blob: 98cb25fcce703a995c21b2f58b84a6298aa53b58 [file] [log] [blame] [edit]
// Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef RUNTIME_VM_BITFIELD_H_
#define RUNTIME_VM_BITFIELD_H_
#include <type_traits>
#include "platform/assert.h"
#include "platform/atomic.h"
#include "platform/globals.h"
#include "platform/no_tsan.h"
#include "platform/thread_sanitizer.h"
#include "platform/utils.h"
namespace dart {
template <typename T>
class AtomicBitFieldContainer {
static_assert(sizeof(std::atomic<T>) == sizeof(T),
"Size of type changes when made atomic");
public:
using ContainedType = T;
AtomicBitFieldContainer() : field_(0) {}
operator T() const { return field_.load(std::memory_order_relaxed); }
T operator=(T tags) {
field_.store(tags, std::memory_order_relaxed);
return tags;
}
T load(std::memory_order order) const { return field_.load(order); }
NO_SANITIZE_THREAD T load_ignore_race() const {
return *reinterpret_cast<const T*>(&field_);
}
void store(T value, std::memory_order order) { field_.store(value, order); }
bool compare_exchange_weak(T old_tags, T new_tags, std::memory_order order) {
return field_.compare_exchange_weak(old_tags, new_tags, order);
}
template <class TargetBitField,
std::memory_order order = std::memory_order_relaxed>
typename TargetBitField::Type Read() const {
return TargetBitField::decode(field_.load(order));
}
template <class TargetBitField,
std::memory_order order = std::memory_order_relaxed>
void UpdateBool(bool value) {
if (value) {
field_.fetch_or(TargetBitField::encode(true), order);
} else {
field_.fetch_and(static_cast<T>(~TargetBitField::encode(true)), order);
}
}
template <class TargetBitField>
void FetchOr(typename TargetBitField::Type value) {
field_.fetch_or(TargetBitField::encode(value), std::memory_order_relaxed);
}
template <class TargetBitField>
void Update(typename TargetBitField::Type value) {
T old_field = field_.load(std::memory_order_relaxed);
T new_field;
do {
new_field = TargetBitField::update(value, old_field);
} while (!field_.compare_exchange_weak(old_field, new_field,
std::memory_order_relaxed));
}
template <class TargetBitField>
void UpdateUnsynchronized(typename TargetBitField::Type value) {
field_.store(
TargetBitField::update(value, field_.load(std::memory_order_relaxed)),
std::memory_order_relaxed);
}
template <class TargetBitField>
typename TargetBitField::Type UpdateConditional(
typename TargetBitField::Type value_to_be_set,
typename TargetBitField::Type conditional_old_value) {
T old_field = field_.load(std::memory_order_relaxed);
while (true) {
// This operation is only performed if the condition is met.
auto old_value = TargetBitField::decode(old_field);
if (old_value != conditional_old_value) {
return old_value;
}
T new_tags = TargetBitField::update(value_to_be_set, old_field);
if (field_.compare_exchange_weak(old_field, new_tags,
std::memory_order_relaxed)) {
return value_to_be_set;
}
// [old_tags] was updated to it's current value.
}
}
template <class TargetBitField>
bool TryAcquire() {
T mask = TargetBitField::encode(true);
T old_field = field_.fetch_or(mask, std::memory_order_relaxed);
return !TargetBitField::decode(old_field);
}
template <class TargetBitField>
bool TryClear() {
T mask = ~TargetBitField::encode(true);
T old_field = field_.fetch_and(mask, std::memory_order_relaxed);
return TargetBitField::decode(old_field);
}
template <class TargetBitField>
bool TryClearIgnoreRace() {
T mask = ~TargetBitField::encode(true);
T old_field = FetchAndRelaxedIgnoreRace(&field_, mask);
return TargetBitField::decode(old_field);
}
private:
std::atomic<T> field_;
};
static constexpr uword kUwordOne = 1U;
#define BITFIELD_NON_BOOL_MIN_SIZE_WITH_POSITION(S, T, position) \
((sizeof(S) * kBitsPerByte - position > sizeof(T) * kBitsPerByte) \
? sizeof(T) * kBitsPerByte \
: sizeof(S) * kBitsPerByte - (position))
// BitField is a template for encoding and decoding a value of type T
// inside a storage of type S. If a requested size is not provided, then:
// * If T is bool, the requested size is 1.
// * If the remaining bits is larger than the number of bits needed to store a
// value of type T, then the requested size is sizeof(T) * kBitsPerByte.
// * Otherwise, the requsted size is the number of remaining bits.
//
// Note that the size of the bitfield may be smaller than the requested size,
// if T is a signed type and the requested size includes the sign bit of T.
//
// Note: S and T must be static_cast-able to and from an integral type. If S is
// decltype(field_) and field_ is defined as
// std::atomic<U> field_;
// then change the definition to be
// AtomicBitFieldContainer<U> field_;
// which is supported by partial specializations to work like a BitField on U.
template <typename S,
typename T,
int position = 0,
int requested_size =
std::is_same_v<T, bool>
? 1
: BITFIELD_NON_BOOL_MIN_SIZE_WITH_POSITION(S, T, position),
bool sign_extend = false,
typename Enable = void>
class BitField {
public:
using Type = T;
static_assert(sizeof(S) * kBitsPerByte <= kBitsPerInt64,
"The container type cannot be larger than 64 bits.");
static_assert(sizeof(T) * kBitsPerByte <= kBitsPerInt64,
"The value type cannot be larger than 64 bits.");
static_assert(requested_size > 0, "A non-positive size was requested.");
static_assert(requested_size <= sizeof(T) * kBitsPerByte,
"The value type cannot hold all values of the requested size.");
static_assert(!sign_extend || std::is_signed_v<T>,
"Only signed bitfield types should be sign extended.");
private:
static constexpr int size =
!sign_extend && std::is_signed_v<T> &&
(sizeof(T) * kBitsPerByte <= requested_size)
? (sizeof(T) * kBitsPerByte - 1)
: requested_size;
public:
static_assert((sizeof(S) * kBitsPerByte) >= (position + size),
"BitField does not fit into the container type.");
static constexpr intptr_t kNextBit = position + size;
// Tells whether the provided value fits into the bit field.
static constexpr bool is_valid(T value) {
return decode(encode_unchecked(value)) == value;
}
// Returns a S mask of the bit field.
static constexpr S mask() {
return static_cast<S>(Utils::NBitMask<uint64_t>(size));
}
// Returns a S mask of the bit field which can be applied directly to
// to the raw unshifted bits.
static constexpr S mask_in_place() {
return static_cast<S>(static_cast<uint64_t>(mask()) << position);
}
// Returns the shift count needed to right-shift the bit field to
// the least-significant bits.
static constexpr int shift() { return position; }
// Returns the size of the bit field.
static constexpr int bitsize() { return size; }
// Returns whether the sign bit of the value is sign extended.
static constexpr bool sign_extended() { return sign_extend; }
// Returns the maximum value encodable in the bitfield.
static constexpr T max() {
constexpr size_t magnitude_bits = bitsize() - (sign_extended() ? 1 : 0);
return static_cast<T>(Utils::NBitMask<uint64_t>(magnitude_bits));
}
// Returns the minimum value encodable in the bitfield.
static constexpr T min() {
return static_cast<T>(sign_extended() ? ~static_cast<uint64_t>(max()) : 0);
}
// Returns an S with the bit field value encoded.
static constexpr S encode(T value) {
ASSERT(is_valid(value));
return encode_unchecked(value);
}
// Extracts the bit field from the value.
static constexpr T decode(S value) {
// Ensure we slide down the sign bit if the value in the bit field is signed
// and negative. We use 64-bit ints inside the expression since we can have
// both cases: sizeof(S) > sizeof(T) or sizeof(S) < sizeof(T).
auto const u = static_cast<uint64_t>(value);
if constexpr (sign_extend) {
return static_cast<T>((static_cast<int64_t>(u << (64 - kNextBit))) >>
(64 - size));
} else {
return static_cast<T>((u >> position) & mask());
}
}
// Returns an S with the bit field value encoded based on the
// original value. Only the bits corresponding to this bit field
// will be changed.
static constexpr S update(T value, S original) {
return encode(value) | (~mask_in_place() & original);
}
private:
// Returns an S with the bit field value encoded.
static constexpr S encode_unchecked(T value) {
auto const u = static_cast<uint64_t>(value);
return static_cast<S>(u & mask()) << position;
}
};
// Partial instantiations to avoid having to change BitField declarations if
// S is decltype(field_) and the type of field_ is changed to be wrapped in an
// AtomicBitFieldContainer, which includes not having to provide any values for
// parameters that would otherwise be appropriately deduced when not provided
// for a BitField on an integral type S.
//
// Note that some specializations are duplicated for T != bool and T = bool,
// since partial specializations cannot specialize the requested size with a
// value that checks the type of T (to use a default requested size of 1
// if T == bool and otherwise sizeof(T) * kBitsPerByte).
template <typename S, typename T, int position, int size, bool sign_extend>
class BitField<S,
T,
position,
size,
sign_extend,
std::void_t<typename S::ContainedType>>
: public BitField<typename S::ContainedType,
T,
position,
size,
sign_extend> {};
template <typename S, typename T, int position, int size>
class BitField<
S,
T,
position,
size,
false,
std::void_t<std::enable_if_t<
size != BITFIELD_NON_BOOL_MIN_SIZE_WITH_POSITION(S, T, position) &&
!std::is_same_v<T, bool>,
typename S::ContainedType>>>
: public BitField<typename S::ContainedType, T, position, size, false> {};
template <typename S, typename T, int position>
class BitField<
S,
T,
position,
BITFIELD_NON_BOOL_MIN_SIZE_WITH_POSITION(S, T, position),
false,
std::void_t<std::enable_if_t<position != 0 && !std::is_same_v<T, bool>,
typename S::ContainedType>>>
: public BitField<typename S::ContainedType,
T,
position,
BITFIELD_NON_BOOL_MIN_SIZE_WITH_POSITION(S, T, position),
false> {};
template <typename S, typename T>
class BitField<S,
T,
0,
BITFIELD_NON_BOOL_MIN_SIZE_WITH_POSITION(S, T, 0),
false,
std::void_t<std::enable_if_t<!std::is_same_v<T, bool>,
typename S::ContainedType>>>
: public BitField<typename S::ContainedType,
T,
0,
BITFIELD_NON_BOOL_MIN_SIZE_WITH_POSITION(S, T, 0),
false> {};
template <typename S, int position, int size>
class BitField<
S,
bool,
position,
size,
false,
std::void_t<std::enable_if_t<size != 1, typename S::ContainedType>>>
: public BitField<typename S::ContainedType, bool, position, size, false> {
};
template <typename S, int position>
class BitField<
S,
bool,
position,
1,
false,
std::void_t<std::enable_if_t<position != 0, typename S::ContainedType>>>
: public BitField<typename S::ContainedType, bool, position, 1, false> {};
template <typename S>
class BitField<S, bool, 0, 1, false, std::void_t<typename S::ContainedType>>
: public BitField<typename S::ContainedType, bool, 0, 1, false> {};
// Alias for sign-extended BitFields to avoid being forced to provide a size
// and/or position when the default values are appropriate.
template <typename S,
typename T,
int position = 0,
int size = BITFIELD_NON_BOOL_MIN_SIZE_WITH_POSITION(S, T, position)>
using SignedBitField = BitField<S,
T,
position,
size,
/*sign_extend=*/true,
std::enable_if_t<std::is_signed_v<T>, void>>;
#undef BITFIELD_NON_BOOL_MIN_SIZE_WITH_POSITION
} // namespace dart
#endif // RUNTIME_VM_BITFIELD_H_