = compiler->uint32x4_class();
const Code& stub =
Code::Handle(StubCode::GetAllocationStubForClass(uint32x4_class));
const ExternalLabel label(uint32x4_class.ToCString(), stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(locs->out());
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kDummyTokenIndex, // No token position.
&label,
PcDescriptors::kOther,
locs);
__ mov(locs->out().reg(), ShifterOperand(R0));
compiler->RestoreLiveRegisters(locs);
__ b(exit_label());
}
private:
BoxUint32x4Instr* instruction_;
};
void BoxUint32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxUint32x4SlowPath* slow_path = new BoxUint32x4SlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register out_reg = locs()->out().reg();
QRegister value = locs()->in(0).fpu_reg();
DRegister value_even = EvenDRegisterOf(value);
DRegister value_odd = OddDRegisterOf(value);
__ TryAllocate(compiler->uint32x4_class(),
slow_path->entry_label(),
out_reg);
__ Bind(slow_path->exit_label());
__ StoreDToOffset(value_even, out_reg,
Uint32x4::value_offset() - kHeapObjectTag);
__ StoreDToOffset(value_odd, out_reg,
Uint32x4::value_offset() + 2*kWordSize - kHeapObjectTag);
}
LocationSummary* UnboxUint32x4Instr::MakeLocationSummary() const {
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = value_cid == kUint32x4Cid ? 0 : 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (kNumTemps > 0) {
ASSERT(kNumTemps == 1);
summary->set_temp(0, Location::RequiresRegister());
}
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void UnboxUint32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->Type()->ToCid();
const Register value = locs()->in(0).reg();
const QRegister result = locs()->out().fpu_reg();
if (value_cid != kUint32x4Cid) {
const Register temp = locs()->temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id_, kDeoptCheckClass);
__ tst(value, ShifterOperand(kSmiTagMask));
__ b(deopt, EQ);
__ CompareClassId(value, kUint32x4Cid, temp);
__ b(deopt, NE);
}
const DRegister result_even = EvenDRegisterOf(result);
const DRegister result_odd = OddDRegisterOf(result);
__ LoadDFromOffset(result_even, value,
Uint32x4::value_offset() - kHeapObjectTag);
__ LoadDFromOffset(result_odd, value,
Uint32x4::value_offset() + 2*kWordSize - kHeapObjectTag);
}
LocationSummary* BinaryDoubleOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void BinaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
DRegister left = EvenDRegisterOf(locs()->in(0).fpu_reg());
DRegister right = EvenDRegisterOf(locs()->in(1).fpu_reg());
DRegister result = EvenDRegisterOf(locs()->out().fpu_reg());
switch (op_kind()) {
case Token::kADD: __ vaddd(result, left, right); break;
case Token::kSUB: __ vsubd(result, left, right); break;
case Token::kMUL: __ vmuld(result, left, right); break;
case Token::kDIV: __ vdivd(result, left, right); break;
default: UNREACHABLE();
}
}
LocationSummary* BinaryFloat32x4OpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void BinaryFloat32x4OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister left = locs()->in(0).fpu_reg();
QRegister right = locs()->in(1).fpu_reg();
QRegister result = locs()->out().fpu_reg();
switch (op_kind()) {
case Token::kADD: __ vaddqs(result, left, right); break;
case Token::kSUB: __ vsubqs(result, left, right); break;
case Token::kMUL: __ vmulqs(result, left, right); break;
case Token::kDIV: __ Vdivqs(result, left, right); break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4ShuffleInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
// Low (< Q7) Q registers are needed for the vcvtds and vmovs instructions.
summary->set_in(0, Location::FpuRegisterLocation(Q5));
summary->set_out(Location::FpuRegisterLocation(Q6));
return summary;
}
void Float32x4ShuffleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister value = locs()->in(0).fpu_reg();
QRegister result = locs()->out().fpu_reg();
DRegister dresult0 = EvenDRegisterOf(result);
DRegister dresult1 = OddDRegisterOf(result);
SRegister sresult0 = EvenSRegisterOf(dresult0);
SRegister sresult1 = OddSRegisterOf(dresult0);
SRegister sresult2 = EvenSRegisterOf(dresult1);
SRegister sresult3 = OddSRegisterOf(dresult1);
DRegister dvalue0 = EvenDRegisterOf(value);
DRegister dvalue1 = OddDRegisterOf(value);
DRegister dtemp0 = DTMP;
DRegister dtemp1 = OddDRegisterOf(QTMP);
// For some cases the vdup instruction requires fewer
// instructions. For arbitrary shuffles, use vtbl.
switch (op_kind()) {
case MethodRecognizer::kFloat32x4ShuffleX:
__ vdup(kWord, result, dvalue0, 0);
__ vcvtds(dresult0, sresult0);
break;
case MethodRecognizer::kFloat32x4ShuffleY:
__ vdup(kWord, result, dvalue0, 1);
__ vcvtds(dresult0, sresult0);
break;
case MethodRecognizer::kFloat32x4ShuffleZ:
__ vdup(kWord, result, dvalue1, 0);
__ vcvtds(dresult0, sresult0);
break;
case MethodRecognizer::kFloat32x4ShuffleW:
__ vdup(kWord, result, dvalue1, 1);
__ vcvtds(dresult0, sresult0);
break;
case MethodRecognizer::kFloat32x4Shuffle:
if (mask_ == 0x00) {
__ vdup(kWord, result, dvalue0, 0);
} else if (mask_ == 0x55) {
__ vdup(kWord, result, dvalue0, 1);
} else if (mask_ == 0xAA) {
__ vdup(kWord, result, dvalue1, 0);
} else if (mask_ == 0xFF) {
__ vdup(kWord, result, dvalue1, 1);
} else {
SRegister svalues[4];
svalues[0] = EvenSRegisterOf(dtemp0);
svalues[1] = OddSRegisterOf(dtemp0);
svalues[2] = EvenSRegisterOf(dtemp1);
svalues[3] = OddSRegisterOf(dtemp1);
__ vmovq(QTMP, value);
__ vmovs(sresult0, svalues[mask_ & 0x3]);
__ vmovs(sresult1, svalues[(mask_ >> 2) & 0x3]);
__ vmovs(sresult2, svalues[(mask_ >> 4) & 0x3]);
__ vmovs(sresult3, svalues[(mask_ >> 6) & 0x3]);
}
break;
default: UNREACHABLE();
}
}
LocationSummary* Simd32x4GetSignMaskInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::FpuRegisterLocation(Q5));
summary->set_temp(0, Location::RequiresRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
void Simd32x4GetSignMaskInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister value = locs()->in(0).fpu_reg();
DRegister dvalue0 = EvenDRegisterOf(value);
DRegister dvalue1 = OddDRegisterOf(value);
Register out = locs()->out().reg();
Register temp = locs()->temp(0).reg();
// X lane.
__ vmovrs(out, EvenSRegisterOf(dvalue0));
__ Lsr(out, out, 31);
// Y lane.
__ vmovrs(temp, OddSRegisterOf(dvalue0));
__ Lsr(temp, temp, 31);
__ orr(out, out, ShifterOperand(temp, LSL, 1));
// Z lane.
__ vmovrs(temp, EvenSRegisterOf(dvalue1));
__ Lsr(temp, temp, 31);
__ orr(out, out, ShifterOperand(temp, LSL, 2));
// W lane.
__ vmovrs(temp, OddSRegisterOf(dvalue1));
__ Lsr(temp, temp, 31);
__ orr(out, out, ShifterOperand(temp, LSL, 3));
// Tag.
__ SmiTag(out);
}
LocationSummary* Float32x4ConstructorInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 4;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_in(2, Location::RequiresFpuRegister());
summary->set_in(3, Location::RequiresFpuRegister());
// Low (< 7) Q registers are needed for the vcvtsd instruction.
summary->set_out(Location::FpuRegisterLocation(Q6));
return summary;
}
void Float32x4ConstructorInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister q0 = locs()->in(0).fpu_reg();
QRegister q1 = locs()->in(1).fpu_reg();
QRegister q2 = locs()->in(2).fpu_reg();
QRegister q3 = locs()->in(3).fpu_reg();
QRegister r = locs()->out().fpu_reg();
DRegister dr0 = EvenDRegisterOf(r);
DRegister dr1 = OddDRegisterOf(r);
__ vcvtsd(EvenSRegisterOf(dr0), EvenDRegisterOf(q0));
__ vcvtsd(OddSRegisterOf(dr0), EvenDRegisterOf(q1));
__ vcvtsd(EvenSRegisterOf(dr1), EvenDRegisterOf(q2));
__ vcvtsd(OddSRegisterOf(dr1), EvenDRegisterOf(q3));
}
LocationSummary* Float32x4ZeroInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void Float32x4ZeroInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister q = locs()->out().fpu_reg();
__ veorq(q, q, q);
}
LocationSummary* Float32x4SplatInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void Float32x4SplatInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister value = locs()->in(0).fpu_reg();
QRegister result = locs()->out().fpu_reg();
DRegister dvalue0 = EvenDRegisterOf(value);
// Convert to Float32.
__ vcvtsd(STMP, dvalue0);
// Splat across all lanes.
__ vdup(kWord, result, DTMP, 0);
}
LocationSummary* Float32x4ComparisonInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void Float32x4ComparisonInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister left = locs()->in(0).fpu_reg();
QRegister right = locs()->in(1).fpu_reg();
QRegister result = locs()->out().fpu_reg();
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Equal:
__ vceqqs(result, left, right);
break;
case MethodRecognizer::kFloat32x4NotEqual:
__ vceqqs(result, left, right);
// Invert the result.
__ veorq(QTMP, QTMP, QTMP); // QTMP <- 0.
__ vornq(result, QTMP, result); // result <- ~result.
break;
case MethodRecognizer::kFloat32x4GreaterThan:
__ vcgtqs(result, left, right);
break;
case MethodRecognizer::kFloat32x4GreaterThanOrEqual:
__ vcgeqs(result, left, right);
break;
case MethodRecognizer::kFloat32x4LessThan:
__ vcgtqs(result, right, left);
break;
case MethodRecognizer::kFloat32x4LessThanOrEqual:
__ vcgeqs(result, right, left);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4MinMaxInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void Float32x4MinMaxInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister left = locs()->in(0).fpu_reg();
QRegister right = locs()->in(1).fpu_reg();
QRegister result = locs()->out().fpu_reg();
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Min:
__ vminqs(result, left, right);
break;
case MethodRecognizer::kFloat32x4Max:
__ vmaxqs(result, left, right);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4SqrtInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
summary->set_temp(0, Location::RequiresFpuRegister());
return summary;
}
void Float32x4SqrtInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister left = locs()->in(0).fpu_reg();
QRegister result = locs()->out().fpu_reg();
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Sqrt:
__ Vsqrtqs(result, left);
break;
case MethodRecognizer::kFloat32x4Reciprocal:
__ Vreciprocalqs(result, left);
break;
case MethodRecognizer::kFloat32x4ReciprocalSqrt:
__ VreciprocalSqrtqs(result, left);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4ScaleInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void Float32x4ScaleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister left = locs()->in(0).fpu_reg();
QRegister right = locs()->in(1).fpu_reg();
QRegister result = locs()->out().fpu_reg();
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Scale:
__ vcvtsd(STMP, EvenDRegisterOf(left));
__ vdup(kWord, result, DTMP, 0);
__ vmulqs(result, result, right);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4ZeroArgInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void Float32x4ZeroArgInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister left = locs()->in(0).fpu_reg();
QRegister result = locs()->out().fpu_reg();
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Negate:
__ vnegqs(result, left);
break;
case MethodRecognizer::kFloat32x4Absolute:
__ vabsqs(result, left);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4ClampInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_in(2, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void Float32x4ClampInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister left = locs()->in(0).fpu_reg();
QRegister lower = locs()->in(1).fpu_reg();
QRegister upper = locs()->in(2).fpu_reg();
QRegister result = locs()->out().fpu_reg();
__ vminqs(result, left, upper);
__ vmaxqs(result, result, lower);
}
LocationSummary* Float32x4WithInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
// Low (< 7) Q registers are needed for the vmovs instruction.
summary->set_out(Location::FpuRegisterLocation(Q6));
return summary;
}
void Float32x4WithInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister replacement = locs()->in(0).fpu_reg();
QRegister value = locs()->in(1).fpu_reg();
QRegister result = locs()->out().fpu_reg();
DRegister dresult0 = EvenDRegisterOf(result);
DRegister dresult1 = OddDRegisterOf(result);
SRegister sresult0 = EvenSRegisterOf(dresult0);
SRegister sresult1 = OddSRegisterOf(dresult0);
SRegister sresult2 = EvenSRegisterOf(dresult1);
SRegister sresult3 = OddSRegisterOf(dresult1);
__ vcvtsd(STMP, EvenDRegisterOf(replacement));
if (result != value) {
__ vmovq(result, value);
}
switch (op_kind()) {
case MethodRecognizer::kFloat32x4WithX:
__ vmovs(sresult0, STMP);
break;
case MethodRecognizer::kFloat32x4WithY:
__ vmovs(sresult1, STMP);
break;
case MethodRecognizer::kFloat32x4WithZ:
__ vmovs(sresult2, STMP);
break;
case MethodRecognizer::kFloat32x4WithW:
__ vmovs(sresult3, STMP);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4ToUint32x4Instr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void Float32x4ToUint32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister value = locs()->in(0).fpu_reg();
QRegister result = locs()->out().fpu_reg();
if (value != result) {
__ vmovq(result, value);
}
}
LocationSummary* Float32x4TwoArgShuffleInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Float32x4TwoArgShuffleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister left = locs()->in(0).fpu_reg();
QRegister right = locs()->in(1).fpu_reg();
QRegister result = locs()->out().fpu_reg();
ASSERT(result == left);
DRegister dleft0 = EvenDRegisterOf(left);
DRegister dleft1 = OddDRegisterOf(left);
DRegister dright0 = EvenDRegisterOf(right);
DRegister dright1 = OddDRegisterOf(right);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4WithZWInXY:
__ vmovd(dleft0, dright1);
break;
case MethodRecognizer::kFloat32x4InterleaveXY:
__ vmovq(QTMP, right);
__ vzipqw(left, QTMP);
break;
case MethodRecognizer::kFloat32x4InterleaveZW:
__ vmovq(QTMP, right);
__ vzipqw(left, QTMP);
__ vmovq(left, QTMP);
break;
case MethodRecognizer::kFloat32x4InterleaveXYPairs:
__ vmovd(dleft1, dright0);
break;
case MethodRecognizer::kFloat32x4InterleaveZWPairs:
__ vmovq(QTMP, right);
__ vmovd(EvenDRegisterOf(QTMP), dleft1);
__ vmovq(result, QTMP);
break;
default: UNREACHABLE();
}
}
LocationSummary* Uint32x4BoolConstructorInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 4;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_in(2, Location::RequiresRegister());
summary->set_in(3, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
// Low (< 7) Q register needed for the vmovsr instruction.
summary->set_out(Location::FpuRegisterLocation(Q6));
return summary;
}
void Uint32x4BoolConstructorInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register v0 = locs()->in(0).reg();
Register v1 = locs()->in(1).reg();
Register v2 = locs()->in(2).reg();
Register v3 = locs()->in(3).reg();
Register temp = locs()->temp(0).reg();
QRegister result = locs()->out().fpu_reg();
DRegister dresult0 = EvenDRegisterOf(result);
DRegister dresult1 = OddDRegisterOf(result);
SRegister sresult0 = EvenSRegisterOf(dresult0);
SRegister sresult1 = OddSRegisterOf(dresult0);
SRegister sresult2 = EvenSRegisterOf(dresult1);
SRegister sresult3 = OddSRegisterOf(dresult1);
__ veorq(result, result, result);
__ LoadImmediate(temp, 0xffffffff);
__ CompareObject(v0, Bool::True());
__ vmovsr(sresult0, temp, EQ);
__ CompareObject(v1, Bool::True());
__ vmovsr(sresult1, temp, EQ);
__ CompareObject(v2, Bool::True());
__ vmovsr(sresult2, temp, EQ);
__ CompareObject(v3, Bool::True());
__ vmovsr(sresult3, temp, EQ);
}
LocationSummary* Uint32x4GetFlagInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
// Low (< 7) Q registers are needed for the vmovrs instruction.
summary->set_in(0, Location::FpuRegisterLocation(Q6));
summary->set_out(Location::RequiresRegister());
return summary;
}
void Uint32x4GetFlagInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister value = locs()->in(0).fpu_reg();
Register result = locs()->out().reg();
DRegister dvalue0 = EvenDRegisterOf(value);
DRegister dvalue1 = OddDRegisterOf(value);
SRegister svalue0 = EvenSRegisterOf(dvalue0);
SRegister svalue1 = OddSRegisterOf(dvalue0);
SRegister svalue2 = EvenSRegisterOf(dvalue1);
SRegister svalue3 = OddSRegisterOf(dvalue1);
switch (op_kind()) {
case MethodRecognizer::kUint32x4GetFlagX:
__ vmovrs(result, svalue0);
break;
case MethodRecognizer::kUint32x4GetFlagY:
__ vmovrs(result, svalue1);
break;
case MethodRecognizer::kUint32x4GetFlagZ:
__ vmovrs(result, svalue2);
break;
case MethodRecognizer::kUint32x4GetFlagW:
__ vmovrs(result, svalue3);
break;
default: UNREACHABLE();
}
__ tst(result, ShifterOperand(result));
__ LoadObject(result, Bool::True(), NE);
__ LoadObject(result, Bool::False(), EQ);
}
LocationSummary* Uint32x4SelectInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_in(2, Location::RequiresFpuRegister());
summary->set_temp(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void Uint32x4SelectInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister mask = locs()->in(0).fpu_reg();
QRegister trueValue = locs()->in(1).fpu_reg();
QRegister falseValue = locs()->in(2).fpu_reg();
QRegister out = locs()->out().fpu_reg();
QRegister temp = locs()->temp(0).fpu_reg();
// Copy mask.
__ vmovq(temp, mask);
// Invert it.
__ veorq(QTMP, QTMP, QTMP); // QTMP <- 0.
__ vornq(temp, QTMP, temp); // temp <- ~temp.
// mask = mask & trueValue.
__ vandq(mask, mask, trueValue);
// temp = temp & falseValue.
__ vandq(temp, temp, falseValue);
// out = mask | temp.
__ vorrq(out, mask, temp);
}
LocationSummary* Uint32x4SetFlagInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresRegister());
// Low (< 7) Q register needed for the vmovsr instruction.
summary->set_out(Location::FpuRegisterLocation(Q6));
return summary;
}
void Uint32x4SetFlagInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister mask = locs()->in(0).fpu_reg();
Register flag = locs()->in(1).reg();
QRegister result = locs()->out().fpu_reg();
DRegister dresult0 = EvenDRegisterOf(result);
DRegister dresult1 = OddDRegisterOf(result);
SRegister sresult0 = EvenSRegisterOf(dresult0);
SRegister sresult1 = OddSRegisterOf(dresult0);
SRegister sresult2 = EvenSRegisterOf(dresult1);
SRegister sresult3 = OddSRegisterOf(dresult1);
if (result != mask) {
__ vmovq(result, mask);
}
__ CompareObject(flag, Bool::True());
__ LoadImmediate(TMP, 0xffffffff, EQ);
__ LoadImmediate(TMP, 0, NE);
switch (op_kind()) {
case MethodRecognizer::kUint32x4WithFlagX:
__ vmovsr(sresult0, TMP);
break;
case MethodRecognizer::kUint32x4WithFlagY:
__ vmovsr(sresult1, TMP);
break;
case MethodRecognizer::kUint32x4WithFlagZ:
__ vmovsr(sresult2, TMP);
break;
case MethodRecognizer::kUint32x4WithFlagW:
__ vmovsr(sresult3, TMP);
break;
default: UNREACHABLE();
}
}
LocationSummary* Uint32x4ToFloat32x4Instr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void Uint32x4ToFloat32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister value = locs()->in(0).fpu_reg();
QRegister result = locs()->out().fpu_reg();
if (value != result) {
__ vmovq(result, value);
}
}
LocationSummary* BinaryUint32x4OpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void BinaryUint32x4OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
QRegister left = locs()->in(0).fpu_reg();
QRegister right = locs()->in(1).fpu_reg();
QRegister result = locs()->out().fpu_reg();
switch (op_kind()) {
case Token::kBIT_AND: {
__ vandq(result, left, right);
break;
}
case Token::kBIT_OR: {
__ vorrq(result, left, right);
break;
}
case Token::kBIT_XOR: {
__ veorq(result, left, right);
break;
}
case Token::kADD:
__ vaddqi(kWord, result, left, right);
break;
case Token::kSUB:
__ vsubqi(kWord, result, left, right);
break;
default: UNREACHABLE();
}
}
LocationSummary* MathUnaryInstr::MakeLocationSummary() const {
if ((kind() == MethodRecognizer::kMathSin) ||
(kind() == MethodRecognizer::kMathCos)) {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::FpuRegisterLocation(Q0));
summary->set_out(Location::FpuRegisterLocation(Q0));
return summary;
}
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void MathUnaryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (kind() == MethodRecognizer::kMathSqrt) {
DRegister val = EvenDRegisterOf(locs()->in(0).fpu_reg());
DRegister result = EvenDRegisterOf(locs()->out().fpu_reg());
__ vsqrtd(result, val);
} else {
__ CallRuntime(TargetFunction(), InputCount());
}
}
LocationSummary* MathMinMaxInstr::MakeLocationSummary() const {
if (result_cid() == kDoubleCid) {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
// Reuse the left register so that code can be made shorter.
summary->set_out(Location::SameAsFirstInput());
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
ASSERT(result_cid() == kSmiCid);
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
// Reuse the left register so that code can be made shorter.
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void MathMinMaxInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT((op_kind() == MethodRecognizer::kMathMin) ||
(op_kind() == MethodRecognizer::kMathMax));
const intptr_t is_min = (op_kind() == MethodRecognizer::kMathMin);
if (result_cid() == kDoubleCid) {
Label done, returns_nan, are_equal;
DRegister left = EvenDRegisterOf(locs()->in(0).fpu_reg());
DRegister right = EvenDRegisterOf(locs()->in(1).fpu_reg());
DRegister result = EvenDRegisterOf(locs()->out().fpu_reg());
Register temp = locs()->temp(0).reg();
__ vcmpd(left, right);
__ vmstat();
__ b(&returns_nan, VS);
__ b(&are_equal, EQ);
const Condition neg_double_condition =
is_min ? TokenKindToDoubleCondition(Token::kGTE)
: TokenKindToDoubleCondition(Token::kLTE);
ASSERT(left == result);
__ vmovd(result, right, neg_double_condition);
__ b(&done);
__ Bind(&returns_nan);
__ LoadDImmediate(result, NAN, temp);
__ b(&done);
__ Bind(&are_equal);
// Check for negative zero: -0.0 is equal 0.0 but min or max must return
// -0.0 or 0.0 respectively.
// Check for negative left value (get the sign bit):
// - min -> left is negative ? left : right.
// - max -> left is negative ? right : left
// Check the sign bit.
__ vmovrrd(IP, temp, left); // Sign bit is in bit 31 of temp.
__ cmp(temp, ShifterOperand(0));
if (is_min) {
ASSERT(left == result);
__ vmovd(result, right, GE);
} else {
__ vmovd(result, right, LT);
ASSERT(left == result);
}
__ Bind(&done);
return;
}
ASSERT(result_cid() == kSmiCid);
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
Register result = locs()->out().reg();
__ cmp(left, ShifterOperand(right));
ASSERT(result == left);
if (is_min) {
__ mov(result, ShifterOperand(right), GT);
} else {
__ mov(result, ShifterOperand(right), LT);
}
}
LocationSummary* UnarySmiOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
// We make use of 3-operand instructions by not requiring result register
// to be identical to first input register as on Intel.
summary->set_out(Location::RequiresRegister());
return summary;
}
void UnarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register result = locs()->out().reg();
switch (op_kind()) {
case Token::kNEGATE: {
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptUnaryOp);
__ rsbs(result, value, ShifterOperand(0));
__ b(deopt, VS);
break;
}
case Token::kBIT_NOT:
__ mvn(result, ShifterOperand(value));
// Remove inverted smi-tag.
__ bic(result, result, ShifterOperand(kSmiTagMask));
break;
default:
UNREACHABLE();
}
}
LocationSummary* UnaryDoubleOpInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void UnaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
DRegister result = EvenDRegisterOf(locs()->out().fpu_reg());
DRegister value = EvenDRegisterOf(locs()->in(0).fpu_reg());
__ vnegd(result, value);
}
LocationSummary* SmiToDoubleInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::WritableRegister());
result->set_out(Location::RequiresFpuRegister());
return result;
}
void SmiToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
DRegister result = EvenDRegisterOf(locs()->out().fpu_reg());
__ SmiUntag(value);
__ vmovsr(STMP, value);
__ vcvtdi(result, STMP);
}
LocationSummary* DoubleToIntegerInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
result->set_in(0, Location::RegisterLocation(R1));
result->set_out(Location::RegisterLocation(R0));
return result;
}
void DoubleToIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out().reg();
Register value_obj = locs()->in(0).reg();
ASSERT(result == R0);
ASSERT(result != value_obj);
__ LoadDFromOffset(DTMP, value_obj, Double::value_offset() - kHeapObjectTag);
Label do_call, done;
// First check for NaN. Checking for minint after the conversion doesn't work
// on ARM because vcvtid gives 0 for NaN.
__ vcmpd(DTMP, DTMP);
__ vmstat();
__ b(&do_call, VS);
__ vcvtid(STMP, DTMP);
__ vmovrs(result, STMP);
// Overflow is signaled with minint.
// Check for overflow and that it fits into Smi.
__ CompareImmediate(result, 0xC0000000);
__ b(&do_call, MI);
__ SmiTag(result);
__ b(&done);
__ Bind(&do_call);
__ Push(value_obj);
ASSERT(instance_call()->HasICData());
const ICData& ic_data = *instance_call()->ic_data();
ASSERT((ic_data.NumberOfChecks() == 1));
const Function& target = Function::ZoneHandle(ic_data.GetTargetAt(0));
const intptr_t kNumberOfArguments = 1;
compiler->GenerateStaticCall(deopt_id(),
instance_call()->token_pos(),
target,
kNumberOfArguments,
Object::null_array(), // No argument names.,
locs());
__ Bind(&done);
}
LocationSummary* DoubleToSmiInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new LocationSummary(
kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(Location::RequiresRegister());
return result;
}
void DoubleToSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptDoubleToSmi);
Register result = locs()->out().reg();
DRegister value = EvenDRegisterOf(locs()->in(0).fpu_reg());
// First check for NaN. Checking for minint after the conversion doesn't work
// on ARM because vcvtid gives 0 for NaN.
__ vcmpd(value, value);
__ vmstat();
__ b(deopt, VS);
__ vcvtid(STMP, value);
__ vmovrs(result, STMP);
// Check for overflow and that it fits into Smi.
__ CompareImmediate(result, 0xC0000000);
__ b(deopt, MI);
__ SmiTag(result);
}
LocationSummary* DoubleToDoubleInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(Location::RequiresFpuRegister());
return result;
}
void DoubleToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// QRegister value = locs()->in(0).fpu_reg();
// QRegister result = locs()->out().fpu_reg();
switch (recognized_kind()) {
case MethodRecognizer::kDoubleTruncate:
UNIMPLEMENTED();
// __ roundsd(result, value, Assembler::kRoundToZero);
break;
case MethodRecognizer::kDoubleFloor:
UNIMPLEMENTED();
// __ roundsd(result, value, Assembler::kRoundDown);
break;
case MethodRecognizer::kDoubleCeil:
UNIMPLEMENTED();
// __ roundsd(result, value, Assembler::kRoundUp);
break;
default:
UNREACHABLE();
}
}
LocationSummary* InvokeMathCFunctionInstr::MakeLocationSummary() const {
ASSERT((InputCount() == 1) || (InputCount() == 2));
const intptr_t kNumTemps = 0;
LocationSummary* result =
new LocationSummary(InputCount(), kNumTemps, LocationSummary::kCall);
result->set_in(0, Location::FpuRegisterLocation(Q0));
if (InputCount() == 2) {
result->set_in(1, Location::FpuRegisterLocation(Q1));
}
if (recognized_kind() == MethodRecognizer::kMathDoublePow) {
result->AddTemp(Location::RegisterLocation(R2));
result->AddTemp(Location::FpuRegisterLocation(Q2));
}
result->set_out(Location::FpuRegisterLocation(Q0));
return result;
}
void InvokeMathCFunctionInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// For pow-function return NaN if exponent is NaN.
Label do_call, skip_call;
if (recognized_kind() == MethodRecognizer::kMathDoublePow) {
// Pseudo code:
// if (exponent == 0.0) return 0.0;
// if (base == 1.0) return 1.0;
// if (base.isNaN || exponent.isNaN) {
// return double.NAN;
// }
DRegister base = EvenDRegisterOf(locs()->in(0).fpu_reg());
DRegister exp = EvenDRegisterOf(locs()->in(1).fpu_reg());
DRegister result = EvenDRegisterOf(locs()->out().fpu_reg());
Register temp = locs()->temp(0).reg();
DRegister saved_base = EvenDRegisterOf(locs()->temp(1).fpu_reg());
ASSERT((base == result) && (result != saved_base));
Label check_base_is_one;
// Check if exponent is 0.0 -> return 1.0;
__ vmovd(saved_base, base);
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(0)));
__ LoadDFromOffset(DTMP, temp, Double::value_offset() - kHeapObjectTag);
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(1)));
__ LoadDFromOffset(result, temp, Double::value_offset() - kHeapObjectTag);
__ vcmpd(exp, DTMP);
__ vmstat();
__ b(&check_base_is_one, VS); // NaN -> not zero.
__ b(&skip_call, EQ); // exp is 0.0, result is 1.0.
__ Bind(&check_base_is_one);
__ vcmpd(saved_base, result);
__ vmstat();
__ vmovd(result, saved_base, VS); // base is NaN, return NaN.
__ b(&skip_call, VS);
__ b(&skip_call, EQ); // base and result are 1.0.
__ vmovd(base, saved_base); // Restore base.
}
__ Bind(&do_call);
// We currently use 'hardfp' ('gnueabihf') rather than 'softfp'
// ('gnueabi') float ABI for leaf runtime calls, i.e. double values
// are passed and returned in vfp registers rather than in integer
// register pairs.
if (InputCount() == 2) {
// Args must be in D0 and D1, so move arg from Q1(== D3:D2) to D1.
__ vmovd(D1, D2);
}
__ CallRuntime(TargetFunction(), InputCount());
__ Bind(&skip_call);
}
LocationSummary* PolymorphicInstanceCallInstr::MakeLocationSummary() const {
return MakeCallSummary();
}
void PolymorphicInstanceCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptPolymorphicInstanceCallTestFail);
if (ic_data().NumberOfChecks() == 0) {
__ b(deopt);
return;
}
ASSERT(ic_data().num_args_tested() == 1);
if (!with_checks()) {
ASSERT(ic_data().HasOneTarget());
const Function& target = Function::ZoneHandle(ic_data().GetTargetAt(0));
compiler->GenerateStaticCall(deopt_id(),
instance_call()->token_pos(),
target,
instance_call()->ArgumentCount(),
instance_call()->argument_names(),
locs());
return;
}
// Load receiver into R0.
__ LoadFromOffset(kWord, R0, SP,
(instance_call()->ArgumentCount() - 1) * kWordSize);
LoadValueCid(compiler, R2, R0,
(ic_data().GetReceiverClassIdAt(0) == kSmiCid) ? NULL : deopt);
compiler->EmitTestAndCall(ic_data(),
R2, // Class id register.
instance_call()->ArgumentCount(),
instance_call()->argument_names(),
deopt,
deopt_id(),
instance_call()->token_pos(),
locs());
}
LocationSummary* BranchInstr::MakeLocationSummary() const {
UNREACHABLE();
return NULL;
}
void BranchInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
comparison()->EmitBranchCode(compiler, this);
}
LocationSummary* CheckClassInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (!IsNullCheck()) {
summary->AddTemp(Location::RequiresRegister());
}
return summary;
}
void CheckClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (IsNullCheck()) {
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptCheckClass);
__ CompareImmediate(locs()->in(0).reg(),
reinterpret_cast<intptr_t>(Object::null()));
__ b(deopt, EQ);
return;
}
ASSERT((unary_checks().GetReceiverClassIdAt(0) != kSmiCid) ||
(unary_checks().NumberOfChecks() > 1));
Register value = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptCheckClass);
Label is_ok;
intptr_t cix = 0;
if (unary_checks().GetReceiverClassIdAt(cix) == kSmiCid) {
__ tst(value, ShifterOperand(kSmiTagMask));
__ b(&is_ok, EQ);
cix++; // Skip first check.
} else {
__ tst(value, ShifterOperand(kSmiTagMask));
__ b(deopt, EQ);
}
__ LoadClassId(temp, value);
const intptr_t num_checks = unary_checks().NumberOfChecks();
for (intptr_t i = cix; i < num_checks; i++) {
ASSERT(unary_checks().GetReceiverClassIdAt(i) != kSmiCid);
__ CompareImmediate(temp, unary_checks().GetReceiverClassIdAt(i));
if (i == (num_checks - 1)) {
__ b(deopt, NE);
} else {
__ b(&is_ok, EQ);
}
}
__ Bind(&is_ok);
}
LocationSummary* CheckSmiInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
return summary;
}
void CheckSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptCheckSmi);
__ tst(value, ShifterOperand(kSmiTagMask));
__ b(deopt, NE);
}
LocationSummary* CheckArrayBoundInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(kLengthPos, Location::RegisterOrSmiConstant(length()));
locs->set_in(kIndexPos, Location::RegisterOrSmiConstant(index()));
return locs;
}
void CheckArrayBoundInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptCheckArrayBound);
Location length_loc = locs()->in(kLengthPos);
Location index_loc = locs()->in(kIndexPos);
if (length_loc.IsConstant() && index_loc.IsConstant()) {
// TODO(srdjan): remove this code once failures are fixed.
if ((Smi::Cast(length_loc.constant()).Value() >
Smi::Cast(index_loc.constant()).Value()) &&
(Smi::Cast(index_loc.constant()).Value() >= 0)) {
// This CheckArrayBoundInstr should have been eliminated.
return;
}
ASSERT((Smi::Cast(length_loc.constant()).Value() <=
Smi::Cast(index_loc.constant()).Value()) ||
(Smi::Cast(index_loc.constant()).Value() < 0));
// Unconditionally deoptimize for constant bounds checks because they
// only occur only when index is out-of-bounds.
__ b(deopt);
return;
}
if (index_loc.IsConstant()) {
Register length = length_loc.reg();
const Smi& index = Smi::Cast(index_loc.constant());
__ CompareImmediate(length, reinterpret_cast<int32_t>(index.raw()));
__ b(deopt, LS);
} else if (length_loc.IsConstant()) {
const Smi& length = Smi::Cast(length_loc.constant());
Register index = index_loc.reg();
__ CompareImmediate(index, reinterpret_cast<int32_t>(length.raw()));
__ b(deopt, CS);
} else {
Register length = length_loc.reg();
Register index = index_loc.reg();
__ cmp(index, ShifterOperand(length));
__ b(deopt, CS);
}
}
LocationSummary* UnboxIntegerInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
}
void UnboxIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* BoxIntegerInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
}
void BoxIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* BinaryMintOpInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
}
void BinaryMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* ShiftMintOpInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
}
void ShiftMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* UnaryMintOpInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
}
void UnaryMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* ThrowInstr::MakeLocationSummary() const {
return new LocationSummary(0, 0, LocationSummary::kCall);
}
void ThrowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
compiler->GenerateCallRuntime(token_pos(),
deopt_id(),
kThrowRuntimeEntry,
1,
locs());
__ bkpt(0);
}
LocationSummary* ReThrowInstr::MakeLocationSummary() const {
return new LocationSummary(0, 0, LocationSummary::kCall);
}
void ReThrowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
compiler->SetNeedsStacktrace(catch_try_index());
compiler->GenerateCallRuntime(token_pos(),
deopt_id(),
kReThrowRuntimeEntry,
2,
locs());
__ bkpt(0);
}
void GraphEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (!compiler->CanFallThroughTo(normal_entry())) {
__ b(compiler->GetJumpLabel(normal_entry()));
}
}
void TargetEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(compiler->GetJumpLabel(this));
if (!compiler->is_optimizing()) {
compiler->AddCurrentDescriptor(PcDescriptors::kDeopt,
deopt_id_,
Scanner::kDummyTokenIndex);
// Add an edge counter.
const Array& counter = Array::ZoneHandle(Array::New(1, Heap::kOld));
counter.SetAt(0, Smi::Handle(Smi::New(0)));
__ Comment("Edge counter");
__ LoadObject(R0, counter);
__ ldr(IP, FieldAddress(R0, Array::element_offset(0)));
__ adds(IP, IP, ShifterOperand(Smi::RawValue(1)));
__ LoadImmediate(IP, Smi::RawValue(Smi::kMaxValue), VS); // If overflow.
__ str(IP, FieldAddress(R0, Array::element_offset(0)));
}
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
}
LocationSummary* GotoInstr::MakeLocationSummary() const {
return new LocationSummary(0, 0, LocationSummary::kNoCall);
}
void GotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// We can fall through if the successor is the next block in the list.
// Otherwise, we need a jump.
if (!compiler->CanFallThroughTo(successor())) {
__ b(compiler->GetJumpLabel(successor()));
}
}
void ControlInstruction::EmitBranchOnValue(FlowGraphCompiler* compiler,
bool value) {
if (value && !compiler->CanFallThroughTo(true_successor())) {
__ b(compiler->GetJumpLabel(true_successor()));
} else if (!value && !compiler->CanFallThroughTo(false_successor())) {
__ b(compiler->GetJumpLabel(false_successor()));
}
}
void ControlInstruction::EmitBranchOnCondition(FlowGraphCompiler* compiler,
Condition true_condition) {
if (compiler->CanFallThroughTo(false_successor())) {
// If the next block is the false successor we will fall through to it.
__ b(compiler->GetJumpLabel(true_successor()), true_condition);
} else {
// If the next block is not the false successor we will branch to it.
Condition false_condition = NegateCondition(true_condition);
__ b(compiler->GetJumpLabel(false_successor()), false_condition);
// Fall through or jump to the true successor.
if (!compiler->CanFallThroughTo(true_successor())) {
__ b(compiler->GetJumpLabel(true_successor()));
}
}
}
LocationSummary* CurrentContextInstr::MakeLocationSummary() const {
return LocationSummary::Make(0,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void CurrentContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ mov(locs()->out().reg(), ShifterOperand(CTX));
}
LocationSummary* StrictCompareInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrConstant(left()));
locs->set_in(1, Location::RegisterOrConstant(right()));
locs->set_out(Location::RequiresRegister());
return locs;
}
// Special code for numbers (compare values instead of references.)
void StrictCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(kind() == Token::kEQ_STRICT || kind() == Token::kNE_STRICT);
Location left = locs()->in(0);
Location right = locs()->in(1);
if (left.IsConstant() && right.IsConstant()) {
// TODO(vegorov): should be eliminated earlier by constant propagation.
const bool result = (kind() == Token::kEQ_STRICT) ?
left.constant().raw() == right.constant().raw() :
left.constant().raw() != right.constant().raw();
__ LoadObject(locs()->out().reg(), Bool::Get(result));
return;
}
if (left.IsConstant()) {
compiler->EmitEqualityRegConstCompare(right.reg(),
left.constant(),
needs_number_check(),
token_pos());
} else if (right.IsConstant()) {
compiler->EmitEqualityRegConstCompare(left.reg(),
right.constant(),
needs_number_check(),
token_pos());
} else {
compiler->EmitEqualityRegRegCompare(left.reg(),
right.reg(),
needs_number_check(),
token_pos());
}
Register result = locs()->out().reg();
Condition true_condition = (kind() == Token::kEQ_STRICT) ? EQ : NE;
__ LoadObject(result, Bool::True(), true_condition);
__ LoadObject(result, Bool::False(), NegateCondition(true_condition));
}
void StrictCompareInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
ASSERT(kind() == Token::kEQ_STRICT || kind() == Token::kNE_STRICT);
Location left = locs()->in(0);
Location right = locs()->in(1);
if (left.IsConstant() && right.IsConstant()) {
// TODO(vegorov): should be eliminated earlier by constant propagation.
const bool result = (kind() == Token::kEQ_STRICT) ?
left.constant().raw() == right.constant().raw() :
left.constant().raw() != right.constant().raw();
branch->EmitBranchOnValue(compiler, result);
return;
}
if (left.IsConstant()) {
compiler->EmitEqualityRegConstCompare(right.reg(),
left.constant(),
needs_number_check(),
token_pos());
} else if (right.IsConstant()) {
compiler->EmitEqualityRegConstCompare(left.reg(),
right.constant(),
needs_number_check(),
token_pos());
} else {
compiler->EmitEqualityRegRegCompare(left.reg(),
right.reg(),
needs_number_check(),
token_pos());
}
Condition true_condition = (kind() == Token::kEQ_STRICT) ? EQ : NE;
branch->EmitBranchOnCondition(compiler, true_condition);
}
LocationSummary* BooleanNegateInstr::MakeLocationSummary() const {
return LocationSummary::Make(1,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void BooleanNegateInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register result = locs()->out().reg();
__ LoadObject(result, Bool::True());
__ cmp(result, ShifterOperand(value));
__ LoadObject(result, Bool::False(), EQ);
}
LocationSummary* StoreVMFieldInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, value()->NeedsStoreBuffer() ? Location::WritableRegister()
: Location::RequiresRegister());
locs->set_in(1, Location::RequiresRegister());
return locs;
}
void StoreVMFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value_reg = locs()->in(0).reg();
Register dest_reg = locs()->in(1).reg();
if (value()->NeedsStoreBuffer()) {
__ StoreIntoObject(dest_reg, FieldAddress(dest_reg, offset_in_bytes()),
value_reg);
} else {
__ StoreIntoObjectNoBarrier(
dest_reg, FieldAddress(dest_reg, offset_in_bytes()), value_reg);
}
}
LocationSummary* AllocateObjectInstr::MakeLocationSummary() const {
return MakeCallSummary();
}
void AllocateObjectInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Code& stub = Code::Handle(StubCode::GetAllocationStubForClass(cls()));
const ExternalLabel label(cls().ToCString(), stub.EntryPoint());
compiler->GenerateCall(token_pos(),
&label,
PcDescriptors::kOther,
locs());
__ Drop(ArgumentCount()); // Discard arguments.
}
LocationSummary* CreateClosureInstr::MakeLocationSummary() const {
return MakeCallSummary();
}
void CreateClosureInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Function& closure_function = function();
ASSERT(!closure_function.IsImplicitStaticClosureFunction());
const Code& stub = Code::Handle(
StubCode::GetAllocationStubForClosure(closure_function));
const ExternalLabel label(closure_function.ToCString(), stub.EntryPoint());
compiler->GenerateCall(token_pos(),
&label,
PcDescriptors::kOther,
locs());
__ Drop(2); // Discard type arguments and receiver.
}
} // namespace dart
#endif // defined TARGET_ARCH_ARM