blob: a036450c1aedf43ee9f2147c4d99192daae911ca [file] [log] [blame] [edit]
// Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/runtime_entry.h"
#include <memory>
#include "platform/memory_sanitizer.h"
#include "platform/thread_sanitizer.h"
#include "vm/code_descriptors.h"
#include "vm/code_patcher.h"
#include "vm/compiler/api/deopt_id.h"
#include "vm/compiler/api/type_check_mode.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/dart_api_impl.h"
#include "vm/dart_api_state.h"
#include "vm/dart_entry.h"
#include "vm/debugger.h"
#include "vm/double_conversion.h"
#include "vm/exceptions.h"
#include "vm/ffi_callback_metadata.h"
#include "vm/flags.h"
#include "vm/heap/verifier.h"
#include "vm/instructions.h"
#include "vm/interpreter.h"
#include "vm/kernel_isolate.h"
#include "vm/message.h"
#include "vm/message_handler.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/resolver.h"
#include "vm/service_isolate.h"
#include "vm/stack_frame.h"
#include "vm/symbols.h"
#include "vm/thread.h"
#include "vm/type_testing_stubs.h"
#include "vm/zone_text_buffer.h"
#if !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/deopt_instructions.h"
#endif // !defined(DART_PRECOMPILED_RUNTIME)
namespace dart {
static constexpr intptr_t kDefaultMaxSubtypeCacheEntries =
SubtypeTestCache::MaxEntriesForCacheAllocatedFor(1000);
DEFINE_FLAG(
int,
max_subtype_cache_entries,
kDefaultMaxSubtypeCacheEntries,
"Maximum number of subtype cache entries (number of checks cached).");
DEFINE_FLAG(
int,
regexp_optimization_counter_threshold,
1000,
"RegExp's usage-counter value before it is optimized, -1 means never");
DEFINE_FLAG(int,
reoptimization_counter_threshold,
4000,
"Counter threshold before a function gets reoptimized.");
DEFINE_FLAG(bool,
runtime_allocate_old,
false,
"Use old-space for allocation via runtime calls.");
DEFINE_FLAG(bool,
runtime_allocate_spill_tlab,
false,
"Ensure results of allocation via runtime calls are not in an "
"active TLAB.");
DEFINE_FLAG(bool, trace_deoptimization, false, "Trace deoptimization");
DEFINE_FLAG(bool,
trace_deoptimization_verbose,
false,
"Trace deoptimization verbose");
DECLARE_FLAG(int, max_deoptimization_counter_threshold);
DECLARE_FLAG(bool, trace_compiler);
DECLARE_FLAG(bool, trace_optimizing_compiler);
DECLARE_FLAG(int, max_polymorphic_checks);
DEFINE_FLAG(bool, trace_osr, false, "Trace attempts at on-stack replacement.");
DEFINE_FLAG(int, gc_every, 0, "Run major GC on every N stack overflow checks");
DEFINE_FLAG(int,
stacktrace_every,
0,
"Compute debugger stacktrace on every N stack overflow checks");
DEFINE_FLAG(charp,
stacktrace_filter,
nullptr,
"Compute stacktrace in named function on stack overflow checks");
DEFINE_FLAG(charp,
deoptimize_filter,
nullptr,
"Deoptimize in named function on stack overflow checks");
DEFINE_FLAG(charp,
deoptimize_on_runtime_call_name_filter,
nullptr,
"Runtime call name filter for --deoptimize-on-runtime-call-every.");
DEFINE_FLAG(bool,
unopt_monomorphic_calls,
true,
"Enable specializing monomorphic calls from unoptimized code.");
DEFINE_FLAG(bool,
unopt_megamorphic_calls,
true,
"Enable specializing megamorphic calls from unoptimized code.");
DEFINE_FLAG(bool,
verbose_stack_overflow,
false,
"Print additional details about stack overflow.");
DECLARE_FLAG(int, reload_every);
DECLARE_FLAG(bool, reload_every_optimized);
DECLARE_FLAG(bool, reload_every_back_off);
DEFINE_RUNTIME_ENTRY(RangeError, 2) {
const Instance& length = Instance::CheckedHandle(zone, arguments.ArgAt(0));
const Instance& index = Instance::CheckedHandle(zone, arguments.ArgAt(1));
if (!length.IsInteger()) {
// Throw: new ArgumentError.value(length, "length", "is not an integer");
const Array& args = Array::Handle(zone, Array::New(3));
args.SetAt(0, length);
args.SetAt(1, Symbols::Length());
args.SetAt(2, String::Handle(zone, String::New("is not an integer")));
Exceptions::ThrowByType(Exceptions::kArgumentValue, args);
}
if (!index.IsInteger()) {
// Throw: new ArgumentError.value(index, "index", "is not an integer");
const Array& args = Array::Handle(zone, Array::New(3));
args.SetAt(0, index);
args.SetAt(1, Symbols::Index());
args.SetAt(2, String::Handle(zone, String::New("is not an integer")));
Exceptions::ThrowByType(Exceptions::kArgumentValue, args);
}
// Throw: new RangeError.range(index, 0, length - 1, "length");
const Array& args = Array::Handle(zone, Array::New(4));
args.SetAt(0, index);
args.SetAt(1, Integer::Handle(zone, Integer::New(0)));
args.SetAt(
2, Integer::Handle(
zone, Integer::Cast(length).ArithmeticOp(
Token::kSUB, Integer::Handle(zone, Integer::New(1)))));
args.SetAt(3, Symbols::Length());
Exceptions::ThrowByType(Exceptions::kRange, args);
}
DEFINE_RUNTIME_ENTRY(RangeErrorUnboxedInt64, 0) {
int64_t unboxed_length = thread->unboxed_int64_runtime_arg();
int64_t unboxed_index = thread->unboxed_int64_runtime_second_arg();
const auto& length = Integer::Handle(zone, Integer::New(unboxed_length));
const auto& index = Integer::Handle(zone, Integer::New(unboxed_index));
// Throw: new RangeError.range(index, 0, length - 1, "length");
const Array& args = Array::Handle(zone, Array::New(4));
args.SetAt(0, index);
args.SetAt(1, Integer::Handle(zone, Integer::New(0)));
args.SetAt(
2, Integer::Handle(
zone, Integer::Cast(length).ArithmeticOp(
Token::kSUB, Integer::Handle(zone, Integer::New(1)))));
args.SetAt(3, Symbols::Length());
Exceptions::ThrowByType(Exceptions::kRange, args);
}
DEFINE_RUNTIME_ENTRY(WriteError, 2) {
const Instance& receiver = Instance::CheckedHandle(zone, arguments.ArgAt(0));
const Smi& kind = Smi::CheckedHandle(zone, arguments.ArgAt(1));
auto& message = String::Handle(zone);
switch (kind.Value()) {
case 0: // CheckWritableInstr::Kind::kWriteUnmodifiableTypedData:
message = String::NewFormatted("Cannot modify an unmodifiable list: %s",
receiver.ToCString());
break;
case 1: // CheckWritableInstr::Kind::kDeeplyImmutableAttachNativeFinalizer:
message = String::NewFormatted(
"Cannot attach NativeFinalizer to deeply immutable object: %s",
receiver.ToCString());
break;
}
const Array& args = Array::Handle(Array::New(1));
args.SetAt(0, message);
Exceptions::ThrowByType(Exceptions::kUnsupported, args);
}
static void NullErrorHelper(Zone* zone,
const String& selector,
bool is_param_name = false) {
if (is_param_name) {
const String& error = String::Handle(
selector.IsNull()
? String::New("argument value is null")
: String::NewFormatted("argument value for '%s' is null",
selector.ToCString()));
Exceptions::ThrowArgumentError(error);
return;
}
// If the selector is null, this must be a null check that wasn't due to a
// method invocation, so was due to the null check operator.
if (selector.IsNull()) {
const Array& args = Array::Handle(zone, Array::New(4));
args.SetAt(
3, String::Handle(
zone, String::New("Null check operator used on a null value")));
Exceptions::ThrowByType(Exceptions::kType, args);
return;
}
InvocationMirror::Kind kind = InvocationMirror::kMethod;
if (Field::IsGetterName(selector)) {
kind = InvocationMirror::kGetter;
} else if (Field::IsSetterName(selector)) {
kind = InvocationMirror::kSetter;
}
const Smi& invocation_type = Smi::Handle(
zone,
Smi::New(InvocationMirror::EncodeType(InvocationMirror::kDynamic, kind)));
const Array& args = Array::Handle(zone, Array::New(7));
args.SetAt(0, /* instance */ Object::null_object());
args.SetAt(1, selector);
args.SetAt(2, invocation_type);
args.SetAt(3, /* func_type_args_length */ Object::smi_zero());
args.SetAt(4, /* func_type_args */ Object::null_object());
args.SetAt(5, /* func_args */ Object::null_object());
args.SetAt(6, /* func_arg_names */ Object::null_object());
Exceptions::ThrowByType(Exceptions::kNoSuchMethod, args);
}
static void DoThrowNullError(Isolate* isolate,
Thread* thread,
Zone* zone,
bool is_param) {
DartFrameIterator iterator(thread,
StackFrameIterator::kNoCrossThreadIteration);
const StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame->IsDartFrame());
ASSERT(!caller_frame->is_interpreted());
const Code& code = Code::Handle(zone, caller_frame->LookupDartCode());
const uword pc_offset = caller_frame->pc() - code.PayloadStart();
if (FLAG_shared_slow_path_triggers_gc) {
isolate->group()->heap()->CollectAllGarbage(GCReason::kDebugging);
}
const CodeSourceMap& map =
CodeSourceMap::Handle(zone, code.code_source_map());
String& member_name = String::Handle(zone);
if (!map.IsNull()) {
CodeSourceMapReader reader(map, Array::null_array(),
Function::null_function());
const intptr_t name_index = reader.GetNullCheckNameIndexAt(pc_offset);
RELEASE_ASSERT(name_index >= 0);
const ObjectPool& pool = ObjectPool::Handle(zone, code.GetObjectPool());
member_name ^= pool.ObjectAt(name_index);
} else {
member_name = Symbols::OptimizedOut().ptr();
}
NullErrorHelper(zone, member_name, is_param);
}
DEFINE_RUNTIME_ENTRY(NullError, 0) {
DoThrowNullError(isolate, thread, zone, /*is_param=*/false);
}
// Collects information about pointers within the top |kMaxSlotsCollected|
// slots on the stack.
// TODO(b/179632636) This code is added in attempt to better understand
// b/179632636 and should be removed in the future.
void ReportImpossibleNullError(intptr_t cid,
StackFrame* caller_frame,
Thread* thread) {
TextBuffer buffer(512);
buffer.Printf("hit null error with cid %" Pd ", caller context: ", cid);
const intptr_t kMaxSlotsCollected = 5;
const auto slots = reinterpret_cast<ObjectPtr*>(caller_frame->sp());
const intptr_t num_slots_in_frame =
reinterpret_cast<ObjectPtr*>(caller_frame->fp()) - slots;
const auto num_slots_to_collect =
Utils::Maximum(kMaxSlotsCollected, num_slots_in_frame);
bool comma = false;
for (intptr_t i = 0; i < num_slots_to_collect; i++) {
const ObjectPtr ptr = slots[i];
buffer.Printf("%s[sp+%" Pd "] %" Pp "", comma ? ", " : "", i,
static_cast<uword>(ptr));
if (ptr->IsHeapObject() &&
(Dart::vm_isolate_group()->heap()->Contains(
UntaggedObject::ToAddr(ptr)) ||
thread->heap()->Contains(UntaggedObject::ToAddr(ptr)))) {
buffer.Printf("(%" Pp ")", static_cast<uword>(ptr->untag()->tags_));
}
comma = true;
}
const char* message = buffer.buffer();
FATAL("%s", message);
}
DEFINE_RUNTIME_ENTRY(DispatchTableNullError, 1) {
const Smi& cid = Smi::CheckedHandle(zone, arguments.ArgAt(0));
if (cid.Value() != kNullCid) {
// We hit null error, but receiver is not null itself. This most likely
// is a memory corruption. Crash the VM but provide some additional
// information about the arguments on the stack.
DartFrameIterator iterator(thread,
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* caller_frame = iterator.NextFrame();
RELEASE_ASSERT(caller_frame->IsDartFrame());
ReportImpossibleNullError(cid.Value(), caller_frame, thread);
}
DoThrowNullError(isolate, thread, zone, /*is_param=*/false);
}
DEFINE_RUNTIME_ENTRY(NullErrorWithSelector, 1) {
const String& selector = String::CheckedHandle(zone, arguments.ArgAt(0));
NullErrorHelper(zone, selector);
}
DEFINE_RUNTIME_ENTRY(NullCastError, 0) {
NullErrorHelper(zone, String::null_string());
}
DEFINE_RUNTIME_ENTRY(ArgumentNullError, 0) {
DoThrowNullError(isolate, thread, zone, /*is_param=*/true);
}
DEFINE_RUNTIME_ENTRY(ArgumentError, 1) {
const Instance& value = Instance::CheckedHandle(zone, arguments.ArgAt(0));
Exceptions::ThrowArgumentError(value);
}
DEFINE_RUNTIME_ENTRY(ArgumentErrorUnboxedInt64, 0) {
// Unboxed value is passed through a dedicated slot in Thread.
int64_t unboxed_value = arguments.thread()->unboxed_int64_runtime_arg();
const Integer& value = Integer::Handle(zone, Integer::New(unboxed_value));
Exceptions::ThrowArgumentError(value);
}
DEFINE_RUNTIME_ENTRY(DoubleToInteger, 1) {
// Unboxed value is passed through a dedicated slot in Thread.
double val = arguments.thread()->unboxed_double_runtime_arg();
const Smi& recognized_kind = Smi::CheckedHandle(zone, arguments.ArgAt(0));
switch (recognized_kind.Value()) {
case MethodRecognizer::kDoubleToInteger:
break;
case MethodRecognizer::kDoubleFloorToInt:
val = floor(val);
break;
case MethodRecognizer::kDoubleCeilToInt:
val = ceil(val);
break;
default:
UNREACHABLE();
}
arguments.SetReturn(Integer::Handle(zone, DoubleToInteger(zone, val)));
}
DEFINE_RUNTIME_ENTRY(IntegerDivisionByZeroException, 0) {
const Array& args = Array::Handle(zone, Array::New(0));
Exceptions::ThrowByType(Exceptions::kIntegerDivisionByZeroException, args);
}
static Heap::Space SpaceForRuntimeAllocation() {
return UNLIKELY(FLAG_runtime_allocate_old) ? Heap::kOld : Heap::kNew;
}
static void RuntimeAllocationEpilogue(Thread* thread) {
if (UNLIKELY(FLAG_runtime_allocate_spill_tlab)) {
static RelaxedAtomic<uword> count = 0;
if ((count++ % 10) == 0) {
thread->heap()->new_space()->AbandonRemainingTLAB(thread);
}
}
}
// Allocation of a fixed length array of given element type.
// This runtime entry is never called for allocating a List of a generic type,
// because a prior run time call instantiates the element type if necessary.
// Arg0: array length.
// Arg1: array type arguments, i.e. vector of 1 type, the element type.
// Return value: newly allocated array of length arg0.
DEFINE_RUNTIME_ENTRY(AllocateArray, 2) {
const Instance& length = Instance::CheckedHandle(zone, arguments.ArgAt(0));
if (!length.IsInteger()) {
// Throw: new ArgumentError.value(length, "length", "is not an integer");
const Array& args = Array::Handle(zone, Array::New(3));
args.SetAt(0, length);
args.SetAt(1, Symbols::Length());
args.SetAt(2, String::Handle(zone, String::New("is not an integer")));
Exceptions::ThrowByType(Exceptions::kArgumentValue, args);
}
const int64_t len = Integer::Cast(length).Value();
if (len < 0) {
// Throw: new RangeError.range(length, 0, Array::kMaxElements, "length");
Exceptions::ThrowRangeError("length", Integer::Cast(length), 0,
Array::kMaxElements);
}
if (len > Array::kMaxElements) {
Exceptions::ThrowOOM();
}
const Array& array = Array::Handle(
zone,
Array::New(static_cast<intptr_t>(len), SpaceForRuntimeAllocation()));
TypeArguments& element_type =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(1));
// An Array is raw or takes one type argument. However, its type argument
// vector may be longer than 1 due to a type optimization reusing the type
// argument vector of the instantiator.
ASSERT(element_type.IsNull() ||
(element_type.Length() >= 1 && element_type.IsInstantiated()));
array.SetTypeArguments(element_type); // May be null.
arguments.SetReturn(array);
RuntimeAllocationEpilogue(thread);
}
DEFINE_RUNTIME_ENTRY_NO_LAZY_DEOPT(AllocateDouble, 0) {
if (FLAG_shared_slow_path_triggers_gc) {
isolate->group()->heap()->CollectAllGarbage(GCReason::kDebugging);
}
arguments.SetReturn(
Object::Handle(zone, Double::New(0.0, SpaceForRuntimeAllocation())));
RuntimeAllocationEpilogue(thread);
}
DEFINE_RUNTIME_ENTRY_NO_LAZY_DEOPT(BoxDouble, 0) {
const double val = thread->unboxed_double_runtime_arg();
arguments.SetReturn(
Object::Handle(zone, Double::New(val, SpaceForRuntimeAllocation())));
RuntimeAllocationEpilogue(thread);
}
DEFINE_RUNTIME_ENTRY_NO_LAZY_DEOPT(BoxFloat32x4, 0) {
const auto val = thread->unboxed_simd128_runtime_arg();
arguments.SetReturn(
Object::Handle(zone, Float32x4::New(val, SpaceForRuntimeAllocation())));
RuntimeAllocationEpilogue(thread);
}
DEFINE_RUNTIME_ENTRY_NO_LAZY_DEOPT(BoxFloat64x2, 0) {
const auto val = thread->unboxed_simd128_runtime_arg();
arguments.SetReturn(
Object::Handle(zone, Float64x2::New(val, SpaceForRuntimeAllocation())));
RuntimeAllocationEpilogue(thread);
}
DEFINE_RUNTIME_ENTRY_NO_LAZY_DEOPT(AllocateMint, 0) {
if (FLAG_shared_slow_path_triggers_gc) {
isolate->group()->heap()->CollectAllGarbage(GCReason::kDebugging);
}
arguments.SetReturn(Object::Handle(
zone, Integer::New(kMaxInt64, SpaceForRuntimeAllocation())));
RuntimeAllocationEpilogue(thread);
}
DEFINE_RUNTIME_ENTRY_NO_LAZY_DEOPT(AllocateFloat32x4, 0) {
if (FLAG_shared_slow_path_triggers_gc) {
isolate->group()->heap()->CollectAllGarbage(GCReason::kDebugging);
}
arguments.SetReturn(Object::Handle(
zone, Float32x4::New(0.0, 0.0, 0.0, 0.0, SpaceForRuntimeAllocation())));
RuntimeAllocationEpilogue(thread);
}
DEFINE_RUNTIME_ENTRY_NO_LAZY_DEOPT(AllocateFloat64x2, 0) {
if (FLAG_shared_slow_path_triggers_gc) {
isolate->group()->heap()->CollectAllGarbage(GCReason::kDebugging);
}
arguments.SetReturn(Object::Handle(
zone, Float64x2::New(0.0, 0.0, SpaceForRuntimeAllocation())));
RuntimeAllocationEpilogue(thread);
}
DEFINE_RUNTIME_ENTRY_NO_LAZY_DEOPT(AllocateInt32x4, 0) {
if (FLAG_shared_slow_path_triggers_gc) {
isolate->group()->heap()->CollectAllGarbage(GCReason::kDebugging);
}
arguments.SetReturn(Object::Handle(
zone, Int32x4::New(0, 0, 0, 0, SpaceForRuntimeAllocation())));
RuntimeAllocationEpilogue(thread);
}
// Allocate typed data array of given class id and length.
// Arg0: class id.
// Arg1: number of elements.
// Return value: newly allocated typed data array.
DEFINE_RUNTIME_ENTRY(AllocateTypedData, 2) {
const intptr_t cid = Smi::CheckedHandle(zone, arguments.ArgAt(0)).Value();
const auto& length = Instance::CheckedHandle(zone, arguments.ArgAt(1));
if (!length.IsInteger()) {
const Array& args = Array::Handle(zone, Array::New(1));
args.SetAt(0, length);
Exceptions::ThrowByType(Exceptions::kArgument, args);
}
const int64_t len = Integer::Cast(length).Value();
const intptr_t max = TypedData::MaxElements(cid);
if (len < 0) {
Exceptions::ThrowRangeError("length", Integer::Cast(length), 0, max);
} else if (len > max) {
Exceptions::ThrowOOM();
}
const auto& typed_data =
TypedData::Handle(zone, TypedData::New(cid, static_cast<intptr_t>(len),
SpaceForRuntimeAllocation()));
arguments.SetReturn(typed_data);
RuntimeAllocationEpilogue(thread);
}
// Helper returning the token position of the Dart caller.
static TokenPosition GetCallerLocation() {
DartFrameIterator iterator(Thread::Current(),
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != nullptr);
return caller_frame->GetTokenPos();
}
// Result of an invoke may be an unhandled exception, in which case we
// rethrow it.
static void ThrowIfError(const Object& result) {
if (!result.IsNull() && result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
}
}
// Allocate a new object.
// Arg0: class of the object that needs to be allocated.
// Arg1: type arguments of the object that needs to be allocated.
// Return value: newly allocated object.
DEFINE_RUNTIME_ENTRY(AllocateObject, 2) {
const Class& cls = Class::CheckedHandle(zone, arguments.ArgAt(0));
ASSERT(cls.is_allocate_finalized());
const Instance& instance = Instance::Handle(
zone, Instance::NewAlreadyFinalized(cls, SpaceForRuntimeAllocation()));
if (cls.NumTypeArguments() == 0) {
// No type arguments required for a non-parameterized type.
ASSERT(Instance::CheckedHandle(zone, arguments.ArgAt(1)).IsNull());
} else {
const auto& type_arguments =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(1));
// Unless null (for a raw type), the type argument vector may be longer than
// necessary due to a type optimization reusing the type argument vector of
// the instantiator.
ASSERT(type_arguments.IsNull() ||
(type_arguments.IsInstantiated() &&
(type_arguments.Length() >= cls.NumTypeArguments())));
instance.SetTypeArguments(type_arguments);
}
arguments.SetReturn(instance);
RuntimeAllocationEpilogue(thread);
}
DEFINE_LEAF_RUNTIME_ENTRY(uword /*ObjectPtr*/,
EnsureRememberedAndMarkingDeferred,
2,
uword /*ObjectPtr*/ object_in,
Thread* thread) {
ObjectPtr object = static_cast<ObjectPtr>(object_in);
// If we eliminate the generational write barrier when writing into an object,
// we need to ensure it's either a new-space object or it has been added to
// the remembered set. If we eliminate the incremental write barrier, we need
// to add the object to the deferred marking stack so it will be [re]scanned.
//
// NOTE: We use static_cast<>() instead of ::RawCast() to avoid handle
// allocations in debug mode. Handle allocations in leaf runtimes can cause
// memory leaks because they will allocate into a handle scope from the next
// outermost runtime code (to which the generated Dart code might not return
// in a long time).
bool skips_barrier = true;
if (object->IsArray()) {
const intptr_t length = Array::LengthOf(static_cast<ArrayPtr>(object));
skips_barrier = compiler::target::WillAllocateNewOrRememberedArray(length);
} else if (object->IsContext()) {
const intptr_t num_context_variables =
Context::NumVariables(static_cast<ContextPtr>(object));
skips_barrier = compiler::target::WillAllocateNewOrRememberedContext(
num_context_variables);
}
if (skips_barrier) {
if (object->IsOldObject()) {
object->untag()->EnsureInRememberedSet(thread);
}
if (thread->is_marking()) {
thread->DeferredMarkingStackAddObject(object);
}
}
return static_cast<uword>(object);
}
END_LEAF_RUNTIME_ENTRY
// Instantiate type.
// Arg0: uninstantiated type.
// Arg1: instantiator type arguments.
// Arg2: function type arguments.
// Return value: instantiated type.
DEFINE_RUNTIME_ENTRY(InstantiateType, 3) {
AbstractType& type = AbstractType::CheckedHandle(zone, arguments.ArgAt(0));
const TypeArguments& instantiator_type_arguments =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(1));
const TypeArguments& function_type_arguments =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(2));
ASSERT(!type.IsNull());
ASSERT(instantiator_type_arguments.IsNull() ||
instantiator_type_arguments.IsInstantiated());
ASSERT(function_type_arguments.IsNull() ||
function_type_arguments.IsInstantiated());
type = type.InstantiateFrom(instantiator_type_arguments,
function_type_arguments, kAllFree, Heap::kOld);
ASSERT(!type.IsNull() && type.IsInstantiated());
arguments.SetReturn(type);
}
// Instantiate type arguments.
// Arg0: uninstantiated type arguments.
// Arg1: instantiator type arguments.
// Arg2: function type arguments.
// Return value: instantiated type arguments.
DEFINE_RUNTIME_ENTRY(InstantiateTypeArguments, 3) {
TypeArguments& type_arguments =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(0));
const TypeArguments& instantiator_type_arguments =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(1));
const TypeArguments& function_type_arguments =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(2));
ASSERT(!type_arguments.IsNull() && !type_arguments.IsInstantiated());
ASSERT(instantiator_type_arguments.IsNull() ||
instantiator_type_arguments.IsInstantiated());
ASSERT(function_type_arguments.IsNull() ||
function_type_arguments.IsInstantiated());
// Code inlined in the caller should have optimized the case where the
// instantiator can be reused as type argument vector.
ASSERT(!type_arguments.IsUninstantiatedIdentity());
type_arguments = type_arguments.InstantiateAndCanonicalizeFrom(
instantiator_type_arguments, function_type_arguments);
ASSERT(type_arguments.IsNull() || type_arguments.IsInstantiated());
arguments.SetReturn(type_arguments);
}
// Helper routine for tracing a subtype check.
static void PrintSubtypeCheck(const AbstractType& subtype,
const AbstractType& supertype,
const bool result) {
DartFrameIterator iterator(Thread::Current(),
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != nullptr);
LogBlock lb;
THR_Print("SubtypeCheck: '%s' %d %s '%s' %d (pc: %#" Px ").\n",
subtype.NameCString(), subtype.type_class_id(),
result ? "is" : "is !", supertype.NameCString(),
supertype.type_class_id(), caller_frame->pc());
const Function& function =
Function::Handle(caller_frame->LookupDartFunction());
if (function.HasSavedArgumentsDescriptor()) {
const auto& args_desc_array = Array::Handle(function.saved_args_desc());
const ArgumentsDescriptor args_desc(args_desc_array);
THR_Print(" -> Function %s [%s]\n", function.ToFullyQualifiedCString(),
args_desc.ToCString());
} else {
THR_Print(" -> Function %s\n", function.ToFullyQualifiedCString());
}
}
// Instantiate type.
// Arg0: instantiator type arguments
// Arg1: function type arguments
// Arg2: type to be a subtype of the other
// Arg3: type to be a supertype of the other
// Arg4: variable name of the subtype parameter
// No return value.
DEFINE_RUNTIME_ENTRY(SubtypeCheck, 5) {
const TypeArguments& instantiator_type_args =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(0));
const TypeArguments& function_type_args =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(1));
AbstractType& subtype = AbstractType::CheckedHandle(zone, arguments.ArgAt(2));
AbstractType& supertype =
AbstractType::CheckedHandle(zone, arguments.ArgAt(3));
const String& dst_name = String::CheckedHandle(zone, arguments.ArgAt(4));
ASSERT(!supertype.IsNull());
ASSERT(!subtype.IsNull());
// Now that AssertSubtype may be checking types only available at runtime,
// we can't guarantee the supertype isn't the top type.
if (supertype.IsTopTypeForSubtyping()) return;
// The supertype or subtype may not be instantiated.
if (AbstractType::InstantiateAndTestSubtype(
&subtype, &supertype, instantiator_type_args, function_type_args)) {
if (FLAG_trace_type_checks) {
// The supertype and subtype are now instantiated. Subtype check passed.
PrintSubtypeCheck(subtype, supertype, true);
}
return;
}
if (FLAG_trace_type_checks) {
// The supertype and subtype are now instantiated. Subtype check failed.
PrintSubtypeCheck(subtype, supertype, false);
}
// Throw a dynamic type error.
const TokenPosition location = GetCallerLocation();
Exceptions::CreateAndThrowTypeError(location, subtype, supertype, dst_name);
UNREACHABLE();
}
// Allocate a new closure and initializes its function, context,
// instantiator type arguments and delayed type arguments fields.
// Arg0: function.
// Arg1: context.
// Arg2: instantiator type arguments.
// Arg3: delayed type arguments.
// Return value: newly allocated closure.
DEFINE_RUNTIME_ENTRY(AllocateClosure, 4) {
const auto& function = Function::CheckedHandle(zone, arguments.ArgAt(0));
const auto& context = Object::Handle(zone, arguments.ArgAt(1));
const auto& instantiator_type_args =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(2));
const auto& delayed_type_args =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(3));
const Closure& closure = Closure::Handle(
zone, Closure::New(instantiator_type_args, Object::null_type_arguments(),
delayed_type_args, function, context,
SpaceForRuntimeAllocation()));
arguments.SetReturn(closure);
RuntimeAllocationEpilogue(thread);
}
// Allocate a new context large enough to hold the given number of variables.
// Arg0: number of variables.
// Return value: newly allocated context.
DEFINE_RUNTIME_ENTRY(AllocateContext, 1) {
const Smi& num_variables = Smi::CheckedHandle(zone, arguments.ArgAt(0));
const Context& context = Context::Handle(
zone, Context::New(num_variables.Value(), SpaceForRuntimeAllocation()));
arguments.SetReturn(context);
RuntimeAllocationEpilogue(thread);
}
// Make a copy of the given context, including the values of the captured
// variables.
// Arg0: the context to be cloned.
// Return value: newly allocated context.
DEFINE_RUNTIME_ENTRY(CloneContext, 1) {
const Context& ctx = Context::CheckedHandle(zone, arguments.ArgAt(0));
Context& cloned_ctx = Context::Handle(
zone, Context::New(ctx.num_variables(), SpaceForRuntimeAllocation()));
cloned_ctx.set_parent(Context::Handle(zone, ctx.parent()));
Object& inst = Object::Handle(zone);
for (int i = 0; i < ctx.num_variables(); i++) {
inst = ctx.At(i);
cloned_ctx.SetAt(i, inst);
}
arguments.SetReturn(cloned_ctx);
RuntimeAllocationEpilogue(thread);
}
// Allocate a new record instance.
// Arg0: record shape id.
// Return value: newly allocated record.
DEFINE_RUNTIME_ENTRY(AllocateRecord, 1) {
const RecordShape shape(Smi::RawCast(arguments.ArgAt(0)));
const Record& record =
Record::Handle(zone, Record::New(shape, SpaceForRuntimeAllocation()));
arguments.SetReturn(record);
RuntimeAllocationEpilogue(thread);
}
// Allocate a new small record instance and initialize its fields.
// Arg0: record shape id.
// Arg1-Arg3: field values.
// Return value: newly allocated record.
DEFINE_RUNTIME_ENTRY(AllocateSmallRecord, 4) {
const RecordShape shape(Smi::RawCast(arguments.ArgAt(0)));
const auto& value0 = Instance::CheckedHandle(zone, arguments.ArgAt(1));
const auto& value1 = Instance::CheckedHandle(zone, arguments.ArgAt(2));
const auto& value2 = Instance::CheckedHandle(zone, arguments.ArgAt(3));
const Record& record =
Record::Handle(zone, Record::New(shape, SpaceForRuntimeAllocation()));
const intptr_t num_fields = shape.num_fields();
ASSERT(num_fields == 2 || num_fields == 3);
record.SetFieldAt(0, value0);
record.SetFieldAt(1, value1);
if (num_fields > 2) {
record.SetFieldAt(2, value2);
}
arguments.SetReturn(record);
RuntimeAllocationEpilogue(thread);
}
// Allocate a SuspendState object.
// Arg0: frame size.
// Arg1: existing SuspendState object or function data.
// Return value: newly allocated object.
// No lazy deopt: the various suspend stubs need to save the real pc, not the
// lazy deopt stub entry, for pointer visiting of the suspend state to work. The
// resume stubs will do a check for disabled code.
DEFINE_RUNTIME_ENTRY_NO_LAZY_DEOPT(AllocateSuspendState, 2) {
const intptr_t frame_size =
Smi::CheckedHandle(zone, arguments.ArgAt(0)).Value();
const Object& previous_state = Object::Handle(zone, arguments.ArgAt(1));
SuspendState& result = SuspendState::Handle(zone);
if (previous_state.IsSuspendState()) {
const auto& suspend_state = SuspendState::Cast(previous_state);
const auto& function_data =
Instance::Handle(zone, suspend_state.function_data());
ObjectStore* object_store = thread->isolate_group()->object_store();
if (function_data.GetClassId() ==
Class::Handle(zone, object_store->async_star_stream_controller())
.id()) {
// Reset _AsyncStarStreamController.asyncStarBody to null in order
// to create a new callback closure during next yield.
// The new callback closure will capture the reallocated SuspendState.
//
// Caveat: can't use [SetField] here because it will try to take program
// lock (to update the state of guarded cid) and that requires us to
// be at safepoint which permits lazy deopt. Instead bypass
// field guard by making sure that guarded_cid allows our store here.
// (See ObjectStore::InitKnownObjects which initializes it).
function_data.SetFieldWithoutFieldGuard(
Field::Handle(
zone,
object_store->async_star_stream_controller_async_star_body()),
Object::null_object());
}
result = SuspendState::New(frame_size, function_data,
SpaceForRuntimeAllocation());
if (function_data.GetClassId() ==
Class::Handle(zone, object_store->sync_star_iterator_class()).id()) {
// Refresh _SyncStarIterator._state with the new SuspendState object.
//
// Caveat: can't use [SetField] here because it will try to take program
// lock (to update the state of guarded cid) and that requires us to
// be at safepoint which permits lazy deopt. Instead bypass
// field guard by making sure that guarded_cid allows our store here.
// (See ObjectStore::InitKnownObjects which initializes it).
function_data.SetFieldWithoutFieldGuard(
Field::Handle(zone, object_store->sync_star_iterator_state()),
result);
}
} else {
result = SuspendState::New(frame_size, Instance::Cast(previous_state),
SpaceForRuntimeAllocation());
}
arguments.SetReturn(result);
RuntimeAllocationEpilogue(thread);
}
// Makes a copy of the given SuspendState object, including the payload frame.
// Arg0: the SuspendState object to be cloned.
// Return value: newly allocated object.
DEFINE_RUNTIME_ENTRY(CloneSuspendState, 1) {
const SuspendState& src =
SuspendState::CheckedHandle(zone, arguments.ArgAt(0));
const SuspendState& dst = SuspendState::Handle(
zone, SuspendState::Clone(thread, src, SpaceForRuntimeAllocation()));
arguments.SetReturn(dst);
RuntimeAllocationEpilogue(thread);
}
// Allocate a new SubtypeTestCache for use in interpreted implicit setters.
// Return value: newly allocated SubtypeTestCache.
DEFINE_RUNTIME_ENTRY(AllocateSubtypeTestCache, 0) {
#if defined(DART_DYNAMIC_MODULES)
const auto& cache = SubtypeTestCache::Handle(
zone, SubtypeTestCache::New(SubtypeTestCache::kMaxInputs));
arguments.SetReturn(cache);
#else
UNREACHABLE();
#endif // defined(DART_DYNAMIC_MODULES)
}
// Invoke field getter before dispatch.
// Arg0: instance.
// Arg1: field name (may be demangled during call).
// Return value: field value.
DEFINE_RUNTIME_ENTRY(GetFieldForDispatch, 2) {
#if defined(DART_DYNAMIC_MODULES)
const Instance& receiver = Instance::CheckedHandle(zone, arguments.ArgAt(0));
String& name = String::CheckedHandle(zone, arguments.ArgAt(1));
const Class& receiver_class = Class::Handle(zone, receiver.clazz());
if (Function::IsDynamicInvocationForwarderName(name)) {
name = Function::DemangleDynamicInvocationForwarderName(name);
arguments.SetArgAt(1, name); // Reflect change in arguments.
}
const String& getter_name = String::Handle(zone, Field::GetterName(name));
const int kTypeArgsLen = 0;
const int kNumArguments = 1;
ArgumentsDescriptor args_desc(Array::Handle(
zone, ArgumentsDescriptor::NewBoxed(kTypeArgsLen, kNumArguments)));
const Function& getter = Function::Handle(
zone, Resolver::ResolveDynamicForReceiverClass(
receiver_class, getter_name, args_desc, /*allow_add=*/true));
ASSERT(!getter.IsNull()); // An InvokeFieldDispatcher function was created.
const Array& args = Array::Handle(zone, Array::New(kNumArguments));
args.SetAt(0, receiver);
const Object& result =
Object::Handle(zone, DartEntry::InvokeFunction(getter, args));
ThrowIfError(result);
arguments.SetReturn(result);
#else
UNREACHABLE();
#endif // defined(DART_DYNAMIC_MODULES)
}
// Converts arguments descriptor passed to an implicit closure
// into an arguments descriptor for the target function.
// Arg0: implicit closure arguments descriptor
// Arg1: target function
// Return value: target arguments descriptor
DEFINE_RUNTIME_ENTRY(AdjustArgumentsDesciptorForImplicitClosure, 2) {
#if defined(DART_DYNAMIC_MODULES)
const auto& descriptor = Array::CheckedHandle(zone, arguments.ArgAt(0));
const auto& target = Function::CheckedHandle(zone, arguments.ArgAt(1));
const ArgumentsDescriptor args_desc(descriptor);
intptr_t type_args_len = args_desc.TypeArgsLen();
intptr_t num_arguments = args_desc.Count();
if (target.is_static()) {
if (target.IsFactory()) {
// Factory always takes type arguments via a positional parameter.
type_args_len = 0;
} else {
// Drop closure receiver.
--num_arguments;
}
} else {
if (target.IsGenerativeConstructor()) {
// Type arguments are not passed to a generative constructor.
type_args_len = 0;
} else {
// No need to adjust arguments descriptor.
arguments.SetReturn(descriptor);
return;
}
}
const auto& optional_arguments_names =
Array::Handle(zone, args_desc.GetArgumentNames());
const auto& result = Array::Handle(
zone, ArgumentsDescriptor::NewBoxed(type_args_len, num_arguments,
optional_arguments_names));
arguments.SetReturn(result);
#else
UNREACHABLE();
#endif // defined(DART_DYNAMIC_MODULES)
}
// Check that arguments are valid for the given closure.
// Arg0: closure
// Arg1: arguments descriptor
// Return value: whether the arguments are valid
DEFINE_RUNTIME_ENTRY(ClosureArgumentsValid, 2) {
#if defined(DART_DYNAMIC_MODULES)
const auto& closure = Closure::CheckedHandle(zone, arguments.ArgAt(0));
const auto& descriptor = Array::CheckedHandle(zone, arguments.ArgAt(1));
const auto& function = Function::Handle(zone, closure.function());
const ArgumentsDescriptor args_desc(descriptor);
if (!function.AreValidArguments(args_desc, nullptr)) {
arguments.SetReturn(Bool::False());
} else if (!closure.IsGeneric() && args_desc.TypeArgsLen() > 0) {
// The arguments may be valid for the closure function itself, but if the
// closure has delayed type arguments, no type arguments should be provided.
arguments.SetReturn(Bool::False());
} else {
arguments.SetReturn(Bool::True());
}
#else
UNREACHABLE();
#endif // defined(DART_DYNAMIC_MODULES)
}
// Resolve 'call' function of receiver.
// Arg0: receiver (not a closure).
// Arg1: arguments descriptor
// Return value: 'call' function'.
DEFINE_RUNTIME_ENTRY(ResolveCallFunction, 2) {
#if defined(DART_DYNAMIC_MODULES)
const Instance& receiver = Instance::CheckedHandle(zone, arguments.ArgAt(0));
const Array& descriptor = Array::CheckedHandle(zone, arguments.ArgAt(1));
ArgumentsDescriptor args_desc(descriptor);
ASSERT(!receiver.IsClosure()); // Interpreter tests for closure.
Class& cls = Class::Handle(zone, receiver.clazz());
Function& call_function = Function::Handle(
zone,
Resolver::ResolveDynamicForReceiverClass(cls, Symbols::call(), args_desc,
/*allow_add=*/false));
arguments.SetReturn(call_function);
#else
UNREACHABLE();
#endif // defined(DART_DYNAMIC_MODULES)
}
// Helper routine for tracing a type check.
static void PrintTypeCheck(const char* message,
const Instance& instance,
const AbstractType& type,
const TypeArguments& instantiator_type_arguments,
const TypeArguments& function_type_arguments,
const Bool& result) {
DartFrameIterator iterator(Thread::Current(),
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != nullptr);
const AbstractType& instance_type =
AbstractType::Handle(instance.GetType(Heap::kNew));
ASSERT(instance_type.IsInstantiated() ||
(instance.IsClosure() && instance_type.IsInstantiated(kCurrentClass)));
LogBlock lb;
if (type.IsInstantiated()) {
THR_Print("%s: '%s' %d %s '%s' %d (pc: %#" Px ").\n", message,
instance_type.NameCString(), instance_type.type_class_id(),
(result.ptr() == Bool::True().ptr()) ? "is" : "is !",
type.NameCString(), type.type_class_id(), caller_frame->pc());
} else {
// Instantiate type before printing.
const AbstractType& instantiated_type = AbstractType::Handle(
type.InstantiateFrom(instantiator_type_arguments,
function_type_arguments, kAllFree, Heap::kOld));
THR_Print("%s: '%s' %s '%s' instantiated from '%s' (pc: %#" Px ").\n",
message, instance_type.NameCString(),
(result.ptr() == Bool::True().ptr()) ? "is" : "is !",
instantiated_type.NameCString(), type.NameCString(),
caller_frame->pc());
}
const Function& function =
Function::Handle(caller_frame->LookupDartFunction());
if (function.HasSavedArgumentsDescriptor()) {
const auto& args_desc_array = Array::Handle(function.saved_args_desc());
const ArgumentsDescriptor args_desc(args_desc_array);
THR_Print(" -> Function %s [%s]\n", function.ToFullyQualifiedCString(),
args_desc.ToCString());
} else {
THR_Print(" -> Function %s\n", function.ToFullyQualifiedCString());
}
}
#if defined(TARGET_ARCH_IA32) || defined(DART_DYNAMIC_MODULES)
static BoolPtr CheckHashBasedSubtypeTestCache(
Zone* zone,
Thread* thread,
const Instance& instance,
const AbstractType& destination_type,
const TypeArguments& instantiator_type_arguments,
const TypeArguments& function_type_arguments,
const SubtypeTestCache& cache) {
ASSERT(cache.IsHash());
// Record instances are not added to the cache as they don't have a valid
// key (type of a record depends on types of all its fields).
if (instance.IsRecord()) return Bool::null();
Class& instance_class = Class::Handle(zone);
if (instance.IsSmi()) {
instance_class = Smi::Class();
} else {
instance_class = instance.clazz();
}
// If the type is uninstantiated and refers to parent function type
// parameters, the function_type_arguments have been canonicalized
// when concatenated.
auto& instance_class_id_or_signature = Object::Handle(zone);
auto& instance_type_arguments = TypeArguments::Handle(zone);
auto& instance_parent_function_type_arguments = TypeArguments::Handle(zone);
auto& instance_delayed_type_arguments = TypeArguments::Handle(zone);
if (instance_class.IsClosureClass()) {
const auto& closure = Closure::Cast(instance);
const auto& function = Function::Handle(zone, closure.function());
instance_class_id_or_signature = function.signature();
instance_type_arguments = closure.instantiator_type_arguments();
instance_parent_function_type_arguments = closure.function_type_arguments();
instance_delayed_type_arguments = closure.delayed_type_arguments();
} else {
instance_class_id_or_signature = Smi::New(instance_class.id());
if (instance_class.NumTypeArguments() > 0) {
instance_type_arguments = instance.GetTypeArguments();
}
}
intptr_t index = -1;
auto& result = Bool::Handle(zone);
if (cache.HasCheck(instance_class_id_or_signature, destination_type,
instance_type_arguments, instantiator_type_arguments,
function_type_arguments,
instance_parent_function_type_arguments,
instance_delayed_type_arguments, &index, &result)) {
return result.ptr();
}
return Bool::null();
}
#endif // defined(TARGET_ARCH_IA32) || defined(DART_DYNAMIC_MODULES)
// This updates the type test cache, an array containing 8 elements:
// - instance class (or function if the instance is a closure)
// - instance type arguments (null if the instance class is not generic)
// - instantiator type arguments (null if the type is instantiated)
// - function type arguments (null if the type is instantiated)
// - instance parent function type arguments (null if instance is not a closure)
// - instance delayed type arguments (null if instance is not a closure)
// - destination type (null if the type was known at compile time)
// - test result
// It can be applied to classes with type arguments in which case it contains
// just the result of the class subtype test, not including the evaluation of
// type arguments.
// This operation is currently very slow (lookup of code is not efficient yet).
static void UpdateTypeTestCache(
Zone* zone,
Thread* thread,
const Instance& instance,
const AbstractType& destination_type,
const TypeArguments& instantiator_type_arguments,
const TypeArguments& function_type_arguments,
const Bool& result,
const SubtypeTestCache& new_cache) {
ASSERT(!new_cache.IsNull());
ASSERT(destination_type.IsCanonical());
ASSERT(instantiator_type_arguments.IsCanonical());
ASSERT(function_type_arguments.IsCanonical());
if (instance.IsRecord()) {
// Do not add record instances to cache as they don't have a valid
// key (type of a record depends on types of all its fields).
if (FLAG_trace_type_checks) {
THR_Print("Not updating subtype test cache for the record instance.\n");
}
return;
}
Class& instance_class = Class::Handle(zone);
if (instance.IsSmi()) {
instance_class = Smi::Class();
} else {
instance_class = instance.clazz();
}
// If the type is uninstantiated and refers to parent function type
// parameters, the function_type_arguments have been canonicalized
// when concatenated.
auto& instance_class_id_or_signature = Object::Handle(zone);
auto& instance_type_arguments = TypeArguments::Handle(zone);
auto& instance_parent_function_type_arguments = TypeArguments::Handle(zone);
auto& instance_delayed_type_arguments = TypeArguments::Handle(zone);
if (instance_class.IsClosureClass()) {
const auto& closure = Closure::Cast(instance);
const auto& function = Function::Handle(zone, closure.function());
instance_class_id_or_signature = function.signature();
ASSERT(instance_class_id_or_signature.IsFunctionType());
instance_type_arguments = closure.instantiator_type_arguments();
instance_parent_function_type_arguments = closure.function_type_arguments();
instance_delayed_type_arguments = closure.delayed_type_arguments();
ASSERT(instance_class_id_or_signature.IsCanonical());
ASSERT(instance_type_arguments.IsCanonical());
ASSERT(instance_parent_function_type_arguments.IsCanonical());
ASSERT(instance_delayed_type_arguments.IsCanonical());
} else {
instance_class_id_or_signature = Smi::New(instance_class.id());
if (instance_class.NumTypeArguments() > 0) {
instance_type_arguments = instance.GetTypeArguments();
ASSERT(instance_type_arguments.IsCanonical());
}
}
if (FLAG_trace_type_checks) {
const auto& instance_class_name =
String::Handle(zone, instance_class.Name());
TextBuffer buffer(256);
buffer.Printf(" Updating test cache %#" Px " with result %s for:\n",
static_cast<uword>(new_cache.ptr()), result.ToCString());
if (instance.IsString()) {
buffer.Printf(" instance: '%s'\n", instance.ToCString());
} else {
buffer.Printf(" instance: %s\n", instance.ToCString());
}
buffer.Printf(" class: %s (%" Pd ")\n", instance_class_name.ToCString(),
instance_class.id());
buffer.Printf(
" raw entry: [ %#" Px ", %#" Px ", %#" Px ", %#" Px ", %#" Px
", %#" Px ", %#" Px ", %#" Px " ]\n",
static_cast<uword>(instance_class_id_or_signature.ptr()),
static_cast<uword>(instance_type_arguments.ptr()),
static_cast<uword>(instantiator_type_arguments.ptr()),
static_cast<uword>(function_type_arguments.ptr()),
static_cast<uword>(instance_parent_function_type_arguments.ptr()),
static_cast<uword>(instance_delayed_type_arguments.ptr()),
static_cast<uword>(destination_type.ptr()),
static_cast<uword>(result.ptr()));
THR_Print("%s", buffer.buffer());
}
{
SafepointMutexLocker ml(
thread->isolate_group()->subtype_test_cache_mutex());
const intptr_t len = new_cache.NumberOfChecks();
if (len >= FLAG_max_subtype_cache_entries) {
if (FLAG_trace_type_checks) {
THR_Print("Not updating subtype test cache as its length reached %d\n",
FLAG_max_subtype_cache_entries);
}
return;
}
intptr_t colliding_index = -1;
auto& old_result = Bool::Handle(zone);
if (new_cache.HasCheck(
instance_class_id_or_signature, destination_type,
instance_type_arguments, instantiator_type_arguments,
function_type_arguments, instance_parent_function_type_arguments,
instance_delayed_type_arguments, &colliding_index, &old_result)) {
if (FLAG_trace_type_checks) {
TextBuffer buffer(256);
buffer.Printf(" Collision for test cache %#" Px " at index %" Pd ":\n",
static_cast<uword>(new_cache.ptr()), colliding_index);
buffer.Printf(" entry: ");
new_cache.WriteEntryToBuffer(zone, &buffer, colliding_index, " ");
THR_Print("%s\n", buffer.buffer());
}
if (old_result.ptr() != result.ptr()) {
FATAL("Existing subtype test cache entry has result %s, not %s",
old_result.ToCString(), result.ToCString());
}
// Some other isolate might have updated the cache between entry was
// found missing and now.
return;
}
const intptr_t new_index = new_cache.AddCheck(
instance_class_id_or_signature, destination_type,
instance_type_arguments, instantiator_type_arguments,
function_type_arguments, instance_parent_function_type_arguments,
instance_delayed_type_arguments, result);
if (FLAG_trace_type_checks) {
TextBuffer buffer(256);
buffer.Printf(" Added new entry to test cache %#" Px " at index %" Pd
":\n",
static_cast<uword>(new_cache.ptr()), new_index);
buffer.Printf(" new entry: ");
new_cache.WriteEntryToBuffer(zone, &buffer, new_index, " ");
THR_Print("%s\n", buffer.buffer());
}
}
}
// Check that the given instance is an instance of the given type.
// Tested instance may be null, because a null test cannot always be inlined,
// e.g 'null is T' yields true if T = Null, but false if T = bool.
// Arg0: instance being checked.
// Arg1: type.
// Arg2: type arguments of the instantiator of the type.
// Arg3: type arguments of the function of the type.
// Arg4: SubtypeTestCache.
// Return value: true or false.
DEFINE_RUNTIME_ENTRY(Instanceof, 5) {
const Instance& instance = Instance::CheckedHandle(zone, arguments.ArgAt(0));
const AbstractType& type =
AbstractType::CheckedHandle(zone, arguments.ArgAt(1));
const TypeArguments& instantiator_type_arguments =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(2));
const TypeArguments& function_type_arguments =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(3));
const SubtypeTestCache& cache =
SubtypeTestCache::CheckedHandle(zone, arguments.ArgAt(4));
ASSERT(type.IsFinalized());
ASSERT(!type.IsDynamicType()); // No need to check assignment.
ASSERT(!cache.IsNull());
#if defined(TARGET_ARCH_IA32)
// Hash-based caches are still not handled by the stubs on IA32.
if (cache.IsHash()) {
const auto& result = Bool::Handle(
zone, CheckHashBasedSubtypeTestCache(zone, thread, instance, type,
instantiator_type_arguments,
function_type_arguments, cache));
if (!result.IsNull()) {
// Early exit because an entry already exists in the cache.
arguments.SetReturn(result);
return;
}
}
#endif // defined(TARGET_ARCH_IA32)
const Bool& result = Bool::Get(instance.IsInstanceOf(
type, instantiator_type_arguments, function_type_arguments));
if (FLAG_trace_type_checks) {
PrintTypeCheck("InstanceOf", instance, type, instantiator_type_arguments,
function_type_arguments, result);
}
UpdateTypeTestCache(zone, thread, instance, type, instantiator_type_arguments,
function_type_arguments, result, cache);
arguments.SetReturn(result);
}
#if defined(TESTING)
// Used only in type_testing_stubs_test.cc. If DRT_TypeCheck is entered, then
// this flag is set to true.
thread_local bool TESTING_runtime_entered_on_TTS_invocation = false;
#endif
// Check that the type of the given instance is a subtype of the given type and
// can therefore be assigned.
// Tested instance may not be null, because a null test is always inlined.
// Arg0: instance being assigned.
// Arg1: type being assigned to.
// Arg2: type arguments of the instantiator of the type being assigned to.
// Arg3: type arguments of the function of the type being assigned to.
// Arg4: name of variable being assigned to.
// Arg5: SubtypeTestCache.
// Arg6: invocation mode (see TypeCheckMode)
// Return value: instance if a subtype, otherwise throw a TypeError.
DEFINE_RUNTIME_ENTRY(TypeCheck, 7) {
const Instance& src_instance =
Instance::CheckedHandle(zone, arguments.ArgAt(0));
const AbstractType& dst_type =
AbstractType::CheckedHandle(zone, arguments.ArgAt(1));
const TypeArguments& instantiator_type_arguments =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(2));
const TypeArguments& function_type_arguments =
TypeArguments::CheckedHandle(zone, arguments.ArgAt(3));
String& dst_name = String::Handle(zone);
dst_name ^= arguments.ArgAt(4);
ASSERT(dst_name.IsNull() || dst_name.IsString());
SubtypeTestCache& cache = SubtypeTestCache::Handle(zone);
cache ^= arguments.ArgAt(5);
ASSERT(cache.IsNull() || cache.IsSubtypeTestCache());
const TypeCheckMode mode = static_cast<TypeCheckMode>(
Smi::CheckedHandle(zone, arguments.ArgAt(6)).Value());
#if defined(TESTING)
TESTING_runtime_entered_on_TTS_invocation = true;
#endif
#if defined(TARGET_ARCH_IA32)
ASSERT(mode == kTypeCheckFromInline);
#endif
#if defined(TARGET_ARCH_IA32) || defined(DART_DYNAMIC_MODULES)
// Hash-based caches are not handled by the inline AssertAssignable
// on IA32 and in the interpreter.
if ((mode == kTypeCheckFromInline) && cache.IsHash()) {
const auto& result = Bool::Handle(
zone, CheckHashBasedSubtypeTestCache(
zone, thread, src_instance, dst_type,
instantiator_type_arguments, function_type_arguments, cache));
if (!result.IsNull()) {
// Early exit because an entry already exists in the cache.
arguments.SetReturn(result);
return;
}
}
#endif // defined(TARGET_ARCH_IA32) || defined(DART_DYNAMIC_MODULES)
// This is guaranteed on the calling side.
ASSERT(!dst_type.IsDynamicType());
const bool is_instance_of = src_instance.IsAssignableTo(
dst_type, instantiator_type_arguments, function_type_arguments);
if (FLAG_trace_type_checks) {
PrintTypeCheck("TypeCheck", src_instance, dst_type,
instantiator_type_arguments, function_type_arguments,
Bool::Get(is_instance_of));
}
// Most paths through this runtime entry don't need to know what the
// destination name was or if this was a dynamic assert assignable call,
// so only walk the stack to find the stored destination name when necessary.
auto resolve_dst_name = [&]() {
if (!dst_name.IsNull()) return;
#if !defined(TARGET_ARCH_IA32)
// Can only come here from type testing stub.
ASSERT(mode != kTypeCheckFromInline);
// Grab the [dst_name] from the pool. It's stored at one pool slot after
// the subtype-test-cache.
DartFrameIterator iterator(thread,
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* caller_frame = iterator.NextFrame();
const Code& caller_code =
Code::Handle(zone, caller_frame->LookupDartCode());
const ObjectPool& pool =
ObjectPool::Handle(zone, caller_code.GetObjectPool());
TypeTestingStubCallPattern tts_pattern(caller_frame->pc());
const intptr_t stc_pool_idx = tts_pattern.GetSubtypeTestCachePoolIndex();
const intptr_t dst_name_idx = stc_pool_idx + 1;
dst_name ^= pool.ObjectAt(dst_name_idx);
#else
UNREACHABLE();
#endif
};
if (!is_instance_of) {
resolve_dst_name();
if (dst_name.ptr() ==
Symbols::dynamic_assert_assignable_stc_check().ptr()) {
#if !defined(TARGET_ARCH_IA32)
// Can only come here from type testing stub via dynamic AssertAssignable.
ASSERT(mode != kTypeCheckFromInline);
#endif
// This was a dynamic closure call where the destination name was not
// known at compile-time. Thus, fetch the original arguments and arguments
// descriptor and re-do the type check in the runtime, which causes the
// error with the proper destination name to be thrown.
DartFrameIterator iterator(thread,
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(!caller_frame->is_interpreted());
const auto& dispatcher =
Function::Handle(zone, caller_frame->LookupDartFunction());
ASSERT(dispatcher.IsInvokeFieldDispatcher());
const auto& orig_arguments_desc =
Array::Handle(zone, dispatcher.saved_args_desc());
const ArgumentsDescriptor args_desc(orig_arguments_desc);
const intptr_t arg_count = args_desc.CountWithTypeArgs();
const auto& orig_arguments = Array::Handle(zone, Array::New(arg_count));
auto& obj = Object::Handle(zone);
for (intptr_t i = 0; i < arg_count; i++) {
obj = *reinterpret_cast<ObjectPtr*>(
ParamAddress(caller_frame->fp(), arg_count - i));
orig_arguments.SetAt(i, obj);
}
const auto& receiver = Closure::CheckedHandle(
zone, orig_arguments.At(args_desc.FirstArgIndex()));
const auto& function = Function::Handle(zone, receiver.function());
const auto& result = Object::Handle(
zone, function.DoArgumentTypesMatch(orig_arguments, args_desc));
if (result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
}
// IsAssignableTo returned false, so we should have thrown a type
// error in DoArgumentsTypesMatch.
UNREACHABLE();
}
ASSERT(!dst_name.IsNull());
// Throw a dynamic type error.
const TokenPosition location = GetCallerLocation();
const auto& src_type =
AbstractType::Handle(zone, src_instance.GetType(Heap::kNew));
auto& reported_type = AbstractType::Handle(zone, dst_type.ptr());
if (!reported_type.IsInstantiated()) {
// Instantiate dst_type before reporting the error.
reported_type = reported_type.InstantiateFrom(instantiator_type_arguments,
function_type_arguments,
kAllFree, Heap::kNew);
}
Exceptions::CreateAndThrowTypeError(location, src_type, reported_type,
dst_name);
UNREACHABLE();
}
bool should_update_cache = true;
#if !defined(TARGET_ARCH_IA32)
bool would_update_cache_if_not_lazy = false;
#if !defined(DART_PRECOMPILED_RUNTIME)
// Checks against type parameters are done by loading the corresponding type
// argument at runtime and calling the type argument's TTS. Thus, we install
// specialized TTSes on the type argument, not the parameter itself.
auto& tts_type = AbstractType::Handle(zone, dst_type.ptr());
if (tts_type.IsTypeParameter()) {
const auto& param = TypeParameter::Cast(tts_type);
tts_type = param.GetFromTypeArguments(instantiator_type_arguments,
function_type_arguments);
}
ASSERT(!tts_type.IsTypeParameter());
if (mode == kTypeCheckFromLazySpecializeStub) {
if (FLAG_trace_type_checks) {
THR_Print(" Specializing type testing stub for %s\n",
tts_type.ToCString());
}
const Code& code = Code::Handle(
zone, TypeTestingStubGenerator::SpecializeStubFor(thread, tts_type));
tts_type.SetTypeTestingStub(code);
// Only create the cache if we failed to create a specialized TTS and doing
// the same check would cause an update to the cache.
would_update_cache_if_not_lazy =
(!src_instance.IsNull() &&
tts_type.type_test_stub() ==
StubCode::DefaultNullableTypeTest().ptr()) ||
tts_type.type_test_stub() == StubCode::DefaultTypeTest().ptr();
should_update_cache = would_update_cache_if_not_lazy && cache.IsNull();
}
// Since dst_type is not a top type or type parameter, then the only default
// stubs it can use are DefaultTypeTest or DefaultNullableTypeTest.
if ((mode == kTypeCheckFromSlowStub) &&
(tts_type.type_test_stub() != StubCode::DefaultNullableTypeTest().ptr() &&
tts_type.type_test_stub() != StubCode::DefaultTypeTest().ptr())) {
// The specialized type testing stub returned a false negative. That means
// the specialization may have been generated using outdated cid ranges and
// new classes appeared since the stub was generated. Try respecializing.
if (FLAG_trace_type_checks) {
THR_Print(" Rebuilding type testing stub for %s\n",
tts_type.ToCString());
}
const auto& old_code = Code::Handle(zone, tts_type.type_test_stub());
const auto& new_code = Code::Handle(
zone, TypeTestingStubGenerator::SpecializeStubFor(thread, tts_type));
ASSERT(old_code.ptr() != new_code.ptr());
// A specialized stub should always respecialize to a non-default stub.
ASSERT(new_code.ptr() != StubCode::DefaultNullableTypeTest().ptr() &&
new_code.ptr() != StubCode::DefaultTypeTest().ptr());
const auto& old_instructions =
Instructions::Handle(old_code.instructions());
const auto& new_instructions =
Instructions::Handle(new_code.instructions());
// Check if specialization produced exactly the same sequence of
// instructions. If it did, then we have a false negative, which can
// happen in some cases involving uninstantiated types. In these cases,
// update the cache, because the only case in which these false negatives
// could possibly turn into true positives is with reloads, which clear
// all the SubtypeTestCaches.
should_update_cache = old_instructions.Equals(new_instructions);
if (FLAG_trace_type_checks) {
THR_Print(" %s rebuilt type testing stub for %s\n",
should_update_cache ? "Discarding" : "Installing",
tts_type.ToCString());
}
if (!should_update_cache) {
tts_type.SetTypeTestingStub(new_code);
}
}
#endif // !defined(DART_PRECOMPILED_RUNTIME)
#endif // !defined(TARGET_ARCH_IA32)
if (should_update_cache) {
if (cache.IsNull()) {
#if !defined(TARGET_ARCH_IA32)
ASSERT(mode == kTypeCheckFromSlowStub ||
(mode == kTypeCheckFromLazySpecializeStub &&
would_update_cache_if_not_lazy));
// We lazily create [SubtypeTestCache] for those call sites which actually
// need one and will patch the pool entry.
DartFrameIterator iterator(thread,
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(!caller_frame->is_interpreted());
const Code& caller_code =
Code::Handle(zone, caller_frame->LookupDartCode());
const ObjectPool& pool =
ObjectPool::Handle(zone, caller_code.GetObjectPool());
TypeTestingStubCallPattern tts_pattern(caller_frame->pc());
const intptr_t stc_pool_idx = tts_pattern.GetSubtypeTestCachePoolIndex();
// Ensure we do have a STC (lazily create it if not) and all threads use
// the same STC.
{
SafepointMutexLocker ml(isolate->group()->subtype_test_cache_mutex());
cache ^= pool.ObjectAt<std::memory_order_acquire>(stc_pool_idx);
if (cache.IsNull()) {
resolve_dst_name();
// If this is a dynamic AssertAssignable check, then we must assume
// all inputs may be needed, as the type may vary from call to call.
const intptr_t num_inputs =
dst_name.ptr() ==
Symbols::dynamic_assert_assignable_stc_check().ptr()
? SubtypeTestCache::kMaxInputs
: SubtypeTestCache::UsedInputsForType(dst_type);
cache = SubtypeTestCache::New(num_inputs);
pool.SetObjectAt<std::memory_order_release>(stc_pool_idx, cache);
if (FLAG_trace_type_checks) {
THR_Print(" Installed new subtype test cache %#" Px " with %" Pd
" inputs at index %" Pd " of pool for %s\n",
static_cast<uword>(cache.ptr()), num_inputs, stc_pool_idx,
caller_code.ToCString());
}
}
}
#else
UNREACHABLE();
#endif
}
UpdateTypeTestCache(zone, thread, src_instance, dst_type,
instantiator_type_arguments, function_type_arguments,
Bool::True(), cache);
}
arguments.SetReturn(src_instance);
}
DEFINE_RUNTIME_ENTRY(Throw, 1) {
const Instance& exception = Instance::CheckedHandle(zone, arguments.ArgAt(0));
Exceptions::Throw(thread, exception);
}
DEFINE_RUNTIME_ENTRY(ReThrow, 3) {
const Instance& exception = Instance::CheckedHandle(zone, arguments.ArgAt(0));
const Instance& stacktrace =
Instance::CheckedHandle(zone, arguments.ArgAt(1));
const Smi& bypass_debugger = Smi::CheckedHandle(zone, arguments.ArgAt(2));
Exceptions::ReThrow(thread, exception, stacktrace,
bypass_debugger.Value() != 0);
}
// Patches static call in optimized code with the target's entry point.
// Compiles target if necessary.
DEFINE_RUNTIME_ENTRY(PatchStaticCall, 0) {
#if !defined(DART_PRECOMPILED_RUNTIME)
DartFrameIterator iterator(thread,
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != nullptr);
ASSERT(!caller_frame->is_interpreted());
const Code& caller_code = Code::Handle(zone, caller_frame->LookupDartCode());
ASSERT(!caller_code.IsNull());
ASSERT(caller_code.is_optimized());
const Function& target_function = Function::Handle(
zone, caller_code.GetStaticCallTargetFunctionAt(caller_frame->pc()));
const Code& target_code = Code::Handle(zone, target_function.EnsureHasCode());
// Before patching verify that we are not repeatedly patching to the same
// target.
if (target_code.ptr() !=
CodePatcher::GetStaticCallTargetAt(caller_frame->pc(), caller_code)) {
GcSafepointOperationScope safepoint(thread);
if (target_code.ptr() !=
CodePatcher::GetStaticCallTargetAt(caller_frame->pc(), caller_code)) {
CodePatcher::PatchStaticCallAt(caller_frame->pc(), caller_code,
target_code);
caller_code.SetStaticCallTargetCodeAt(caller_frame->pc(), target_code);
if (FLAG_trace_patching) {
THR_Print("PatchStaticCall: patching caller pc %#" Px
""
" to '%s' new entry point %#" Px " (%s)\n",
caller_frame->pc(), target_function.ToFullyQualifiedCString(),
target_code.EntryPoint(),
target_code.is_optimized() ? "optimized" : "unoptimized");
}
}
}
arguments.SetReturn(target_code);
#else
UNREACHABLE();
#endif
}
#if defined(PRODUCT) || defined(DART_PRECOMPILED_RUNTIME)
DEFINE_RUNTIME_ENTRY(BreakpointRuntimeHandler, 0) {
UNREACHABLE();
return;
}
#else
// Gets called from debug stub when code reaches a breakpoint
// set on a runtime stub call.
DEFINE_RUNTIME_ENTRY(BreakpointRuntimeHandler, 0) {
DartFrameIterator iterator(thread,
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != nullptr);
Code& orig_stub = Code::Handle(zone);
if (!caller_frame->is_interpreted()) {
orig_stub =
isolate->group()->debugger()->GetPatchedStubAddress(caller_frame->pc());
}
const Error& error =
Error::Handle(zone, isolate->debugger()->PauseBreakpoint());
ThrowIfError(error);
arguments.SetReturn(orig_stub);
}
#endif
DEFINE_RUNTIME_ENTRY(SingleStepHandler, 0) {
#if defined(PRODUCT) || defined(DART_PRECOMPILED_RUNTIME)
UNREACHABLE();
#else
const Error& error =
Error::Handle(zone, isolate->debugger()->PauseStepping());
ThrowIfError(error);
#endif
}
// An instance call of the form o.f(...) could not be resolved. Check if
// there is a getter with the same name. If so, invoke it. If the value is
// a closure, invoke it with the given arguments. If the value is a
// non-closure, attempt to invoke "call" on it.
static bool ResolveCallThroughGetter(const Class& receiver_class,
const String& target_name,
const String& demangled,
const Array& arguments_descriptor,
Function* result) {
const bool create_if_absent = !FLAG_precompiled_mode;
const String& getter_name = String::Handle(Field::GetterName(demangled));
const int kTypeArgsLen = 0;
const int kNumArguments = 1;
ArgumentsDescriptor args_desc(Array::Handle(
ArgumentsDescriptor::NewBoxed(kTypeArgsLen, kNumArguments)));
const Function& getter =
Function::Handle(Resolver::ResolveDynamicForReceiverClass(
receiver_class, getter_name, args_desc, create_if_absent));
if (getter.IsNull() || getter.IsMethodExtractor()) {
return false;
}
// We do this on the target_name, _not_ on the demangled name, so that
// FlowGraphBuilder::BuildGraphOfInvokeFieldDispatcher can detect dynamic
// calls from the dyn: tag on the name of the dispatcher.
const Function& target_function =
Function::Handle(receiver_class.GetInvocationDispatcher(
target_name, arguments_descriptor,
UntaggedFunction::kInvokeFieldDispatcher, create_if_absent));
ASSERT(!create_if_absent || !target_function.IsNull());
if (FLAG_trace_ic) {
OS::PrintErr(
"InvokeField IC miss: adding <%s> id:%" Pd " -> <%s>\n",
receiver_class.ToCString(), receiver_class.id(),
target_function.IsNull() ? "null" : target_function.ToCString());
}
*result = target_function.ptr();
return true;
}
// Handle other invocations (implicit closures, noSuchMethod).
FunctionPtr InlineCacheMissHelper(const Class& receiver_class,
const Array& args_descriptor,
const String& target_name) {
// Create a demangled version of the target_name, if necessary, This is used
// for the field getter in ResolveCallThroughGetter and as the target name
// for the NoSuchMethod dispatcher (if needed).
const String* demangled = &target_name;
if (Function::IsDynamicInvocationForwarderName(target_name)) {
demangled = &String::Handle(
Function::DemangleDynamicInvocationForwarderName(target_name));
}
const bool is_getter = Field::IsGetterName(*demangled);
Function& result = Function::Handle();
#if defined(DART_PRECOMPILED_RUNTIME)
const bool create_if_absent = false;
#else
const bool create_if_absent = true;
#endif
if (is_getter ||
!ResolveCallThroughGetter(receiver_class, target_name, *demangled,
args_descriptor, &result)) {
ArgumentsDescriptor desc(args_descriptor);
const Function& target_function =
Function::Handle(receiver_class.GetInvocationDispatcher(
*demangled, args_descriptor,
UntaggedFunction::kNoSuchMethodDispatcher, create_if_absent));
if (FLAG_trace_ic) {
OS::PrintErr(
"NoSuchMethod IC miss: adding <%s> id:%" Pd " -> <%s>\n",
receiver_class.ToCString(), receiver_class.id(),
target_function.IsNull() ? "null" : target_function.ToCString());
}
result = target_function.ptr();
}
// May be null if in the precompiled runtime, in which case dispatch will be
// handled by NoSuchMethodFromCallStub.
ASSERT(!create_if_absent || !result.IsNull());
return result.ptr();
}
#if !defined(DART_PRECOMPILED_RUNTIME)
static void TrySwitchInstanceCall(Thread* thread,
StackFrame* caller_frame,
const Code& caller_code,
const Function& caller_function,
const ICData& ic_data,
const Function& target_function) {
ASSERT(!target_function.IsNull());
auto zone = thread->zone();
// Monomorphic/megamorphic calls only check the receiver CID.
if (ic_data.NumArgsTested() != 1) return;
ASSERT(ic_data.rebind_rule() == ICData::kInstance);
// Monomorphic/megamorphic calls don't record exactness.
if (ic_data.is_tracking_exactness()) return;
#if !defined(PRODUCT)
// Monomorphic/megamorphic do not check the isolate's stepping flag.
if (thread->isolate()->has_attempted_stepping()) return;
#endif
// Monomorphic/megamorphic calls are only for unoptimized code.
if (caller_frame->is_interpreted()) return;
ASSERT(!caller_code.is_optimized());
// Code is detached from its function. This will prevent us from resetting
// the switchable call later because resets are function based and because
// the ic_data_array belongs to the function instead of the code. This should
// only happen because of reload, but it sometimes happens with KBC mixed mode
// probably through a race between foreground and background compilation.
if (caller_function.unoptimized_code() != caller_code.ptr()) {
return;
}
#if !defined(PRODUCT)
// Skip functions that contain breakpoints or when debugger is in single
// stepping mode.
if (thread->isolate_group()->debugger()->IsDebugging(thread,
caller_function)) {
return;
}
#endif
const intptr_t num_checks = ic_data.NumberOfChecks();
// Monomorphic call.
if (FLAG_unopt_monomorphic_calls && (num_checks == 1)) {
// A call site in the monomorphic state does not load the arguments
// descriptor, so do not allow transition to this state if the callee
// needs it.
if (target_function.PrologueNeedsArgumentsDescriptor()) {
return;
}
const Array& data = Array::Handle(zone, ic_data.entries());
const Code& target = Code::Handle(zone, target_function.EnsureHasCode());
CodePatcher::PatchInstanceCallAt(caller_frame->pc(), caller_code, data,
target);
if (FLAG_trace_ic) {
OS::PrintErr("Instance call at %" Px
" switching to monomorphic dispatch, %s\n",
caller_frame->pc(), ic_data.ToCString());
}
return; // Success.
}
// Megamorphic call.
if (FLAG_unopt_megamorphic_calls &&
(num_checks > FLAG_max_polymorphic_checks)) {
const String& name = String::Handle(zone, ic_data.target_name());
const Array& descriptor =
Array::Handle(zone, ic_data.arguments_descriptor());
const MegamorphicCache& cache = MegamorphicCache::Handle(
zone, MegamorphicCacheTable::Lookup(thread, name, descriptor));
ic_data.set_is_megamorphic(true);
CodePatcher::PatchInstanceCallAt(caller_frame->pc(), caller_code, cache,
StubCode::MegamorphicCall());
if (FLAG_trace_ic) {
OS::PrintErr("Instance call at %" Px
" switching to megamorphic dispatch, %s\n",
caller_frame->pc(), ic_data.ToCString());
}
return; // Success.
}
}
#endif // !defined(DART_PRECOMPILED_RUNTIME)
// Perform the subtype and return constant function based on the result.
static FunctionPtr ComputeTypeCheckTarget(const Instance& receiver,
const AbstractType& type,
const ArgumentsDescriptor& desc) {
const bool result = receiver.IsInstanceOf(type, Object::null_type_arguments(),
Object::null_type_arguments());
const ObjectStore* store = IsolateGroup::Current()->object_store();
const Function& target =
Function::Handle(result ? store->simple_instance_of_true_function()
: store->simple_instance_of_false_function());
ASSERT(!target.IsNull());
return target.ptr();
}
static FunctionPtr Resolve(
Thread* thread,
Zone* zone,
const GrowableArray<const Instance*>& caller_arguments,
const Class& receiver_class,
const String& name,
const Array& descriptor) {
ASSERT(name.IsSymbol());
auto& target_function = Function::Handle(zone);
ArgumentsDescriptor args_desc(descriptor);
const bool allow_add = !FLAG_precompiled_mode;
if (receiver_class.EnsureIsFinalized(thread) == Error::null()) {
target_function = Resolver::ResolveDynamicForReceiverClass(
receiver_class, name, args_desc, allow_add);
}
if (caller_arguments.length() == 2 &&
target_function.ptr() == thread->isolate_group()
->object_store()
->simple_instance_of_function()) {
// Replace the target function with constant function.
const AbstractType& type = AbstractType::Cast(*caller_arguments[1]);
target_function =
ComputeTypeCheckTarget(*caller_arguments[0], type, args_desc);
}
if (target_function.IsNull()) {
target_function = InlineCacheMissHelper(receiver_class, descriptor, name);
}
ASSERT(!allow_add || !target_function.IsNull());
return target_function.ptr();
}
// Handles a static call in unoptimized code that has one argument type not
// seen before. Compile the target if necessary and update the ICData.
// Arg0: argument.
// Arg1: IC data object.
DEFINE_RUNTIME_ENTRY(StaticCallMissHandlerOneArg, 2) {
const Instance& arg = Instance::CheckedHandle(zone, arguments.ArgAt(0));
const ICData& ic_data = ICData::CheckedHandle(zone, arguments.ArgAt(1));
// IC data for static call is prepopulated with the statically known target.
ASSERT(ic_data.NumberOfChecksIs(1));
const Function& target = Function::Handle(zone, ic_data.GetTargetAt(0));
target.EnsureHasCode();
ASSERT(!target.IsNull() && target.HasCode());
ic_data.EnsureHasReceiverCheck(arg.GetClassId(), target, 1);
if (FLAG_trace_ic) {
DartFrameIterator iterator(thread,
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != nullptr);
OS::PrintErr("StaticCallMissHandler at %#" Px " target %s (%" Pd ")\n",
caller_frame->pc(), target.ToCString(), arg.GetClassId());
}
arguments.SetReturn(target);
}
// Handles a static call in unoptimized code that has two argument types not
// seen before. Compile the target if necessary and update the ICData.
// Arg0: argument 0.
// Arg1: argument 1.
// Arg2: IC data object.
DEFINE_RUNTIME_ENTRY(StaticCallMissHandlerTwoArgs, 3) {
const Instance& arg0 = Instance::CheckedHandle(zone, arguments.ArgAt(0));
const Instance& arg1 = Instance::CheckedHandle(zone, arguments.ArgAt(1));
const ICData& ic_data = ICData::CheckedHandle(zone, arguments.ArgAt(2));
// IC data for static call is prepopulated with the statically known target.
ASSERT(!ic_data.NumberOfChecksIs(0));
const Function& target = Function::Handle(zone, ic_data.GetTargetAt(0));
target.EnsureHasCode();
GrowableArray<intptr_t> cids(2);
cids.Add(arg0.GetClassId());
cids.Add(arg1.GetClassId());
ic_data.EnsureHasCheck(cids, target);
if (FLAG_trace_ic) {
DartFrameIterator iterator(thread,
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != nullptr);
OS::PrintErr("StaticCallMissHandler at %#" Px " target %s (%" Pd ", %" Pd
")\n",
caller_frame->pc(), target.ToCString(), cids[0], cids[1]);
}
arguments.SetReturn(target);
}
#if defined(DART_PRECOMPILED_RUNTIME)
static bool IsSingleTarget(IsolateGroup* isolate_group,
Zone* zone,
intptr_t lower_cid,
intptr_t upper_cid,
const Function& target,
const String& name) {
Class& cls = Class::Handle(zone);
ClassTable* table = isolate_group->class_table();
Function& other_target = Function::Handle(zone);
for (intptr_t cid = lower_cid; cid <= upper_cid; cid++) {
if (!table->HasValidClassAt(cid)) continue;
cls = table->At(cid);
if (cls.is_abstract()) continue;
if (!cls.is_allocated()) continue;
other_target = Resolver::ResolveDynamicAnyArgs(zone, cls, name,
/*allow_add=*/false);
if (other_target.ptr() != target.ptr()) {
return false;
}
}
return true;
}
class SavedUnlinkedCallMapKeyEqualsTraits : public AllStatic {
public:
static const char* Name() { return "SavedUnlinkedCallMapKeyEqualsTraits "; }
static bool ReportStats() { return false; }
static bool IsMatch(const Object& key1, const Object& key2) {
if (!key1.IsInteger() || !key2.IsInteger()) return false;
return Integer::Cast(key1).Equals(Integer::Cast(key2));
}
static uword Hash(const Object& key) {
return Integer::Cast(key).CanonicalizeHash();
}
};
using UnlinkedCallMap = UnorderedHashMap<SavedUnlinkedCallMapKeyEqualsTraits>;
static void SaveUnlinkedCall(Zone* zone,
Isolate* isolate,
uword frame_pc,
const UnlinkedCall& unlinked_call) {
IsolateGroup* isolate_group = isolate->group();
SafepointMutexLocker ml(isolate_group->unlinked_call_map_mutex());
if (isolate_group->saved_unlinked_calls() == Array::null()) {
const auto& initial_map =
Array::Handle(zone, HashTables::New<UnlinkedCallMap>(16, Heap::kOld));
isolate_group->set_saved_unlinked_calls(initial_map);
}
UnlinkedCallMap unlinked_call_map(zone,
isolate_group->saved_unlinked_calls());
const auto& pc = Integer::Handle(zone, Integer::NewFromUint64(frame_pc));
// Some other isolate might have updated unlinked_call_map[pc] too, but
// their update should be identical to ours.
const auto& new_or_old_value = UnlinkedCall::Handle(
zone, UnlinkedCall::RawCast(
unlinked_call_map.InsertOrGetValue(pc, unlinked_call)));
RELEASE_ASSERT(new_or_old_value.ptr() == unlinked_call.ptr());
isolate_group->set_saved_unlinked_calls(unlinked_call_map.Release());
}
static UnlinkedCallPtr LoadUnlinkedCall(Zone* zone,
Isolate* isolate,
uword pc) {
IsolateGroup* isolate_group = isolate->group();
SafepointMutexLocker ml(isolate_group->unlinked_call_map_mutex());
ASSERT(isolate_group->saved_unlinked_calls() != Array::null());
UnlinkedCallMap unlinked_call_map(zone,
isolate_group->saved_unlinked_calls());
const auto& pc_integer = Integer::Handle(zone, Integer::NewFromUint64(pc));
const auto& unlinked_call = UnlinkedCall::Cast(
Object::Handle(zone, unlinked_call_map.GetOrDie(pc_integer)));
isolate_group->set_saved_unlinked_calls(unlinked_call_map.Release());
return unlinked_call.ptr();
}
// NOTE: Right now we never delete [UnlinkedCall] objects. They are needed while
// a call site is in Unlinked/Monomorphic/MonomorphicSmiable/SingleTarget
// states.
//
// Theoretically we could free the [UnlinkedCall] object once we transition the
// call site to use ICData/MegamorphicCache, but that would require careful
// coordination between the deleter and a possible concurrent reader.
//
// To simplify the code we decided not to do that atm (only a very small
// fraction of callsites in AOT use switchable calls, the name/args-descriptor
// objects are kept alive anyways -> there is little memory savings from
// freeing the [UnlinkedCall] objects).
#endif // defined(DART_PRECOMPILED_RUNTIME)
enum class MissHandler {
kInlineCacheMiss,
kSwitchableCallMiss,
kFixCallersTargetMonomorphic,
};
// Handles updating of type feedback and possible patching of instance calls.
//
// It works in 3 separate steps:
// - resolve the actual target
// - update type feedback & (optionally) perform call site transition
// - return the right values
//
// Depending on the JIT/AOT mode we obtain current and patch new (target, data)
// differently:
//
// - JIT calls must be patched with CodePatcher::PatchInstanceCallAt()
// - AOT calls must be patched with CodePatcher::PatchSwitchableCallAt()
//
// Independent of which miss handler was used or how we will return, we look at
// current (target, data) and see if we need to transition the call site to a
// new (target, data). We do this while holding `IG->patchable_call_mutex()`.
//
// Depending on which miss handler got called we might need to return
// differently:
//
// - SwitchableCallMiss will get get (stub, data) return value
// - InlineCache*Miss will get get function as return value
//
class PatchableCallHandler {
public:
PatchableCallHandler(Thread* thread,
const GrowableArray<const Instance*>& caller_arguments,
MissHandler miss_handler,
NativeArguments arguments,
StackFrame* caller_frame,
const Code& caller_code,
const Function& caller_function)
: isolate_(thread->isolate()),
thread_(thread),
zone_(thread->zone()),
caller_arguments_(caller_arguments),
miss_handler_(miss_handler),
arguments_(arguments),
caller_frame_(caller_frame),
caller_code_(caller_code),
caller_function_(caller_function),
name_(String::Handle()),
args_descriptor_(Array::Handle()) {
// We only have two arg IC calls in JIT mode.
ASSERT(caller_arguments_.length() == 1 || !FLAG_precompiled_mode);
}
void ResolveSwitchAndReturn(const Object& data);
private:
FunctionPtr ResolveTargetFunction(const Object& data);
#if defined(DART_PRECOMPILED_RUNTIME)
void HandleMissAOT(const Object& old_data,
uword old_entry,
const Function& target_function);
void DoUnlinkedCallAOT(const UnlinkedCall& unlinked,
const Function& target_function);
void DoMonomorphicMissAOT(const Object& old_data,
const Function& target_function);
void DoSingleTargetMissAOT(const SingleTargetCache& data,
const Function& target_function);
void DoICDataMissAOT(const ICData& data, const Function& target_function);
bool CanExtendSingleTargetRange(const String& name,
const Function& old_target,
const Function& target_function,
intptr_t* lower,
intptr_t* upper);
#else
void HandleMissJIT(const Object& old_data,
const Code& old_target,
const Function& target_function);
void DoMonomorphicMissJIT(const Object& old_data,
const Function& target_function);
void DoICDataMissJIT(const ICData& data,
const Object& old_data,
const Function& target_function);
#endif // !defined(DART_PRECOMPILED_RUNTIME)
void DoMegamorphicMiss(const MegamorphicCache& data,
const Function& target_function);
void UpdateICDataWithTarget(const ICData& ic_data,
const Function& target_function);
void TrySwitch(const ICData& ic_data, const Function& target_function);
void ReturnAOT(const Code& stub, const Object& data);
void ReturnJIT(const Code& stub, const Object& data, const Function& target);
void ReturnJITorAOT(const Code& stub,
const Object& data,
const Function& target);
const Instance& receiver() { return *caller_arguments_[0]; }
bool should_consider_patching() {
// In AOT we use switchable calls.
if (FLAG_precompiled_mode) return true;
// In JIT instance calls use a different calling sequence in unoptimized vs
// optimized code (see [FlowGraphCompiler::EmitInstanceCallJIT] vs
// [FlowGraphCompiler::EmitOptimizedInstanceCall]).
//
// The [CodePatcher::GetInstanceCallAt], [CodePatcher::PatchInstanceCallAt]
// only recognize unoptimized call pattern.
//
// So we will not try to switch optimized instance calls.
return !caller_code_.is_optimized();
}
ICDataPtr NewICData();
ICDataPtr NewICDataWithTarget(intptr_t cid, const Function& target);
Isolate* isolate_;
Thread* thread_;
Zone* zone_;
const GrowableArray<const Instance*>& caller_arguments_;
MissHandler miss_handler_;
NativeArguments arguments_;
StackFrame* caller_frame_;
const Code& caller_code_;
const Function& caller_function_;
// Call-site information populated during resolution.
String& name_;
Array& args_descriptor_;
bool is_monomorphic_hit_ = false;
};
#if defined(DART_PRECOMPILED_RUNTIME)
void PatchableCallHandler::DoUnlinkedCallAOT(const UnlinkedCall& unlinked,
const Function& target_function) {
const auto& ic_data = ICData::Handle(
zone_,
target_function.IsNull()
? NewICData()
: NewICDataWithTarget(receiver().GetClassId(), target_function));
Object& object = Object::Handle(zone_, ic_data.ptr());
Code& code = Code::Handle(zone_, StubCode::ICCallThroughCode().ptr());
// If the target function has optional parameters or is generic, it's
// prologue requires ARGS_DESC_REG to be populated. Yet the switchable calls
// do not populate that on the call site, which is why we don't transition
// those call sites to monomorphic, but rather directly to call via stub
// (which will populate the ARGS_DESC_REG from the ICData).
//
// Because of this we also don't generate monomorphic checks for those
// functions.
if (!target_function.IsNull() &&
!target_function.PrologueNeedsArgumentsDescriptor()) {
// Patch to monomorphic call.
ASSERT(target_function.HasCode());
const Code& target_code =
Code::Handle(zone_, target_function.CurrentCode());
const Smi& expected_cid =
Smi::Handle(zone_, Smi::New(receiver().GetClassId()));
if (unlinked.can_patch_to_monomorphic()) {
object = expected_cid.ptr();
code = target_code.ptr();
ASSERT(code.HasMonomorphicEntry());
} else {
object = MonomorphicSmiableCall::New(expected_cid.Value(), target_code);
code = StubCode::MonomorphicSmiableCheck().ptr();
}
}
CodePatcher::PatchSwitchableCallAt(caller_frame_->pc(), caller_code_, object,
code);
// Return the ICData. The miss stub will jump to continue in the IC lookup
// stub.
ReturnAOT(StubCode::ICCallThroughCode(), ic_data);
}
bool PatchableCallHandler::CanExtendSingleTargetRange(
const String& name,
const Function& old_target,
const Function& target_function,
intptr_t* lower,
intptr_t* upper) {
if (old_target.ptr() != target_function.ptr()) {
return false;
}
intptr_t unchecked_lower, unchecked_upper;
if (receiver().GetClassId() < *lower) {
unchecked_lower = receiver().GetClassId();
unchecked_upper = *lower - 1;
*lower = receiver().GetClassId();
} else {
unchecked_upper = receiver().GetClassId();
unchecked_lower = *upper + 1;
*upper = receiver().GetClassId();
}
return IsSingleTarget(isolate_->group(), zone_, unchecked_lower,
unchecked_upper, target_function, name);
}
#endif // defined(DART_PRECOMPILED_RUNTIME)
#if defined(DART_PRECOMPILED_RUNTIME)
void PatchableCallHandler::DoMonomorphicMissAOT(
const Object& old_data,
const Function& target_function) {
classid_t old_expected_cid;
if (old_data.IsSmi()) {
old_expected_cid = Smi::Cast(old_data).Value();
} else {
RELEASE_ASSERT(old_data.IsMonomorphicSmiableCall());
old_expected_cid = MonomorphicSmiableCall::Cast(old_data).expected_cid();
}
const bool is_monomorphic_hit = old_expected_cid == receiver().GetClassId();
const auto& old_receiver_class = Class::Handle(
zone_, isolate_->group()->class_table()->At(old_expected_cid));
const auto& old_target = Function::Handle(
zone_, Resolve(thread_, zone_, caller_arguments_, old_receiver_class,
name_, args_descriptor_));
const auto& ic_data = ICData::Handle(
zone_, old_target.IsNull()
? NewICData()
: NewICDataWithTarget(old_expected_cid, old_target));
if (is_monomorphic_hit) {
// The site just have been updated to monomorphic state with same
// exact class id - do nothing in that case: stub will call through ic data.
ReturnAOT(StubCode::ICCallThroughCode(), ic_data);
return;
}
intptr_t lower = old_expected_cid;
intptr_t upper = old_expected_cid;
if (CanExtendSingleTargetRange(name_, old_target, target_function, &lower,
&upper)) {
const SingleTargetCache& cache =
SingleTargetCache::Handle(zone_, SingleTargetCache::New());
const Code& code = Code::Handle(zone_, target_function.CurrentCode());
cache.set_target(code);
cache.set_entry_point(code.EntryPoint());
cache.set_lower_limit(lower);
cache.set_upper_limit(upper);
const Code& stub = StubCode::SingleTargetCall();
CodePatcher::PatchSwitchableCallAt(caller_frame_->pc(), caller_code_, cache,
stub);
// Return the ICData. The miss stub will jump to continue in the IC call
// stub.
ReturnAOT(StubCode::ICCallThroughCode(), ic_data);
return;
}
// Patch to call through stub.
const Code& stub = StubCode::ICCallThroughCode();
CodePatcher::PatchSwitchableCallAt(caller_frame_->pc(), caller_code_, ic_data,
stub);
// Return the ICData. The miss stub will jump to continue in the IC lookup
// stub.
ReturnAOT(stub, ic_data);
}
#endif // defined(DART_PRECOMPILED_RUNTIME)
#if !defined(DART_PRECOMPILED_RUNTIME)
void PatchableCallHandler::DoMonomorphicMissJIT(
const Object& old_data,
const Function& target_function) {
// Monomorphic calls use the ICData::entries() as their data.
const auto& old_ic_data_entries = Array::Cast(old_data);
// Any non-empty ICData::entries() has a backref to it's ICData.
const auto& ic_data =
ICData::Handle(zone_, ICData::ICDataOfEntriesArray(old_ic_data_entries));
// The target didn't change, so we can stay inside monomorphic state.
if (ic_data.NumberOfChecksIs(1) &&
(ic_data.GetReceiverClassIdAt(0) == receiver().GetClassId())) {
// No need to update ICData - it's already up-to-date.
if (FLAG_trace_ic) {
OS::PrintErr("Instance call at %" Px
" updating code (old code was disabled)\n",
caller_frame_->pc());
}
// We stay in monomorphic state, patch the code object and reload the icdata
// entries array.
const auto& code = Code::Handle(zone_, target_function.EnsureHasCode());
const auto& data = Object::Handle(zone_, ic_data.entries());
CodePatcher::PatchInstanceCallAt(caller_frame_->pc(), caller_code_, data,
code);
ReturnJIT(code, data, target_function);
return;
}
ASSERT(ic_data.NumArgsTested() == 1);
const Code& stub = ic_data.is_tracking_exactness()
? StubCode::OneArgCheckInlineCacheWithExactnessCheck()
: StubCode::OneArgCheckInlineCache();
if (FLAG_trace_ic) {
OS::PrintErr("Instance call at %" Px
" switching monomorphic to polymorphic dispatch, %s\n",
caller_frame_->pc(), ic_data.ToCString());
}
CodePatcher::PatchInstanceCallAt(caller_frame_->pc(), caller_code_, ic_data,
stub);
ASSERT(caller_arguments_.length() == 1);
UpdateICDataWithTarget(ic_data, target_function);
ASSERT(should_consider_patching());
TrySwitchInstanceCall(thread_, caller_frame_, caller_code_, caller_function_,
ic_data, target_function);
ReturnJIT(stub, ic_data, target_function);
}
#endif // !defined(DART_PRECOMPILED_RUNTIME)
#if defined(DART_PRECOMPILED_RUNTIME)
void PatchableCallHandler::DoSingleTargetMissAOT(
const SingleTargetCache& data,
const Function& target_function) {
const Code& old_target_code = Code::Handle(zone_, data.target());
const Function& old_target =
Function::Handle(zone_, Function::RawCast(old_target_code.owner()));
// We lost the original ICData when we patched to the monomorphic case.
const auto& ic_data = ICData::Handle(
zone_,
target_function.IsNull()
? NewICData()
: NewICDataWithTarget(receiver().GetClassId(), target_function));
intptr_t lower = data.lower_limit();
intptr_t upper = data.upper_limit();
if (CanExtendSingleTargetRange(name_, old_target, target_function, &lower,
&upper)) {
data.set_lower_limit(lower);
data.set_upper_limit(upper);
// Return the ICData. The single target stub will jump to continue in the
// IC call stub.
ReturnAOT(StubCode::ICCallThroughCode(), ic_data);
return;
}
// Call site is not single target, switch to call using ICData.
const Code& stub = StubCode::ICCallThroughCode();
CodePatcher::PatchSwitchableCallAt(caller_frame_->pc(), caller_code_, ic_data,
stub);
// Return the ICData. The single target stub will jump to continue in the
// IC call stub.
ReturnAOT(stub, ic_data);
}
#endif // defined(DART_PRECOMPILED_RUNTIME)
#if defined(DART_PRECOMPILED_RUNTIME)
void PatchableCallHandler::DoICDataMissAOT(const ICData& ic_data,
const Function& target_function) {
const String& name = String::Handle(zone_, ic_data.target_name());
const Class& cls = Class::Handle(zone_, receiver().clazz());
ASSERT(!cls.IsNull());
const Array& descriptor =
Array::CheckedHandle(zone_, ic_data.arguments_descriptor());
ArgumentsDescriptor args_desc(descriptor);
if (FLAG_trace_ic || FLAG_trace_ic_miss_in_optimized) {
OS::PrintErr("ICData miss, class=%s, function<%" Pd ">=%s\n",
cls.ToCString(), args_desc.TypeArgsLen(), name.ToCString());
}
if (target_function.IsNull()) {
ReturnAOT(StubCode::NoSuchMethodDispatcher(), ic_data);
return;
}
const intptr_t number_of_checks = ic_data.NumberOfChecks();
if ((number_of_checks == 0) &&
(!FLAG_precompiled_mode || ic_data.receiver_cannot_be_smi()) &&
!target_function.PrologueNeedsArgumentsDescriptor()) {
// This call site is unlinked: transition to a monomorphic direct call.
// Note we cannot do this if the target has optional parameters because
// the monomorphic direct call does not load the arguments descriptor.
// We cannot do this if we are still in the middle of precompiling because
// the monomorphic case hides a live instance selector from the
// treeshaker.
const Code& target_code =
Code::Handle(zone_, target_function.EnsureHasCode());
const Smi& expected_cid =
Smi::Handle(zone_, Smi::New(receiver().GetClassId()));
ASSERT(target_code.HasMonomorphicEntry());
CodePatcher::PatchSwitchableCallAt(caller_frame_->pc(), caller_code_,
expected_cid, target_code);
ReturnAOT(target_code, expected_cid);
} else {
ic_data.EnsureHasReceiverCheck(receiver().GetClassId(), target_function);
if (number_of_checks > FLAG_max_polymorphic_checks) {
// Switch to megamorphic call.
const MegamorphicCache& cache = MegamorphicCache::Handle(
zone_, MegamorphicCacheTable::Lookup(thread_, name, descriptor));
const Code& stub = StubCode::MegamorphicCall();
CodePatcher::PatchSwitchableCallAt(caller_frame_->pc(), caller_code_,
cache, stub);
ReturnAOT(stub, cache);
} else {
ReturnAOT(StubCode::ICCallThroughCode(), ic_data);
}
}
}
#endif // defined(DART_PRECOMPILED_RUNTIME)
#if !defined(DART_PRECOMPILED_RUNTIME)
void PatchableCallHandler::DoICDataMissJIT(const ICData& ic_data,
const Object& old_code,
const Function& target_function) {
ASSERT(ic_data.NumArgsTested() == caller_arguments_.length());
if (ic_data.NumArgsTested() == 1) {
ASSERT(old_code.ptr() == StubCode::OneArgCheckInlineCache().ptr() ||
old_code.ptr() ==
StubCode::OneArgCheckInlineCacheWithExactnessCheck().ptr() ||
old_code.ptr() ==
StubCode::OneArgOptimizedCheckInlineCache().ptr() ||
old_code.ptr() ==
StubCode::OneArgOptimizedCheckInlineCacheWithExactnessCheck()
.ptr() ||
old_code.ptr() == StubCode::ICCallBreakpoint().ptr() ||
(old_code.IsNull() && !should_consider_patching()));
UpdateICDataWithTarget(ic_data, target_function);
if (should_consider_patching()) {
TrySwitchInstanceCall(thread_, caller_frame_, caller_code_,
caller_function_, ic_data, target_function);
}
const Code& stub = Code::Handle(
zone_, ic_data.is_tracking_exactness()
? StubCode::OneArgCheckInlineCacheWithExactnessCheck().ptr()
: StubCode::OneArgCheckInlineCache().ptr());
ReturnJIT(stub, ic_data, target_function);
} else {
ASSERT(old_code.ptr() == StubCode::TwoArgsCheckInlineCache().ptr() ||
old_code.ptr() == StubCode::SmiAddInlineCache().ptr() ||
old_code.ptr() == StubCode::SmiLessInlineCache().ptr() ||
old_code.ptr() == StubCode::SmiEqualInlineCache().ptr() ||
old_code.ptr() ==
StubCode::TwoArgsOptimizedCheckInlineCache().ptr() ||
old_code.ptr() == StubCode::ICCallBreakpoint().ptr() ||
(old_code.IsNull() && !should_consider_patching()));
UpdateICDataWithTarget(ic_data, target_function);
ReturnJIT(StubCode::TwoArgsCheckInlineCache(), ic_data, target_function);
}
}
#endif // !defined(DART_PRECOMPILED_RUNTIME)
void PatchableCallHandler::DoMegamorphicMiss(const MegamorphicCache& data,
const Function& target_function) {
const String& name = String::Handle(zone_, data.target_name());
const Class& cls = Class::Handle(zone_, receiver().clazz());
ASSERT(!cls.IsNull());
const Array& descriptor =
Array::CheckedHandle(zone_, data.arguments_descriptor());
ArgumentsDescriptor args_desc(descriptor);
if (FLAG_trace_ic || FLAG_trace_ic_miss_in_optimized) {
OS::PrintErr("Megamorphic miss, class=%s, function<%" Pd ">=%s\n",
cls.ToCString(), args_desc.TypeArgsLen(), name.ToCString());
}
if (target_function.IsNull()) {
ReturnJITorAOT(StubCode::NoSuchMethodDispatcher(), data, target_function);
return;
}
// Insert function found into cache.
const Smi& class_id = Smi::Handle(zone_, Smi::New(cls.id()));
data.EnsureContains(class_id, target_function);
ReturnJITorAOT(StubCode::MegamorphicCall(), data, target_function);
}
void PatchableCallHandler::UpdateICDataWithTarget(
const ICData& ic_data,
const Function& target_function) {
if (target_function.IsNull()) return;
// If, upon return of the runtime, we will invoke the target directly we have
// to increment the call count here in the ICData.
// If we instead only insert a new ICData entry and will return to the IC stub
// which will call the target, the stub will take care of the increment.
const bool call_target_directly =
miss_handler_ == MissHandler::kInlineCacheMiss;
const intptr_t invocation_count = call_target_directly ? 1 : 0;
if (caller_arguments_.length() == 1) {
auto exactness = StaticTypeExactnessState::NotTracking();
#if !defined(DART_PRECOMPILED_RUNTIME)
if (ic_data.is_tracking_exactness()) {
exactness = receiver().IsNull()
? StaticTypeExactnessState::NotExact()
: StaticTypeExactnessState::Compute(
Type::Cast(AbstractType::Handle(
ic_data.receivers_static_type())),
receiver());
}
#endif // !defined(DART_PRECOMPILED_RUNTIME)
ic_data.EnsureHasReceiverCheck(receiver().GetClassId(), target_function,
invocation_count, exactness);
} else {
GrowableArray<intptr_t> class_ids(caller_arguments_.length());
ASSERT(ic_data.NumArgsTested() == caller_arguments_.length());
for (intptr_t i = 0; i < caller_arguments_.length(); i++) {
class_ids.Add(caller_arguments_[i]->GetClassId());
}
ic_data.EnsureHasCheck(class_ids, target_function, invocation_count);
}
}
void PatchableCallHandler::ReturnAOT(const Code& stub, const Object& data) {
ASSERT(miss_handler_ == MissHandler::kSwitchableCallMiss);
arguments_.SetArgAt(0, stub); // Second return value.
arguments_.SetReturn(data);
}
void PatchableCallHandler::ReturnJIT(const Code& stub,
const Object& data,
const Function& target) {
// In JIT we can have two different miss handlers to which we return slightly
// differently.
switch (miss_handler_) {
case MissHandler::kSwitchableCallMiss: {
arguments_.SetArgAt(0, stub); // Second return value.
arguments_.SetReturn(data);
break;
}
case MissHandler::kFixCallersTargetMonomorphic: {
arguments_.SetArgAt(1, data); // Second return value.
arguments_.SetReturn(stub);
break;
}
case MissHandler::kInlineCacheMiss: {
arguments_.SetReturn(target);
break;
}
}
}
void PatchableCallHandler::ReturnJITorAOT(const Code& stub,
const Object& data,
const Function& target) {
#if defined(DART_PRECOMPILED_MODE)
ReturnAOT(stub, data);
#else
ReturnJIT(stub, data, target);
#endif
}
ICDataPtr PatchableCallHandler::NewICData() {
return ICData::New(caller_function_, name_, args_descriptor_, DeoptId::kNone,
/*num_args_tested=*/1, ICData::kInstance);
}
ICDataPtr PatchableCallHandler::NewICDataWithTarget(intptr_t cid,
const Function& target) {
GrowableArray<intptr_t> cids(1);
cids.Add(cid);
return ICData::NewWithCheck(caller_function_, name_, args_descriptor_,
DeoptId::kNone, /*num_args_tested=*/1,
ICData::kInstance, &cids, target);
}
FunctionPtr PatchableCallHandler::ResolveTargetFunction(const Object& data) {
switch (data.GetClassId()) {
case kUnlinkedCallCid: {
const auto& unlinked_call = UnlinkedCall::Cast(data);
#if defined(DART_PRECOMPILED_RUNTIME)
// When transitioning out of UnlinkedCall to other states (e.g.
// Monomorphic, MonomorphicSmiable, SingleTarget) we lose
// name/arg-descriptor in AOT mode and cannot recover it.
//
// Even if we could recover an old target function (which was missed) -
// which we cannot in AOT bare mode - we can still lose the name due to a
// dyn:* call site potentially targeting non-dyn:* targets.
//
// => We will therefore retain the unlinked call here.
//
// In JIT mode we always use ICData from the call site, which has the
// correct name/args-descriptor.
SaveUnlinkedCall(zone_, isolate_, caller_frame_->pc(), unlinked_call);
#endif // defined(DART_PRECOMPILED_RUNTIME)
name_ = unlinked_call.target_name();
args_descriptor_ = unlinked_call.arguments_descriptor();
break;
}
case kMonomorphicSmiableCallCid:
FALL_THROUGH;
#if defined(DART_PRECOMPILED_RUNTIME)
case kSmiCid:
FALL_THROUGH;
case kSingleTargetCacheCid: {
const auto& unlinked_call = UnlinkedCall::Handle(
zone_, LoadUnlinkedCall(zone_, isolate_, caller_frame_->pc()));
name_ = unlinked_call.target_name();
args_descriptor_ = unlinked_call.arguments_descriptor();
break;
}
#else
case kArrayCid: {
// Monomorphic calls use the ICData::entries() as their data.
const auto& ic_data_entries = Array::Cast(data);
// Any non-empty ICData::entries() has a backref to it's ICData.
const auto& ic_data =
ICData::Handle(zone_, ICData::ICDataOfEntriesArray(ic_data_entries));
args_descriptor_ = ic_data.arguments_descriptor();
name_ = ic_data.target_name();
break;
}
#endif // defined(DART_PRECOMPILED_RUNTIME)
case kICDataCid:
FALL_THROUGH;
case kMegamorphicCacheCid: {
const CallSiteData& call_site_data = CallSiteData::Cast(data);
name_ = call_site_data.target_name();
args_descriptor_ = call_site_data.arguments_descriptor();
break;
}
default:
UNREACHABLE();
}
const Class& cls = Class::Handle(zone_, receiver().clazz());
return Resolve(thread_, zone_, caller_arguments_, cls, name_,
args_descriptor_);
}
void PatchableCallHandler::ResolveSwitchAndReturn(const Object& old_data) {
// Find out actual target (which can be time consuming) without holding any
// locks.
const auto& target_function =
Function::Handle(zone_, ResolveTargetFunction(old_data));
auto& data = Object::Handle(zone_);
// We ensure any transition in a patchable calls are done in an atomic
// manner, we ensure we always transition forward (e.g. Monomorphic ->
// Polymorphic).
//
// Mutators are only stopped if we actually need to patch a patchable call.
// We may not do that if we e.g. just add one more check to an ICData.
SafepointMutexLocker ml(thread_->isolate_group()->patchable_call_mutex());
#if defined(DART_PRECOMPILED_RUNTIME)
data =
CodePatcher::GetSwitchableCallDataAt(caller_frame_->pc(), caller_code_);
uword target_entry = 0;
DEBUG_ONLY(target_entry = CodePatcher::GetSwitchableCallTargetEntryAt(
caller_frame_->pc(), caller_code_));
HandleMissAOT(data, target_entry, target_function);
#else
auto& code = Code::Handle(zone_);
if (should_consider_patching()) {
code ^= CodePatcher::GetInstanceCallAt(caller_frame_->pc(), caller_code_,
&data);
} else {
ASSERT(old_data.IsICData() || old_data.IsMegamorphicCache());
data = old_data.ptr();
}
HandleMissJIT(data, code, target_function);
#endif
}
#if defined(DART_PRECOMPILED_RUNTIME)
void PatchableCallHandler::HandleMissAOT(const Object& old_data,
uword old_entry,
const Function& target_function) {