blob: 2d148cdd9a31ef35f987ec2c5f8bd6cf2dd7deb2 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(TARGET_ARCH_X64)
#include "vm/assembler.h"
#include "vm/os.h"
#include "vm/unit_test.h"
#include "vm/virtual_memory.h"
namespace dart {
#define __ assembler->
ASSEMBLER_TEST_GENERATE(ReadArgument, assembler) {
__ pushq(RDI); // First argument is passed in register rdi.
__ movq(RAX, Address(RSP, 0));
__ popq(RDX);
__ ret();
}
ASSEMBLER_TEST_RUN(ReadArgument, test) {
typedef int64_t (*ReadArgumentCode)(int64_t n);
ReadArgumentCode id = reinterpret_cast<ReadArgumentCode>(test->entry());
EXPECT_EQ(42, id(42));
EXPECT_EQ(87, id(87));
static const int64_t kLargeConstant = 0x1234567812345678LL;
EXPECT_EQ(kLargeConstant, id(kLargeConstant));
}
ASSEMBLER_TEST_GENERATE(AddressingModes, assembler) {
__ movq(RAX, Address(RSP, 0));
__ movq(RAX, Address(RBP, 0));
__ movq(RAX, Address(RAX, 0));
__ movq(RAX, Address(R10, 0));
__ movq(RAX, Address(R12, 0));
__ movq(RAX, Address(R13, 0));
__ movq(R10, Address(RAX, 0));
__ movq(RAX, Address(RSP, kWordSize));
__ movq(RAX, Address(RBP, kWordSize));
__ movq(RAX, Address(RAX, kWordSize));
__ movq(RAX, Address(R10, kWordSize));
__ movq(RAX, Address(R12, kWordSize));
__ movq(RAX, Address(R13, kWordSize));
__ movq(RAX, Address(RSP, -kWordSize));
__ movq(RAX, Address(RBP, -kWordSize));
__ movq(RAX, Address(RAX, -kWordSize));
__ movq(RAX, Address(R10, -kWordSize));
__ movq(RAX, Address(R12, -kWordSize));
__ movq(RAX, Address(R13, -kWordSize));
__ movq(RAX, Address(RSP, 256 * kWordSize));
__ movq(RAX, Address(RBP, 256 * kWordSize));
__ movq(RAX, Address(RAX, 256 * kWordSize));
__ movq(RAX, Address(R10, 256 * kWordSize));
__ movq(RAX, Address(R12, 256 * kWordSize));
__ movq(RAX, Address(R13, 256 * kWordSize));
__ movq(RAX, Address(RSP, -256 * kWordSize));
__ movq(RAX, Address(RBP, -256 * kWordSize));
__ movq(RAX, Address(RAX, -256 * kWordSize));
__ movq(RAX, Address(R10, -256 * kWordSize));
__ movq(RAX, Address(R12, -256 * kWordSize));
__ movq(RAX, Address(R13, -256 * kWordSize));
__ movq(RAX, Address(RAX, TIMES_1, 0));
__ movq(RAX, Address(RAX, TIMES_2, 0));
__ movq(RAX, Address(RAX, TIMES_4, 0));
__ movq(RAX, Address(RAX, TIMES_8, 0));
__ movq(RAX, Address(RBP, TIMES_2, 0));
__ movq(RAX, Address(RAX, TIMES_2, 0));
__ movq(RAX, Address(R10, TIMES_2, 0));
__ movq(RAX, Address(R12, TIMES_2, 0));
__ movq(RAX, Address(R13, TIMES_2, 0));
__ movq(RAX, Address(RBP, TIMES_2, kWordSize));
__ movq(RAX, Address(RAX, TIMES_2, kWordSize));
__ movq(RAX, Address(R10, TIMES_2, kWordSize));
__ movq(RAX, Address(R12, TIMES_2, kWordSize));
__ movq(RAX, Address(R13, TIMES_2, kWordSize));
__ movq(RAX, Address(RBP, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RAX, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R10, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R12, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R13, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RAX, RBP, TIMES_2, 0));
__ movq(RAX, Address(RAX, RAX, TIMES_2, 0));
__ movq(RAX, Address(RAX, R10, TIMES_2, 0));
__ movq(RAX, Address(RAX, R12, TIMES_2, 0));
__ movq(RAX, Address(RAX, R13, TIMES_2, 0));
__ movq(RAX, Address(RBP, RBP, TIMES_2, 0));
__ movq(RAX, Address(RBP, RAX, TIMES_2, 0));
__ movq(RAX, Address(RBP, R10, TIMES_2, 0));
__ movq(RAX, Address(RBP, R12, TIMES_2, 0));
__ movq(RAX, Address(RBP, R13, TIMES_2, 0));
__ movq(RAX, Address(RSP, RBP, TIMES_2, 0));
__ movq(RAX, Address(RSP, RAX, TIMES_2, 0));
__ movq(RAX, Address(RSP, R10, TIMES_2, 0));
__ movq(RAX, Address(RSP, R12, TIMES_2, 0));
__ movq(RAX, Address(RSP, R13, TIMES_2, 0));
__ movq(RAX, Address(R10, RBP, TIMES_2, 0));
__ movq(RAX, Address(R10, RAX, TIMES_2, 0));
__ movq(RAX, Address(R10, R10, TIMES_2, 0));
__ movq(RAX, Address(R10, R12, TIMES_2, 0));
__ movq(RAX, Address(R10, R13, TIMES_2, 0));
__ movq(RAX, Address(R12, RBP, TIMES_2, 0));
__ movq(RAX, Address(R12, RAX, TIMES_2, 0));
__ movq(RAX, Address(R12, R10, TIMES_2, 0));
__ movq(RAX, Address(R12, R12, TIMES_2, 0));
__ movq(RAX, Address(R12, R13, TIMES_2, 0));
__ movq(RAX, Address(R13, RBP, TIMES_2, 0));
__ movq(RAX, Address(R13, RAX, TIMES_2, 0));
__ movq(RAX, Address(R13, R10, TIMES_2, 0));
__ movq(RAX, Address(R13, R12, TIMES_2, 0));
__ movq(RAX, Address(R13, R13, TIMES_2, 0));
__ movq(RAX, Address(RAX, RBP, TIMES_2, kWordSize));
__ movq(RAX, Address(RAX, RAX, TIMES_2, kWordSize));
__ movq(RAX, Address(RAX, R10, TIMES_2, kWordSize));
__ movq(RAX, Address(RAX, R12, TIMES_2, kWordSize));
__ movq(RAX, Address(RAX, R13, TIMES_2, kWordSize));
__ movq(RAX, Address(RBP, RBP, TIMES_2, kWordSize));
__ movq(RAX, Address(RBP, RAX, TIMES_2, kWordSize));
__ movq(RAX, Address(RBP, R10, TIMES_2, kWordSize));
__ movq(RAX, Address(RBP, R12, TIMES_2, kWordSize));
__ movq(RAX, Address(RBP, R13, TIMES_2, kWordSize));
__ movq(RAX, Address(RSP, RBP, TIMES_2, kWordSize));
__ movq(RAX, Address(RSP, RAX, TIMES_2, kWordSize));
__ movq(RAX, Address(RSP, R10, TIMES_2, kWordSize));
__ movq(RAX, Address(RSP, R12, TIMES_2, kWordSize));
__ movq(RAX, Address(RSP, R13, TIMES_2, kWordSize));
__ movq(RAX, Address(R10, RBP, TIMES_2, kWordSize));
__ movq(RAX, Address(R10, RAX, TIMES_2, kWordSize));
__ movq(RAX, Address(R10, R10, TIMES_2, kWordSize));
__ movq(RAX, Address(R10, R12, TIMES_2, kWordSize));
__ movq(RAX, Address(R10, R13, TIMES_2, kWordSize));
__ movq(RAX, Address(R12, RBP, TIMES_2, kWordSize));
__ movq(RAX, Address(R12, RAX, TIMES_2, kWordSize));
__ movq(RAX, Address(R12, R10, TIMES_2, kWordSize));
__ movq(RAX, Address(R12, R12, TIMES_2, kWordSize));
__ movq(RAX, Address(R12, R13, TIMES_2, kWordSize));
__ movq(RAX, Address(R13, RBP, TIMES_2, kWordSize));
__ movq(RAX, Address(R13, RAX, TIMES_2, kWordSize));
__ movq(RAX, Address(R13, R10, TIMES_2, kWordSize));
__ movq(RAX, Address(R13, R12, TIMES_2, kWordSize));
__ movq(RAX, Address(R13, R13, TIMES_2, kWordSize));
__ movq(RAX, Address(RAX, RBP, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RAX, RAX, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RAX, R10, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RAX, R12, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RAX, R13, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RBP, RBP, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RBP, RAX, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RBP, R10, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RBP, R12, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RBP, R13, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RSP, RBP, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RSP, RAX, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RSP, R10, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RSP, R12, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(RSP, R13, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R10, RBP, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R10, RAX, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R10, R10, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R10, R12, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R10, R13, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R12, RBP, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R12, RAX, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R12, R10, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R12, R12, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R12, R13, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R13, RBP, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R13, RAX, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R13, R10, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R13, R12, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address(R13, R13, TIMES_2, 256 * kWordSize));
__ movq(RAX, Address::AddressBaseImm32(RSP, 0));
__ movq(RAX, Address::AddressBaseImm32(RBP, 0));
__ movq(RAX, Address::AddressBaseImm32(RAX, 0));
__ movq(RAX, Address::AddressBaseImm32(R10, 0));
__ movq(RAX, Address::AddressBaseImm32(R12, 0));
__ movq(RAX, Address::AddressBaseImm32(R13, 0));
__ movq(R10, Address::AddressBaseImm32(RAX, 0));
__ movq(RAX, Address::AddressBaseImm32(RSP, kWordSize));
__ movq(RAX, Address::AddressBaseImm32(RBP, kWordSize));
__ movq(RAX, Address::AddressBaseImm32(RAX, kWordSize));
__ movq(RAX, Address::AddressBaseImm32(R10, kWordSize));
__ movq(RAX, Address::AddressBaseImm32(R12, kWordSize));
__ movq(RAX, Address::AddressBaseImm32(R13, kWordSize));
__ movq(RAX, Address::AddressBaseImm32(RSP, -kWordSize));
__ movq(RAX, Address::AddressBaseImm32(RBP, -kWordSize));
__ movq(RAX, Address::AddressBaseImm32(RAX, -kWordSize));
__ movq(RAX, Address::AddressBaseImm32(R10, -kWordSize));
__ movq(RAX, Address::AddressBaseImm32(R12, -kWordSize));
__ movq(RAX, Address::AddressBaseImm32(R13, -kWordSize));
}
ASSEMBLER_TEST_RUN(AddressingModes, test) {
// Avoid running the code since it is constructed to lead to crashes.
}
ASSEMBLER_TEST_GENERATE(JumpAroundCrash, assembler) {
Label done;
// Make sure all the condition jumps work.
for (Condition condition = OVERFLOW;
condition <= GREATER;
condition = static_cast<Condition>(condition + 1)) {
__ j(condition, &done);
}
// This isn't strictly necessary, but we do an unconditional
// jump around the crashing code anyway.
__ jmp(&done);
// Be sure to skip this crashing code.
__ movq(RAX, Immediate(0));
__ movq(Address(RAX, 0), RAX);
__ Bind(&done);
__ ret();
}
ASSEMBLER_TEST_RUN(JumpAroundCrash, test) {
Instr* instr = Instr::At(test->entry());
EXPECT(!instr->IsBreakPoint());
typedef void (*JumpAroundCrashCode)();
reinterpret_cast<JumpAroundCrashCode>(test->entry())();
}
ASSEMBLER_TEST_GENERATE(SimpleLoop, assembler) {
__ movq(RAX, Immediate(0));
__ movq(RCX, Immediate(0));
Label loop;
__ Bind(&loop);
__ addq(RAX, Immediate(2));
__ incq(RCX);
__ cmpq(RCX, Immediate(87));
__ j(LESS, &loop);
__ ret();
}
ASSEMBLER_TEST_RUN(SimpleLoop, test) {
typedef int (*SimpleLoopCode)();
EXPECT_EQ(2 * 87, reinterpret_cast<SimpleLoopCode>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(Increment, assembler) {
__ movq(RAX, Immediate(0));
__ pushq(RAX);
__ incl(Address(RSP, 0));
__ incq(Address(RSP, 0));
__ movq(RCX, Address(RSP, 0));
__ incq(RCX);
__ popq(RAX);
__ movq(RAX, RCX);
__ ret();
}
ASSEMBLER_TEST_RUN(Increment, test) {
typedef int (*IncrementCode)();
EXPECT_EQ(3, reinterpret_cast<IncrementCode>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(IncrementLong, assembler) {
__ movq(RAX, Immediate(0xffffffff));
__ pushq(RAX);
__ incq(Address(RSP, 0));
__ movq(RCX, Address(RSP, 0));
__ incq(RCX);
__ popq(RAX);
__ movq(RAX, RCX);
__ ret();
}
ASSEMBLER_TEST_RUN(IncrementLong, test) {
typedef int64_t (*IncrementCodeLong)();
EXPECT_EQ(0x100000001, reinterpret_cast<IncrementCodeLong>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(Decrement, assembler) {
__ movq(RAX, Immediate(3));
__ pushq(RAX);
__ decl(Address(RSP, 0));
__ decq(Address(RSP, 0));
__ movq(RCX, Address(RSP, 0));
__ decq(RCX);
__ popq(RAX);
__ movq(RAX, RCX);
__ ret();
}
ASSEMBLER_TEST_RUN(Decrement, test) {
typedef int (*DecrementCode)();
EXPECT_EQ(0, reinterpret_cast<DecrementCode>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(DecrementLong, assembler) {
__ movq(RAX, Immediate(0x100000001));
__ pushq(RAX);
__ decq(Address(RSP, 0));
__ movq(RCX, Address(RSP, 0));
__ decq(RCX);
__ popq(RAX);
__ movq(RAX, RCX);
__ ret();
}
ASSEMBLER_TEST_RUN(DecrementLong, test) {
typedef int64_t (*DecrementCodeLong)();
EXPECT_EQ(0xffffffff, reinterpret_cast<DecrementCodeLong>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(SignedMultiply, assembler) {
__ movl(RAX, Immediate(2));
__ movl(RCX, Immediate(4));
__ imull(RAX, RCX);
__ imull(RAX, Immediate(1000));
__ ret();
}
ASSEMBLER_TEST_RUN(SignedMultiply, test) {
typedef int (*SignedMultiply)();
EXPECT_EQ(8000, reinterpret_cast<SignedMultiply>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(SignedMultiply64, assembler) {
__ pushq(R15); // Callee saved.
__ movq(RAX, Immediate(2));
__ movq(RCX, Immediate(4));
__ imulq(RAX, RCX);
__ movq(R8, Immediate(2));
__ movq(R9, Immediate(4));
__ pushq(R9);
__ imulq(R8, Address(RSP, 0));
__ popq(R9);
__ addq(RAX, R8);
__ movq(R10, Immediate(2));
__ movq(R11, Immediate(4));
__ imulq(R10, R11);
__ addq(RAX, R10);
__ movq(R15, Immediate(2));
__ imulq(R15, Immediate(4));
__ addq(RAX, R15);
__ popq(R15);
__ ret();
}
ASSEMBLER_TEST_RUN(SignedMultiply64, test) {
typedef int64_t (*SignedMultiply64)();
EXPECT_EQ(32, reinterpret_cast<SignedMultiply64>(test->entry())());
}
static const int64_t kLargeConstant = 0x1234567887654321;
static const int64_t kAnotherLargeConstant = 987654321987654321LL;
static const int64_t kProductLargeConstants = 0x5bbb29a7f52fbbd1;
ASSEMBLER_TEST_GENERATE(SignedMultiplyLong, assembler) {
Label done;
__ movq(RAX, Immediate(kLargeConstant));
__ movq(RCX, Immediate(kAnotherLargeConstant));
__ imulq(RAX, RCX);
__ imulq(RCX, Immediate(kLargeConstant));
__ cmpq(RAX, RCX);
__ j(EQUAL, &done);
__ int3();
__ Bind(&done);
__ ret();
}
ASSEMBLER_TEST_RUN(SignedMultiplyLong, test) {
typedef int64_t (*SignedMultiplyLong)();
EXPECT_EQ(kProductLargeConstants,
reinterpret_cast<SignedMultiplyLong>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(OverflowSignedMultiply, assembler) {
__ movl(RDX, Immediate(0));
__ movl(RAX, Immediate(0x0fffffff));
__ movl(RCX, Immediate(0x0fffffff));
__ imull(RAX, RCX);
__ imull(RAX, RDX);
__ ret();
}
ASSEMBLER_TEST_RUN(OverflowSignedMultiply, test) {
typedef int (*OverflowSignedMultiply)();
EXPECT_EQ(0, reinterpret_cast<OverflowSignedMultiply>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(SignedMultiply1, assembler) {
__ movl(RDX, Immediate(2));
__ movl(RCX, Immediate(4));
__ imull(RDX, RCX);
__ imull(RDX, Immediate(1000));
__ movl(RAX, RDX);
__ ret();
}
ASSEMBLER_TEST_RUN(SignedMultiply1, test) {
typedef int (*SignedMultiply1)();
EXPECT_EQ(8000, reinterpret_cast<SignedMultiply1>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(SignedMultiply2, assembler) {
__ pushq(R15); // Callee saved.
__ movl(R15, Immediate(2));
__ imull(R15, Immediate(1000));
__ movl(RAX, R15);
__ popq(R15);
__ ret();
}
ASSEMBLER_TEST_RUN(SignedMultiply2, test) {
typedef int (*SignedMultiply2)();
EXPECT_EQ(2000, reinterpret_cast<SignedMultiply2>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(SignedDivide, assembler) {
__ movl(RAX, Immediate(-87));
__ movl(RDX, Immediate(123));
__ cdq();
__ movl(RCX, Immediate(42));
__ idivl(RCX);
__ ret();
}
ASSEMBLER_TEST_RUN(SignedDivide, test) {
typedef int32_t (*SignedDivide)();
EXPECT_EQ(-87 / 42, reinterpret_cast<SignedDivide>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(SignedDivideLong, assembler) {
__ movq(RAX, Immediate(kLargeConstant));
__ movq(RDX, Immediate(123));
__ cqo(); // Clear RDX.
__ movq(RCX, Immediate(42));
__ idivq(RCX);
__ ret();
}
ASSEMBLER_TEST_RUN(SignedDivideLong, test) {
typedef int64_t (*SignedDivideLong)();
EXPECT_EQ(kLargeConstant / 42,
reinterpret_cast<SignedDivideLong>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(Negate, assembler) {
__ movl(RCX, Immediate(42));
__ negl(RCX);
__ movl(RAX, RCX);
__ ret();
}
ASSEMBLER_TEST_RUN(Negate, test) {
typedef int (*Negate)();
EXPECT_EQ(-42, reinterpret_cast<Negate>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(MoveExtend, assembler) {
__ movq(RDX, Immediate(0xffff));
__ movzxb(RAX, RDX); // RAX = 0xff
__ movsxw(R8, RDX); // R8 = -1
__ movzxw(RCX, RDX); // RCX = 0xffff
__ addq(R8, RCX);
__ addq(RAX, R8);
__ ret();
}
ASSEMBLER_TEST_RUN(MoveExtend, test) {
typedef int (*MoveExtend)();
EXPECT_EQ(0xff - 1 + 0xffff, reinterpret_cast<MoveExtend>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(MoveExtend32, assembler) {
__ movq(RDX, Immediate(0xffffffff));
__ movsxd(RDX, RDX);
__ movq(RAX, Immediate(0x7fffffff));
__ movsxd(RAX, RAX);
__ addq(RAX, RDX);
__ ret();
}
ASSEMBLER_TEST_RUN(MoveExtend32, test) {
typedef intptr_t (*MoveExtend)();
EXPECT_EQ(0x7ffffffe, reinterpret_cast<MoveExtend>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(MoveExtendMemory, assembler) {
__ movq(RDX, Immediate(0x123456781234ffff));
__ pushq(RDX);
__ movzxb(RAX, Address(RSP, 0)); // RAX = 0xff
__ movsxw(R8, Address(RSP, 0)); // R8 = -1
__ movzxw(RCX, Address(RSP, 0)); // RCX = 0xffff
__ addq(RSP, Immediate(kWordSize));
__ addq(R8, RCX);
__ addq(RAX, R8);
__ ret();
}
ASSEMBLER_TEST_RUN(MoveExtendMemory, test) {
typedef int (*MoveExtendMemory)();
EXPECT_EQ(0xff - 1 + 0xffff,
reinterpret_cast<MoveExtendMemory>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(MoveExtend32Memory, assembler) {
__ pushq(Immediate(0xffffffff));
__ pushq(Immediate(0x7fffffff));
__ movsxd(RDX, Address(RSP, kWordSize));
__ movsxd(RAX, Address(RSP, 0));
__ addq(RSP, Immediate(kWordSize * 2));
__ addq(RAX, RDX);
__ ret();
}
ASSEMBLER_TEST_RUN(MoveExtend32Memory, test) {
typedef intptr_t (*MoveExtend)();
EXPECT_EQ(0x7ffffffe, reinterpret_cast<MoveExtend>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(MoveWord, assembler) {
__ xorq(RAX, RAX);
__ pushq(Immediate(0));
__ movq(RAX, RSP);
__ movq(RCX, Immediate(-1));
__ movw(Address(RAX, 0), RCX);
__ movzxw(RAX, Address(RAX, 0)); // RAX = 0xffff
__ addq(RSP, Immediate(kWordSize));
__ ret();
}
ASSEMBLER_TEST_RUN(MoveWord, test) {
typedef int (*MoveWord)();
EXPECT_EQ(0xffff, reinterpret_cast<MoveWord>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(MoveWordRex, assembler) {
__ pushq(Immediate(0));
__ movq(R8, RSP);
__ movq(R9, Immediate(-1));
__ movw(Address(R8, 0), R9);
__ movzxw(R8, Address(R8, 0)); // 0xffff
__ xorq(RAX, RAX);
__ addq(RAX, R8); // RAX = 0xffff
__ addq(RSP, Immediate(kWordSize));
__ ret();
}
ASSEMBLER_TEST_RUN(MoveWordRex, test) {
typedef int (*MoveWordRex)();
EXPECT_EQ(0xffff, reinterpret_cast<MoveWordRex>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(Bitwise, assembler) {
__ movl(RCX, Immediate(42));
__ xorl(RCX, RCX);
__ orl(RCX, Immediate(256));
__ movl(RAX, Immediate(4));
__ orl(RCX, RAX);
__ movl(RAX, Immediate(0xfff0));
__ andl(RCX, RAX);
__ movl(RAX, Immediate(1));
__ orl(RCX, RAX);
__ movl(RAX, RCX);
__ ret();
}
ASSEMBLER_TEST_RUN(Bitwise, test) {
typedef int (*Bitwise)();
EXPECT_EQ(256 + 1, reinterpret_cast<Bitwise>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(Bitwise64, assembler) {
Label error;
__ movq(RAX, Immediate(42));
__ pushq(RAX);
__ xorq(RAX, Address(RSP, 0));
__ popq(RCX);
__ cmpq(RAX, Immediate(0));
__ j(NOT_EQUAL, &error);
__ movq(RCX, Immediate(0xFF));
__ movq(RAX, Immediate(0x5));
__ xorq(RCX, RAX);
__ cmpq(RCX, Immediate(0xFF ^ 0x5));
__ j(NOT_EQUAL, &error);
__ pushq(Immediate(0xFF));
__ movq(RCX, Immediate(0x5));
__ xorq(Address(RSP, 0), RCX);
__ popq(RCX);
__ cmpq(RCX, Immediate(0xFF ^ 0x5));
__ j(NOT_EQUAL, &error);
__ xorq(RCX, RCX);
__ orq(RCX, Immediate(256));
__ movq(RAX, Immediate(4));
__ orq(RCX, RAX);
__ movq(RAX, Immediate(0xfff0));
__ andq(RCX, RAX);
__ movq(RAX, Immediate(1));
__ pushq(RAX);
__ orq(RCX, Address(RSP, 0));
__ xorq(RCX, Immediate(0));
__ popq(RAX);
__ movq(RAX, RCX);
__ ret();
__ Bind(&error);
__ movq(RAX, Immediate(-1));
__ ret();
}
ASSEMBLER_TEST_RUN(Bitwise64, test) {
typedef int (*Bitwise64)();
EXPECT_EQ(256 + 1, reinterpret_cast<Bitwise64>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(LogicalOps, assembler) {
Label donetest1;
__ movl(RAX, Immediate(4));
__ andl(RAX, Immediate(2));
__ cmpl(RAX, Immediate(0));
__ j(EQUAL, &donetest1);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest1);
Label donetest2;
__ movl(RCX, Immediate(4));
__ andl(RCX, Immediate(4));
__ cmpl(RCX, Immediate(0));
__ j(NOT_EQUAL, &donetest2);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest2);
Label donetest3;
__ movl(RAX, Immediate(0));
__ orl(RAX, Immediate(0));
__ cmpl(RAX, Immediate(0));
__ j(EQUAL, &donetest3);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest3);
Label donetest4;
__ movl(RAX, Immediate(4));
__ orl(RAX, Immediate(0));
__ cmpl(RAX, Immediate(0));
__ j(NOT_EQUAL, &donetest4);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest4);
Label donetest5;
__ pushq(RAX);
__ movl(RAX, Immediate(0xff));
__ movl(Address(RSP, 0), RAX);
__ cmpl(Address(RSP, 0), Immediate(0xff));
__ j(EQUAL, &donetest5);
// Be sure to skip this crashing code.
__ movq(RAX, Immediate(0));
__ movq(Address(RAX, 0), RAX);
__ Bind(&donetest5);
__ popq(RAX);
Label donetest6;
__ movl(RAX, Immediate(1));
__ shll(RAX, Immediate(3));
__ cmpl(RAX, Immediate(8));
__ j(EQUAL, &donetest6);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest6);
Label donetest7;
__ movl(RAX, Immediate(2));
__ shrl(RAX, Immediate(1));
__ cmpl(RAX, Immediate(1));
__ j(EQUAL, &donetest7);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest7);
Label donetest8;
__ movl(RAX, Immediate(8));
__ shrl(RAX, Immediate(3));
__ cmpl(RAX, Immediate(1));
__ j(EQUAL, &donetest8);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest8);
Label donetest9;
__ movl(RAX, Immediate(1));
__ movl(RCX, Immediate(3));
__ shll(RAX, RCX);
__ cmpl(RAX, Immediate(8));
__ j(EQUAL, &donetest9);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest9);
Label donetest10;
__ movl(RAX, Immediate(8));
__ movl(RCX, Immediate(3));
__ shrl(RAX, RCX);
__ cmpl(RAX, Immediate(1));
__ j(EQUAL, &donetest10);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest10);
Label donetest6a;
__ movl(RAX, Immediate(1));
__ shlq(RAX, Immediate(3));
__ cmpl(RAX, Immediate(8));
__ j(EQUAL, &donetest6a);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest6a);
Label donetest7a;
__ movl(RAX, Immediate(2));
__ shrq(RAX, Immediate(1));
__ cmpl(RAX, Immediate(1));
__ j(EQUAL, &donetest7a);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest7a);
Label donetest8a;
__ movl(RAX, Immediate(8));
__ shrq(RAX, Immediate(3));
__ cmpl(RAX, Immediate(1));
__ j(EQUAL, &donetest8a);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest8a);
Label donetest9a;
__ movl(RAX, Immediate(1));
__ movl(RCX, Immediate(3));
__ shlq(RAX, RCX);
__ cmpl(RAX, Immediate(8));
__ j(EQUAL, &donetest9a);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest9a);
Label donetest10a;
__ movl(RAX, Immediate(8));
__ movl(RCX, Immediate(3));
__ shrq(RAX, RCX);
__ cmpl(RAX, Immediate(1));
__ j(EQUAL, &donetest10a);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest10a);
Label donetest11a;
__ movl(RAX, Immediate(1));
__ shlq(RAX, Immediate(31));
__ shrq(RAX, Immediate(3));
__ cmpq(RAX, Immediate(0x10000000));
__ j(EQUAL, &donetest11a);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest11a);
Label donetest12a;
__ movl(RAX, Immediate(1));
__ shlq(RAX, Immediate(31));
__ sarl(RAX, Immediate(3));
__ cmpl(RAX, Immediate(0xfffffffff0000000));
__ j(EQUAL, &donetest12a);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest12a);
Label donetest13a;
__ movl(RAX, Immediate(1));
__ movl(RCX, Immediate(3));
__ shlq(RAX, Immediate(31));
__ sarl(RAX, RCX);
__ cmpl(RAX, Immediate(0xfffffffff0000000));
__ j(EQUAL, &donetest13a);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest13a);
__ movl(RAX, Immediate(0));
__ ret();
}
ASSEMBLER_TEST_RUN(LogicalOps, test) {
typedef int (*LogicalOpsCode)();
EXPECT_EQ(0, reinterpret_cast<LogicalOpsCode>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(LogicalOps64, assembler) {
Label donetest1;
__ movq(RAX, Immediate(4));
__ andq(RAX, Immediate(2));
__ cmpq(RAX, Immediate(0));
__ j(EQUAL, &donetest1);
__ int3();
__ Bind(&donetest1);
Label donetest2;
__ movq(RCX, Immediate(4));
__ pushq(RCX);
__ andq(RCX, Address(RSP, 0));
__ popq(RAX);
__ cmpq(RCX, Immediate(0));
__ j(NOT_EQUAL, &donetest2);
__ int3();
__ Bind(&donetest2);
Label donetest3;
__ movq(RAX, Immediate(0));
__ orq(RAX, Immediate(0));
__ cmpq(RAX, Immediate(0));
__ j(EQUAL, &donetest3);
__ int3();
__ Bind(&donetest3);
Label donetest4;
__ movq(RAX, Immediate(4));
__ orq(RAX, Immediate(0));
__ cmpq(RAX, Immediate(0));
__ j(NOT_EQUAL, &donetest4);
__ int3();
__ Bind(&donetest4);
Label donetest5;
__ pushq(RAX);
__ movq(RAX, Immediate(0xff));
__ movq(Address(RSP, 0), RAX);
__ cmpq(Address(RSP, 0), Immediate(0xff));
__ j(EQUAL, &donetest5);
__ int3();
__ Bind(&donetest5);
__ popq(RAX);
Label donetest6;
__ movq(RAX, Immediate(1));
__ shlq(RAX, Immediate(3));
__ cmpq(RAX, Immediate(8));
__ j(EQUAL, &donetest6);
__ int3();
__ Bind(&donetest6);
Label donetest7;
__ movq(RAX, Immediate(2));
__ shrq(RAX, Immediate(1));
__ cmpq(RAX, Immediate(1));
__ j(EQUAL, &donetest7);
__ int3();
__ Bind(&donetest7);
Label donetest8;
__ movq(RAX, Immediate(8));
__ shrq(RAX, Immediate(3));
__ cmpq(RAX, Immediate(1));
__ j(EQUAL, &donetest8);
__ int3();
__ Bind(&donetest8);
Label donetest9;
__ movq(RAX, Immediate(1));
__ movq(RCX, Immediate(3));
__ shlq(RAX, RCX);
__ cmpq(RAX, Immediate(8));
__ j(EQUAL, &donetest9);
__ int3();
__ Bind(&donetest9);
Label donetest10;
__ movq(RAX, Immediate(8));
__ movq(RCX, Immediate(3));
__ shrq(RAX, RCX);
__ cmpq(RAX, Immediate(1));
__ j(EQUAL, &donetest10);
__ int3();
__ Bind(&donetest10);
Label donetest6a;
__ movq(RAX, Immediate(1));
__ shlq(RAX, Immediate(3));
__ cmpq(RAX, Immediate(8));
__ j(EQUAL, &donetest6a);
// Be sure to skip this crashing code.
__ movq(RAX, Immediate(0));
__ movq(Address(RAX, 0), RAX);
__ Bind(&donetest6a);
Label donetest7a;
__ movq(RAX, Immediate(2));
__ shrq(RAX, Immediate(1));
__ cmpq(RAX, Immediate(1));
__ j(EQUAL, &donetest7a);
__ int3();
__ Bind(&donetest7a);
Label donetest8a;
__ movq(RAX, Immediate(8));
__ shrq(RAX, Immediate(3));
__ cmpq(RAX, Immediate(1));
__ j(EQUAL, &donetest8a);
__ int3();
__ Bind(&donetest8a);
Label donetest9a;
__ movq(RAX, Immediate(1));
__ movq(RCX, Immediate(3));
__ shlq(RAX, RCX);
__ cmpq(RAX, Immediate(8));
__ j(EQUAL, &donetest9a);
__ int3();
__ Bind(&donetest9a);
Label donetest10a;
__ movq(RAX, Immediate(8));
__ movq(RCX, Immediate(3));
__ shrq(RAX, RCX);
__ cmpq(RAX, Immediate(1));
__ j(EQUAL, &donetest10a);
__ int3();
__ Bind(&donetest10a);
Label donetest11a;
__ movq(RAX, Immediate(1));
__ shlq(RAX, Immediate(31));
__ shrq(RAX, Immediate(3));
__ cmpq(RAX, Immediate(0x10000000));
__ j(EQUAL, &donetest11a);
__ int3();
__ Bind(&donetest11a);
Label donetest12a;
__ movq(RAX, Immediate(1));
__ shlq(RAX, Immediate(63));
__ sarq(RAX, Immediate(3));
__ cmpq(RAX, Immediate(0xf000000000000000));
__ j(EQUAL, &donetest12a);
__ int3();
__ Bind(&donetest12a);
Label donetest13a;
__ movq(RAX, Immediate(1));
__ movq(RCX, Immediate(3));
__ shlq(RAX, Immediate(63));
__ sarq(RAX, RCX);
__ cmpq(RAX, Immediate(0xf000000000000000));
__ j(EQUAL, &donetest13a);
__ int3();
__ Bind(&donetest13a);
Label donetest14, donetest15;
__ pushq(R15); // Callee saved.
__ movq(R15, Immediate(0xf000000000000001));
__ andq(R15, Immediate(-1));
__ andq(R15, Immediate(0x8000000000000001));
__ orq(R15, Immediate(2));
__ orq(R15, Immediate(0xf800000000000000));
__ xorq(R15, Immediate(1));
__ xorq(R15, Immediate(0x0800000000000000));
__ cmpq(R15, Immediate(0xf000000000000002));
__ j(EQUAL, &donetest14);
__ int3();
__ Bind(&donetest14);
__ andq(R15, Immediate(2));
__ cmpq(R15, Immediate(2));
__ j(EQUAL, &donetest15);
__ int3();
__ Bind(&donetest15);
__ popq(R15); // Callee saved.
__ movq(RAX, Immediate(0));
__ ret();
}
ASSEMBLER_TEST_RUN(LogicalOps64, test) {
typedef int (*LogicalOpsCode)();
EXPECT_EQ(0, reinterpret_cast<LogicalOpsCode>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(LogicalTestL, assembler) {
Label donetest1;
__ movl(RAX, Immediate(4));
__ movl(RCX, Immediate(2));
__ testl(RAX, RCX);
__ j(EQUAL, &donetest1);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest1);
Label donetest2;
__ movl(RDX, Immediate(4));
__ movl(RCX, Immediate(4));
__ testl(RDX, RCX);
__ j(NOT_EQUAL, &donetest2);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest2);
Label donetest3;
__ movl(RAX, Immediate(0));
__ testl(RAX, Immediate(0));
__ j(EQUAL, &donetest3);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest3);
Label donetest4;
__ movl(RCX, Immediate(4));
__ testl(RCX, Immediate(4));
__ j(NOT_EQUAL, &donetest4);
// Be sure to skip this crashing code.
__ movl(RAX, Immediate(0));
__ movl(Address(RAX, 0), RAX);
__ Bind(&donetest4);
__ movl(RAX, Immediate(0));
__ ret();
}
ASSEMBLER_TEST_RUN(LogicalTestL, test) {
typedef int (*LogicalTestCode)();
EXPECT_EQ(0, reinterpret_cast<LogicalTestCode>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(LogicalTestQ, assembler) {
Label donetest1;
__ movq(RAX, Immediate(4));
__ movq(RCX, Immediate(2));
__ testq(RAX, RCX);
__ j(EQUAL, &donetest1);
// Be sure to skip this crashing code.
__ movq(RAX, Immediate(0));
__ movq(Address(RAX, 0), RAX);
__ Bind(&donetest1);
Label donetest2;
__ movq(RDX, Immediate(4));
__ movq(RCX, Immediate(4));
__ testq(RDX, RCX);
__ j(NOT_EQUAL, &donetest2);
// Be sure to skip this crashing code.
__ movq(RAX, Immediate(0));
__ movq(Address(RAX, 0), RAX);
__ Bind(&donetest2);
Label donetest3;
__ movq(RAX, Immediate(0));
__ testq(RAX, Immediate(0));
__ j(EQUAL, &donetest3);
// Be sure to skip this crashing code.
__ movq(RAX, Immediate(0));
__ movq(Address(RAX, 0), RAX);
__ Bind(&donetest3);
Label donetest4;
__ movq(RCX, Immediate(4));
__ testq(RCX, Immediate(4));
__ j(NOT_EQUAL, &donetest4);
// Be sure to skip this crashing code.
__ movq(RAX, Immediate(0));
__ movq(Address(RAX, 0), RAX);
__ Bind(&donetest4);
Label donetest5;
__ movq(RCX, Immediate(0xff));
__ testq(RCX, Immediate(0xff));
__ j(NOT_EQUAL, &donetest5);
// Be sure to skip this crashing code.
__ movq(RAX, Immediate(0));
__ movq(Address(RAX, 0), RAX);
__ Bind(&donetest5);
Label donetest6;
__ movq(RAX, Immediate(0xff));
__ testq(RAX, Immediate(0xff));
__ j(NOT_EQUAL, &donetest6);
// Be sure to skip this crashing code.
__ movq(RAX, Immediate(0));
__ movq(Address(RAX, 0), RAX);
__ Bind(&donetest6);
__ movq(RAX, Immediate(0));
__ ret();
}
ASSEMBLER_TEST_RUN(LogicalTestQ, test) {
typedef int (*LogicalTestCode)();
EXPECT_EQ(0, reinterpret_cast<LogicalTestCode>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(CompareSwapEQ, assembler) {
__ movq(RAX, Immediate(0));
__ pushq(RAX);
__ movq(RAX, Immediate(4));
__ movq(RCX, Immediate(0));
__ movq(Address(RSP, 0), RAX);
__ lock_cmpxchgq(Address(RSP, 0), RCX);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(CompareSwapEQ, test) {
typedef int (*CompareSwapEQCode)();
EXPECT_EQ(0, reinterpret_cast<CompareSwapEQCode>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(CompareSwapNEQ, assembler) {
__ movq(RAX, Immediate(0));
__ pushq(RAX);
__ movq(RAX, Immediate(2));
__ movq(RCX, Immediate(4));
__ movq(Address(RSP, 0), RCX);
__ lock_cmpxchgq(Address(RSP, 0), RCX);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(CompareSwapNEQ, test) {
typedef int (*CompareSwapNEQCode)();
EXPECT_EQ(4, reinterpret_cast<CompareSwapNEQCode>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(Exchange, assembler) {
__ movq(RAX, Immediate(kLargeConstant));
__ movq(RDX, Immediate(kAnotherLargeConstant));
__ xchgq(RAX, RDX);
__ subq(RAX, RDX);
__ ret();
}
ASSEMBLER_TEST_RUN(Exchange, test) {
typedef int64_t (*Exchange)();
EXPECT_EQ(kAnotherLargeConstant - kLargeConstant,
reinterpret_cast<Exchange>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(LargeConstant, assembler) {
__ movq(RAX, Immediate(kLargeConstant));
__ ret();
}
ASSEMBLER_TEST_RUN(LargeConstant, test) {
typedef int64_t (*LargeConstantCode)();
EXPECT_EQ(kLargeConstant,
reinterpret_cast<LargeConstantCode>(test->entry())());
}
static int ComputeStackSpaceReservation(int needed, int fixed) {
return (OS::ActivationFrameAlignment() > 1)
? Utils::RoundUp(needed + fixed, OS::ActivationFrameAlignment()) - fixed
: needed;
}
static int LeafReturn42() {
return 42;
}
static int LeafReturnArgument(int x) {
return x + 87;
}
ASSEMBLER_TEST_GENERATE(CallSimpleLeaf, assembler) {
ExternalLabel call1("LeafReturn42", reinterpret_cast<uword>(LeafReturn42));
ExternalLabel call2("LeafReturnArgument",
reinterpret_cast<uword>(LeafReturnArgument));
int space = ComputeStackSpaceReservation(0, 8);
__ AddImmediate(RSP, Immediate(-space));
__ call(&call1);
__ AddImmediate(RSP, Immediate(space));
space = ComputeStackSpaceReservation(0, 8);
__ AddImmediate(RSP, Immediate(-space));
__ movl(RDI, RAX);
__ call(&call2);
__ AddImmediate(RSP, Immediate(space));
__ ret();
}
ASSEMBLER_TEST_RUN(CallSimpleLeaf, test) {
typedef int (*CallSimpleLeafCode)();
EXPECT_EQ(42 + 87, reinterpret_cast<CallSimpleLeafCode>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(JumpSimpleLeaf, assembler) {
ExternalLabel call1("LeafReturn42", reinterpret_cast<uword>(LeafReturn42));
Label L;
int space = ComputeStackSpaceReservation(0, 8);
__ AddImmediate(RSP, Immediate(-space));
__ call(&L);
__ AddImmediate(RSP, Immediate(space));
__ ret();
__ Bind(&L);
__ jmp(&call1);
}
ASSEMBLER_TEST_RUN(JumpSimpleLeaf, test) {
typedef int (*JumpSimpleLeafCode)();
EXPECT_EQ(42, reinterpret_cast<JumpSimpleLeafCode>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(SingleFPMoves, assembler) {
__ movq(RAX, Immediate(bit_cast<int32_t, float>(234.0f)));
__ movd(XMM0, RAX);
__ movss(XMM1, XMM0);
__ movss(XMM2, XMM1);
__ movss(XMM3, XMM2);
__ movss(XMM4, XMM3);
__ movss(XMM5, XMM4);
__ movss(XMM6, XMM5);
__ movss(XMM7, XMM6);
__ movss(XMM8, XMM7);
__ movss(XMM9, XMM8);
__ movss(XMM10, XMM9);
__ movss(XMM11, XMM10);
__ movss(XMM12, XMM11);
__ movss(XMM13, XMM12);
__ movss(XMM14, XMM13);
__ movss(XMM15, XMM14);
__ pushq(R15); // Callee saved.
__ pushq(RAX);
__ movq(Address(RSP, 0), Immediate(0));
__ movss(XMM0, Address(RSP, 0));
__ movss(Address(RSP, 0), XMM7);
__ movss(XMM1, Address(RSP, 0));
__ movq(R10, RSP);
__ movss(Address(R10, 0), XMM1);
__ movss(XMM2, Address(R10, 0));
__ movq(R15, RSP);
__ movss(Address(R15, 0), XMM2);
__ movss(XMM3, Address(R15, 0));
__ movq(RAX, RSP);
__ movss(Address(RAX, 0), XMM3);
__ movss(XMM1, Address(RAX, 0));
__ movss(XMM15, Address(RAX, 0));
__ movss(XMM14, XMM15);
__ movss(XMM13, XMM14);
__ movss(XMM12, XMM13);
__ movss(XMM11, XMM12);
__ movss(XMM10, XMM11);
__ movss(XMM9, XMM10);
__ movss(XMM8, XMM9);
__ movss(XMM7, XMM8);
__ movss(XMM6, XMM7);
__ movss(XMM5, XMM6);
__ movss(XMM4, XMM5);
__ movss(XMM3, XMM4);
__ movss(XMM2, XMM3);
__ movss(XMM1, XMM2);
__ movss(XMM0, XMM1);
__ popq(RAX);
__ popq(R15); // Callee saved.
__ ret();
}
ASSEMBLER_TEST_RUN(SingleFPMoves, test) {
typedef float (*SingleFPMovesCode)();
EXPECT_EQ(234, reinterpret_cast<SingleFPMovesCode>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(SingleFPMoves2, assembler) {
__ movq(RAX, Immediate(bit_cast<int32_t, float>(234.0f)));
__ movd(XMM0, RAX);
__ movd(XMM8, RAX);
__ movss(XMM1, XMM8);
__ pushq(RAX);
__ movq(Address(RSP, 0), Immediate(0));
__ movss(XMM0, Address(RSP, 0));
__ movss(Address(RSP, 0), XMM1);
__ movss(XMM0, Address(RSP, 0));
__ movq(Address(RSP, 0), Immediate(0));
__ movss(XMM9, XMM8);
__ movss(Address(RSP, 0), XMM9);
__ movss(XMM8, Address(RSP, 0));
__ movss(XMM0, XMM8);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(SingleFPMoves2, test) {
typedef float (*SingleFPMoves2Code)();
EXPECT_EQ(234, reinterpret_cast<SingleFPMoves2Code>(test->entry())());
}
ASSEMBLER_TEST_GENERATE(SingleFPOperations, assembler) {
__ pushq(RBX);
__ pushq(RCX);
__ movq(RBX, Immediate(bit_cast<int32_t, float>(12.3f)));
__ movd(XMM0, RBX);
__ movd(XMM8, RBX);
__ movq(RCX, Immediate(bit_cast<int32_t, float>(3.4f)));
__ movd(XMM1, RCX);
__ movd(XMM9, RCX);
__ addss(XMM0, XMM1); // 15.7f
__ mulss(XMM0, XMM1); // 53.38f
__ subss(XMM0, XMM1); // 49.98f
__ divss(XMM0, XMM1); // 14.7f
__ addss(XMM8, XMM9); // 15.7f
__ mulss(XMM8, XMM9); // 53.38f
__ subss(XMM8, XMM9); // 49.98f
__ divss(XMM8, XMM9); // 14.7f
__ subss(XMM0, XMM8); // 0.0f
__ popq(RCX);
__ popq(RBX);
__ ret();
}
ASSEMBLER_TEST_RUN(SingleFPOperations, test) {
typedef float (*SingleFPOperationsCode)();
float res = reinterpret_cast<SingleFPOperationsCode>(test->entry())();
EXPECT_FLOAT_EQ(0.0f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(PackedFPOperations, assembler) {
__ movq(RAX, Immediate(bit_cast<int32_t, float>(12.3f)));
__ movd(XMM10, RAX);
__ shufps(XMM10, XMM10, Immediate(0x0));
__ movq(RAX, Immediate(bit_cast<int32_t, float>(3.4f)));
__ movd(XMM9, RAX);
__ shufps(XMM9, XMM9, Immediate(0x0));
__ addps(XMM10, XMM9); // 15.7f
__ mulps(XMM10, XMM9); // 53.38f
__ subps(XMM10, XMM9); // 49.98f
__ divps(XMM10, XMM9); // 14.7f
__ movaps(XMM0, XMM10);
__ shufps(XMM0, XMM0, Immediate(0x55)); // Copy second lane into all 4 lanes.
__ ret();
}
ASSEMBLER_TEST_RUN(PackedFPOperations, test) {
typedef float (*PackedFPOperationsCode)();
float res = reinterpret_cast<PackedFPOperationsCode>(test->entry())();
EXPECT_FLOAT_EQ(14.7f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(PackedIntOperations, assembler) {
__ movl(RAX, Immediate(0x2));
__ movd(XMM0, RAX);
__ shufps(XMM0, XMM0, Immediate(0x0));
__ movl(RAX, Immediate(0x1));
__ movd(XMM1, RAX);
__ shufps(XMM1, XMM1, Immediate(0x0));
__ addpl(XMM0, XMM1); // 0x3
__ addpl(XMM0, XMM0); // 0x6
__ subpl(XMM0, XMM1); // 0x5
__ pushq(RAX);
__ movss(Address(RSP, 0), XMM0);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedIntOperations, test) {
typedef uint32_t (*PackedIntOperationsCode)();
uint32_t res = reinterpret_cast<PackedIntOperationsCode>(test->entry())();
EXPECT_EQ(static_cast<uword>(0x5), res);
}
ASSEMBLER_TEST_GENERATE(PackedFPOperations2, assembler) {
__ movq(RAX, Immediate(bit_cast<int32_t, float>(4.0f)));
__ movd(XMM0, RAX);
__ shufps(XMM0, XMM0, Immediate(0x0));
__ movaps(XMM11, XMM0); // Copy XMM0
__ reciprocalps(XMM11); // 0.25
__ sqrtps(XMM11); // 0.5
__ rsqrtps(XMM0); // ~0.5
__ subps(XMM0, XMM11); // ~0.0
__ shufps(XMM0, XMM0, Immediate(0x00)); // Copy second lane into all 4 lanes.
__ ret();
}
ASSEMBLER_TEST_RUN(PackedFPOperations2, test) {
typedef float (*PackedFPOperations2Code)();
float res = reinterpret_cast<PackedFPOperations2Code>(test->entry())();
EXPECT_FLOAT_EQ(0.0f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(PackedCompareEQ, assembler) {
__ set1ps(XMM0, RAX, Immediate(bit_cast<int32_t, float>(2.0f)));
__ set1ps(XMM1, RAX, Immediate(bit_cast<int32_t, float>(4.0f)));
__ cmppseq(XMM0, XMM1);
__ pushq(RAX);
__ movss(Address(RSP, 0), XMM0);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedCompareEQ, test) {
typedef uint32_t (*PackedCompareEQCode)();
uint32_t res = reinterpret_cast<PackedCompareEQCode>(test->entry())();
EXPECT_EQ(static_cast<uword>(0x0), res);
}
ASSEMBLER_TEST_GENERATE(PackedCompareNEQ, assembler) {
__ set1ps(XMM0, RAX, Immediate(bit_cast<int32_t, float>(2.0f)));
__ set1ps(XMM1, RAX, Immediate(bit_cast<int32_t, float>(4.0f)));
__ cmppsneq(XMM0, XMM1);
__ pushq(RAX);
__ movss(Address(RSP, 0), XMM0);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedCompareNEQ, test) {
typedef uint32_t (*PackedCompareNEQCode)();
uint32_t res = reinterpret_cast<PackedCompareNEQCode>(test->entry())();
EXPECT_EQ(static_cast<uword>(0xFFFFFFFF), res);
}
ASSEMBLER_TEST_GENERATE(PackedCompareLT, assembler) {
__ set1ps(XMM0, RAX, Immediate(bit_cast<int32_t, float>(2.0f)));
__ set1ps(XMM1, RAX, Immediate(bit_cast<int32_t, float>(4.0f)));
__ cmppslt(XMM0, XMM1);
__ pushq(RAX);
__ movss(Address(RSP, 0), XMM0);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedCompareLT, test) {
typedef uint32_t (*PackedCompareLTCode)();
uint32_t res = reinterpret_cast<PackedCompareLTCode>(test->entry())();
EXPECT_EQ(static_cast<uword>(0xFFFFFFFF), res);
}
ASSEMBLER_TEST_GENERATE(PackedCompareLE, assembler) {
__ set1ps(XMM0, RAX, Immediate(bit_cast<int32_t, float>(2.0f)));
__ set1ps(XMM1, RAX, Immediate(bit_cast<int32_t, float>(4.0f)));
__ cmppsle(XMM0, XMM1);
__ pushq(RAX);
__ movss(Address(RSP, 0), XMM0);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedCompareLE, test) {
typedef uint32_t (*PackedCompareLECode)();
uint32_t res = reinterpret_cast<PackedCompareLECode>(test->entry())();
EXPECT_EQ(static_cast<uword>(0xFFFFFFFF), res);
}
ASSEMBLER_TEST_GENERATE(PackedCompareNLT, assembler) {
__ set1ps(XMM0, RAX, Immediate(bit_cast<int32_t, float>(2.0f)));
__ set1ps(XMM1, RAX, Immediate(bit_cast<int32_t, float>(4.0f)));
__ cmppsnlt(XMM0, XMM1);
__ pushq(RAX);
__ movss(Address(RSP, 0), XMM0);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedCompareNLT, test) {
typedef uint32_t (*PackedCompareNLTCode)();
uint32_t res = reinterpret_cast<PackedCompareNLTCode>(test->entry())();
EXPECT_EQ(static_cast<uword>(0x0), res);
}
ASSEMBLER_TEST_GENERATE(PackedCompareNLE, assembler) {
__ set1ps(XMM0, RAX, Immediate(bit_cast<int32_t, float>(2.0f)));
__ set1ps(XMM1, RAX, Immediate(bit_cast<int32_t, float>(4.0f)));
__ cmppsnle(XMM0, XMM1);
__ pushq(RAX);
__ movss(Address(RSP, 0), XMM0);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedCompareNLE, test) {
typedef uint32_t (*PackedCompareNLECode)();
uint32_t res = reinterpret_cast<PackedCompareNLECode>(test->entry())();
EXPECT_EQ(static_cast<uword>(0x0), res);
}
ASSEMBLER_TEST_GENERATE(PackedNegate, assembler) {
__ movl(RAX, Immediate(bit_cast<int32_t, float>(12.3f)));
__ movd(XMM0, RAX);
__ shufps(XMM0, XMM0, Immediate(0x0));
__ negateps(XMM0);
__ shufps(XMM0, XMM0, Immediate(0xAA)); // Copy third lane into all 4 lanes.
__ ret();
}
ASSEMBLER_TEST_RUN(PackedNegate, test) {
typedef float (*PackedNegateCode)();
float res = reinterpret_cast<PackedNegateCode>(test->entry())();
EXPECT_FLOAT_EQ(-12.3f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(PackedAbsolute, assembler) {
__ movl(RAX, Immediate(bit_cast<int32_t, float>(-15.3f)));
__ movd(XMM0, RAX);
__ shufps(XMM0, XMM0, Immediate(0x0));
__ absps(XMM0);
__ shufps(XMM0, XMM0, Immediate(0xAA)); // Copy third lane into all 4 lanes.
__ ret();
}
ASSEMBLER_TEST_RUN(PackedAbsolute, test) {
typedef float (*PackedAbsoluteCode)();
float res = reinterpret_cast<PackedAbsoluteCode>(test->entry())();
EXPECT_FLOAT_EQ(15.3f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(PackedSetWZero, assembler) {
__ set1ps(XMM0, RAX, Immediate(bit_cast<int32_t, float>(12.3f)));
__ zerowps(XMM0);
__ shufps(XMM0, XMM0, Immediate(0xFF)); // Copy the W lane which is now 0.0.
__ ret();
}
ASSEMBLER_TEST_RUN(PackedSetWZero, test) {
typedef float (*PackedSetWZeroCode)();
float res = reinterpret_cast<PackedSetWZeroCode>(test->entry())();
EXPECT_FLOAT_EQ(0.0f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(PackedMin, assembler) {
__ set1ps(XMM0, RAX, Immediate(bit_cast<int32_t, float>(2.0f)));
__ set1ps(XMM1, RAX, Immediate(bit_cast<int32_t, float>(4.0f)));
__ minps(XMM0, XMM1);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedMin, test) {
typedef float (*PackedMinCode)();
float res = reinterpret_cast<PackedMinCode>(test->entry())();
EXPECT_FLOAT_EQ(2.0f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(PackedMax, assembler) {
__ set1ps(XMM0, RAX, Immediate(bit_cast<int32_t, float>(2.0f)));
__ set1ps(XMM1, RAX, Immediate(bit_cast<int32_t, float>(4.0f)));
__ maxps(XMM0, XMM1);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedMax, test) {
typedef float (*PackedMaxCode)();
float res = reinterpret_cast<PackedMaxCode>(test->entry())();
EXPECT_FLOAT_EQ(4.0f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(PackedLogicalOr, assembler) {
static const struct ALIGN16 {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} constant1 =
{ 0xF0F0F0F0, 0xF0F0F0F0, 0xF0F0F0F0, 0xF0F0F0F0 };
static const struct ALIGN16 {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} constant2 =
{ 0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F };
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant1)));
__ movups(XMM0, Address(RAX, 0));
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant2)));
__ movups(XMM1, Address(RAX, 0));
__ orps(XMM0, XMM1);
__ pushq(RAX);
__ movss(Address(RSP, 0), XMM0);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedLogicalOr, test) {
typedef uint32_t (*PackedLogicalOrCode)();
uint32_t res = reinterpret_cast<PackedLogicalOrCode>(test->entry())();
EXPECT_EQ(0xFFFFFFFF, res);
}
ASSEMBLER_TEST_GENERATE(PackedLogicalAnd, assembler) {
static const struct ALIGN16 {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} constant1 =
{ 0xF0F0F0F0, 0xF0F0F0F0, 0xF0F0F0F0, 0xF0F0F0F0 };
static const struct ALIGN16 {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} constant2 =
{ 0x0F0FFF0F, 0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F };
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant1)));
__ movups(XMM0, Address(RAX, 0));
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant2)));
__ andps(XMM0, Address(RAX, 0));
__ pushq(RAX);
__ movss(Address(RSP, 0), XMM0);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedLogicalAnd, test) {
typedef uint32_t (*PackedLogicalAndCode)();
uint32_t res = reinterpret_cast<PackedLogicalAndCode>(test->entry())();
EXPECT_EQ(static_cast<uword>(0x0000F000), res);
}
ASSEMBLER_TEST_GENERATE(PackedLogicalNot, assembler) {
static const struct ALIGN16 {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} constant1 =
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant1)));
__ movups(XMM9, Address(RAX, 0));
__ notps(XMM9);
__ movaps(XMM0, XMM9);
__ pushq(RAX);
__ movss(Address(RSP, 0), XMM0);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedLogicalNot, test) {
typedef uint32_t (*PackedLogicalNotCode)();
uint32_t res = reinterpret_cast<PackedLogicalNotCode>(test->entry())();
EXPECT_EQ(static_cast<uword>(0x0), res);
}
ASSEMBLER_TEST_GENERATE(PackedMoveHighLow, assembler) {
static const struct ALIGN16 {
float a;
float b;
float c;
float d;
} constant0 = { 1.0, 2.0, 3.0, 4.0 };
static const struct ALIGN16 {
float a;
float b;
float c;
float d;
} constant1 = { 5.0, 6.0, 7.0, 8.0 };
// XMM9 = 1.0f, 2.0f, 3.0f, 4.0f.
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant0)));
__ movups(XMM9, Address(RAX, 0));
// XMM1 = 5.0f, 6.0f, 7.0f, 8.0f.
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant1)));
__ movups(XMM1, Address(RAX, 0));
// XMM9 = 7.0f, 8.0f, 3.0f, 4.0f.
__ movhlps(XMM9, XMM1);
__ xorps(XMM1, XMM1);
// XMM1 = 7.0f, 8.0f, 3.0f, 4.0f.
__ movaps(XMM1, XMM9);
__ shufps(XMM9, XMM9, Immediate(0x00)); // 7.0f.
__ shufps(XMM1, XMM1, Immediate(0x55)); // 8.0f.
__ addss(XMM9, XMM1); // 15.0f.
__ movaps(XMM0, XMM9);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedMoveHighLow, test) {
typedef float (*PackedMoveHighLow)();
float res = reinterpret_cast<PackedMoveHighLow>(test->entry())();
EXPECT_FLOAT_EQ(15.0f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(PackedMoveLowHigh, assembler) {
static const struct ALIGN16 {
float a;
float b;
float c;
float d;
} constant0 = { 1.0, 2.0, 3.0, 4.0 };
static const struct ALIGN16 {
float a;
float b;
float c;
float d;
} constant1 = { 5.0, 6.0, 7.0, 8.0 };
// XMM9 = 1.0f, 2.0f, 3.0f, 4.0f.
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant0)));
__ movups(XMM9, Address(RAX, 0));
// XMM1 = 5.0f, 6.0f, 7.0f, 8.0f.
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant1)));
__ movups(XMM1, Address(RAX, 0));
// XMM9 = 1.0f, 2.0f, 5.0f, 6.0f
__ movlhps(XMM9, XMM1);
__ xorps(XMM1, XMM1);
// XMM1 = 1.0f, 2.0f, 5.0f, 6.0f
__ movaps(XMM1, XMM9);
__ shufps(XMM9, XMM9, Immediate(0xAA)); // 5.0f.
__ shufps(XMM1, XMM1, Immediate(0xFF)); // 6.0f.
__ addss(XMM9, XMM1); // 11.0f.
__ movaps(XMM0, XMM9);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedMoveLowHigh, test) {
typedef float (*PackedMoveLowHigh)();
float res = reinterpret_cast<PackedMoveLowHigh>(test->entry())();
EXPECT_FLOAT_EQ(11.0f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(PackedUnpackLow, assembler) {
static const struct ALIGN16 {
float a;
float b;
float c;
float d;
} constant0 = { 1.0, 2.0, 3.0, 4.0 };
static const struct ALIGN16 {
float a;
float b;
float c;
float d;
} constant1 = { 5.0, 6.0, 7.0, 8.0 };
// XMM9 = 1.0f, 2.0f, 3.0f, 4.0f.
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant0)));
__ movups(XMM9, Address(RAX, 0));
// XMM1 = 5.0f, 6.0f, 7.0f, 8.0f.
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant1)));
__ movups(XMM1, Address(RAX, 0));
// XMM9 = 1.0f, 5.0f, 2.0f, 6.0f.
__ unpcklps(XMM9, XMM1);
// XMM1 = 1.0f, 5.0f, 2.0f, 6.0f.
__ movaps(XMM1, XMM9);
__ shufps(XMM9, XMM9, Immediate(0x55));
__ shufps(XMM1, XMM1, Immediate(0xFF));
__ addss(XMM9, XMM1); // 11.0f.
__ movaps(XMM0, XMM9);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedUnpackLow, test) {
typedef float (*PackedUnpackLow)();
float res = reinterpret_cast<PackedUnpackLow>(test->entry())();
EXPECT_FLOAT_EQ(11.0f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(PackedUnpackHigh, assembler) {
static const struct ALIGN16 {
float a;
float b;
float c;
float d;
} constant0 = { 1.0, 2.0, 3.0, 4.0 };
static const struct ALIGN16 {
float a;
float b;
float c;
float d;
} constant1 = { 5.0, 6.0, 7.0, 8.0 };
// XMM9 = 1.0f, 2.0f, 3.0f, 4.0f.
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant0)));
__ movups(XMM9, Address(RAX, 0));
// XMM1 = 5.0f, 6.0f, 7.0f, 8.0f.
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant1)));
__ movups(XMM1, Address(RAX, 0));
// XMM9 = 3.0f, 7.0f, 4.0f, 8.0f.
__ unpckhps(XMM9, XMM1);
// XMM1 = 3.0f, 7.0f, 4.0f, 8.0f.
__ movaps(XMM1, XMM9);
__ shufps(XMM9, XMM9, Immediate(0x00));
__ shufps(XMM1, XMM1, Immediate(0xAA));
__ addss(XMM9, XMM1); // 7.0f.
__ movaps(XMM0, XMM9);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedUnpackHigh, test) {
typedef float (*PackedUnpackHigh)();
float res = reinterpret_cast<PackedUnpackHigh>(test->entry())();
EXPECT_FLOAT_EQ(7.0f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(PackedUnpackLowPair, assembler) {
static const struct ALIGN16 {
float a;
float b;
float c;
float d;
} constant0 = { 1.0, 2.0, 3.0, 4.0 };
static const struct ALIGN16 {
float a;
float b;
float c;
float d;
} constant1 = { 5.0, 6.0, 7.0, 8.0 };
// XMM9 = 1.0f, 2.0f, 3.0f, 4.0f.
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant0)));
__ movups(XMM9, Address(RAX, 0));
// XMM1 = 5.0f, 6.0f, 7.0f, 8.0f.
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant1)));
__ movups(XMM1, Address(RAX, 0));
// XMM9 = 1.0f, 2.0f, 5.0f, 6.0f.
__ unpcklpd(XMM9, XMM1);
// XMM1 = 1.0f, 2.0f, 5.0f, 6.0f.
__ movaps(XMM1, XMM9);
__ shufps(XMM9, XMM9, Immediate(0x00));
__ shufps(XMM1, XMM1, Immediate(0xAA));
__ addss(XMM9, XMM1); // 6.0f.
__ movaps(XMM0, XMM9);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedUnpackLowPair, test) {
typedef float (*PackedUnpackLowPair)();
float res = reinterpret_cast<PackedUnpackLowPair>(test->entry())();
EXPECT_FLOAT_EQ(6.0f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(PackedUnpackHighPair, assembler) {
static const struct ALIGN16 {
float a;
float b;
float c;
float d;
} constant0 = { 1.0, 2.0, 3.0, 4.0 };
static const struct ALIGN16 {
float a;
float b;
float c;
float d;
} constant1 = { 5.0, 6.0, 7.0, 8.0 };
// XMM9 = 1.0f, 2.0f, 3.0f, 4.0f.
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant0)));
__ movups(XMM9, Address(RAX, 0));
// XMM1 = 5.0f, 6.0f, 7.0f, 8.0f.
__ movq(RAX, Immediate(reinterpret_cast<intptr_t>(&constant1)));
__ movups(XMM1, Address(RAX, 0));
// XMM9 = 3.0f, 4.0f, 7.0f, 8.0f.
__ unpckhpd(XMM9, XMM1);
// XMM1 = 3.0f, 4.0f, 7.0f, 8.0f.
__ movaps(XMM1, XMM9);
__ shufps(XMM9, XMM9, Immediate(0x55));
__ shufps(XMM1, XMM1, Immediate(0xFF));
__ addss(XMM9, XMM1); // 12.0f.
__ movaps(XMM0, XMM9);
__ ret();
}
ASSEMBLER_TEST_RUN(PackedUnpackHighPair, test) {
typedef float (*PackedUnpackHighPair)();
float res = reinterpret_cast<PackedUnpackHighPair>(test->entry())();
EXPECT_FLOAT_EQ(12.0f, res, 0.001f);
}
ASSEMBLER_TEST_GENERATE(DoubleFPMoves, assembler) {
__ movq(RAX, Immediate(bit_cast<int64_t, double>(1024.67)));
__ pushq(R15); // Callee saved.
__ pushq(RAX);
__ movsd(XMM0, Address(RSP, 0));
__ movsd(XMM1, XMM0);
__ movsd(XMM2, XMM1);
__ movsd(XMM3, XMM2);
__ movsd(XMM4, XMM3);
__ movsd(XMM5, XMM4);
__ movsd(XMM6, XMM5);
__ movsd(XMM7, XMM6);
__ movsd(XMM8, XMM7);
__ movsd(XMM9, XMM8);
__ movsd(XMM10, XMM9);
__ movsd(XMM11, XMM10);
__ movsd(XMM12, XMM11);
__ movsd(XMM13, XMM12);
__ movsd(XMM14, XMM13);
__ movsd(XMM15, XMM14);
__ movq(Address(RSP, 0), Immediate(0));
__ movsd(XMM0, Address(RSP, 0));
__ movsd(Address(RSP, 0), XMM15);
__ movsd(XMM1, Address(RSP, 0));
__ movq(R10, RSP);
__ movsd(Address(R10, 0), XMM1);
__ movsd(XMM2, Address(R10, 0));
__ movq(R15, RSP);
__ movsd(Address(R15, 0), XMM2);
__ movsd(XMM3, Address(R15, 0));
__ movq(RAX, RSP);
__ movsd(Address(RAX, 0), XMM3);
__ movsd(XMM4, Address(RAX, 0));
__ movsd(XMM15, Address(RSP, 0));
__ movaps(XMM14, XMM15);
__ movaps(XMM13, XMM14);
__ movaps(XMM12, XMM13);
__ movaps(XMM11, XMM12);
__ movaps(XMM10, XMM11);
__ movaps(XMM9, XMM10);
__ movaps(XMM8, XMM9);
__ movaps(XMM7, XMM8);
__ movaps(XMM6, XMM7);
__ movaps(XMM5, XMM6);
__ movaps(XMM4, XMM5);
__ movaps(XMM3, XMM4);
__ movaps(XMM2, XMM3);
__ movaps(XMM1, XMM2);
__ movaps(XMM0, XMM1);
__ popq(RAX);
__ popq(R15); // Callee saved.
__ ret();
}
ASSEMBLER_TEST_RUN(DoubleFPMoves, test) {
typedef double (*DoubleFPMovesCode)();
EXPECT_FLOAT_EQ(1024.67,
reinterpret_cast<DoubleFPMovesCode>(test->entry())(), 0.001);
}
ASSEMBLER_TEST_GENERATE(DoubleFPOperations, assembler) {
__ movq(RAX, Immediate(bit_cast<int64_t, double>(12.3)));
__ pushq(RAX);
__ movsd(XMM0, Address(RSP, 0));
__ movsd(XMM8, Address(RSP, 0));
__ movq(RAX, Immediate(bit_cast<int64_t, double>(3.4)));
__ movq(Address(RSP, 0), RAX);
__ movsd(XMM12, Address(RSP, 0));
__ addsd(XMM8, XMM12); // 15.7
__ mulsd(XMM8, XMM12); // 53.38
__ subsd(XMM8, XMM12); // 49.98
__ divsd(XMM8, XMM12); // 14.7
__ sqrtsd(XMM8, XMM8); // 3.834
__ movsd(XMM1, Address(RSP, 0));
__ addsd(XMM0, XMM1); // 15.7
__ mulsd(XMM0, XMM1); // 53.38
__ subsd(XMM0, XMM1); // 49.98
__ divsd(XMM0, XMM1); // 14.7
__ sqrtsd(XMM0, XMM0); // 3.834057902
__ addsd(XMM0, XMM8); // 7.6681
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(DoubleFPOperations, test) {
typedef double (*SingleFPOperationsCode)();
double res = reinterpret_cast<SingleFPOperationsCode>(test->entry())();
EXPECT_FLOAT_EQ(7.668, res, 0.001);
}
ASSEMBLER_TEST_GENERATE(Int32ToDoubleConversion, assembler) {
__ movl(RDX, Immediate(6));
__ cvtsi2sd(XMM0, RDX);
__ movl(RDX, Immediate(8));
__ cvtsi2sd(XMM8, RDX);
__ subsd(XMM0, XMM8);
__ ret();
}
ASSEMBLER_TEST_RUN(Int32ToDoubleConversion, test) {
typedef double (*IntToDoubleConversionCode)();
double res = reinterpret_cast<IntToDoubleConversionCode>(test->entry())();
EXPECT_FLOAT_EQ(-2.0, res, 0.001);
}
ASSEMBLER_TEST_GENERATE(Int64ToDoubleConversion, assembler) {
__ movq(RDX, Immediate(12LL << 32));
__ cvtsi2sd(XMM0, RDX);
__ movsd(XMM15, XMM0); // Move to high register
__ addsd(XMM0, XMM0); // Stomp XMM0
__ movsd(XMM0, XMM15); // Move back to XMM0
__ ret();
}
ASSEMBLER_TEST_RUN(Int64ToDoubleConversion, test) {
typedef double (*Int64ToDoubleConversionCode)();
double res = reinterpret_cast<Int64ToDoubleConversionCode>(test->entry())();
EXPECT_FLOAT_EQ(static_cast<double>(12LL << 32), res, 0.001);
}
ASSEMBLER_TEST_GENERATE(DoubleToInt64Conversion, assembler) {
__ movq(RAX, Immediate(bit_cast<int64_t, double>(12.3)));
__ pushq(RAX);
__ movsd(XMM9, Address(RSP, 0));
__ movsd(XMM6, Address(RSP, 0));
__ popq(RAX);
__ cvttsd2siq(R10, XMM6);
__ cvttsd2siq(RDX, XMM6);
__ cvttsd2siq(R10, XMM9);
__ cvttsd2siq(RDX, XMM9);
__ subq(RDX, R10);
__ movq(RAX, RDX);
__ ret();
}
ASSEMBLER_TEST_RUN(DoubleToInt64Conversion, test) {
typedef int64_t (*DoubleToInt64ConversionCode)();
int64_t res = reinterpret_cast<DoubleToInt64ConversionCode>(test->entry())();
EXPECT_EQ(0, res);
}
ASSEMBLER_TEST_GENERATE(TestObjectCompare, assembler) {
ObjectStore* object_store = Isolate::Current()->object_store();
const Object& obj = Object::ZoneHandle(object_store->smi_class());
Label fail;
__ EnterDartFrame(0);
__ LoadObject(RAX, obj, PP);
__ CompareObject(RAX, obj);
__ j(NOT_EQUAL, &fail);
__ LoadObject(RCX, obj, PP);
__ CompareObject(RCX, obj);
__ j(NOT_EQUAL, &fail);
const Smi& smi = Smi::ZoneHandle(Smi::New(15));
__ LoadObject(RCX, smi, PP);
__ CompareObject(RCX, smi);
__ j(NOT_EQUAL, &fail);
__ pushq(RAX);
__ StoreObject(Address(RSP, 0), obj);
__ popq(RCX);
__ CompareObject(RCX, obj);
__ j(NOT_EQUAL, &fail);
__ pushq(RAX);
__ StoreObject(Address(RSP, 0), smi);
__ popq(RCX);
__ CompareObject(RCX, smi);
__ j(NOT_EQUAL, &fail);
__ movl(RAX, Immediate(1)); // OK
__ LeaveFrameWithPP();
__ ret();
__ Bind(&fail);
__ movl(RAX, Immediate(0)); // Fail.
__ LeaveFrameWithPP();
__ ret();
}
ASSEMBLER_TEST_RUN(TestObjectCompare, test) {
typedef bool (*TestObjectCompare)();
bool res = reinterpret_cast<TestObjectCompare>(test->entry())();
EXPECT_EQ(true, res);
}
ASSEMBLER_TEST_GENERATE(TestNop, assembler) {
__ nop(1);
__ nop(2);
__ nop(3);
__ nop(4);
__ nop(5);
__ nop(6);
__ nop(7);
__ nop(8);
__ movq(RAX, Immediate(assembler->CodeSize())); // Return code size.
__ ret();
}
ASSEMBLER_TEST_RUN(TestNop, test) {
typedef int (*TestNop)();
int res = reinterpret_cast<TestNop>(test->entry())();
EXPECT_EQ(36, res); // 36 nop bytes emitted.
}
ASSEMBLER_TEST_GENERATE(TestAlign0, assembler) {
__ Align(4, 0);
__ movq(RAX, Immediate(assembler->CodeSize())); // Return code size.
__ ret();
}
ASSEMBLER_TEST_RUN(TestAlign0, test) {
typedef int (*TestAlign0)();
int res = reinterpret_cast<TestAlign0>(test->entry())();
EXPECT_EQ(0, res); // 0 bytes emitted.
}
ASSEMBLER_TEST_GENERATE(TestAlign1, assembler) {
__ nop(1);
__ Align(4, 0);
__ movq(RAX, Immediate(assembler->CodeSize())); // Return code size.
__ ret();
}
ASSEMBLER_TEST_RUN(TestAlign1, test) {
typedef int (*TestAlign1)();
int res = reinterpret_cast<TestAlign1>(test->entry())();
EXPECT_EQ(4, res); // 4 bytes emitted.
}
ASSEMBLER_TEST_GENERATE(TestAlign1Offset1, assembler) {
__ nop(1);
__ Align(4, 1);
__ movq(RAX, Immediate(assembler->CodeSize())); // Return code size.
__ ret();
}
ASSEMBLER_TEST_RUN(TestAlign1Offset1, test) {
typedef int (*TestAlign1Offset1)();
int res = reinterpret_cast<TestAlign1Offset1>(test->entry())();
EXPECT_EQ(3, res); // 3 bytes emitted.
}
ASSEMBLER_TEST_GENERATE(TestAlignLarge, assembler) {
__ nop(1);
__ Align(16, 0);
__ movq(RAX, Immediate(assembler->CodeSize())); // Return code size.
__ ret();
}
ASSEMBLER_TEST_RUN(TestAlignLarge, test) {
typedef int (*TestAlignLarge)();
int res = reinterpret_cast<TestAlignLarge>(test->entry())();
EXPECT_EQ(16, res); // 16 bytes emitted.
}
ASSEMBLER_TEST_GENERATE(TestAdds, assembler) {
__ movq(RAX, Immediate(4));
__ pushq(RAX);
__ addq(Address(RSP, 0), Immediate(5));
// TOS: 9
__ addq(Address(RSP, 0), Immediate(-2));
// TOS: 7
__ movq(RCX, Immediate(3));
__ addq(Address(RSP, 0), RCX);
// TOS: 10
__ movq(RAX, Immediate(10));
__ addq(RAX, Address(RSP, 0));
// RAX: 20
__ popq(RCX);
__ ret();
}
ASSEMBLER_TEST_RUN(TestAdds, test) {
typedef int (*TestAdds)();
int res = reinterpret_cast<TestAdds>(test->entry())();
EXPECT_EQ(20, res);
}
ASSEMBLER_TEST_GENERATE(TestNot, assembler) {
__ movq(RAX, Immediate(0xFFFFFFFF00000000));
__ notq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(TestNot, test) {
typedef int (*TestNot)();
unsigned int res = reinterpret_cast<TestNot>(test->entry())();
EXPECT_EQ(0xFFFFFFFF, res);
}
ASSEMBLER_TEST_GENERATE(TestNotInt32, assembler) {
__ movq(RAX, Immediate(0x0));
__ notl(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(TestNotInt32, test) {
typedef int (*TestNot)();
unsigned int res = reinterpret_cast<TestNot>(test->entry())();
EXPECT_EQ(0xFFFFFFFF, res);
}
ASSEMBLER_TEST_GENERATE(XorpdZeroing, assembler) {
__ pushq(RAX);
__ movsd(Address(RSP, 0), XMM0);
__ xorpd(XMM0, Address(RSP, 0));
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(XorpdZeroing, test) {
typedef double (*XorpdZeroingCode)(double d);
double res = reinterpret_cast<XorpdZeroingCode>(test->entry())(12.56e3);
EXPECT_FLOAT_EQ(0.0, res, 0.0001);
}
ASSEMBLER_TEST_GENERATE(XorpdZeroing2, assembler) {
Label done;
__ xorpd(XMM15, XMM15);
__ xorpd(XMM0, XMM0);
__ xorpd(XMM0, XMM15);
__ comisd(XMM0, XMM15);
__ j(ZERO, &done);
__ int3();
__ Bind(&done);
__ ret();
}
ASSEMBLER_TEST_RUN(XorpdZeroing2, test) {
typedef double (*XorpdZeroing2Code)(double d);
double res = reinterpret_cast<XorpdZeroing2Code>(test->entry())(12.56e3);
EXPECT_FLOAT_EQ(0.0, res, 0.0001);
}
ASSEMBLER_TEST_GENERATE(Pxor, assembler) {
__ pxor(XMM0, XMM0);
__ ret();
}
ASSEMBLER_TEST_RUN(Pxor, test) {
typedef double (*PxorCode)(double d);
double res = reinterpret_cast<PxorCode>(test->entry())(12.3456e3);
EXPECT_FLOAT_EQ(0.0, res, 0.0);
}
ASSEMBLER_TEST_GENERATE(SquareRootDouble, assembler) {
__ sqrtsd(XMM0, XMM0);
__ ret();
}
ASSEMBLER_TEST_RUN(SquareRootDouble, test) {
typedef double (*SquareRootDoubleCode)(double d);
const double kDoubleConst = .7;
double res =
reinterpret_cast<SquareRootDoubleCode>(test->entry())(kDoubleConst);
EXPECT_FLOAT_EQ(sqrt(kDoubleConst), res, 0.0001);
}
// Called from assembler_test.cc.
ASSEMBLER_TEST_GENERATE(StoreIntoObject, assembler) {
__ EnterDartFrame(0);
__ pushq(CTX);
__ movq(CTX, RDI);
__ StoreIntoObject(RDX,
FieldAddress(RDX, GrowableObjectArray::data_offset()),
RSI);
__ popq(CTX);
__ LeaveFrameWithPP();
__ ret();
}
ASSEMBLER_TEST_GENERATE(DoubleFPUStackMoves, assembler) {
int64_t l = bit_cast<int64_t, double>(1024.67);
__ movq(RAX, Immediate(l));
__ pushq(RAX);
__ fldl(Address(RSP, 0));
__ movq(Address(RSP, 0), Immediate(0));
__ fstpl(Address(RSP, 0));
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(DoubleFPUStackMoves, test) {
typedef int64_t (*DoubleFPUStackMovesCode)();
int64_t res = reinterpret_cast<DoubleFPUStackMovesCode>(test->entry())();
EXPECT_FLOAT_EQ(1024.67, (bit_cast<double, int64_t>(res)), 0.001);
}
ASSEMBLER_TEST_GENERATE(Sine, assembler) {
__ pushq(RAX);
__ movsd(Address(RSP, 0), XMM0);
__ fldl(Address(RSP, 0));
__ fsin();
__ fstpl(Address(RSP, 0));
__ movsd(XMM0, Address(RSP, 0));
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(Sine, test) {
typedef double (*SineCode)(double d);
const double kDoubleConst = 0.7;
double res = reinterpret_cast<SineCode>(test->entry())(kDoubleConst);
EXPECT_FLOAT_EQ(sin(kDoubleConst), res, 0.0001);
}
ASSEMBLER_TEST_GENERATE(Cosine, assembler) {
__ pushq(RAX);
__ movsd(Address(RSP, 0), XMM0);
__ fldl(Address(RSP, 0));
__ fcos();
__ fstpl(Address(RSP, 0));
__ movsd(XMM0, Address(RSP, 0));
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(Cosine, test) {
typedef double (*CosineCode)(double f);
const double kDoubleConst = 0.7;
double res = reinterpret_cast<CosineCode>(test->entry())(kDoubleConst);
EXPECT_FLOAT_EQ(cos(kDoubleConst), res, 0.0001);
}
ASSEMBLER_TEST_GENERATE(IntToDoubleConversion, assembler) {
__ movq(RDX, Immediate(6));
__ cvtsi2sd(XMM0, RDX);
__ ret();
}
ASSEMBLER_TEST_RUN(IntToDoubleConversion, test) {
typedef double (*IntToDoubleConversionCode)();
double res = reinterpret_cast<IntToDoubleConversionCode>(test->entry())();
EXPECT_FLOAT_EQ(6.0, res, 0.001);
}
ASSEMBLER_TEST_GENERATE(IntToDoubleConversion2, assembler) {
__ pushq(RDI);
__ fildl(Address(RSP, 0));
__ fstpl(Address(RSP, 0));
__ movsd(XMM0, Address(RSP, 0));
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(IntToDoubleConversion2, test) {
typedef double (*IntToDoubleConversion2Code)(int i);
double res = reinterpret_cast<IntToDoubleConversion2Code>(test->entry())(3);
EXPECT_FLOAT_EQ(3.0, res, 0.001);
}
ASSEMBLER_TEST_GENERATE(DoubleToDoubleTrunc, assembler) {
__ roundsd(XMM0, XMM0, Assembler::kRoundToZero);
__ ret();
}
ASSEMBLER_TEST_RUN(DoubleToDoubleTrunc, test) {
typedef double (*DoubleToDoubleTruncCode)(double d);
double res = reinterpret_cast<DoubleToDoubleTruncCode>(test->entry())(12.3);
EXPECT_EQ(12.0, res);
res = reinterpret_cast<DoubleToDoubleTruncCode>(test->entry())(12.8);
EXPECT_EQ(12.0, res);
res = reinterpret_cast<DoubleToDoubleTruncCode>(test->entry())(-12.3);
EXPECT_EQ(-12.0, res);
res = reinterpret_cast<DoubleToDoubleTruncCode>(test->entry())(-12.8);
EXPECT_EQ(-12.0, res);
}
ASSEMBLER_TEST_GENERATE(DoubleAbs, assembler) {
__ DoubleAbs(XMM0);
__ ret();
}
ASSEMBLER_TEST_RUN(DoubleAbs, test) {
typedef double (*DoubleAbsCode)(double d);
double val = -12.45;
double res = reinterpret_cast<DoubleAbsCode>(test->entry())(val);
EXPECT_FLOAT_EQ(-val, res, 0.001);
val = 12.45;
res = reinterpret_cast<DoubleAbsCode>(test->entry())(val);
EXPECT_FLOAT_EQ(val, res, 0.001);
}
ASSEMBLER_TEST_GENERATE(ExtractSignBits, assembler) {
__ movmskpd(RAX, XMM0);
__ andq(RAX, Immediate(0x1));
__ ret();
}
ASSEMBLER_TEST_RUN(ExtractSignBits, test) {
typedef int (*ExtractSignBits)(double d);
int res = reinterpret_cast<ExtractSignBits>(test->entry())(1.0);
EXPECT_EQ(0, res);
res = reinterpret_cast<ExtractSignBits>(test->entry())(-1.0);
EXPECT_EQ(1, res);
res = reinterpret_cast<ExtractSignBits>(test->entry())(-0.0);
EXPECT_EQ(1, res);
}
ASSEMBLER_TEST_GENERATE(TestSetCC, assembler) {
__ movq(RAX, Immediate(0xFFFFFFFF));
__ cmpq(RAX, RAX);
__ setcc(NOT_EQUAL, AL);
__ ret();
}
ASSEMBLER_TEST_RUN(TestSetCC, test) {
typedef uword (*TestSetCC)();
uword res = reinterpret_cast<TestSetCC>(test->entry())();
EXPECT_EQ(0xFFFFFF00, res);
}
ASSEMBLER_TEST_GENERATE(TestRepMovsBytes, assembler) {
// Save incoming arguments.
__ pushq(RDI); // Arg0, from.
__ pushq(RSI); // Arg1, to.
__ pushq(RDX); // Arg2, count.
__ movq(RSI, Address(RSP, 2 * kWordSize)); // from.
__ movq(RDI, Address(RSP, 1 * kWordSize)); // to.
__ movq(RCX, Address(RSP, 0 * kWordSize)); // count.
__ rep_movsb();
// Remove saved arguments.
__ popq(RAX);
__ popq(RAX);
__ popq(RAX);
__ ret();
}
ASSEMBLER_TEST_RUN(TestRepMovsBytes, test) {
const char* from = "0123456789";
const char* to = new char[10];
typedef void (*TestRepMovsBytes)(const char* from, const char* to, int count);
reinterpret_cast<TestRepMovsBytes>(test->entry())(from, to, 10);
EXPECT_EQ(to[0], '0');
for (int i = 0; i < 10; i++) {
EXPECT_EQ(from[i], to[i]);
}
delete [] to;
}
ASSEMBLER_TEST_GENERATE(ConditionalMovesCompare, assembler) {
// RDI: Arg0.
// RSI: Arg1.
__ movq(RDX, Immediate(1)); // Greater equal.
__ movq(RCX, Immediate(-1)); // Less
__ cmpq(RDI, RSI);
__ cmovlessq(RAX, RCX);
__ cmovgeq(RAX, RDX);
__ ret();
}
ASSEMBLER_TEST_RUN(ConditionalMovesCompare, test) {
typedef int (*ConditionalMovesCompareCode)(int i, int j);
int res = reinterpret_cast<ConditionalMovesCompareCode>(test->entry())(10, 5);
EXPECT_EQ(1, res); // Greater equal.
res = reinterpret_cast<ConditionalMovesCompareCode>(test->entry())(5, 5);
EXPECT_EQ(1, res); // Greater equal.
res = reinterpret_cast<ConditionalMovesCompareCode>(test->entry())(2, 5);
EXPECT_EQ(-1, res); // Less.
}
} // namespace dart
#endif // defined TARGET_ARCH_X64