blob: f34388f1c2850bd7910409670586a66ce44b9608 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
library deferred_load;
import 'dart:collection' show Queue;
import 'package:front_end/src/api_unstable/dart2js.dart' as fe;
import 'common/tasks.dart' show CompilerTask;
import 'common.dart';
import 'common_elements.dart'
show CommonElements, ElementEnvironment, KElementEnvironment;
import 'compiler.dart' show Compiler;
import 'constants/values.dart'
show
ConstantValue,
ConstructedConstantValue,
TypeConstantValue,
DeferredGlobalConstantValue,
InstantiationConstantValue;
import 'elements/types.dart';
import 'elements/entities.dart';
import 'kernel/kelements.dart' show KLocalFunction;
import 'serialization/serialization.dart';
import 'options.dart';
import 'universe/use.dart';
import 'universe/world_impact.dart'
show ImpactUseCase, WorldImpact, WorldImpactVisitorImpl;
import 'util/util.dart' show makeUnique;
import 'world.dart' show KClosedWorld;
/// A "hunk" of the program that will be loaded whenever one of its [imports]
/// are loaded.
///
/// Elements that are only used in one deferred import, is in an OutputUnit with
/// the deferred import as single element in the [imports] set.
///
/// Whenever a deferred Element is shared between several deferred imports it is
/// in an output unit with those imports in the [imports] Set.
///
/// We never create two OutputUnits sharing the same set of [imports].
class OutputUnit implements Comparable<OutputUnit> {
/// `true` if this output unit is for the main output file.
final bool isMainOutput;
/// A unique name representing this [OutputUnit].
final String name;
/// The deferred imports that use the elements in this output unit.
final Set<ImportEntity> _imports;
OutputUnit(this.isMainOutput, this.name, this._imports);
@override
int compareTo(OutputUnit other) {
if (identical(this, other)) return 0;
if (isMainOutput && !other.isMainOutput) return -1;
if (!isMainOutput && other.isMainOutput) return 1;
var size = _imports.length;
var otherSize = other._imports.length;
if (size != otherSize) return size.compareTo(otherSize);
var imports = _imports.toList();
var otherImports = other._imports.toList();
for (var i = 0; i < size; i++) {
if (imports[i] == otherImports[i]) continue;
var a = imports[i].uri.path;
var b = otherImports[i].uri.path;
var cmp = a.compareTo(b);
if (cmp != 0) return cmp;
}
// TODO(sigmund): make compare stable. If we hit this point, all imported
// libraries are the same, however [this] and [other] use different deferred
// imports in the program. We can make this stable if we sort based on the
// deferred imports themselves (e.g. their declaration location).
return name.compareTo(other.name);
}
Set<ImportEntity> get importsForTesting => _imports;
@override
String toString() => "OutputUnit($name, $_imports)";
}
/// For each deferred import, find elements and constants to be loaded when that
/// import is loaded. Elements that are used by several deferred imports are in
/// shared OutputUnits.
abstract class DeferredLoadTask extends CompilerTask {
@override
String get name => 'Deferred Loading';
/// The OutputUnit that will be loaded when the program starts.
OutputUnit _mainOutputUnit;
/// A set containing (eventually) all output units that will result from the
/// program.
final List<OutputUnit> _allOutputUnits = new List<OutputUnit>();
/// Will be `true` if the program contains deferred libraries.
bool isProgramSplit = false;
static const ImpactUseCase IMPACT_USE = const ImpactUseCase('Deferred load');
/// A cache of the result of calling `computeImportDeferName` on the keys of
/// this map.
final Map<ImportEntity, String> _importDeferName = <ImportEntity, String>{};
/// A mapping from classes to their import set.
Map<ClassEntity, ImportSet> _classToSet = new Map<ClassEntity, ImportSet>();
/// A mapping from members to their import set.
Map<MemberEntity, ImportSet> _memberToSet =
new Map<MemberEntity, ImportSet>();
/// A mapping from local functions to their import set.
Map<Local, ImportSet> _localFunctionToSet = new Map<Local, ImportSet>();
/// A mapping from constants to their import set.
Map<ConstantValue, ImportSet> _constantToSet =
new Map<ConstantValue, ImportSet>();
Iterable<ImportEntity> get _allDeferredImports =>
_deferredImportDescriptions.keys;
/// Because the token-stream is forgotten later in the program, we cache a
/// description of each deferred import.
final Map<ImportEntity, ImportDescription> _deferredImportDescriptions =
<ImportEntity, ImportDescription>{};
/// A lattice to compactly represent multiple subsets of imports.
final ImportSetLattice importSets = new ImportSetLattice();
final Compiler compiler;
bool get disableProgramSplit => compiler.options.disableProgramSplit;
bool get newDeferredSplit => compiler.options.newDeferredSplit;
bool get reportInvalidInferredDeferredTypes =>
compiler.options.reportInvalidInferredDeferredTypes;
DeferredLoadTask(this.compiler) : super(compiler.measurer) {
_mainOutputUnit = new OutputUnit(true, 'main', new Set<ImportEntity>());
importSets.mainSet.unit = _mainOutputUnit;
_allOutputUnits.add(_mainOutputUnit);
}
KElementEnvironment get elementEnvironment =>
compiler.frontendStrategy.elementEnvironment;
CommonElements get commonElements => compiler.frontendStrategy.commonElements;
DiagnosticReporter get reporter => compiler.reporter;
/// Given [imports] that refer to an element from a library, determine whether
/// the element is explicitly deferred.
static bool _isExplicitlyDeferred(Iterable<ImportEntity> imports) {
// If the element is not imported explicitly, it is implicitly imported
// not deferred.
if (imports.isEmpty) return false;
// An element could potentially be loaded by several imports. If all of them
// is explicitly deferred, we say the element is explicitly deferred.
// TODO(sigurdm): We might want to give a warning if the imports do not
// agree.
return imports.every((ImportEntity import) => import.isDeferred);
}
/// Returns every [ImportEntity] that imports [element] into [library].
Iterable<ImportEntity> classImportsTo(
ClassEntity element, LibraryEntity library);
/// Returns every [ImportEntity] that imports [element] into [library].
Iterable<ImportEntity> memberImportsTo(
MemberEntity element, LibraryEntity library);
/// Returns every [ImportEntity] that imports [element] into [library].
Iterable<ImportEntity> typedefImportsTo(
TypedefEntity element, LibraryEntity library);
/// Collects all direct dependencies of [element].
///
/// The collected dependent elements and constants are are added to
/// [elements] and [constants] respectively.
void _collectDirectMemberDependencies(KClosedWorld closedWorld,
MemberEntity element, Dependencies dependencies) {
// TODO(sigurdm): We want to be more specific about this - need a better
// way to query "liveness".
if (!compiler.resolutionWorldBuilder.isMemberUsed(element)) {
return;
}
_collectDependenciesFromImpact(closedWorld, element, dependencies);
collectConstantsInBody(element, dependencies);
}
/// Finds all elements and constants that [element] depends directly on.
/// (not the transitive closure.)
///
/// Adds the results to [elements] and [constants].
void _collectAllElementsAndConstantsResolvedFromClass(
KClosedWorld closedWorld,
ClassEntity element,
Dependencies dependencies) {
// If we see a class, add everything its live instance members refer
// to. Static members are not relevant, unless we are processing
// extra dependencies due to mirrors.
void addLiveInstanceMember(MemberEntity member) {
if (!compiler.resolutionWorldBuilder.isMemberUsed(member)) return;
if (!member.isInstanceMember) return;
dependencies.addMember(member);
_collectDirectMemberDependencies(closedWorld, member, dependencies);
}
ClassEntity cls = element;
elementEnvironment.forEachLocalClassMember(cls, addLiveInstanceMember);
elementEnvironment.forEachSupertype(cls, (InterfaceType type) {
_collectTypeDependencies(type, dependencies);
});
dependencies.addClass(cls);
}
/// Finds all elements and constants that [element] depends directly on.
/// (not the transitive closure.)
///
/// Adds the results to [elements] and [constants].
void _collectAllElementsAndConstantsResolvedFromMember(
KClosedWorld closedWorld,
MemberEntity element,
Dependencies dependencies) {
if (element is FunctionEntity) {
_collectTypeDependencies(
elementEnvironment.getFunctionType(element), dependencies);
}
if (element.isStatic || element.isTopLevel || element.isConstructor) {
dependencies.addMember(element);
_collectDirectMemberDependencies(closedWorld, element, dependencies);
}
if (element is ConstructorEntity && element.isGenerativeConstructor) {
// When instantiating a class, we record a reference to the
// constructor, not the class itself. We must add all the
// instance members of the constructor's class.
ClassEntity cls = element.enclosingClass;
_collectAllElementsAndConstantsResolvedFromClass(
closedWorld, cls, dependencies);
}
// Other elements, in particular instance members, are ignored as
// they are processed as part of the class.
}
/// Extract the set of constants that are used in annotations of [element].
///
/// If the underlying system doesn't support mirrors, then no constants are
/// added.
void collectConstantsFromMetadata(
Entity element, Set<ConstantValue> constants);
/// Extract the set of constants that are used in the body of [element].
void collectConstantsInBody(MemberEntity element, Dependencies dependencies);
/// Recursively collects all the dependencies of [type].
void _collectTypeDependencies(DartType type, Dependencies dependencies,
[ImportEntity import]) {
new TypeDependencyVisitor(dependencies, import, commonElements).visit(type);
}
void _collectTypeArgumentDependencies(
Iterable<DartType> typeArguments, Dependencies dependencies,
[ImportEntity import]) {
if (typeArguments == null) return;
new TypeDependencyVisitor(dependencies, import, commonElements)
.visitList(typeArguments);
}
/// Extract any dependencies that are known from the impact of [element].
void _collectDependenciesFromImpact(KClosedWorld closedWorld,
MemberEntity element, Dependencies dependencies) {
WorldImpact worldImpact = compiler.impactCache[element];
compiler.impactStrategy.visitImpact(
element,
worldImpact,
new WorldImpactVisitorImpl(
visitStaticUse: (MemberEntity member, StaticUse staticUse) {
Entity usedEntity = staticUse.element;
if (usedEntity is MemberEntity) {
dependencies.addMember(usedEntity, staticUse.deferredImport);
} else {
assert(usedEntity is KLocalFunction,
failedAt(usedEntity, "Unexpected static use $staticUse."));
KLocalFunction localFunction = usedEntity;
// TODO(sra): Consult KClosedWorld to see if signature is needed.
_collectTypeDependencies(localFunction.functionType, dependencies);
dependencies.localFunctions.add(localFunction);
}
switch (staticUse.kind) {
case StaticUseKind.CONSTRUCTOR_INVOKE:
case StaticUseKind.CONST_CONSTRUCTOR_INVOKE:
// The receiver type of generative constructors is a dependency of
// the constructor (handled by `addMember` above) and not a
// dependency at the call site.
// Factory methods, on the other hand, are like static methods so
// the target type is not relevant.
// TODO(johnniwinther): Use rti need data to skip unneeded type
// arguments.
_collectTypeArgumentDependencies(
staticUse.type.typeArguments, dependencies);
break;
case StaticUseKind.STATIC_INVOKE:
case StaticUseKind.CLOSURE_CALL:
case StaticUseKind.DIRECT_INVOKE:
// TODO(johnniwinther): Use rti need data to skip unneeded type
// arguments.
_collectTypeArgumentDependencies(
staticUse.typeArguments, dependencies);
break;
default:
}
}, visitTypeUse: (MemberEntity member, TypeUse typeUse) {
DartType type = typeUse.type;
switch (typeUse.kind) {
case TypeUseKind.TYPE_LITERAL:
if (type.isInterfaceType) {
InterfaceType interface = type;
dependencies.addClass(
interface.element, typeUse.deferredImport);
}
break;
case TypeUseKind.CONST_INSTANTIATION:
_collectTypeDependencies(
type, dependencies, typeUse.deferredImport);
break;
case TypeUseKind.INSTANTIATION:
case TypeUseKind.NATIVE_INSTANTIATION:
case TypeUseKind.IS_CHECK:
case TypeUseKind.CATCH_TYPE:
_collectTypeDependencies(type, dependencies);
break;
case TypeUseKind.AS_CAST:
if (closedWorld.annotationsData
.getExplicitCastCheckPolicy(element)
.isEmitted) {
_collectTypeDependencies(type, dependencies);
}
break;
case TypeUseKind.IMPLICIT_CAST:
if (closedWorld.annotationsData
.getImplicitDowncastCheckPolicy(element)
.isEmitted) {
_collectTypeDependencies(type, dependencies);
}
break;
case TypeUseKind.PARAMETER_CHECK:
if (closedWorld.annotationsData
.getParameterCheckPolicy(element)
.isEmitted) {
_collectTypeDependencies(type, dependencies);
}
break;
case TypeUseKind.RTI_VALUE:
case TypeUseKind.TYPE_ARGUMENT:
case TypeUseKind.NAMED_TYPE_VARIABLE_NEW_RTI:
failedAt(element, "Unexpected type use: $typeUse.");
break;
}
}, visitDynamicUse: (MemberEntity member, DynamicUse dynamicUse) {
// TODO(johnniwinther): Use rti need data to skip unneeded type
// arguments.
_collectTypeArgumentDependencies(
dynamicUse.typeArguments, dependencies);
}),
DeferredLoadTask.IMPACT_USE);
}
/// Update the import set of all constants reachable from [constant], as long
/// as they had the [oldSet]. As soon as we see a constant with a different
/// import set, we stop and enqueue a new recursive update in [queue].
///
/// Invariants: oldSet is either null or a subset of newSet.
void _updateConstantRecursive(
KClosedWorld closedWorld,
ConstantValue constant,
ImportSet oldSet,
ImportSet newSet,
WorkQueue queue) {
if (constant == null) return;
var currentSet = _constantToSet[constant];
// Already visited.
if (currentSet == newSet) return;
// Elements in the main output unit always remain there.
if (currentSet == importSets.mainSet) return;
if (currentSet == oldSet) {
_constantToSet[constant] = newSet;
if (constant is ConstructedConstantValue) {
ClassEntity cls = constant.type.element;
_updateClassRecursive(closedWorld, cls, oldSet, newSet, queue);
}
if (constant is InstantiationConstantValue) {
for (DartType type in constant.typeArguments) {
if (type is InterfaceType) {
_updateClassRecursive(
closedWorld, type.element, oldSet, newSet, queue);
}
}
}
constant.getDependencies().forEach((ConstantValue dependency) {
// Constants are not allowed to refer to deferred constants, so
// no need to check for a deferred type literal here.
_updateConstantRecursive(
closedWorld, dependency, oldSet, newSet, queue);
});
} else {
assert(
// Invariant: we must mark main before we mark any deferred import.
newSet != importSets.mainSet || oldSet != null,
failedAt(
NO_LOCATION_SPANNABLE,
"Tried to assign ${constant.toDartText()} to the main output "
"unit, but it was assigned to $currentSet."));
queue.addConstant(constant, newSet);
}
}
void _updateClassRecursive(KClosedWorld closedWorld, ClassEntity element,
ImportSet oldSet, ImportSet newSet, WorkQueue queue) {
if (element == null) return;
ImportSet currentSet = _classToSet[element];
// Already visited. We may visit some root nodes a second time with
// [isMirrorUsage] in order to mark static members used reflectively.
if (currentSet == newSet) return;
// Elements in the main output unit always remain there.
if (currentSet == importSets.mainSet) return;
if (currentSet == oldSet) {
// Continue recursively updating from [oldSet] to [newSet].
_classToSet[element] = newSet;
Dependencies dependencies = new Dependencies();
_collectAllElementsAndConstantsResolvedFromClass(
closedWorld, element, dependencies);
LibraryEntity library = element.library;
_processDependencies(
closedWorld, library, dependencies, oldSet, newSet, queue, element);
} else {
queue.addClass(element, newSet);
}
}
void _updateMemberRecursive(KClosedWorld closedWorld, MemberEntity element,
ImportSet oldSet, ImportSet newSet, WorkQueue queue) {
if (element == null) return;
ImportSet currentSet = _memberToSet[element];
// Already visited. We may visit some root nodes a second time with
// [isMirrorUsage] in order to mark static members used reflectively.
if (currentSet == newSet) return;
// Elements in the main output unit always remain there.
if (currentSet == importSets.mainSet) return;
if (currentSet == oldSet) {
// Continue recursively updating from [oldSet] to [newSet].
_memberToSet[element] = newSet;
Dependencies dependencies = new Dependencies();
_collectAllElementsAndConstantsResolvedFromMember(
closedWorld, element, dependencies);
LibraryEntity library = element.library;
_processDependencies(
closedWorld, library, dependencies, oldSet, newSet, queue, element);
} else {
queue.addMember(element, newSet);
}
}
void _updateLocalFunction(
Local localFunction, ImportSet oldSet, ImportSet newSet) {
ImportSet currentSet = _localFunctionToSet[localFunction];
if (currentSet == newSet) return;
// Elements in the main output unit always remain there.
if (currentSet == importSets.mainSet) return;
if (currentSet == oldSet) {
_localFunctionToSet[localFunction] = newSet;
} else {
_localFunctionToSet[localFunction] = importSets.union(currentSet, newSet);
}
// Note: local functions are not updated recursively because the
// dependencies are already visited as dependencies of the enclosing member.
}
/// Whether to enqueue a deferred dependency.
///
/// Due to the nature of the algorithm, some dependencies may be visited more
/// than once. However, we know that new deferred-imports are only discovered
/// when we are visiting the main output unit (size == 0) or code reachable
/// from a deferred import (size == 1). After that, we are rediscovering the
/// same nodes we have already seen.
_shouldAddDeferredDependency(ImportSet newSet) => newSet.length <= 1;
void _fixDependencyInfo(DependencyInfo info, List<ImportEntity> imports,
String prefix, String name, Spannable context) {
var isDeferred = _isExplicitlyDeferred(imports);
if (isDeferred) {
if (!newDeferredSplit) {
info.isDeferred = true;
info.imports = imports;
}
if (reportInvalidInferredDeferredTypes) {
reporter.reportErrorMessage(context, MessageKind.GENERIC, {
'text': "$prefix '$name' is deferred but appears to be inferred as"
" a return type or a type parameter (dartbug.com/35311)."
});
}
}
}
// The following 3 methods are used to check whether the new deferred split
// algorithm and the old one match. Because of a soundness bug in the old
// algorithm the new algorithm can pull in a lot of code to the main output
// unit. This logic detects it and will make it easier for us to migrate code
// off it incrementally.
// Note: we only expect discrepancies on class-dependency-info due to how
// inferred types expose deferred types in type-variables and return types
// (Issue #35311). We added the other two methods to test our transition, but
// we don't expect to detect any mismatches there.
//
// TODO(sigmund): delete once the new implementation is on by default.
void _fixClassDependencyInfo(DependencyInfo info, ClassEntity cls,
LibraryEntity library, Spannable context) {
if (info.isDeferred) return;
if (newDeferredSplit && !reportInvalidInferredDeferredTypes) return;
var imports = classImportsTo(cls, library);
_fixDependencyInfo(info, imports, "Class", cls.name, context);
}
void _fixMemberDependencyInfo(DependencyInfo info, MemberEntity member,
LibraryEntity library, Spannable context) {
if (info.isDeferred || compiler.options.newDeferredSplit) return;
var imports = memberImportsTo(member, library);
_fixDependencyInfo(info, imports, "Member", member.name, context);
}
void _fixConstantDependencyInfo(DependencyInfo info, ConstantValue constant,
LibraryEntity library, Spannable context) {
if (info.isDeferred || compiler.options.newDeferredSplit) return;
if (constant is TypeConstantValue) {
var type = constant.representedType;
if (type is InterfaceType) {
var imports = classImportsTo(type.element, library);
_fixDependencyInfo(
info, imports, "Class (in constant) ", type.element.name, context);
} else if (type is TypedefType) {
var imports = typedefImportsTo(type.element, library);
_fixDependencyInfo(
info, imports, "Typedef ", type.element.name, context);
}
}
}
void _processDependencies(
KClosedWorld closedWorld,
LibraryEntity library,
Dependencies dependencies,
ImportSet oldSet,
ImportSet newSet,
WorkQueue queue,
Spannable context) {
dependencies.classes.forEach((ClassEntity cls, DependencyInfo info) {
_fixClassDependencyInfo(info, cls, library, context);
if (info.isDeferred) {
if (_shouldAddDeferredDependency(newSet)) {
for (ImportEntity deferredImport in info.imports) {
queue.addClass(cls, importSets.singleton(deferredImport));
}
}
} else {
_updateClassRecursive(closedWorld, cls, oldSet, newSet, queue);
}
});
dependencies.members.forEach((MemberEntity member, DependencyInfo info) {
_fixMemberDependencyInfo(info, member, library, context);
if (info.isDeferred) {
if (_shouldAddDeferredDependency(newSet)) {
for (ImportEntity deferredImport in info.imports) {
queue.addMember(member, importSets.singleton(deferredImport));
}
}
} else {
_updateMemberRecursive(closedWorld, member, oldSet, newSet, queue);
}
});
for (Local localFunction in dependencies.localFunctions) {
_updateLocalFunction(localFunction, oldSet, newSet);
}
dependencies.constants
.forEach((ConstantValue constant, DependencyInfo info) {
_fixConstantDependencyInfo(info, constant, library, context);
if (info.isDeferred) {
if (_shouldAddDeferredDependency(newSet)) {
for (ImportEntity deferredImport in info.imports) {
queue.addConstant(constant, importSets.singleton(deferredImport));
}
}
} else {
_updateConstantRecursive(closedWorld, constant, oldSet, newSet, queue);
}
});
}
/// Computes a unique string for the name field for each outputUnit.
void _createOutputUnits() {
int counter = 1;
void addUnit(ImportSet importSet) {
if (importSet.unit != null) return;
var unit = new OutputUnit(false, '$counter',
importSet._imports.map((i) => i.declaration).toSet());
counter++;
importSet.unit = unit;
_allOutputUnits.add(unit);
}
// Generate an output unit for all import sets that are associated with an
// element or constant.
_classToSet.values.forEach(addUnit);
_memberToSet.values.forEach(addUnit);
_localFunctionToSet.values.forEach(addUnit);
_constantToSet.values.forEach(addUnit);
// Sort output units to make the output of the compiler more stable.
_allOutputUnits.sort();
}
Map<String, List<OutputUnit>> _setupHunksToLoad() {
Map<String, List<OutputUnit>> hunksToLoad = {};
Set<String> usedImportNames = new Set<String>();
for (ImportEntity import in _allDeferredImports) {
String result = computeImportDeferName(import, compiler);
assert(result != null);
// Note: tools that process the json file to build multi-part initial load
// bundles depend on the fact that makeUnique appends only digits, or a
// period followed by digits.
_importDeferName[import] = makeUnique(result, usedImportNames, '.');
}
// Sort the output units in descending order of the number of imports they
// include.
// The loading of the output units must be ordered because a superclass
// needs to be initialized before its subclass.
// But a class can only depend on another class in an output unit shared by
// a strict superset of the imports:
// By contradiction: Assume a class C in output unit shared by imports in
// the set S1 = (lib1,.., lib_n) depends on a class D in an output unit
// shared by S2 such that S2 not a superset of S1. Let lib_s be a library in
// S1 not in S2. lib_s must depend on C, and then in turn on D. Therefore D
// is not in the right output unit.
List<OutputUnit> sortedOutputUnits = _allOutputUnits.reversed.toList();
// For each deferred import we find out which outputUnits to load.
for (ImportEntity import in _allDeferredImports) {
// We expect to find an entry for any call to `loadLibrary`, even if
// there is no code to load. In that case, the entry will be an empty
// list.
hunksToLoad[_importDeferName[import]] = new List<OutputUnit>();
for (OutputUnit outputUnit in sortedOutputUnits) {
if (outputUnit == _mainOutputUnit) continue;
if (outputUnit._imports.contains(import)) {
hunksToLoad[_importDeferName[import]].add(outputUnit);
}
}
}
return hunksToLoad;
}
/// Returns a name for a deferred import.
String computeImportDeferName(ImportEntity declaration, Compiler compiler) {
assert(declaration.isDeferred);
if (declaration.name != null) {
return declaration.name;
} else {
// This happens when the deferred import isn't declared with a prefix.
assert(compiler.compilationFailed);
return '';
}
}
/// Performs the deferred loading algorithm.
///
/// The deferred loading algorithm maps elements and constants to an output
/// unit. Each output unit is identified by a subset of deferred imports (an
/// [ImportSet]), and they will contain the elements that are inherently used
/// by all those deferred imports. An element is used by a deferred import if
/// it is either loaded by that import or transitively accessed by an element
/// that the import loads. An empty set represents the main output unit,
/// which contains any elements that are accessed directly and are not
/// deferred.
///
/// The algorithm traverses the element model recursively looking for
/// dependencies between elements. These dependencies may be deferred or
/// non-deferred. Deferred dependencies are mainly used to discover the root
/// elements that are loaded from deferred imports, while non-deferred
/// dependencies are used to recursively associate more elements to output
/// units.
///
/// Naively, the algorithm traverses each root of a deferred import and marks
/// everything it can reach as being used by that import. To reduce how many
/// times we visit an element, we use an algorithm that works in segments: it
/// marks elements with a subset of deferred imports at a time, until it
/// detects a merge point where more deferred imports could be considered at
/// once.
///
/// For example, consider this dependency graph (ignoring elements in the main
/// output unit):
///
/// deferred import A: a1 ---> s1 ---> s2 -> s3
/// ^ ^
/// | |
/// deferred import B: b1 -----+ |
/// |
/// deferred import C: c1 ---> c2 ---> c3
///
/// The algorithm will compute a result with 5 deferred output units:
//
/// * unit {A}: contains a1
/// * unit {B}: contains b1
/// * unit {C}: contains c1, c2, and c3
/// * unit {A, B}: contains s1
/// * unit {A, B, C}: contains s2, and s3
///
/// After marking everything reachable from main as part of the main output
/// unit, our algorithm will work as follows:
///
/// * Initially all deferred elements have no mapping.
/// * We make note of work to do, initially to mark the root of each
/// deferred import:
/// * a1 with A, and recurse from there.
/// * b1 with B, and recurse from there.
/// * c1 with C, and recurse from there.
/// * we update a1, s1, s2, s3 from no mapping to {A}
/// * we update b1 from no mapping to {B}, and when we find s1 we notice
/// that s1 is already associated with another import set {A}, so we make
/// note of additional work for later to mark s1 with {A, B}
/// * we update c1, c2, c3 to {C}, and make a note to update s2 with {A, C}
/// * we update s1 to {A, B}, and update the existing note to update s2, now
/// with {A, B, C}
/// * finally we update s2 and s3 with {A, B, C} in one go, without ever
/// updating them to the intermediate state {A, C}.
///
/// The implementation below does atomic updates from one import-set to
/// another. At first we add one deferred import at a time, but as the
/// algorithm progesses it may update a small import-set with a larger
/// import-set in one go. The key of this algorithm is to detect when sharing
/// begins, so we can update those elements more efficently.
///
/// To detect these merge points where sharing begins, the implementation
/// below uses `a swap operation`: we first compare what the old import-set
/// is, and if it matches our expectation, the swap is done and we recurse,
/// otherwise a merge root was detected and we enqueue a new segment of
/// updates for later.
///
/// TODO(sigmund): investigate different heuristics for how to select the next
/// work item (e.g. we might converge faster if we pick first the update that
/// contains a bigger delta.)
OutputUnitData run(FunctionEntity main, KClosedWorld closedWorld) {
if (!isProgramSplit || main == null || disableProgramSplit) {
return _buildResult();
}
work() {
var queue = new WorkQueue(this.importSets);
// Add `main` and their recursive dependencies to the main output unit.
// We do this upfront to avoid wasting time visiting these elements when
// analyzing deferred imports.
queue.addMember(main, importSets.mainSet);
// Also add "global" dependencies to the main output unit. These are
// things that the backend needs but cannot associate with a particular
// element. This set also contains elements for which we lack precise
// information.
for (MemberEntity element
in closedWorld.backendUsage.globalFunctionDependencies) {
queue.addMember(element, importSets.mainSet);
}
for (ClassEntity element
in closedWorld.backendUsage.globalClassDependencies) {
queue.addClass(element, importSets.mainSet);
}
void emptyQueue() {
while (queue.isNotEmpty) {
WorkItem item = queue.nextItem();
item.update(this, closedWorld, queue);
}
}
emptyQueue();
}
reporter.withCurrentElement(main.library, () => measure(work));
// Notify that we no longer need impacts for deferred load, so they can be
// discarded at this time.
compiler.impactStrategy.onImpactUsed(DeferredLoadTask.IMPACT_USE);
return _buildResult();
}
OutputUnitData _buildResult() {
_createOutputUnits();
Map<String, List<OutputUnit>> hunksToLoad = _setupHunksToLoad();
Map<ClassEntity, OutputUnit> classMap = <ClassEntity, OutputUnit>{};
Map<MemberEntity, OutputUnit> memberMap = <MemberEntity, OutputUnit>{};
Map<Local, OutputUnit> localFunctionMap = <Local, OutputUnit>{};
Map<ConstantValue, OutputUnit> constantMap = <ConstantValue, OutputUnit>{};
_classToSet.forEach((cls, s) => classMap[cls] = s.unit);
_memberToSet.forEach((member, s) => memberMap[member] = s.unit);
_localFunctionToSet.forEach(
(localFunction, s) => localFunctionMap[localFunction] = s.unit);
_constantToSet.forEach((constant, s) => constantMap[constant] = s.unit);
_classToSet = null;
_memberToSet = null;
_localFunctionToSet = null;
_constantToSet = null;
cleanup();
return new OutputUnitData(
this.isProgramSplit && !disableProgramSplit,
this._mainOutputUnit,
classMap,
memberMap,
localFunctionMap,
constantMap,
_allOutputUnits,
_importDeferName,
hunksToLoad,
_deferredImportDescriptions);
}
/// Frees up strategy-specific temporary data.
void cleanup() {}
void beforeResolution(Uri rootLibraryUri, Iterable<Uri> libraries) {
measureSubtask('prepare', () {
for (Uri uri in libraries) {
LibraryEntity library = elementEnvironment.lookupLibrary(uri);
reporter.withCurrentElement(library, () {
checkForDeferredErrorCases(library);
for (ImportEntity import in elementEnvironment.getImports(library)) {
if (import.isDeferred) {
_deferredImportDescriptions[import] =
new ImportDescription(import, library, rootLibraryUri);
isProgramSplit = true;
}
}
});
}
});
}
/// Detects errors like duplicate uses of a prefix or using the old deferred
/// loading syntax.
///
/// These checks are already done by the shared front-end, so they can be
/// skipped by the new compiler pipeline.
void checkForDeferredErrorCases(LibraryEntity library);
bool ignoreEntityInDump(Entity element) => false;
/// Creates a textual representation of the output unit content.
String dump() {
Map<OutputUnit, List<String>> elementMap = <OutputUnit, List<String>>{};
Map<OutputUnit, List<String>> constantMap = <OutputUnit, List<String>>{};
_classToSet.forEach((ClassEntity element, ImportSet importSet) {
if (ignoreEntityInDump(element)) return;
var elements = elementMap.putIfAbsent(importSet.unit, () => <String>[]);
var id = element.name ?? '$element';
id = '$id cls';
elements.add(id);
});
_memberToSet.forEach((MemberEntity element, ImportSet importSet) {
if (ignoreEntityInDump(element)) return;
var elements = elementMap.putIfAbsent(importSet.unit, () => <String>[]);
var id = element.name ?? '$element';
var cls = element.enclosingClass?.name;
if (cls != null) id = '$cls.$id';
if (element.isSetter) id = '$id=';
id = '$id member';
elements.add(id);
});
_localFunctionToSet.forEach((Local element, ImportSet importSet) {
if (ignoreEntityInDump(element)) return;
var elements = elementMap.putIfAbsent(importSet.unit, () => <String>[]);
var id = element.name ?? '$element';
var context = (element as dynamic).memberContext.name;
id = element.name == null || element.name == '' ? '<anonymous>' : id;
id = '$context.$id';
id = '$id local';
elements.add(id);
});
_constantToSet.forEach((ConstantValue value, ImportSet importSet) {
// Skip primitive values: they are not stored in the constant tables and
// if they are shared, they end up duplicated anyways across output units.
if (value.isPrimitive) return;
constantMap
.putIfAbsent(importSet.unit, () => <String>[])
.add(value.toStructuredText());
});
Map<OutputUnit, String> text = {};
for (OutputUnit outputUnit in _allOutputUnits) {
StringBuffer unitText = new StringBuffer();
if (outputUnit.isMainOutput) {
unitText.write(' <MAIN UNIT>');
} else {
unitText.write(' imports:');
var imports = outputUnit._imports
.map((i) => '${i.enclosingLibraryUri.resolveUri(i.uri)}')
.toList();
for (var i in imports..sort()) {
unitText.write('\n $i:');
}
}
List<String> elements = elementMap[outputUnit];
if (elements != null) {
unitText.write('\n elements:');
for (String element in elements..sort()) {
unitText.write('\n $element');
}
}
List<String> constants = constantMap[outputUnit];
if (constants != null) {
unitText.write('\n constants:');
for (String value in constants..sort()) {
unitText.write('\n $value');
}
}
text[outputUnit] = '$unitText';
}
StringBuffer sb = new StringBuffer();
for (OutputUnit outputUnit in _allOutputUnits.toList()
..sort((a, b) => text[a].compareTo(text[b]))) {
sb.write('\n\n-------------------------------\n');
sb.write('Output unit: ${outputUnit.name}');
sb.write('\n ${text[outputUnit]}');
}
return sb.toString();
}
}
class ImportDescription {
/// Relative uri to the importing library.
final String importingUri;
/// The prefix this import is imported as.
final String prefix;
final LibraryEntity _importingLibrary;
ImportDescription.internal(
this.importingUri, this.prefix, this._importingLibrary);
ImportDescription(
ImportEntity import, LibraryEntity importingLibrary, Uri mainLibraryUri)
: this.internal(
fe.relativizeUri(
mainLibraryUri, importingLibrary.canonicalUri, false),
import.name,
importingLibrary);
}
/// Indirectly represents a deferred import in an [ImportSet].
///
/// We could directly store the [declaration] in [ImportSet], but adding this
/// class makes some of the import set operations more efficient.
class _DeferredImport {
final ImportEntity declaration;
/// Canonical index associated with [declaration]. This is used to efficiently
/// implement [ImportSetLattice.union].
final int index;
_DeferredImport(this.declaration, this.index);
}
/// A compact lattice representation of import sets and subsets.
///
/// We use a graph of nodes to represent elements of the lattice, but only
/// create new nodes on-demand as they are needed by the deferred loading
/// algorithm.
///
/// The constructions of nodes is carefully done by storing imports in a
/// specific order. This ensures that we have a unique and canonical
/// representation for each subset.
class ImportSetLattice {
/// Index of deferred imports that defines the canonical order used by the
/// operations below.
Map<ImportEntity, _DeferredImport> _importIndex = {};
/// The canonical instance representing the empty import set.
ImportSet _emptySet = new ImportSet();
/// The import set representing the main output unit, which happens to be
/// implemented as an empty set in our algorithm.
ImportSet get mainSet => _emptySet;
/// Get the singleton import set that only contains [import].
ImportSet singleton(ImportEntity import) {
// Ensure we have import in the index.
return _emptySet._add(_wrap(import));
}
/// Get the import set that includes the union of [a] and [b].
ImportSet union(ImportSet a, ImportSet b) {
if (a == null || a == _emptySet) return b;
if (b == null || b == _emptySet) return a;
// We create the union by merging the imports in canonical order first, and
// then getting (or creating) the canonical sets by adding an import at a
// time.
List<_DeferredImport> aImports = a._imports;
List<_DeferredImport> bImports = b._imports;
int i = 0, j = 0, lastAIndex = 0, lastBIndex = 0;
var result = _emptySet;
while (i < aImports.length && j < bImports.length) {
var importA = aImports[i];
var importB = bImports[j];
assert(lastAIndex <= importA.index);
assert(lastBIndex <= importB.index);
if (importA.index < importB.index) {
result = result._add(importA);
i++;
} else {
result = result._add(importB);
j++;
}
}
for (; i < aImports.length; i++) {
result = result._add(aImports[i]);
}
for (; j < bImports.length; j++) {
result = result._add(bImports[j]);
}
return result;
}
/// Get the index for an [import] according to the canonical order.
_DeferredImport _wrap(ImportEntity import) {
return _importIndex.putIfAbsent(
import, () => new _DeferredImport(import, _importIndex.length));
}
}
/// A canonical set of deferred imports.
class ImportSet {
/// Imports that are part of this set.
///
/// Invariant: the order in which elements are added must respect the
/// canonical order of all imports in [ImportSetLattice].
final List<_DeferredImport> _imports;
/// Links to other import sets in the lattice by adding one import.
final Map<_DeferredImport, ImportSet> _transitions =
<_DeferredImport, ImportSet>{};
ImportSet([this._imports = const <_DeferredImport>[]]);
/// The output unit corresponding to this set of imports, if any.
OutputUnit unit;
int get length => _imports.length;
/// Create an import set that adds [import] to all the imports on this set.
/// This assumes that import's canonical order comes after all imports in
/// this current set. This should only be called from [ImportSetLattice],
/// since it is where we preserve this invariant.
ImportSet _add(_DeferredImport import) {
ImportSet result = _transitions[import];
if (result == null) {
result = new ImportSet(new List.from(_imports)..add(import));
result._transitions[import] = result;
_transitions[import] = result;
}
return result;
}
@override
String toString() {
StringBuffer sb = new StringBuffer();
sb.write('ImportSet(size: $length, ');
for (var import in _imports) {
sb.write('${import.declaration.name} ');
}
sb.write(')');
return '$sb';
}
}
/// The algorithm work queue.
class WorkQueue {
/// The actual queue of work that needs to be done.
final Queue<WorkItem> queue = new Queue<WorkItem>();
/// An index to find work items in the queue corresponding to a class.
final Map<ClassEntity, WorkItem> pendingClasses = <ClassEntity, WorkItem>{};
/// An index to find work items in the queue corresponding to a member.
final Map<MemberEntity, WorkItem> pendingMembers = <MemberEntity, WorkItem>{};
/// An index to find work items in the queue corresponding to a constant.
final Map<ConstantValue, WorkItem> pendingConstants =
<ConstantValue, WorkItem>{};
/// Lattice used to compute unions of [ImportSet]s.
final ImportSetLattice _importSets;
WorkQueue(this._importSets);
/// Whether there are no more work items in the queue.
bool get isNotEmpty => queue.isNotEmpty;
/// Pop the next element in the queue.
WorkItem nextItem() {
assert(isNotEmpty);
return queue.removeFirst();
}
/// Add to the queue that [element] should be updated to include all imports
/// in [importSet]. If there is already a work item in the queue for
/// [element], this makes sure that the work item now includes the union of
/// [importSet] and the existing work item's import set.
void addClass(ClassEntity element, ImportSet importSet) {
var item = pendingClasses[element];
if (item == null) {
item = new ClassWorkItem(element, importSet);
pendingClasses[element] = item;
queue.add(item);
} else {
item.importsToAdd = _importSets.union(item.importsToAdd, importSet);
}
}
/// Add to the queue that [element] should be updated to include all imports
/// in [importSet]. If there is already a work item in the queue for
/// [element], this makes sure that the work item now includes the union of
/// [importSet] and the existing work item's import set.
void addMember(MemberEntity element, ImportSet importSet) {
var item = pendingMembers[element];
if (item == null) {
item = new MemberWorkItem(element, importSet);
pendingMembers[element] = item;
queue.add(item);
} else {
item.importsToAdd = _importSets.union(item.importsToAdd, importSet);
}
}
/// Add to the queue that [constant] should be updated to include all imports
/// in [importSet]. If there is already a work item in the queue for
/// [constant], this makes sure that the work item now includes the union of
/// [importSet] and the existing work item's import set.
void addConstant(ConstantValue constant, ImportSet importSet) {
var item = pendingConstants[constant];
if (item == null) {
item = new ConstantWorkItem(constant, importSet);
pendingConstants[constant] = item;
queue.add(item);
} else {
item.importsToAdd = _importSets.union(item.importsToAdd, importSet);
}
}
}
/// Summary of the work that needs to be done on a class, member, or constant.
abstract class WorkItem {
/// Additional imports that use [element] or [value] and need to be added by
/// the algorithm.
///
/// This is non-final in case we add more deferred imports to the set before
/// the work item is applied (see [WorkQueue.addElement] and
/// [WorkQueue.addConstant]).
ImportSet importsToAdd;
WorkItem(this.importsToAdd);
void update(DeferredLoadTask task, KClosedWorld closedWorld, WorkQueue queue);
}
/// Summary of the work that needs to be done on a class.
class ClassWorkItem extends WorkItem {
/// Class to be recursively updated.
final ClassEntity cls;
ClassWorkItem(this.cls, ImportSet newSet) : super(newSet);
@override
void update(
DeferredLoadTask task, KClosedWorld closedWorld, WorkQueue queue) {
queue.pendingClasses.remove(cls);
ImportSet oldSet = task._classToSet[cls];
ImportSet newSet = task.importSets.union(oldSet, importsToAdd);
task._updateClassRecursive(closedWorld, cls, oldSet, newSet, queue);
}
}
/// Summary of the work that needs to be done on a member.
class MemberWorkItem extends WorkItem {
/// Member to be recursively updated.
final MemberEntity member;
MemberWorkItem(this.member, ImportSet newSet) : super(newSet);
@override
void update(
DeferredLoadTask task, KClosedWorld closedWorld, WorkQueue queue) {
queue.pendingMembers.remove(member);
ImportSet oldSet = task._memberToSet[member];
ImportSet newSet = task.importSets.union(oldSet, importsToAdd);
task._updateMemberRecursive(closedWorld, member, oldSet, newSet, queue);
}
}
/// Summary of the work that needs to be done on a constant.
class ConstantWorkItem extends WorkItem {
/// Constant to be recursively updated.
final ConstantValue constant;
ConstantWorkItem(this.constant, ImportSet newSet) : super(newSet);
@override
void update(
DeferredLoadTask task, KClosedWorld closedWorld, WorkQueue queue) {
queue.pendingConstants.remove(constant);
ImportSet oldSet = task._constantToSet[constant];
ImportSet newSet = task.importSets.union(oldSet, importsToAdd);
task._updateConstantRecursive(closedWorld, constant, oldSet, newSet, queue);
}
}
/// Interface for updating an [OutputUnitData] object with data for late
/// members, that is, members created on demand during code generation.
class LateOutputUnitDataBuilder {
final OutputUnitData _outputUnitData;
LateOutputUnitDataBuilder(this._outputUnitData);
/// Registers [newEntity] to be emitted in the same output unit as
/// [existingEntity];
void registerColocatedMembers(
MemberEntity existingEntity, MemberEntity newEntity) {
assert(_outputUnitData._memberToUnit[newEntity] == null);
_outputUnitData._memberToUnit[newEntity] =
_outputUnitData.outputUnitForMember(existingEntity);
}
}
/// Results of the deferred loading algorithm.
///
/// Provides information about the output unit associated with entities and
/// constants, as well as other helper methods.
// TODO(sigmund): consider moving here every piece of data used as a result of
// deferred loading (including hunksToLoad, etc).
class OutputUnitData {
/// Tag used for identifying serialized [OutputUnitData] objects in a
/// debugging data stream.
static const String tag = 'output-unit-data';
final bool isProgramSplit;
final OutputUnit mainOutputUnit;
final Map<ClassEntity, OutputUnit> _classToUnit;
final Map<MemberEntity, OutputUnit> _memberToUnit;
final Map<Local, OutputUnit> _localFunctionToUnit;
final Map<ConstantValue, OutputUnit> _constantToUnit;
final List<OutputUnit> outputUnits;
final Map<ImportEntity, String> _importDeferName;
/// A mapping from the name of a defer import to all the output units it
/// depends on in a list of lists to be loaded in the order they appear.
///
/// For example {"lib1": [[lib1_lib2_lib3], [lib1_lib2, lib1_lib3],
/// [lib1]]} would mean that in order to load "lib1" first the hunk
/// lib1_lib2_lib2 should be loaded, then the hunks lib1_lib2 and lib1_lib3
/// can be loaded in parallel. And finally lib1 can be loaded.
final Map<String, List<OutputUnit>> hunksToLoad;
/// Because the token-stream is forgotten later in the program, we cache a
/// description of each deferred import.
final Map<ImportEntity, ImportDescription> _deferredImportDescriptions;
OutputUnitData(
this.isProgramSplit,
this.mainOutputUnit,
this._classToUnit,
this._memberToUnit,
this._localFunctionToUnit,
this._constantToUnit,
this.outputUnits,
this._importDeferName,
this.hunksToLoad,
this._deferredImportDescriptions);
// Creates J-world data from the K-world data.
factory OutputUnitData.from(
OutputUnitData other,
LibraryEntity convertLibrary(LibraryEntity library),
Map<ClassEntity, OutputUnit> Function(
Map<ClassEntity, OutputUnit>, Map<Local, OutputUnit>)
convertClassMap,
Map<MemberEntity, OutputUnit> Function(
Map<MemberEntity, OutputUnit>, Map<Local, OutputUnit>)
convertMemberMap,
Map<ConstantValue, OutputUnit> Function(Map<ConstantValue, OutputUnit>)
convertConstantMap) {
Map<ClassEntity, OutputUnit> classToUnit =
convertClassMap(other._classToUnit, other._localFunctionToUnit);
Map<MemberEntity, OutputUnit> memberToUnit =
convertMemberMap(other._memberToUnit, other._localFunctionToUnit);
Map<ConstantValue, OutputUnit> constantToUnit =
convertConstantMap(other._constantToUnit);
Map<ImportEntity, ImportDescription> deferredImportDescriptions = {};
other._deferredImportDescriptions
.forEach((ImportEntity import, ImportDescription description) {
deferredImportDescriptions[import] = new ImportDescription.internal(
description.importingUri,
description.prefix,
convertLibrary(description._importingLibrary));
});
return new OutputUnitData(
other.isProgramSplit,
other.mainOutputUnit,
classToUnit,
memberToUnit,
// Local functions only make sense in the K-world model.
const <Local, OutputUnit>{},
constantToUnit,
other.outputUnits,
other._importDeferName,
other.hunksToLoad,
deferredImportDescriptions);
}
/// Deserializes an [OutputUnitData] object from [source].
factory OutputUnitData.readFromDataSource(DataSource source) {
source.begin(tag);
bool isProgramSplit = source.readBool();
List<OutputUnit> outputUnits = source.readList(() {
bool isMainOutput = source.readBool();
String name = source.readString();
Set<ImportEntity> importSet = source.readImports().toSet();
return new OutputUnit(isMainOutput, name, importSet);
});
OutputUnit mainOutputUnit = outputUnits[source.readInt()];
Map<ClassEntity, OutputUnit> classToUnit = source.readClassMap(() {
return outputUnits[source.readInt()];
});
Map<MemberEntity, OutputUnit> memberToUnit =
source.readMemberMap((MemberEntity member) {
return outputUnits[source.readInt()];
});
Map<ConstantValue, OutputUnit> constantToUnit = source.readConstantMap(() {
return outputUnits[source.readInt()];
});
Map<ImportEntity, String> importDeferName =
source.readImportMap(source.readString);
Map<String, List<OutputUnit>> hunksToLoad = source.readStringMap(() {
return source.readList(() {
return outputUnits[source.readInt()];
});
});
Map<ImportEntity, ImportDescription> deferredImportDescriptions =
source.readImportMap(() {
String importingUri = source.readString();
String prefix = source.readString();
LibraryEntity importingLibrary = source.readLibrary();
return new ImportDescription.internal(
importingUri, prefix, importingLibrary);
});
source.end(tag);
return new OutputUnitData(
isProgramSplit,
mainOutputUnit,
classToUnit,
memberToUnit,
// Local functions only make sense in the K-world model.
const <Local, OutputUnit>{},
constantToUnit,
outputUnits,
importDeferName,
hunksToLoad,
deferredImportDescriptions);
}
/// Serializes this [OutputUnitData] to [sink].
void writeToDataSink(DataSink sink) {
sink.begin(tag);
sink.writeBool(isProgramSplit);
Map<OutputUnit, int> outputUnitIndices = {};
sink.writeList(outputUnits, (OutputUnit outputUnit) {
outputUnitIndices[outputUnit] = outputUnitIndices.length;
sink.writeBool(outputUnit.isMainOutput);
sink.writeString(outputUnit.name);
sink.writeImports(outputUnit._imports);
});
sink.writeInt(outputUnitIndices[mainOutputUnit]);
sink.writeClassMap(_classToUnit, (OutputUnit outputUnit) {
sink.writeInt(outputUnitIndices[outputUnit]);
});
sink.writeMemberMap(_memberToUnit,
(MemberEntity member, OutputUnit outputUnit) {
sink.writeInt(outputUnitIndices[outputUnit]);
});
sink.writeConstantMap(_constantToUnit, (OutputUnit outputUnit) {
sink.writeInt(outputUnitIndices[outputUnit]);
});
sink.writeImportMap(_importDeferName, sink.writeString);
sink.writeStringMap(hunksToLoad, (List<OutputUnit> outputUnits) {
sink.writeList(
outputUnits,
(OutputUnit outputUnit) =>
sink.writeInt(outputUnitIndices[outputUnit]));
});
sink.writeImportMap(_deferredImportDescriptions,
(ImportDescription importDescription) {
sink.writeString(importDescription.importingUri);
sink.writeString(importDescription.prefix);
sink.writeLibrary(importDescription._importingLibrary);
});
sink.end(tag);
}
/// Returns the [OutputUnit] where [cls] belongs.
// TODO(johnniwinther): Remove the need for [allowNull]. Dump-info currently
// needs it.
OutputUnit outputUnitForClass(ClassEntity cls, {bool allowNull: false}) {
if (!isProgramSplit) return mainOutputUnit;
OutputUnit unit = _classToUnit[cls];
assert(allowNull || unit != null, 'No output unit for class $cls');
return unit ?? mainOutputUnit;
}
OutputUnit outputUnitForClassForTesting(ClassEntity cls) => _classToUnit[cls];
/// Returns the [OutputUnit] where [member] belongs.
OutputUnit outputUnitForMember(MemberEntity member) {
if (!isProgramSplit) return mainOutputUnit;
OutputUnit unit = _memberToUnit[member];
assert(unit != null, 'No output unit for member $member');
return unit ?? mainOutputUnit;
}
OutputUnit outputUnitForMemberForTesting(MemberEntity member) =>
_memberToUnit[member];
/// Direct access to the output-unit to constants map used for testing.
Iterable<ConstantValue> get constantsForTesting => _constantToUnit.keys;
/// Returns the [OutputUnit] where [constant] belongs.
OutputUnit outputUnitForConstant(ConstantValue constant) {
if (!isProgramSplit) return mainOutputUnit;
return _constantToUnit[constant];
}
OutputUnit outputUnitForConstantForTesting(ConstantValue constant) =>
_constantToUnit[constant];
/// Indicates whether [element] is deferred.
bool isDeferredClass(ClassEntity element) {
return outputUnitForClass(element) != mainOutputUnit;
}
/// Returns `true` if element [to] is reachable from element [from] without
/// crossing a deferred import.
///
/// For example, if we have two deferred libraries `A` and `B` that both
/// import a library `C`, then even though elements from `A` and `C` end up in
/// different output units, there is a non-deferred path between `A` and `C`.
bool hasOnlyNonDeferredImportPaths(MemberEntity from, MemberEntity to) {
OutputUnit outputUnitFrom = outputUnitForMember(from);
OutputUnit outputUnitTo = outputUnitForMember(to);
if (outputUnitTo == mainOutputUnit) return true;
if (outputUnitFrom == mainOutputUnit) return false;
return outputUnitTo._imports.containsAll(outputUnitFrom._imports);
}
/// Returns `true` if constant [to] is reachable from element [from] without
/// crossing a deferred import.
///
/// For example, if we have two deferred libraries `A` and `B` that both
/// import a library `C`, then even though elements from `A` and `C` end up in
/// different output units, there is a non-deferred path between `A` and `C`.
bool hasOnlyNonDeferredImportPathsToConstant(
MemberEntity from, ConstantValue to) {
OutputUnit outputUnitFrom = outputUnitForMember(from);
OutputUnit outputUnitTo = outputUnitForConstant(to);
if (outputUnitTo == mainOutputUnit) return true;
if (outputUnitFrom == mainOutputUnit) return false;
return outputUnitTo._imports.containsAll(outputUnitFrom._imports);
}
/// Registers that a constant is used in the same deferred output unit as
/// [field].
void registerConstantDeferredUse(DeferredGlobalConstantValue constant) {
if (!isProgramSplit) return;
OutputUnit unit = constant.unit;
assert(
_constantToUnit[constant] == null || _constantToUnit[constant] == unit);
_constantToUnit[constant] = unit;
}
/// Returns the unique name for the given deferred [import].
String getImportDeferName(Spannable node, ImportEntity import) {
String name = _importDeferName[import];
if (name == null) {
throw new SpannableAssertionFailure(
node, "No deferred name for $import.");
}
return name;
}
/// Returns the names associated with each deferred import in [unit].
Iterable<String> getImportNames(OutputUnit unit) {
return unit._imports.map((i) => _importDeferName[i]);
}
/// Returns a json-style map for describing what files that are loaded by a
/// given deferred import.
/// The mapping is structured as:
/// library uri -> {"name": library name, "files": (prefix -> list of files)}
/// Where
///
/// - <library uri> is the relative uri of the library making a deferred
/// import.
/// - <library name> is the name of the library, or "<unnamed>" if it is
/// unnamed.
/// - <prefix> is the `as` prefix used for a given deferred import.
/// - <list of files> is a list of the filenames the must be loaded when that
/// import is loaded.
Map<String, Map<String, dynamic>> computeDeferredMap(
CompilerOptions options, ElementEnvironment elementEnvironment,
{Set<OutputUnit> omittedUnits}) {
omittedUnits ??= Set();
Map<String, Map<String, dynamic>> mapping = {};
_deferredImportDescriptions.keys.forEach((ImportEntity import) {
List<OutputUnit> outputUnits = hunksToLoad[_importDeferName[import]];
ImportDescription description = _deferredImportDescriptions[import];
String getName(LibraryEntity library) {
var name = elementEnvironment.getLibraryName(library);
return name == '' ? '<unnamed>' : name;
}
Map<String, dynamic> libraryMap = mapping.putIfAbsent(
description.importingUri,
() => <String, dynamic>{
"name": getName(description._importingLibrary),
"imports": <String, List<String>>{}
});
List<String> partFileNames = outputUnits
.where((outputUnit) => !omittedUnits.contains(outputUnit))
.map((outputUnit) => deferredPartFileName(options, outputUnit.name))
.toList();
libraryMap["imports"][_importDeferName[import]] = partFileNames;
});
return mapping;
}
}
/// Returns the filename for the output-unit named [name].
///
/// The filename is of the form "<main output file>_<name>.part.js".
/// If [addExtension] is false, the ".part.js" suffix is left out.
String deferredPartFileName(CompilerOptions options, String name,
{bool addExtension: true}) {
assert(name != "");
String outPath = options.outputUri != null ? options.outputUri.path : "out";
String outName = outPath.substring(outPath.lastIndexOf('/') + 1);
String extension = addExtension ? ".part.js" : "";
return "${outName}_$name$extension";
}
class Dependencies {
final Map<ClassEntity, DependencyInfo> classes = {};
final Map<MemberEntity, DependencyInfo> members = {};
final Set<Local> localFunctions = new Set<Local>();
final Map<ConstantValue, DependencyInfo> constants = {};
void addClass(ClassEntity cls, [ImportEntity import]) {
(classes[cls] ??= new DependencyInfo()).registerImport(import);
}
void addMember(MemberEntity m, [ImportEntity import]) {
(members[m] ??= new DependencyInfo()).registerImport(import);
}
void addConstant(ConstantValue c, [ImportEntity import]) {
(constants[c] ??= new DependencyInfo()).registerImport(import);
}
}
class DependencyInfo {
bool isDeferred = true;
List<ImportEntity> imports;
registerImport(ImportEntity import) {
if (!isDeferred) return;
// A null import represents a direct non-deferred dependency.
if (import != null) {
(imports ??= []).add(import);
} else {
imports = null;
isDeferred = false;
}
}
}
class TypeDependencyVisitor implements DartTypeVisitor<void, Null> {
final Dependencies _dependencies;
final ImportEntity _import;
final CommonElements _commonElements;
TypeDependencyVisitor(this._dependencies, this._import, this._commonElements);
@override
void visit(DartType type, [_]) {
type.accept(this, null);
}
void visitList(List<DartType> types) {
types.forEach(visit);
}
@override
void visitFutureOrType(FutureOrType type, Null argument) {
_dependencies.addClass(_commonElements.futureClass);
visit(type.typeArgument);
}
@override
void visitDynamicType(DynamicType type, Null argument) {
// Nothing to add.
}
@override
void visitAnyType(AnyType type, Null argument) {
// Nothing to add.
}
@override
void visitTypedefType(TypedefType type, Null argument) {
visitList(type.typeArguments);
visit(type.unaliased);
}
@override
void visitInterfaceType(InterfaceType type, Null argument) {
visitList(type.typeArguments);
// TODO(sigmund): when we are able to split classes from types in our
// runtime-type representation, this should track type.element as a type
// dependency instead.
_dependencies.addClass(type.element, _import);
}
@override
void visitFunctionType(FunctionType type, Null argument) {
for (FunctionTypeVariable typeVariable in type.typeVariables) {
visit(typeVariable.bound);
}
visitList(type.parameterTypes);
visitList(type.optionalParameterTypes);
visitList(type.namedParameterTypes);
visit(type.returnType);
}
@override
void visitFunctionTypeVariable(FunctionTypeVariable type, Null argument) {
// Nothing to add. Handled in [visitFunctionType].
}
@override
void visitTypeVariableType(TypeVariableType type, Null argument) {
// TODO(johnniwinther): Do we need to collect the bound?
}
@override
void visitVoidType(VoidType type, Null argument) {
// Nothing to add.
}
}